1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Analysis.h" 11 #include "BenchmarkResult.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/MC/MCAsmInfo.h" 14 #include "llvm/Support/FormatVariadic.h" 15 #include <unordered_set> 16 #include <vector> 17 18 namespace exegesis { 19 20 static const char kCsvSep = ','; 21 22 namespace { 23 24 enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString }; 25 26 template <EscapeTag Tag> 27 void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S); 28 29 template <> 30 void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) { 31 if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) { 32 OS << S; 33 } else { 34 // Needs escaping. 35 OS << '"'; 36 for (const char C : S) { 37 if (C == '"') 38 OS << "\"\""; 39 else 40 OS << C; 41 } 42 OS << '"'; 43 } 44 } 45 46 template <> 47 void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) { 48 for (const char C : S) { 49 if (C == '<') 50 OS << "<"; 51 else if (C == '>') 52 OS << ">"; 53 else if (C == '&') 54 OS << "&"; 55 else 56 OS << C; 57 } 58 } 59 60 template <> 61 void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS, 62 const llvm::StringRef S) { 63 for (const char C : S) { 64 if (C == '"') 65 OS << "\\\""; 66 else 67 OS << C; 68 } 69 } 70 71 } // namespace 72 73 template <EscapeTag Tag> 74 static void 75 writeClusterId(llvm::raw_ostream &OS, 76 const InstructionBenchmarkClustering::ClusterId &CID) { 77 if (CID.isNoise()) 78 writeEscaped<Tag>(OS, "[noise]"); 79 else if (CID.isError()) 80 writeEscaped<Tag>(OS, "[error]"); 81 else 82 OS << CID.getId(); 83 } 84 85 template <EscapeTag Tag> 86 static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) { 87 writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str()); 88 } 89 90 template <typename EscapeTag, EscapeTag Tag> 91 void Analysis::writeSnippet(llvm::raw_ostream &OS, 92 llvm::ArrayRef<uint8_t> Bytes, 93 const char *Separator) const { 94 llvm::SmallVector<std::string, 3> Lines; 95 // Parse the asm snippet and print it. 96 while (!Bytes.empty()) { 97 llvm::MCInst MI; 98 uint64_t MISize = 0; 99 if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(), 100 llvm::nulls())) { 101 writeEscaped<Tag>(OS, llvm::join(Lines, Separator)); 102 writeEscaped<Tag>(OS, Separator); 103 writeEscaped<Tag>(OS, "[error decoding asm snippet]"); 104 return; 105 } 106 Lines.emplace_back(); 107 std::string &Line = Lines.back(); 108 llvm::raw_string_ostream OSS(Line); 109 InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_); 110 Bytes = Bytes.drop_front(MISize); 111 OSS.flush(); 112 Line = llvm::StringRef(Line).trim().str(); 113 } 114 writeEscaped<Tag>(OS, llvm::join(Lines, Separator)); 115 } 116 117 // Prints a row representing an instruction, along with scheduling info and 118 // point coordinates (measurements). 119 void Analysis::printInstructionRowCsv(const size_t PointId, 120 llvm::raw_ostream &OS) const { 121 const InstructionBenchmark &Point = Clustering_.getPoints()[PointId]; 122 writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId)); 123 OS << kCsvSep; 124 writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; "); 125 OS << kCsvSep; 126 writeEscaped<kEscapeCsv>(OS, Point.Key.Config); 127 OS << kCsvSep; 128 assert(!Point.Key.Instructions.empty()); 129 // FIXME: Resolve variant classes. 130 const unsigned SchedClassId = 131 InstrInfo_->get(Point.Key.Instructions[0].getOpcode()).getSchedClass(); 132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 133 const auto &SchedModel = SubtargetInfo_->getSchedModel(); 134 const llvm::MCSchedClassDesc *const SCDesc = 135 SchedModel.getSchedClassDesc(SchedClassId); 136 writeEscaped<kEscapeCsv>(OS, SCDesc->Name); 137 #else 138 OS << SchedClassId; 139 #endif 140 for (const auto &Measurement : Point.Measurements) { 141 OS << kCsvSep; 142 writeMeasurementValue<kEscapeCsv>(OS, Measurement.Value); 143 } 144 OS << "\n"; 145 } 146 147 Analysis::Analysis(const llvm::Target &Target, 148 const InstructionBenchmarkClustering &Clustering) 149 : Clustering_(Clustering) { 150 if (Clustering.getPoints().empty()) 151 return; 152 153 const InstructionBenchmark &FirstPoint = Clustering.getPoints().front(); 154 InstrInfo_.reset(Target.createMCInstrInfo()); 155 RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple)); 156 AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple)); 157 SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple, 158 FirstPoint.CpuName, "")); 159 InstPrinter_.reset(Target.createMCInstPrinter( 160 llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_, 161 *InstrInfo_, *RegInfo_)); 162 163 Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(), 164 &ObjectFileInfo_); 165 Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_)); 166 assert(Disasm_ && "cannot create MCDisassembler. missing call to " 167 "InitializeXXXTargetDisassembler ?"); 168 } 169 170 template <> 171 llvm::Error 172 Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const { 173 if (Clustering_.getPoints().empty()) 174 return llvm::Error::success(); 175 176 // Write the header. 177 OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config" 178 << kCsvSep << "sched_class"; 179 for (const auto &Measurement : Clustering_.getPoints().front().Measurements) { 180 OS << kCsvSep; 181 writeEscaped<kEscapeCsv>(OS, Measurement.Key); 182 } 183 OS << "\n"; 184 185 // Write the points. 186 const auto &Clusters = Clustering_.getValidClusters(); 187 for (size_t I = 0, E = Clusters.size(); I < E; ++I) { 188 for (const size_t PointId : Clusters[I].PointIndices) { 189 printInstructionRowCsv(PointId, OS); 190 } 191 OS << "\n\n"; 192 } 193 return llvm::Error::success(); 194 } 195 196 std::unordered_map<unsigned, std::vector<size_t>> 197 Analysis::makePointsPerSchedClass() const { 198 std::unordered_map<unsigned, std::vector<size_t>> PointsPerSchedClass; 199 const auto &Points = Clustering_.getPoints(); 200 for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) { 201 const InstructionBenchmark &Point = Points[PointId]; 202 if (!Point.Error.empty()) 203 continue; 204 assert(!Point.Key.Instructions.empty()); 205 const auto Opcode = Point.Key.Instructions[0].getOpcode(); 206 // FIXME: Resolve variant classes. 207 PointsPerSchedClass[InstrInfo_->get(Opcode).getSchedClass()].push_back( 208 PointId); 209 } 210 return PointsPerSchedClass; 211 } 212 213 // Uops repeat the same opcode over again. Just show this opcode and show the 214 // whole snippet only on hover. 215 static void writeUopsSnippetHtml(llvm::raw_ostream &OS, 216 const std::vector<llvm::MCInst> &Instructions, 217 const llvm::MCInstrInfo &InstrInfo) { 218 if (Instructions.empty()) 219 return; 220 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode())); 221 if (Instructions.size() > 1) 222 OS << " (x" << Instructions.size() << ")"; 223 } 224 225 // Latency tries to find a serial path. Just show the opcode path and show the 226 // whole snippet only on hover. 227 static void 228 writeLatencySnippetHtml(llvm::raw_ostream &OS, 229 const std::vector<llvm::MCInst> &Instructions, 230 const llvm::MCInstrInfo &InstrInfo) { 231 bool First = true; 232 for (const llvm::MCInst &Instr : Instructions) { 233 if (First) 234 First = false; 235 else 236 OS << " → "; 237 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode())); 238 } 239 } 240 241 void Analysis::printSchedClassClustersHtml( 242 const std::vector<SchedClassCluster> &Clusters, const SchedClass &SC, 243 llvm::raw_ostream &OS) const { 244 const auto &Points = Clustering_.getPoints(); 245 OS << "<table class=\"sched-class-clusters\">"; 246 OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>"; 247 assert(!Clusters.empty()); 248 for (const auto &Measurement : 249 Points[Clusters[0].getPointIds()[0]].Measurements) { 250 OS << "<th>"; 251 if (Measurement.DebugString.empty()) 252 writeEscaped<kEscapeHtml>(OS, Measurement.Key); 253 else 254 writeEscaped<kEscapeHtml>(OS, Measurement.DebugString); 255 OS << "</th>"; 256 } 257 OS << "</tr>"; 258 for (const SchedClassCluster &Cluster : Clusters) { 259 OS << "<tr class=\"" 260 << (Cluster.measurementsMatch(*SubtargetInfo_, SC, Clustering_) 261 ? "good-cluster" 262 : "bad-cluster") 263 << "\"><td>"; 264 writeClusterId<kEscapeHtml>(OS, Cluster.id()); 265 OS << "</td><td><ul>"; 266 for (const size_t PointId : Cluster.getPointIds()) { 267 const auto &Point = Points[PointId]; 268 OS << "<li><span class=\"mono\" title=\""; 269 writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet, 270 "\n"); 271 OS << "\">"; 272 switch (Point.Mode) { 273 case InstructionBenchmark::Latency: 274 writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_); 275 break; 276 case InstructionBenchmark::Uops: 277 writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_); 278 break; 279 default: 280 llvm_unreachable("invalid mode"); 281 } 282 OS << "</span> <span class=\"mono\">"; 283 writeEscaped<kEscapeHtml>(OS, Point.Key.Config); 284 OS << "</span></li>"; 285 } 286 OS << "</ul></td>"; 287 for (const auto &Stats : Cluster.getRepresentative()) { 288 OS << "<td class=\"measurement\">"; 289 writeMeasurementValue<kEscapeHtml>(OS, Stats.avg()); 290 OS << "<br><span class=\"minmax\">["; 291 writeMeasurementValue<kEscapeHtml>(OS, Stats.min()); 292 OS << ";"; 293 writeMeasurementValue<kEscapeHtml>(OS, Stats.max()); 294 OS << "]</span></td>"; 295 } 296 OS << "</tr>"; 297 } 298 OS << "</table>"; 299 } 300 301 // Return the non-redundant list of WriteProcRes used by the given sched class. 302 // The scheduling model for LLVM is such that each instruction has a certain 303 // number of uops which consume resources which are described by WriteProcRes 304 // entries. Each entry describe how many cycles are spent on a specific ProcRes 305 // kind. 306 // For example, an instruction might have 3 uOps, one dispatching on P0 307 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). 308 // Note that LLVM additionally denormalizes resource consumption to include 309 // usage of super resources by subresources. So in practice if there exists a 310 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by 311 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed 312 // by P06 are also consumed by P016. In the figure below, parenthesized cycles 313 // denote implied usage of superresources by subresources: 314 // P0 P06 P016 315 // uOp1 1 (1) (1) 316 // uOp2 1 (1) 317 // uOp3 1 (1) 318 // ============================= 319 // 1 3 3 320 // Eventually we end up with three entries for the WriteProcRes of the 321 // instruction: 322 // {ProcResIdx=1, Cycles=1} // P0 323 // {ProcResIdx=7, Cycles=3} // P06 324 // {ProcResIdx=10, Cycles=3} // P016 325 // 326 // Note that in this case, P016 does not contribute any cycles, so it would 327 // be removed by this function. 328 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. 329 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8> 330 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc, 331 const llvm::MCSubtargetInfo &STI) { 332 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result; 333 const auto &SM = STI.getSchedModel(); 334 const unsigned NumProcRes = SM.getNumProcResourceKinds(); 335 336 // This assumes that the ProcResDescs are sorted in topological order, which 337 // is guaranteed by the tablegen backend. 338 llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes); 339 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), 340 *const WPREnd = STI.getWriteProcResEnd(&SCDesc); 341 WPR != WPREnd; ++WPR) { 342 const llvm::MCProcResourceDesc *const ProcResDesc = 343 SM.getProcResource(WPR->ProcResourceIdx); 344 if (ProcResDesc->SubUnitsIdxBegin == nullptr) { 345 // This is a ProcResUnit. 346 Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); 347 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; 348 } else { 349 // This is a ProcResGroup. First see if it contributes any cycles or if 350 // it has cycles just from subunits. 351 float RemainingCycles = WPR->Cycles; 352 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; 353 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; 354 ++SubResIdx) { 355 RemainingCycles -= ProcResUnitUsage[*SubResIdx]; 356 } 357 if (RemainingCycles < 0.01f) { 358 // The ProcResGroup contributes no cycles of its own. 359 continue; 360 } 361 // The ProcResGroup contributes `RemainingCycles` cycles of its own. 362 Result.push_back({WPR->ProcResourceIdx, 363 static_cast<uint16_t>(std::round(RemainingCycles))}); 364 // Spread the remaining cycles over all subunits. 365 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; 366 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; 367 ++SubResIdx) { 368 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; 369 } 370 } 371 } 372 return Result; 373 } 374 375 Analysis::SchedClass::SchedClass(const llvm::MCSchedClassDesc &SD, 376 const llvm::MCSubtargetInfo &STI) 377 : SCDesc(&SD), 378 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(SD, STI)), 379 IdealizedProcResPressure(computeIdealizedProcResPressure( 380 STI.getSchedModel(), NonRedundantWriteProcRes)) {} 381 382 void Analysis::SchedClassCluster::addPoint( 383 size_t PointId, const InstructionBenchmarkClustering &Clustering) { 384 PointIds.push_back(PointId); 385 const auto &Point = Clustering.getPoints()[PointId]; 386 if (ClusterId.isUndef()) { 387 ClusterId = Clustering.getClusterIdForPoint(PointId); 388 Representative.resize(Point.Measurements.size()); 389 } 390 for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) { 391 Representative[I].push(Point.Measurements[I]); 392 } 393 assert(ClusterId == Clustering.getClusterIdForPoint(PointId)); 394 } 395 396 bool Analysis::SchedClassCluster::measurementsMatch( 397 const llvm::MCSubtargetInfo &STI, const SchedClass &SC, 398 const InstructionBenchmarkClustering &Clustering) const { 399 const size_t NumMeasurements = Representative.size(); 400 std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements); 401 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); 402 // Latency case. 403 assert(!Clustering.getPoints().empty()); 404 const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode; 405 if (Mode == InstructionBenchmark::Latency) { 406 if (NumMeasurements != 1) { 407 llvm::errs() 408 << "invalid number of measurements in latency mode: expected 1, got " 409 << NumMeasurements << "\n"; 410 return false; 411 } 412 // Find the latency. 413 SchedClassPoint[0].Value = 0.0; 414 for (unsigned I = 0; I < SC.SCDesc->NumWriteLatencyEntries; ++I) { 415 const llvm::MCWriteLatencyEntry *const WLE = 416 STI.getWriteLatencyEntry(SC.SCDesc, I); 417 SchedClassPoint[0].Value = 418 std::max<double>(SchedClassPoint[0].Value, WLE->Cycles); 419 } 420 ClusterCenterPoint[0].Value = Representative[0].avg(); 421 } else if (Mode == InstructionBenchmark::Uops) { 422 for (int I = 0, E = Representative.size(); I < E; ++I) { 423 // Find the pressure on ProcResIdx `Key`. 424 uint16_t ProcResIdx = 0; 425 if (!llvm::to_integer(Representative[I].key(), ProcResIdx, 10)) { 426 llvm::errs() << "expected ProcResIdx key, got " 427 << Representative[I].key() << "\n"; 428 return false; 429 } 430 const auto ProcResPressureIt = 431 std::find_if(SC.IdealizedProcResPressure.begin(), 432 SC.IdealizedProcResPressure.end(), 433 [ProcResIdx](const std::pair<uint16_t, float> &WPR) { 434 return WPR.first == ProcResIdx; 435 }); 436 SchedClassPoint[I].Value = 437 ProcResPressureIt == SC.IdealizedProcResPressure.end() 438 ? 0.0 439 : ProcResPressureIt->second; 440 ClusterCenterPoint[I].Value = Representative[I].avg(); 441 } 442 } else { 443 llvm::errs() << "unimplemented measurement matching for mode " << Mode 444 << "\n"; 445 return false; 446 } 447 return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint); 448 } 449 450 void Analysis::printSchedClassDescHtml(const SchedClass &SC, 451 llvm::raw_ostream &OS) const { 452 OS << "<table class=\"sched-class-desc\">"; 453 OS << "<tr><th>Valid</th><th>Variant</th><th>uOps</th><th>Latency</" 454 "th><th>WriteProcRes</th><th title=\"This is the idealized unit " 455 "resource (port) pressure assuming ideal distribution\">Idealized " 456 "Resource Pressure</th></tr>"; 457 if (SC.SCDesc->isValid()) { 458 const auto &SM = SubtargetInfo_->getSchedModel(); 459 OS << "<tr><td>✔</td>"; 460 OS << "<td>" << (SC.SCDesc->isVariant() ? "✔" : "✕") 461 << "</td>"; 462 OS << "<td>" << SC.SCDesc->NumMicroOps << "</td>"; 463 // Latencies. 464 OS << "<td><ul>"; 465 for (int I = 0, E = SC.SCDesc->NumWriteLatencyEntries; I < E; ++I) { 466 const auto *const Entry = 467 SubtargetInfo_->getWriteLatencyEntry(SC.SCDesc, I); 468 OS << "<li>" << Entry->Cycles; 469 if (SC.SCDesc->NumWriteLatencyEntries > 1) { 470 // Dismabiguate if more than 1 latency. 471 OS << " (WriteResourceID " << Entry->WriteResourceID << ")"; 472 } 473 OS << "</li>"; 474 } 475 OS << "</ul></td>"; 476 // WriteProcRes. 477 OS << "<td><ul>"; 478 for (const auto &WPR : SC.NonRedundantWriteProcRes) { 479 OS << "<li><span class=\"mono\">"; 480 writeEscaped<kEscapeHtml>(OS, 481 SM.getProcResource(WPR.ProcResourceIdx)->Name); 482 OS << "</span>: " << WPR.Cycles << "</li>"; 483 } 484 OS << "</ul></td>"; 485 // Idealized port pressure. 486 OS << "<td><ul>"; 487 for (const auto &Pressure : SC.IdealizedProcResPressure) { 488 OS << "<li><span class=\"mono\">"; 489 writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel() 490 .getProcResource(Pressure.first) 491 ->Name); 492 OS << "</span>: "; 493 writeMeasurementValue<kEscapeHtml>(OS, Pressure.second); 494 OS << "</li>"; 495 } 496 OS << "</ul></td>"; 497 OS << "</tr>"; 498 } else { 499 OS << "<tr><td>✕</td><td></td><td></td></tr>"; 500 } 501 OS << "</table>"; 502 } 503 504 static constexpr const char kHtmlHead[] = R"( 505 <head> 506 <title>llvm-exegesis Analysis Results</title> 507 <style> 508 body { 509 font-family: sans-serif 510 } 511 span.sched-class-name { 512 font-weight: bold; 513 font-family: monospace; 514 } 515 span.opcode { 516 font-family: monospace; 517 } 518 span.config { 519 font-family: monospace; 520 } 521 div.inconsistency { 522 margin-top: 50px; 523 } 524 table { 525 margin-left: 50px; 526 border-collapse: collapse; 527 } 528 table, table tr,td,th { 529 border: 1px solid #444; 530 } 531 table ul { 532 padding-left: 0px; 533 margin: 0px; 534 list-style-type: none; 535 } 536 table.sched-class-clusters td { 537 padding-left: 10px; 538 padding-right: 10px; 539 padding-top: 10px; 540 padding-bottom: 10px; 541 } 542 table.sched-class-desc td { 543 padding-left: 10px; 544 padding-right: 10px; 545 padding-top: 2px; 546 padding-bottom: 2px; 547 } 548 span.mono { 549 font-family: monospace; 550 } 551 td.measurement { 552 text-align: center; 553 } 554 tr.good-cluster td.measurement { 555 color: #292 556 } 557 tr.bad-cluster td.measurement { 558 color: #922 559 } 560 tr.good-cluster td.measurement span.minmax { 561 color: #888; 562 } 563 tr.bad-cluster td.measurement span.minmax { 564 color: #888; 565 } 566 </style> 567 </head> 568 )"; 569 570 template <> 571 llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>( 572 llvm::raw_ostream &OS) const { 573 const auto &FirstPoint = Clustering_.getPoints()[0]; 574 // Print the header. 575 OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>"; 576 OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>"; 577 OS << "<h3>Triple: <span class=\"mono\">"; 578 writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple); 579 OS << "</span></h3><h3>Cpu: <span class=\"mono\">"; 580 writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName); 581 OS << "</span></h3>"; 582 583 for (const auto &SchedClassAndPoints : makePointsPerSchedClass()) { 584 const auto SchedClassId = SchedClassAndPoints.first; 585 const std::vector<size_t> &SchedClassPoints = SchedClassAndPoints.second; 586 const auto &SchedModel = SubtargetInfo_->getSchedModel(); 587 const llvm::MCSchedClassDesc *const SCDesc = 588 SchedModel.getSchedClassDesc(SchedClassId); 589 if (!SCDesc) 590 continue; 591 const SchedClass SC(*SCDesc, *SubtargetInfo_); 592 593 // Bucket sched class points into sched class clusters. 594 std::vector<SchedClassCluster> SchedClassClusters; 595 for (const size_t PointId : SchedClassPoints) { 596 const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId); 597 if (!ClusterId.isValid()) 598 continue; // Ignore noise and errors. FIXME: take noise into account ? 599 auto SchedClassClusterIt = 600 std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(), 601 [ClusterId](const SchedClassCluster &C) { 602 return C.id() == ClusterId; 603 }); 604 if (SchedClassClusterIt == SchedClassClusters.end()) { 605 SchedClassClusters.emplace_back(); 606 SchedClassClusterIt = std::prev(SchedClassClusters.end()); 607 } 608 SchedClassClusterIt->addPoint(PointId, Clustering_); 609 } 610 611 // Print any scheduling class that has at least one cluster that does not 612 // match the checked-in data. 613 if (std::all_of(SchedClassClusters.begin(), SchedClassClusters.end(), 614 [this, &SC](const SchedClassCluster &C) { 615 return C.measurementsMatch(*SubtargetInfo_, SC, 616 Clustering_); 617 })) 618 continue; // Nothing weird. 619 620 OS << "<div class=\"inconsistency\"><p>Sched Class <span " 621 "class=\"sched-class-name\">"; 622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 623 writeEscaped<kEscapeHtml>(OS, SCDesc->Name); 624 #else 625 OS << SchedClassId; 626 #endif 627 OS << "</span> contains instructions whose performance characteristics do" 628 " not match that of LLVM:</p>"; 629 printSchedClassClustersHtml(SchedClassClusters, SC, OS); 630 OS << "<p>llvm SchedModel data:</p>"; 631 printSchedClassDescHtml(SC, OS); 632 OS << "</div>"; 633 } 634 635 OS << "</body></html>"; 636 return llvm::Error::success(); 637 } 638 639 // Distributes a pressure budget as evenly as possible on the provided subunits 640 // given the already existing port pressure distribution. 641 // 642 // The algorithm is as follows: while there is remaining pressure to 643 // distribute, find the subunits with minimal pressure, and distribute 644 // remaining pressure equally up to the pressure of the unit with 645 // second-to-minimal pressure. 646 // For example, let's assume we want to distribute 2*P1256 647 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: 648 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 649 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 650 // RemainingPressure = 2.0 651 // We sort the subunits by pressure: 652 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] 653 // We'll first start by the subunits with minimal pressure, which are at 654 // the beginning of the sorted array. In this example there is one (P2). 655 // The subunit with second-to-minimal pressure is the next one in the 656 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles 657 // from the budget. 658 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] 659 // RemainingPressure = 1.9 660 // We repeat this process: distribute 0.2 pressure on each of the minimal 661 // P2 and P1, decrease budget by 2*0.2: 662 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] 663 // RemainingPressure = 1.5 664 // There are no second-to-minimal subunits so we just share the remaining 665 // budget (1.5 cycles) equally: 666 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] 667 // RemainingPressure = 0.0 668 // We stop as there is no remaining budget to distribute. 669 void distributePressure(float RemainingPressure, 670 llvm::SmallVector<uint16_t, 32> Subunits, 671 llvm::SmallVector<float, 32> &DensePressure) { 672 // Find the number of subunits with minimal pressure (they are at the 673 // front). 674 llvm::sort(Subunits.begin(), Subunits.end(), 675 [&DensePressure](const uint16_t A, const uint16_t B) { 676 return DensePressure[A] < DensePressure[B]; 677 }); 678 const auto getPressureForSubunit = [&DensePressure, 679 &Subunits](size_t I) -> float & { 680 return DensePressure[Subunits[I]]; 681 }; 682 size_t NumMinimalSU = 1; 683 while (NumMinimalSU < Subunits.size() && 684 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { 685 ++NumMinimalSU; 686 } 687 while (RemainingPressure > 0.0f) { 688 if (NumMinimalSU == Subunits.size()) { 689 // All units are minimal, just distribute evenly and be done. 690 for (size_t I = 0; I < NumMinimalSU; ++I) { 691 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; 692 } 693 return; 694 } 695 // Distribute the remaining pressure equally. 696 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); 697 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); 698 assert(MinimalPressure < SecondToMinimalPressure); 699 const float Increment = SecondToMinimalPressure - MinimalPressure; 700 if (RemainingPressure <= NumMinimalSU * Increment) { 701 // There is not enough remaining pressure. 702 for (size_t I = 0; I < NumMinimalSU; ++I) { 703 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; 704 } 705 return; 706 } 707 // Bump all minimal pressure subunits to `SecondToMinimalPressure`. 708 for (size_t I = 0; I < NumMinimalSU; ++I) { 709 getPressureForSubunit(I) = SecondToMinimalPressure; 710 RemainingPressure -= SecondToMinimalPressure; 711 } 712 while (NumMinimalSU < Subunits.size() && 713 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { 714 ++NumMinimalSU; 715 } 716 } 717 } 718 719 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure( 720 const llvm::MCSchedModel &SM, 721 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) { 722 // DensePressure[I] is the port pressure for Proc Resource I. 723 llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); 724 llvm::sort(WPRS.begin(), WPRS.end(), 725 [](const llvm::MCWriteProcResEntry &A, 726 const llvm::MCWriteProcResEntry &B) { 727 return A.ProcResourceIdx < B.ProcResourceIdx; 728 }); 729 for (const llvm::MCWriteProcResEntry &WPR : WPRS) { 730 // Get units for the entry. 731 const llvm::MCProcResourceDesc *const ProcResDesc = 732 SM.getProcResource(WPR.ProcResourceIdx); 733 if (ProcResDesc->SubUnitsIdxBegin == nullptr) { 734 // This is a ProcResUnit. 735 DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; 736 } else { 737 // This is a ProcResGroup. 738 llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, 739 ProcResDesc->SubUnitsIdxBegin + 740 ProcResDesc->NumUnits); 741 distributePressure(WPR.Cycles, Subunits, DensePressure); 742 } 743 } 744 // Turn dense pressure into sparse pressure by removing zero entries. 745 std::vector<std::pair<uint16_t, float>> Pressure; 746 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { 747 if (DensePressure[I] > 0.0f) 748 Pressure.emplace_back(I, DensePressure[I]); 749 } 750 return Pressure; 751 } 752 753 } // namespace exegesis 754