1 //===- llvm/unittest/IR/BasicBlockTest.cpp - BasicBlock unit tests --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/IR/BasicBlock.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/IR/Function.h"
13 #include "llvm/IR/IRBuilder.h"
14 #include "llvm/IR/LLVMContext.h"
15 #include "llvm/IR/Module.h"
16 #include "llvm/IR/NoFolder.h"
17 #include "gmock/gmock-matchers.h"
18 #include "gtest/gtest.h"
19 #include <memory>
20 
21 namespace llvm {
22 namespace {
23 
TEST(BasicBlockTest,PhiRange)24 TEST(BasicBlockTest, PhiRange) {
25   LLVMContext Context;
26 
27   // Create the main block.
28   std::unique_ptr<BasicBlock> BB(BasicBlock::Create(Context));
29 
30   // Create some predecessors of it.
31   std::unique_ptr<BasicBlock> BB1(BasicBlock::Create(Context));
32   BranchInst::Create(BB.get(), BB1.get());
33   std::unique_ptr<BasicBlock> BB2(BasicBlock::Create(Context));
34   BranchInst::Create(BB.get(), BB2.get());
35 
36   // Make sure this doesn't crash if there are no phis.
37   for (auto &PN : BB->phis()) {
38     (void)PN;
39     EXPECT_TRUE(false) << "empty block should have no phis";
40   }
41 
42   // Make it a cycle.
43   auto *BI = BranchInst::Create(BB.get(), BB.get());
44 
45   // Now insert some PHI nodes.
46   auto *Int32Ty = Type::getInt32Ty(Context);
47   auto *P1 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.1", BI);
48   auto *P2 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.2", BI);
49   auto *P3 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.3", BI);
50 
51   // Some non-PHI nodes.
52   auto *Sum = BinaryOperator::CreateAdd(P1, P2, "sum", BI);
53 
54   // Now wire up the incoming values that are interesting.
55   P1->addIncoming(P2, BB.get());
56   P2->addIncoming(P1, BB.get());
57   P3->addIncoming(Sum, BB.get());
58 
59   // Finally, let's iterate them, which is the thing we're trying to test.
60   // We'll use this to wire up the rest of the incoming values.
61   for (auto &PN : BB->phis()) {
62     PN.addIncoming(UndefValue::get(Int32Ty), BB1.get());
63     PN.addIncoming(UndefValue::get(Int32Ty), BB2.get());
64   }
65 
66   // Test that we can use const iterators and generally that the iterators
67   // behave like iterators.
68   BasicBlock::const_phi_iterator CI;
69   CI = BB->phis().begin();
70   EXPECT_NE(CI, BB->phis().end());
71 
72   // Test that filtering iterators work with basic blocks.
73   auto isPhi = [](Instruction &I) { return isa<PHINode>(&I); };
74   auto Phis = make_filter_range(*BB, isPhi);
75   auto ReversedPhis = reverse(make_filter_range(*BB, isPhi));
76   EXPECT_EQ(std::distance(Phis.begin(), Phis.end()), 3);
77   EXPECT_EQ(&*Phis.begin(), P1);
78   EXPECT_EQ(std::distance(ReversedPhis.begin(), ReversedPhis.end()), 3);
79   EXPECT_EQ(&*ReversedPhis.begin(), P3);
80 
81   // And iterate a const range.
82   for (const auto &PN : const_cast<const BasicBlock *>(BB.get())->phis()) {
83     EXPECT_EQ(BB.get(), PN.getIncomingBlock(0));
84     EXPECT_EQ(BB1.get(), PN.getIncomingBlock(1));
85     EXPECT_EQ(BB2.get(), PN.getIncomingBlock(2));
86   }
87 }
88 
89 #define CHECK_ITERATORS(Range1, Range2)                                        \
90   EXPECT_EQ(std::distance(Range1.begin(), Range1.end()),                       \
91             std::distance(Range2.begin(), Range2.end()));                      \
92   for (auto Pair : zip(Range1, Range2))                                        \
93     EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair));
94 
TEST(BasicBlockTest,TestInstructionsWithoutDebug)95 TEST(BasicBlockTest, TestInstructionsWithoutDebug) {
96   LLVMContext Ctx;
97 
98   Module *M = new Module("MyModule", Ctx);
99   Type *ArgTy1[] = {Type::getInt32PtrTy(Ctx)};
100   FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), ArgTy1, false);
101   Argument *V = new Argument(Type::getInt32Ty(Ctx));
102   Function *F = Function::Create(FT, Function::ExternalLinkage, "", M);
103 
104   Value *DbgAddr = Intrinsic::getDeclaration(M, Intrinsic::dbg_addr);
105   Value *DbgDeclare =
106       Intrinsic::getDeclaration(M, Intrinsic::dbg_declare);
107   Value *DbgValue = Intrinsic::getDeclaration(M, Intrinsic::dbg_value);
108   Value *DIV = MetadataAsValue::get(Ctx, (Metadata *)nullptr);
109   SmallVector<Value *, 3> Args = {DIV, DIV, DIV};
110 
111   BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
112   const BasicBlock *BBConst = BB1;
113   IRBuilder<> Builder1(BB1);
114 
115   AllocaInst *Var = Builder1.CreateAlloca(Builder1.getInt8Ty());
116   Builder1.CreateCall(DbgValue, Args);
117   Instruction *AddInst = cast<Instruction>(Builder1.CreateAdd(V, V));
118   Instruction *MulInst = cast<Instruction>(Builder1.CreateMul(AddInst, V));
119   Builder1.CreateCall(DbgDeclare, Args);
120   Instruction *SubInst = cast<Instruction>(Builder1.CreateSub(MulInst, V));
121   Builder1.CreateCall(DbgAddr, Args);
122 
123   SmallVector<Instruction *, 4> Exp = {Var, AddInst, MulInst, SubInst};
124   CHECK_ITERATORS(BB1->instructionsWithoutDebug(), Exp);
125   CHECK_ITERATORS(BBConst->instructionsWithoutDebug(), Exp);
126 
127   delete M;
128   delete V;
129 }
130 
131 } // End anonymous namespace.
132 } // End llvm namespace.
133