1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 //   typedef KeyT key_type;
42 //   typedef ValT mapped_type;
43 //   typedef RecyclingAllocator<...> Allocator;
44 //   class iterator;
45 //   class const_iterator;
46 //
47 //   explicit IntervalMap(Allocator&);
48 //   ~IntervalMap():
49 //
50 //   bool empty() const;
51 //   KeyT start() const;
52 //   KeyT stop() const;
53 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 //   const_iterator begin() const;
56 //   const_iterator end() const;
57 //   iterator begin();
58 //   iterator end();
59 //   const_iterator find(KeyT x) const;
60 //   iterator find(KeyT x);
61 //
62 //   void insert(KeyT a, KeyT b, ValT y);
63 //   void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 //   bool operator==(const const_iterator &) const;
71 //   bool operator!=(const const_iterator &) const;
72 //   bool valid() const;
73 //
74 //   const KeyT &start() const;
75 //   const KeyT &stop() const;
76 //   const ValT &value() const;
77 //   const ValT &operator*() const;
78 //   const ValT *operator->() const;
79 //
80 //   const_iterator &operator++();
81 //   const_iterator &operator++(int);
82 //   const_iterator &operator--();
83 //   const_iterator &operator--(int);
84 //   void goToBegin();
85 //   void goToEnd();
86 //   void find(KeyT x);
87 //   void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 //   void insert(KeyT a, KeyT b, Value y);
94 //   void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98 
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101 
102 #include "llvm/ADT/PointerIntPair.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/ADT/bit.h"
105 #include "llvm/Support/AlignOf.h"
106 #include "llvm/Support/Allocator.h"
107 #include "llvm/Support/RecyclingAllocator.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstdint>
111 #include <iterator>
112 #include <new>
113 #include <utility>
114 
115 namespace llvm {
116 
117 //===----------------------------------------------------------------------===//
118 //---                              Key traits                              ---//
119 //===----------------------------------------------------------------------===//
120 //
121 // The IntervalMap works with closed or half-open intervals.
122 // Adjacent intervals that map to the same value are coalesced.
123 //
124 // The IntervalMapInfo traits class is used to determine if a key is contained
125 // in an interval, and if two intervals are adjacent so they can be coalesced.
126 // The provided implementation works for closed integer intervals, other keys
127 // probably need a specialized version.
128 //
129 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
130 //
131 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
132 // allowed. This is so that stopLess(a, b) can be used to determine if two
133 // intervals overlap.
134 //
135 //===----------------------------------------------------------------------===//
136 
137 template <typename T>
138 struct IntervalMapInfo {
139   /// startLess - Return true if x is not in [a;b].
140   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
startLessIntervalMapInfo141   static inline bool startLess(const T &x, const T &a) {
142     return x < a;
143   }
144 
145   /// stopLess - Return true if x is not in [a;b].
146   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
stopLessIntervalMapInfo147   static inline bool stopLess(const T &b, const T &x) {
148     return b < x;
149   }
150 
151   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
152   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
adjacentIntervalMapInfo153   static inline bool adjacent(const T &a, const T &b) {
154     return a+1 == b;
155   }
156 
157   /// nonEmpty - Return true if [a;b] is non-empty.
158   /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
nonEmptyIntervalMapInfo159   static inline bool nonEmpty(const T &a, const T &b) {
160     return a <= b;
161   }
162 };
163 
164 template <typename T>
165 struct IntervalMapHalfOpenInfo {
166   /// startLess - Return true if x is not in [a;b).
startLessIntervalMapHalfOpenInfo167   static inline bool startLess(const T &x, const T &a) {
168     return x < a;
169   }
170 
171   /// stopLess - Return true if x is not in [a;b).
stopLessIntervalMapHalfOpenInfo172   static inline bool stopLess(const T &b, const T &x) {
173     return b <= x;
174   }
175 
176   /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
adjacentIntervalMapHalfOpenInfo177   static inline bool adjacent(const T &a, const T &b) {
178     return a == b;
179   }
180 
181   /// nonEmpty - Return true if [a;b) is non-empty.
nonEmptyIntervalMapHalfOpenInfo182   static inline bool nonEmpty(const T &a, const T &b) {
183     return a < b;
184   }
185 };
186 
187 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
188 /// It should be considered private to the implementation.
189 namespace IntervalMapImpl {
190 
191 using IdxPair = std::pair<unsigned,unsigned>;
192 
193 //===----------------------------------------------------------------------===//
194 //---                    IntervalMapImpl::NodeBase                         ---//
195 //===----------------------------------------------------------------------===//
196 //
197 // Both leaf and branch nodes store vectors of pairs.
198 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
199 //
200 // Keys and values are stored in separate arrays to avoid padding caused by
201 // different object alignments. This also helps improve locality of reference
202 // when searching the keys.
203 //
204 // The nodes don't know how many elements they contain - that information is
205 // stored elsewhere. Omitting the size field prevents padding and allows a node
206 // to fill the allocated cache lines completely.
207 //
208 // These are typical key and value sizes, the node branching factor (N), and
209 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
210 //
211 //   T1  T2   N Waste  Used by
212 //    4   4  24   0    Branch<4> (32-bit pointers)
213 //    8   4  16   0    Leaf<4,4>, Branch<4>
214 //    8   8  12   0    Leaf<4,8>, Branch<8>
215 //   16   4   9  12    Leaf<8,4>
216 //   16   8   8   0    Leaf<8,8>
217 //
218 //===----------------------------------------------------------------------===//
219 
220 template <typename T1, typename T2, unsigned N>
221 class NodeBase {
222 public:
223   enum { Capacity = N };
224 
225   T1 first[N];
226   T2 second[N];
227 
228   /// copy - Copy elements from another node.
229   /// @param Other Node elements are copied from.
230   /// @param i     Beginning of the source range in other.
231   /// @param j     Beginning of the destination range in this.
232   /// @param Count Number of elements to copy.
233   template <unsigned M>
copy(const NodeBase<T1,T2,M> & Other,unsigned i,unsigned j,unsigned Count)234   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
235             unsigned j, unsigned Count) {
236     assert(i + Count <= M && "Invalid source range");
237     assert(j + Count <= N && "Invalid dest range");
238     for (unsigned e = i + Count; i != e; ++i, ++j) {
239       first[j]  = Other.first[i];
240       second[j] = Other.second[i];
241     }
242   }
243 
244   /// moveLeft - Move elements to the left.
245   /// @param i     Beginning of the source range.
246   /// @param j     Beginning of the destination range.
247   /// @param Count Number of elements to copy.
moveLeft(unsigned i,unsigned j,unsigned Count)248   void moveLeft(unsigned i, unsigned j, unsigned Count) {
249     assert(j <= i && "Use moveRight shift elements right");
250     copy(*this, i, j, Count);
251   }
252 
253   /// moveRight - Move elements to the right.
254   /// @param i     Beginning of the source range.
255   /// @param j     Beginning of the destination range.
256   /// @param Count Number of elements to copy.
moveRight(unsigned i,unsigned j,unsigned Count)257   void moveRight(unsigned i, unsigned j, unsigned Count) {
258     assert(i <= j && "Use moveLeft shift elements left");
259     assert(j + Count <= N && "Invalid range");
260     while (Count--) {
261       first[j + Count]  = first[i + Count];
262       second[j + Count] = second[i + Count];
263     }
264   }
265 
266   /// erase - Erase elements [i;j).
267   /// @param i    Beginning of the range to erase.
268   /// @param j    End of the range. (Exclusive).
269   /// @param Size Number of elements in node.
erase(unsigned i,unsigned j,unsigned Size)270   void erase(unsigned i, unsigned j, unsigned Size) {
271     moveLeft(j, i, Size - j);
272   }
273 
274   /// erase - Erase element at i.
275   /// @param i    Index of element to erase.
276   /// @param Size Number of elements in node.
erase(unsigned i,unsigned Size)277   void erase(unsigned i, unsigned Size) {
278     erase(i, i+1, Size);
279   }
280 
281   /// shift - Shift elements [i;size) 1 position to the right.
282   /// @param i    Beginning of the range to move.
283   /// @param Size Number of elements in node.
shift(unsigned i,unsigned Size)284   void shift(unsigned i, unsigned Size) {
285     moveRight(i, i + 1, Size - i);
286   }
287 
288   /// transferToLeftSib - Transfer elements to a left sibling node.
289   /// @param Size  Number of elements in this.
290   /// @param Sib   Left sibling node.
291   /// @param SSize Number of elements in sib.
292   /// @param Count Number of elements to transfer.
transferToLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)293   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
294                          unsigned Count) {
295     Sib.copy(*this, 0, SSize, Count);
296     erase(0, Count, Size);
297   }
298 
299   /// transferToRightSib - Transfer elements to a right sibling node.
300   /// @param Size  Number of elements in this.
301   /// @param Sib   Right sibling node.
302   /// @param SSize Number of elements in sib.
303   /// @param Count Number of elements to transfer.
transferToRightSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)304   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
305                           unsigned Count) {
306     Sib.moveRight(0, Count, SSize);
307     Sib.copy(*this, Size-Count, 0, Count);
308   }
309 
310   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
311   /// elements to or from a left sibling node.
312   /// @param Size  Number of elements in this.
313   /// @param Sib   Right sibling node.
314   /// @param SSize Number of elements in sib.
315   /// @param Add   The number of elements to add to this node, possibly < 0.
316   /// @return      Number of elements added to this node, possibly negative.
adjustFromLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,int Add)317   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
318     if (Add > 0) {
319       // We want to grow, copy from sib.
320       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
321       Sib.transferToRightSib(SSize, *this, Size, Count);
322       return Count;
323     } else {
324       // We want to shrink, copy to sib.
325       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
326       transferToLeftSib(Size, Sib, SSize, Count);
327       return -Count;
328     }
329   }
330 };
331 
332 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
333 /// @param Node  Array of pointers to sibling nodes.
334 /// @param Nodes Number of nodes.
335 /// @param CurSize Array of current node sizes, will be overwritten.
336 /// @param NewSize Array of desired node sizes.
337 template <typename NodeT>
adjustSiblingSizes(NodeT * Node[],unsigned Nodes,unsigned CurSize[],const unsigned NewSize[])338 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
339                         unsigned CurSize[], const unsigned NewSize[]) {
340   // Move elements right.
341   for (int n = Nodes - 1; n; --n) {
342     if (CurSize[n] == NewSize[n])
343       continue;
344     for (int m = n - 1; m != -1; --m) {
345       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
346                                          NewSize[n] - CurSize[n]);
347       CurSize[m] -= d;
348       CurSize[n] += d;
349       // Keep going if the current node was exhausted.
350       if (CurSize[n] >= NewSize[n])
351           break;
352     }
353   }
354 
355   if (Nodes == 0)
356     return;
357 
358   // Move elements left.
359   for (unsigned n = 0; n != Nodes - 1; ++n) {
360     if (CurSize[n] == NewSize[n])
361       continue;
362     for (unsigned m = n + 1; m != Nodes; ++m) {
363       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
364                                         CurSize[n] -  NewSize[n]);
365       CurSize[m] += d;
366       CurSize[n] -= d;
367       // Keep going if the current node was exhausted.
368       if (CurSize[n] >= NewSize[n])
369           break;
370     }
371   }
372 
373 #ifndef NDEBUG
374   for (unsigned n = 0; n != Nodes; n++)
375     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
376 #endif
377 }
378 
379 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
380 /// after an overflow or underflow. Reserve space for a new element at Position,
381 /// and compute the node that will hold Position after redistributing node
382 /// elements.
383 ///
384 /// It is required that
385 ///
386 ///   Elements == sum(CurSize), and
387 ///   Elements + Grow <= Nodes * Capacity.
388 ///
389 /// NewSize[] will be filled in such that:
390 ///
391 ///   sum(NewSize) == Elements, and
392 ///   NewSize[i] <= Capacity.
393 ///
394 /// The returned index is the node where Position will go, so:
395 ///
396 ///   sum(NewSize[0..idx-1]) <= Position
397 ///   sum(NewSize[0..idx])   >= Position
398 ///
399 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
400 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
401 /// before the one holding the Position'th element where there is room for an
402 /// insertion.
403 ///
404 /// @param Nodes    The number of nodes.
405 /// @param Elements Total elements in all nodes.
406 /// @param Capacity The capacity of each node.
407 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
408 /// @param NewSize  Array[Nodes] to receive the new node sizes.
409 /// @param Position Insert position.
410 /// @param Grow     Reserve space for a new element at Position.
411 /// @return         (node, offset) for Position.
412 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
413                    const unsigned *CurSize, unsigned NewSize[],
414                    unsigned Position, bool Grow);
415 
416 //===----------------------------------------------------------------------===//
417 //---                   IntervalMapImpl::NodeSizer                         ---//
418 //===----------------------------------------------------------------------===//
419 //
420 // Compute node sizes from key and value types.
421 //
422 // The branching factors are chosen to make nodes fit in three cache lines.
423 // This may not be possible if keys or values are very large. Such large objects
424 // are handled correctly, but a std::map would probably give better performance.
425 //
426 //===----------------------------------------------------------------------===//
427 
428 enum {
429   // Cache line size. Most architectures have 32 or 64 byte cache lines.
430   // We use 64 bytes here because it provides good branching factors.
431   Log2CacheLine = 6,
432   CacheLineBytes = 1 << Log2CacheLine,
433   DesiredNodeBytes = 3 * CacheLineBytes
434 };
435 
436 template <typename KeyT, typename ValT>
437 struct NodeSizer {
438   enum {
439     // Compute the leaf node branching factor that makes a node fit in three
440     // cache lines. The branching factor must be at least 3, or some B+-tree
441     // balancing algorithms won't work.
442     // LeafSize can't be larger than CacheLineBytes. This is required by the
443     // PointerIntPair used by NodeRef.
444     DesiredLeafSize = DesiredNodeBytes /
445       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
446     MinLeafSize = 3,
447     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
448   };
449 
450   using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
451 
452   enum {
453     // Now that we have the leaf branching factor, compute the actual allocation
454     // unit size by rounding up to a whole number of cache lines.
455     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
456 
457     // Determine the branching factor for branch nodes.
458     BranchSize = AllocBytes /
459       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
460   };
461 
462   /// Allocator - The recycling allocator used for both branch and leaf nodes.
463   /// This typedef is very likely to be identical for all IntervalMaps with
464   /// reasonably sized entries, so the same allocator can be shared among
465   /// different kinds of maps.
466   using Allocator =
467       RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
468 };
469 
470 //===----------------------------------------------------------------------===//
471 //---                     IntervalMapImpl::NodeRef                         ---//
472 //===----------------------------------------------------------------------===//
473 //
474 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
475 // pointer that can point to both kinds.
476 //
477 // All nodes are cache line aligned and the low 6 bits of a node pointer are
478 // always 0. These bits are used to store the number of elements in the
479 // referenced node. Besides saving space, placing node sizes in the parents
480 // allow tree balancing algorithms to run without faulting cache lines for nodes
481 // that may not need to be modified.
482 //
483 // A NodeRef doesn't know whether it references a leaf node or a branch node.
484 // It is the responsibility of the caller to use the correct types.
485 //
486 // Nodes are never supposed to be empty, and it is invalid to store a node size
487 // of 0 in a NodeRef. The valid range of sizes is 1-64.
488 //
489 //===----------------------------------------------------------------------===//
490 
491 class NodeRef {
492   struct CacheAlignedPointerTraits {
getAsVoidPointerCacheAlignedPointerTraits493     static inline void *getAsVoidPointer(void *P) { return P; }
getFromVoidPointerCacheAlignedPointerTraits494     static inline void *getFromVoidPointer(void *P) { return P; }
495     enum { NumLowBitsAvailable = Log2CacheLine };
496   };
497   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
498 
499 public:
500   /// NodeRef - Create a null ref.
501   NodeRef() = default;
502 
503   /// operator bool - Detect a null ref.
504   explicit operator bool() const { return pip.getOpaqueValue(); }
505 
506   /// NodeRef - Create a reference to the node p with n elements.
507   template <typename NodeT>
NodeRef(NodeT * p,unsigned n)508   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
509     assert(n <= NodeT::Capacity && "Size too big for node");
510   }
511 
512   /// size - Return the number of elements in the referenced node.
size()513   unsigned size() const { return pip.getInt() + 1; }
514 
515   /// setSize - Update the node size.
setSize(unsigned n)516   void setSize(unsigned n) { pip.setInt(n - 1); }
517 
518   /// subtree - Access the i'th subtree reference in a branch node.
519   /// This depends on branch nodes storing the NodeRef array as their first
520   /// member.
subtree(unsigned i)521   NodeRef &subtree(unsigned i) const {
522     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
523   }
524 
525   /// get - Dereference as a NodeT reference.
526   template <typename NodeT>
get()527   NodeT &get() const {
528     return *reinterpret_cast<NodeT*>(pip.getPointer());
529   }
530 
531   bool operator==(const NodeRef &RHS) const {
532     if (pip == RHS.pip)
533       return true;
534     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
535     return false;
536   }
537 
538   bool operator!=(const NodeRef &RHS) const {
539     return !operator==(RHS);
540   }
541 };
542 
543 //===----------------------------------------------------------------------===//
544 //---                      IntervalMapImpl::LeafNode                       ---//
545 //===----------------------------------------------------------------------===//
546 //
547 // Leaf nodes store up to N disjoint intervals with corresponding values.
548 //
549 // The intervals are kept sorted and fully coalesced so there are no adjacent
550 // intervals mapping to the same value.
551 //
552 // These constraints are always satisfied:
553 //
554 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
555 //
556 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
557 //
558 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
559 //                                          - Fully coalesced.
560 //
561 //===----------------------------------------------------------------------===//
562 
563 template <typename KeyT, typename ValT, unsigned N, typename Traits>
564 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
565 public:
start(unsigned i)566   const KeyT &start(unsigned i) const { return this->first[i].first; }
stop(unsigned i)567   const KeyT &stop(unsigned i) const { return this->first[i].second; }
value(unsigned i)568   const ValT &value(unsigned i) const { return this->second[i]; }
569 
start(unsigned i)570   KeyT &start(unsigned i) { return this->first[i].first; }
stop(unsigned i)571   KeyT &stop(unsigned i) { return this->first[i].second; }
value(unsigned i)572   ValT &value(unsigned i) { return this->second[i]; }
573 
574   /// findFrom - Find the first interval after i that may contain x.
575   /// @param i    Starting index for the search.
576   /// @param Size Number of elements in node.
577   /// @param x    Key to search for.
578   /// @return     First index with !stopLess(key[i].stop, x), or size.
579   ///             This is the first interval that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)580   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
581     assert(i <= Size && Size <= N && "Bad indices");
582     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
583            "Index is past the needed point");
584     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
585     return i;
586   }
587 
588   /// safeFind - Find an interval that is known to exist. This is the same as
589   /// findFrom except is it assumed that x is at least within range of the last
590   /// interval.
591   /// @param i Starting index for the search.
592   /// @param x Key to search for.
593   /// @return  First index with !stopLess(key[i].stop, x), never size.
594   ///          This is the first interval that can possibly contain x.
safeFind(unsigned i,KeyT x)595   unsigned safeFind(unsigned i, KeyT x) const {
596     assert(i < N && "Bad index");
597     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
598            "Index is past the needed point");
599     while (Traits::stopLess(stop(i), x)) ++i;
600     assert(i < N && "Unsafe intervals");
601     return i;
602   }
603 
604   /// safeLookup - Lookup mapped value for a safe key.
605   /// It is assumed that x is within range of the last entry.
606   /// @param x        Key to search for.
607   /// @param NotFound Value to return if x is not in any interval.
608   /// @return         The mapped value at x or NotFound.
safeLookup(KeyT x,ValT NotFound)609   ValT safeLookup(KeyT x, ValT NotFound) const {
610     unsigned i = safeFind(0, x);
611     return Traits::startLess(x, start(i)) ? NotFound : value(i);
612   }
613 
614   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
615 };
616 
617 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
618 /// possible. This may cause the node to grow by 1, or it may cause the node
619 /// to shrink because of coalescing.
620 /// @param Pos  Starting index = insertFrom(0, size, a)
621 /// @param Size Number of elements in node.
622 /// @param a    Interval start.
623 /// @param b    Interval stop.
624 /// @param y    Value be mapped.
625 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
626 template <typename KeyT, typename ValT, unsigned N, typename Traits>
627 unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned & Pos,unsigned Size,KeyT a,KeyT b,ValT y)628 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
629   unsigned i = Pos;
630   assert(i <= Size && Size <= N && "Invalid index");
631   assert(!Traits::stopLess(b, a) && "Invalid interval");
632 
633   // Verify the findFrom invariant.
634   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
635   assert((i == Size || !Traits::stopLess(stop(i), a)));
636   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
637 
638   // Coalesce with previous interval.
639   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
640     Pos = i - 1;
641     // Also coalesce with next interval?
642     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
643       stop(i - 1) = stop(i);
644       this->erase(i, Size);
645       return Size - 1;
646     }
647     stop(i - 1) = b;
648     return Size;
649   }
650 
651   // Detect overflow.
652   if (i == N)
653     return N + 1;
654 
655   // Add new interval at end.
656   if (i == Size) {
657     start(i) = a;
658     stop(i) = b;
659     value(i) = y;
660     return Size + 1;
661   }
662 
663   // Try to coalesce with following interval.
664   if (value(i) == y && Traits::adjacent(b, start(i))) {
665     start(i) = a;
666     return Size;
667   }
668 
669   // We must insert before i. Detect overflow.
670   if (Size == N)
671     return N + 1;
672 
673   // Insert before i.
674   this->shift(i, Size);
675   start(i) = a;
676   stop(i) = b;
677   value(i) = y;
678   return Size + 1;
679 }
680 
681 //===----------------------------------------------------------------------===//
682 //---                   IntervalMapImpl::BranchNode                        ---//
683 //===----------------------------------------------------------------------===//
684 //
685 // A branch node stores references to 1--N subtrees all of the same height.
686 //
687 // The key array in a branch node holds the rightmost stop key of each subtree.
688 // It is redundant to store the last stop key since it can be found in the
689 // parent node, but doing so makes tree balancing a lot simpler.
690 //
691 // It is unusual for a branch node to only have one subtree, but it can happen
692 // in the root node if it is smaller than the normal nodes.
693 //
694 // When all of the leaf nodes from all the subtrees are concatenated, they must
695 // satisfy the same constraints as a single leaf node. They must be sorted,
696 // sane, and fully coalesced.
697 //
698 //===----------------------------------------------------------------------===//
699 
700 template <typename KeyT, typename ValT, unsigned N, typename Traits>
701 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
702 public:
stop(unsigned i)703   const KeyT &stop(unsigned i) const { return this->second[i]; }
subtree(unsigned i)704   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
705 
stop(unsigned i)706   KeyT &stop(unsigned i) { return this->second[i]; }
subtree(unsigned i)707   NodeRef &subtree(unsigned i) { return this->first[i]; }
708 
709   /// findFrom - Find the first subtree after i that may contain x.
710   /// @param i    Starting index for the search.
711   /// @param Size Number of elements in node.
712   /// @param x    Key to search for.
713   /// @return     First index with !stopLess(key[i], x), or size.
714   ///             This is the first subtree that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)715   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
716     assert(i <= Size && Size <= N && "Bad indices");
717     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
718            "Index to findFrom is past the needed point");
719     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
720     return i;
721   }
722 
723   /// safeFind - Find a subtree that is known to exist. This is the same as
724   /// findFrom except is it assumed that x is in range.
725   /// @param i Starting index for the search.
726   /// @param x Key to search for.
727   /// @return  First index with !stopLess(key[i], x), never size.
728   ///          This is the first subtree that can possibly contain x.
safeFind(unsigned i,KeyT x)729   unsigned safeFind(unsigned i, KeyT x) const {
730     assert(i < N && "Bad index");
731     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
732            "Index is past the needed point");
733     while (Traits::stopLess(stop(i), x)) ++i;
734     assert(i < N && "Unsafe intervals");
735     return i;
736   }
737 
738   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
739   /// @param x Key to search for.
740   /// @return  Subtree containing x
safeLookup(KeyT x)741   NodeRef safeLookup(KeyT x) const {
742     return subtree(safeFind(0, x));
743   }
744 
745   /// insert - Insert a new (subtree, stop) pair.
746   /// @param i    Insert position, following entries will be shifted.
747   /// @param Size Number of elements in node.
748   /// @param Node Subtree to insert.
749   /// @param Stop Last key in subtree.
insert(unsigned i,unsigned Size,NodeRef Node,KeyT Stop)750   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
751     assert(Size < N && "branch node overflow");
752     assert(i <= Size && "Bad insert position");
753     this->shift(i, Size);
754     subtree(i) = Node;
755     stop(i) = Stop;
756   }
757 };
758 
759 //===----------------------------------------------------------------------===//
760 //---                         IntervalMapImpl::Path                        ---//
761 //===----------------------------------------------------------------------===//
762 //
763 // A Path is used by iterators to represent a position in a B+-tree, and the
764 // path to get there from the root.
765 //
766 // The Path class also contains the tree navigation code that doesn't have to
767 // be templatized.
768 //
769 //===----------------------------------------------------------------------===//
770 
771 class Path {
772   /// Entry - Each step in the path is a node pointer and an offset into that
773   /// node.
774   struct Entry {
775     void *node;
776     unsigned size;
777     unsigned offset;
778 
EntryEntry779     Entry(void *Node, unsigned Size, unsigned Offset)
780       : node(Node), size(Size), offset(Offset) {}
781 
EntryEntry782     Entry(NodeRef Node, unsigned Offset)
783       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
784 
subtreeEntry785     NodeRef &subtree(unsigned i) const {
786       return reinterpret_cast<NodeRef*>(node)[i];
787     }
788   };
789 
790   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
791   SmallVector<Entry, 4> path;
792 
793 public:
794   // Node accessors.
node(unsigned Level)795   template <typename NodeT> NodeT &node(unsigned Level) const {
796     return *reinterpret_cast<NodeT*>(path[Level].node);
797   }
size(unsigned Level)798   unsigned size(unsigned Level) const { return path[Level].size; }
offset(unsigned Level)799   unsigned offset(unsigned Level) const { return path[Level].offset; }
offset(unsigned Level)800   unsigned &offset(unsigned Level) { return path[Level].offset; }
801 
802   // Leaf accessors.
leaf()803   template <typename NodeT> NodeT &leaf() const {
804     return *reinterpret_cast<NodeT*>(path.back().node);
805   }
leafSize()806   unsigned leafSize() const { return path.back().size; }
leafOffset()807   unsigned leafOffset() const { return path.back().offset; }
leafOffset()808   unsigned &leafOffset() { return path.back().offset; }
809 
810   /// valid - Return true if path is at a valid node, not at end().
valid()811   bool valid() const {
812     return !path.empty() && path.front().offset < path.front().size;
813   }
814 
815   /// height - Return the height of the tree corresponding to this path.
816   /// This matches map->height in a full path.
height()817   unsigned height() const { return path.size() - 1; }
818 
819   /// subtree - Get the subtree referenced from Level. When the path is
820   /// consistent, node(Level + 1) == subtree(Level).
821   /// @param Level 0..height-1. The leaves have no subtrees.
subtree(unsigned Level)822   NodeRef &subtree(unsigned Level) const {
823     return path[Level].subtree(path[Level].offset);
824   }
825 
826   /// reset - Reset cached information about node(Level) from subtree(Level -1).
827   /// @param Level 1..height. THe node to update after parent node changed.
reset(unsigned Level)828   void reset(unsigned Level) {
829     path[Level] = Entry(subtree(Level - 1), offset(Level));
830   }
831 
832   /// push - Add entry to path.
833   /// @param Node Node to add, should be subtree(path.size()-1).
834   /// @param Offset Offset into Node.
push(NodeRef Node,unsigned Offset)835   void push(NodeRef Node, unsigned Offset) {
836     path.push_back(Entry(Node, Offset));
837   }
838 
839   /// pop - Remove the last path entry.
pop()840   void pop() {
841     path.pop_back();
842   }
843 
844   /// setSize - Set the size of a node both in the path and in the tree.
845   /// @param Level 0..height. Note that setting the root size won't change
846   ///              map->rootSize.
847   /// @param Size New node size.
setSize(unsigned Level,unsigned Size)848   void setSize(unsigned Level, unsigned Size) {
849     path[Level].size = Size;
850     if (Level)
851       subtree(Level - 1).setSize(Size);
852   }
853 
854   /// setRoot - Clear the path and set a new root node.
855   /// @param Node New root node.
856   /// @param Size New root size.
857   /// @param Offset Offset into root node.
setRoot(void * Node,unsigned Size,unsigned Offset)858   void setRoot(void *Node, unsigned Size, unsigned Offset) {
859     path.clear();
860     path.push_back(Entry(Node, Size, Offset));
861   }
862 
863   /// replaceRoot - Replace the current root node with two new entries after the
864   /// tree height has increased.
865   /// @param Root The new root node.
866   /// @param Size Number of entries in the new root.
867   /// @param Offsets Offsets into the root and first branch nodes.
868   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
869 
870   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
871   /// @param Level Get the sibling to node(Level).
872   /// @return Left sibling, or NodeRef().
873   NodeRef getLeftSibling(unsigned Level) const;
874 
875   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
876   /// unaltered.
877   /// @param Level Move node(Level).
878   void moveLeft(unsigned Level);
879 
880   /// fillLeft - Grow path to Height by taking leftmost branches.
881   /// @param Height The target height.
fillLeft(unsigned Height)882   void fillLeft(unsigned Height) {
883     while (height() < Height)
884       push(subtree(height()), 0);
885   }
886 
887   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
888   /// @param Level Get the sinbling to node(Level).
889   /// @return Left sibling, or NodeRef().
890   NodeRef getRightSibling(unsigned Level) const;
891 
892   /// moveRight - Move path to the left sibling at Level. Leave nodes below
893   /// Level unaltered.
894   /// @param Level Move node(Level).
895   void moveRight(unsigned Level);
896 
897   /// atBegin - Return true if path is at begin().
atBegin()898   bool atBegin() const {
899     for (unsigned i = 0, e = path.size(); i != e; ++i)
900       if (path[i].offset != 0)
901         return false;
902     return true;
903   }
904 
905   /// atLastEntry - Return true if the path is at the last entry of the node at
906   /// Level.
907   /// @param Level Node to examine.
atLastEntry(unsigned Level)908   bool atLastEntry(unsigned Level) const {
909     return path[Level].offset == path[Level].size - 1;
910   }
911 
912   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
913   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
914   /// ensures that node(Level) is real by moving back to the last node at Level,
915   /// and setting offset(Level) to size(Level) if required.
916   /// @param Level The level where an insertion is about to take place.
legalizeForInsert(unsigned Level)917   void legalizeForInsert(unsigned Level) {
918     if (valid())
919       return;
920     moveLeft(Level);
921     ++path[Level].offset;
922   }
923 };
924 
925 } // end namespace IntervalMapImpl
926 
927 //===----------------------------------------------------------------------===//
928 //---                          IntervalMap                                ----//
929 //===----------------------------------------------------------------------===//
930 
931 template <typename KeyT, typename ValT,
932           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
933           typename Traits = IntervalMapInfo<KeyT>>
934 class IntervalMap {
935   using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
936   using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
937   using Branch =
938       IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
939   using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
940   using IdxPair = IntervalMapImpl::IdxPair;
941 
942   // The RootLeaf capacity is given as a template parameter. We must compute the
943   // corresponding RootBranch capacity.
944   enum {
945     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
946       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
947     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
948   };
949 
950   using RootBranch =
951       IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
952 
953   // When branched, we store a global start key as well as the branch node.
954   struct RootBranchData {
955     KeyT start;
956     RootBranch node;
957   };
958 
959 public:
960   using Allocator = typename Sizer::Allocator;
961   using KeyType = KeyT;
962   using ValueType = ValT;
963   using KeyTraits = Traits;
964 
965 private:
966   // The root data is either a RootLeaf or a RootBranchData instance.
967   LLVM_ALIGNAS(RootLeaf) LLVM_ALIGNAS(RootBranchData)
968   AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
969 
970   // Tree height.
971   // 0: Leaves in root.
972   // 1: Root points to leaf.
973   // 2: root->branch->leaf ...
974   unsigned height;
975 
976   // Number of entries in the root node.
977   unsigned rootSize;
978 
979   // Allocator used for creating external nodes.
980   Allocator &allocator;
981 
982   /// Represent data as a node type without breaking aliasing rules.
983   template <typename T>
dataAs()984   T &dataAs() const {
985     return *bit_cast<T *>(const_cast<char *>(data.buffer));
986   }
987 
rootLeaf()988   const RootLeaf &rootLeaf() const {
989     assert(!branched() && "Cannot acces leaf data in branched root");
990     return dataAs<RootLeaf>();
991   }
rootLeaf()992   RootLeaf &rootLeaf() {
993     assert(!branched() && "Cannot acces leaf data in branched root");
994     return dataAs<RootLeaf>();
995   }
996 
rootBranchData()997   RootBranchData &rootBranchData() const {
998     assert(branched() && "Cannot access branch data in non-branched root");
999     return dataAs<RootBranchData>();
1000   }
rootBranchData()1001   RootBranchData &rootBranchData() {
1002     assert(branched() && "Cannot access branch data in non-branched root");
1003     return dataAs<RootBranchData>();
1004   }
1005 
rootBranch()1006   const RootBranch &rootBranch() const { return rootBranchData().node; }
rootBranch()1007   RootBranch &rootBranch()             { return rootBranchData().node; }
rootBranchStart()1008   KeyT rootBranchStart() const { return rootBranchData().start; }
rootBranchStart()1009   KeyT &rootBranchStart()      { return rootBranchData().start; }
1010 
newNode()1011   template <typename NodeT> NodeT *newNode() {
1012     return new(allocator.template Allocate<NodeT>()) NodeT();
1013   }
1014 
deleteNode(NodeT * P)1015   template <typename NodeT> void deleteNode(NodeT *P) {
1016     P->~NodeT();
1017     allocator.Deallocate(P);
1018   }
1019 
1020   IdxPair branchRoot(unsigned Position);
1021   IdxPair splitRoot(unsigned Position);
1022 
switchRootToBranch()1023   void switchRootToBranch() {
1024     rootLeaf().~RootLeaf();
1025     height = 1;
1026     new (&rootBranchData()) RootBranchData();
1027   }
1028 
switchRootToLeaf()1029   void switchRootToLeaf() {
1030     rootBranchData().~RootBranchData();
1031     height = 0;
1032     new(&rootLeaf()) RootLeaf();
1033   }
1034 
branched()1035   bool branched() const { return height > 0; }
1036 
1037   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1038   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1039                   unsigned Level));
1040   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1041 
1042 public:
IntervalMap(Allocator & a)1043   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1044     assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 &&
1045            "Insufficient alignment");
1046     new(&rootLeaf()) RootLeaf();
1047   }
1048 
~IntervalMap()1049   ~IntervalMap() {
1050     clear();
1051     rootLeaf().~RootLeaf();
1052   }
1053 
1054   /// empty -  Return true when no intervals are mapped.
empty()1055   bool empty() const {
1056     return rootSize == 0;
1057   }
1058 
1059   /// start - Return the smallest mapped key in a non-empty map.
start()1060   KeyT start() const {
1061     assert(!empty() && "Empty IntervalMap has no start");
1062     return !branched() ? rootLeaf().start(0) : rootBranchStart();
1063   }
1064 
1065   /// stop - Return the largest mapped key in a non-empty map.
stop()1066   KeyT stop() const {
1067     assert(!empty() && "Empty IntervalMap has no stop");
1068     return !branched() ? rootLeaf().stop(rootSize - 1) :
1069                          rootBranch().stop(rootSize - 1);
1070   }
1071 
1072   /// lookup - Return the mapped value at x or NotFound.
1073   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1074     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1075       return NotFound;
1076     return branched() ? treeSafeLookup(x, NotFound) :
1077                         rootLeaf().safeLookup(x, NotFound);
1078   }
1079 
1080   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1081   /// It is assumed that no key in the interval is mapped to another value, but
1082   /// overlapping intervals already mapped to y will be coalesced.
insert(KeyT a,KeyT b,ValT y)1083   void insert(KeyT a, KeyT b, ValT y) {
1084     if (branched() || rootSize == RootLeaf::Capacity)
1085       return find(a).insert(a, b, y);
1086 
1087     // Easy insert into root leaf.
1088     unsigned p = rootLeaf().findFrom(0, rootSize, a);
1089     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1090   }
1091 
1092   /// clear - Remove all entries.
1093   void clear();
1094 
1095   class const_iterator;
1096   class iterator;
1097   friend class const_iterator;
1098   friend class iterator;
1099 
begin()1100   const_iterator begin() const {
1101     const_iterator I(*this);
1102     I.goToBegin();
1103     return I;
1104   }
1105 
begin()1106   iterator begin() {
1107     iterator I(*this);
1108     I.goToBegin();
1109     return I;
1110   }
1111 
end()1112   const_iterator end() const {
1113     const_iterator I(*this);
1114     I.goToEnd();
1115     return I;
1116   }
1117 
end()1118   iterator end() {
1119     iterator I(*this);
1120     I.goToEnd();
1121     return I;
1122   }
1123 
1124   /// find - Return an iterator pointing to the first interval ending at or
1125   /// after x, or end().
find(KeyT x)1126   const_iterator find(KeyT x) const {
1127     const_iterator I(*this);
1128     I.find(x);
1129     return I;
1130   }
1131 
find(KeyT x)1132   iterator find(KeyT x) {
1133     iterator I(*this);
1134     I.find(x);
1135     return I;
1136   }
1137 
1138   /// overlaps(a, b) - Return true if the intervals in this map overlap with the
1139   /// interval [a;b].
overlaps(KeyT a,KeyT b)1140   bool overlaps(KeyT a, KeyT b) {
1141     assert(Traits::nonEmpty(a, b));
1142     const_iterator I = find(a);
1143     if (!I.valid())
1144       return false;
1145     // [a;b] and [x;y] overlap iff x<=b and a<=y. The find() call guarantees the
1146     // second part (y = find(a).stop()), so it is sufficient to check the first
1147     // one.
1148     return !Traits::stopLess(b, I.start());
1149   }
1150 };
1151 
1152 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1153 /// branched root.
1154 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1155 ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x,ValT NotFound)1156 treeSafeLookup(KeyT x, ValT NotFound) const {
1157   assert(branched() && "treeLookup assumes a branched root");
1158 
1159   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1160   for (unsigned h = height-1; h; --h)
1161     NR = NR.get<Branch>().safeLookup(x);
1162   return NR.get<Leaf>().safeLookup(x, NotFound);
1163 }
1164 
1165 // branchRoot - Switch from a leaf root to a branched root.
1166 // Return the new (root offset, node offset) corresponding to Position.
1167 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1168 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position)1169 branchRoot(unsigned Position) {
1170   using namespace IntervalMapImpl;
1171   // How many external leaf nodes to hold RootLeaf+1?
1172   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1173 
1174   // Compute element distribution among new nodes.
1175   unsigned size[Nodes];
1176   IdxPair NewOffset(0, Position);
1177 
1178   // Is is very common for the root node to be smaller than external nodes.
1179   if (Nodes == 1)
1180     size[0] = rootSize;
1181   else
1182     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
1183                            Position, true);
1184 
1185   // Allocate new nodes.
1186   unsigned pos = 0;
1187   NodeRef node[Nodes];
1188   for (unsigned n = 0; n != Nodes; ++n) {
1189     Leaf *L = newNode<Leaf>();
1190     L->copy(rootLeaf(), pos, 0, size[n]);
1191     node[n] = NodeRef(L, size[n]);
1192     pos += size[n];
1193   }
1194 
1195   // Destroy the old leaf node, construct branch node instead.
1196   switchRootToBranch();
1197   for (unsigned n = 0; n != Nodes; ++n) {
1198     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1199     rootBranch().subtree(n) = node[n];
1200   }
1201   rootBranchStart() = node[0].template get<Leaf>().start(0);
1202   rootSize = Nodes;
1203   return NewOffset;
1204 }
1205 
1206 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1207 // Return the new (root offset, node offset) corresponding to Position.
1208 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1209 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position)1210 splitRoot(unsigned Position) {
1211   using namespace IntervalMapImpl;
1212   // How many external leaf nodes to hold RootBranch+1?
1213   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1214 
1215   // Compute element distribution among new nodes.
1216   unsigned Size[Nodes];
1217   IdxPair NewOffset(0, Position);
1218 
1219   // Is is very common for the root node to be smaller than external nodes.
1220   if (Nodes == 1)
1221     Size[0] = rootSize;
1222   else
1223     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
1224                            Position, true);
1225 
1226   // Allocate new nodes.
1227   unsigned Pos = 0;
1228   NodeRef Node[Nodes];
1229   for (unsigned n = 0; n != Nodes; ++n) {
1230     Branch *B = newNode<Branch>();
1231     B->copy(rootBranch(), Pos, 0, Size[n]);
1232     Node[n] = NodeRef(B, Size[n]);
1233     Pos += Size[n];
1234   }
1235 
1236   for (unsigned n = 0; n != Nodes; ++n) {
1237     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1238     rootBranch().subtree(n) = Node[n];
1239   }
1240   rootSize = Nodes;
1241   ++height;
1242   return NewOffset;
1243 }
1244 
1245 /// visitNodes - Visit each external node.
1246 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1247 void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::* f)(IntervalMapImpl::NodeRef,unsigned Height))1248 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1249   if (!branched())
1250     return;
1251   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1252 
1253   // Collect level 0 nodes from the root.
1254   for (unsigned i = 0; i != rootSize; ++i)
1255     Refs.push_back(rootBranch().subtree(i));
1256 
1257   // Visit all branch nodes.
1258   for (unsigned h = height - 1; h; --h) {
1259     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1260       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1261         NextRefs.push_back(Refs[i].subtree(j));
1262       (this->*f)(Refs[i], h);
1263     }
1264     Refs.clear();
1265     Refs.swap(NextRefs);
1266   }
1267 
1268   // Visit all leaf nodes.
1269   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1270     (this->*f)(Refs[i], 0);
1271 }
1272 
1273 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1274 void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node,unsigned Level)1275 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1276   if (Level)
1277     deleteNode(&Node.get<Branch>());
1278   else
1279     deleteNode(&Node.get<Leaf>());
1280 }
1281 
1282 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1283 void IntervalMap<KeyT, ValT, N, Traits>::
clear()1284 clear() {
1285   if (branched()) {
1286     visitNodes(&IntervalMap::deleteNode);
1287     switchRootToLeaf();
1288   }
1289   rootSize = 0;
1290 }
1291 
1292 //===----------------------------------------------------------------------===//
1293 //---                   IntervalMap::const_iterator                       ----//
1294 //===----------------------------------------------------------------------===//
1295 
1296 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1297 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1298   public std::iterator<std::bidirectional_iterator_tag, ValT> {
1299 
1300 protected:
1301   friend class IntervalMap;
1302 
1303   // The map referred to.
1304   IntervalMap *map = nullptr;
1305 
1306   // We store a full path from the root to the current position.
1307   // The path may be partially filled, but never between iterator calls.
1308   IntervalMapImpl::Path path;
1309 
const_iterator(const IntervalMap & map)1310   explicit const_iterator(const IntervalMap &map) :
1311     map(const_cast<IntervalMap*>(&map)) {}
1312 
branched()1313   bool branched() const {
1314     assert(map && "Invalid iterator");
1315     return map->branched();
1316   }
1317 
setRoot(unsigned Offset)1318   void setRoot(unsigned Offset) {
1319     if (branched())
1320       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1321     else
1322       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1323   }
1324 
1325   void pathFillFind(KeyT x);
1326   void treeFind(KeyT x);
1327   void treeAdvanceTo(KeyT x);
1328 
1329   /// unsafeStart - Writable access to start() for iterator.
unsafeStart()1330   KeyT &unsafeStart() const {
1331     assert(valid() && "Cannot access invalid iterator");
1332     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1333                         path.leaf<RootLeaf>().start(path.leafOffset());
1334   }
1335 
1336   /// unsafeStop - Writable access to stop() for iterator.
unsafeStop()1337   KeyT &unsafeStop() const {
1338     assert(valid() && "Cannot access invalid iterator");
1339     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1340                         path.leaf<RootLeaf>().stop(path.leafOffset());
1341   }
1342 
1343   /// unsafeValue - Writable access to value() for iterator.
unsafeValue()1344   ValT &unsafeValue() const {
1345     assert(valid() && "Cannot access invalid iterator");
1346     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1347                         path.leaf<RootLeaf>().value(path.leafOffset());
1348   }
1349 
1350 public:
1351   /// const_iterator - Create an iterator that isn't pointing anywhere.
1352   const_iterator() = default;
1353 
1354   /// setMap - Change the map iterated over. This call must be followed by a
1355   /// call to goToBegin(), goToEnd(), or find()
setMap(const IntervalMap & m)1356   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1357 
1358   /// valid - Return true if the current position is valid, false for end().
valid()1359   bool valid() const { return path.valid(); }
1360 
1361   /// atBegin - Return true if the current position is the first map entry.
atBegin()1362   bool atBegin() const { return path.atBegin(); }
1363 
1364   /// start - Return the beginning of the current interval.
start()1365   const KeyT &start() const { return unsafeStart(); }
1366 
1367   /// stop - Return the end of the current interval.
stop()1368   const KeyT &stop() const { return unsafeStop(); }
1369 
1370   /// value - Return the mapped value at the current interval.
value()1371   const ValT &value() const { return unsafeValue(); }
1372 
1373   const ValT &operator*() const { return value(); }
1374 
1375   bool operator==(const const_iterator &RHS) const {
1376     assert(map == RHS.map && "Cannot compare iterators from different maps");
1377     if (!valid())
1378       return !RHS.valid();
1379     if (path.leafOffset() != RHS.path.leafOffset())
1380       return false;
1381     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1382   }
1383 
1384   bool operator!=(const const_iterator &RHS) const {
1385     return !operator==(RHS);
1386   }
1387 
1388   /// goToBegin - Move to the first interval in map.
goToBegin()1389   void goToBegin() {
1390     setRoot(0);
1391     if (branched())
1392       path.fillLeft(map->height);
1393   }
1394 
1395   /// goToEnd - Move beyond the last interval in map.
goToEnd()1396   void goToEnd() {
1397     setRoot(map->rootSize);
1398   }
1399 
1400   /// preincrement - move to the next interval.
1401   const_iterator &operator++() {
1402     assert(valid() && "Cannot increment end()");
1403     if (++path.leafOffset() == path.leafSize() && branched())
1404       path.moveRight(map->height);
1405     return *this;
1406   }
1407 
1408   /// postincrement - Dont do that!
1409   const_iterator operator++(int) {
1410     const_iterator tmp = *this;
1411     operator++();
1412     return tmp;
1413   }
1414 
1415   /// predecrement - move to the previous interval.
1416   const_iterator &operator--() {
1417     if (path.leafOffset() && (valid() || !branched()))
1418       --path.leafOffset();
1419     else
1420       path.moveLeft(map->height);
1421     return *this;
1422   }
1423 
1424   /// postdecrement - Dont do that!
1425   const_iterator operator--(int) {
1426     const_iterator tmp = *this;
1427     operator--();
1428     return tmp;
1429   }
1430 
1431   /// find - Move to the first interval with stop >= x, or end().
1432   /// This is a full search from the root, the current position is ignored.
find(KeyT x)1433   void find(KeyT x) {
1434     if (branched())
1435       treeFind(x);
1436     else
1437       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1438   }
1439 
1440   /// advanceTo - Move to the first interval with stop >= x, or end().
1441   /// The search is started from the current position, and no earlier positions
1442   /// can be found. This is much faster than find() for small moves.
advanceTo(KeyT x)1443   void advanceTo(KeyT x) {
1444     if (!valid())
1445       return;
1446     if (branched())
1447       treeAdvanceTo(x);
1448     else
1449       path.leafOffset() =
1450         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1451   }
1452 };
1453 
1454 /// pathFillFind - Complete path by searching for x.
1455 /// @param x Key to search for.
1456 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1457 void IntervalMap<KeyT, ValT, N, Traits>::
pathFillFind(KeyT x)1458 const_iterator::pathFillFind(KeyT x) {
1459   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1460   for (unsigned i = map->height - path.height() - 1; i; --i) {
1461     unsigned p = NR.get<Branch>().safeFind(0, x);
1462     path.push(NR, p);
1463     NR = NR.subtree(p);
1464   }
1465   path.push(NR, NR.get<Leaf>().safeFind(0, x));
1466 }
1467 
1468 /// treeFind - Find in a branched tree.
1469 /// @param x Key to search for.
1470 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1471 void IntervalMap<KeyT, ValT, N, Traits>::
treeFind(KeyT x)1472 const_iterator::treeFind(KeyT x) {
1473   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1474   if (valid())
1475     pathFillFind(x);
1476 }
1477 
1478 /// treeAdvanceTo - Find position after the current one.
1479 /// @param x Key to search for.
1480 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1481 void IntervalMap<KeyT, ValT, N, Traits>::
treeAdvanceTo(KeyT x)1482 const_iterator::treeAdvanceTo(KeyT x) {
1483   // Can we stay on the same leaf node?
1484   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1485     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1486     return;
1487   }
1488 
1489   // Drop the current leaf.
1490   path.pop();
1491 
1492   // Search towards the root for a usable subtree.
1493   if (path.height()) {
1494     for (unsigned l = path.height() - 1; l; --l) {
1495       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1496         // The branch node at l+1 is usable
1497         path.offset(l + 1) =
1498           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1499         return pathFillFind(x);
1500       }
1501       path.pop();
1502     }
1503     // Is the level-1 Branch usable?
1504     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1505       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1506       return pathFillFind(x);
1507     }
1508   }
1509 
1510   // We reached the root.
1511   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1512   if (valid())
1513     pathFillFind(x);
1514 }
1515 
1516 //===----------------------------------------------------------------------===//
1517 //---                       IntervalMap::iterator                         ----//
1518 //===----------------------------------------------------------------------===//
1519 
1520 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1521 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1522   friend class IntervalMap;
1523 
1524   using IdxPair = IntervalMapImpl::IdxPair;
1525 
iterator(IntervalMap & map)1526   explicit iterator(IntervalMap &map) : const_iterator(map) {}
1527 
1528   void setNodeStop(unsigned Level, KeyT Stop);
1529   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1530   template <typename NodeT> bool overflow(unsigned Level);
1531   void treeInsert(KeyT a, KeyT b, ValT y);
1532   void eraseNode(unsigned Level);
1533   void treeErase(bool UpdateRoot = true);
1534   bool canCoalesceLeft(KeyT Start, ValT x);
1535   bool canCoalesceRight(KeyT Stop, ValT x);
1536 
1537 public:
1538   /// iterator - Create null iterator.
1539   iterator() = default;
1540 
1541   /// setStart - Move the start of the current interval.
1542   /// This may cause coalescing with the previous interval.
1543   /// @param a New start key, must not overlap the previous interval.
1544   void setStart(KeyT a);
1545 
1546   /// setStop - Move the end of the current interval.
1547   /// This may cause coalescing with the following interval.
1548   /// @param b New stop key, must not overlap the following interval.
1549   void setStop(KeyT b);
1550 
1551   /// setValue - Change the mapped value of the current interval.
1552   /// This may cause coalescing with the previous and following intervals.
1553   /// @param x New value.
1554   void setValue(ValT x);
1555 
1556   /// setStartUnchecked - Move the start of the current interval without
1557   /// checking for coalescing or overlaps.
1558   /// This should only be used when it is known that coalescing is not required.
1559   /// @param a New start key.
setStartUnchecked(KeyT a)1560   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1561 
1562   /// setStopUnchecked - Move the end of the current interval without checking
1563   /// for coalescing or overlaps.
1564   /// This should only be used when it is known that coalescing is not required.
1565   /// @param b New stop key.
setStopUnchecked(KeyT b)1566   void setStopUnchecked(KeyT b) {
1567     this->unsafeStop() = b;
1568     // Update keys in branch nodes as well.
1569     if (this->path.atLastEntry(this->path.height()))
1570       setNodeStop(this->path.height(), b);
1571   }
1572 
1573   /// setValueUnchecked - Change the mapped value of the current interval
1574   /// without checking for coalescing.
1575   /// @param x New value.
setValueUnchecked(ValT x)1576   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1577 
1578   /// insert - Insert mapping [a;b] -> y before the current position.
1579   void insert(KeyT a, KeyT b, ValT y);
1580 
1581   /// erase - Erase the current interval.
1582   void erase();
1583 
1584   iterator &operator++() {
1585     const_iterator::operator++();
1586     return *this;
1587   }
1588 
1589   iterator operator++(int) {
1590     iterator tmp = *this;
1591     operator++();
1592     return tmp;
1593   }
1594 
1595   iterator &operator--() {
1596     const_iterator::operator--();
1597     return *this;
1598   }
1599 
1600   iterator operator--(int) {
1601     iterator tmp = *this;
1602     operator--();
1603     return tmp;
1604   }
1605 };
1606 
1607 /// canCoalesceLeft - Can the current interval coalesce to the left after
1608 /// changing start or value?
1609 /// @param Start New start of current interval.
1610 /// @param Value New value for current interval.
1611 /// @return True when updating the current interval would enable coalescing.
1612 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1613 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceLeft(KeyT Start,ValT Value)1614 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1615   using namespace IntervalMapImpl;
1616   Path &P = this->path;
1617   if (!this->branched()) {
1618     unsigned i = P.leafOffset();
1619     RootLeaf &Node = P.leaf<RootLeaf>();
1620     return i && Node.value(i-1) == Value &&
1621                 Traits::adjacent(Node.stop(i-1), Start);
1622   }
1623   // Branched.
1624   if (unsigned i = P.leafOffset()) {
1625     Leaf &Node = P.leaf<Leaf>();
1626     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1627   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1628     unsigned i = NR.size() - 1;
1629     Leaf &Node = NR.get<Leaf>();
1630     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1631   }
1632   return false;
1633 }
1634 
1635 /// canCoalesceRight - Can the current interval coalesce to the right after
1636 /// changing stop or value?
1637 /// @param Stop New stop of current interval.
1638 /// @param Value New value for current interval.
1639 /// @return True when updating the current interval would enable coalescing.
1640 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1641 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceRight(KeyT Stop,ValT Value)1642 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1643   using namespace IntervalMapImpl;
1644   Path &P = this->path;
1645   unsigned i = P.leafOffset() + 1;
1646   if (!this->branched()) {
1647     if (i >= P.leafSize())
1648       return false;
1649     RootLeaf &Node = P.leaf<RootLeaf>();
1650     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1651   }
1652   // Branched.
1653   if (i < P.leafSize()) {
1654     Leaf &Node = P.leaf<Leaf>();
1655     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1656   } else if (NodeRef NR = P.getRightSibling(P.height())) {
1657     Leaf &Node = NR.get<Leaf>();
1658     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1659   }
1660   return false;
1661 }
1662 
1663 /// setNodeStop - Update the stop key of the current node at level and above.
1664 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1665 void IntervalMap<KeyT, ValT, N, Traits>::
setNodeStop(unsigned Level,KeyT Stop)1666 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1667   // There are no references to the root node, so nothing to update.
1668   if (!Level)
1669     return;
1670   IntervalMapImpl::Path &P = this->path;
1671   // Update nodes pointing to the current node.
1672   while (--Level) {
1673     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1674     if (!P.atLastEntry(Level))
1675       return;
1676   }
1677   // Update root separately since it has a different layout.
1678   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1679 }
1680 
1681 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1682 void IntervalMap<KeyT, ValT, N, Traits>::
setStart(KeyT a)1683 iterator::setStart(KeyT a) {
1684   assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
1685   KeyT &CurStart = this->unsafeStart();
1686   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1687     CurStart = a;
1688     return;
1689   }
1690   // Coalesce with the interval to the left.
1691   --*this;
1692   a = this->start();
1693   erase();
1694   setStartUnchecked(a);
1695 }
1696 
1697 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1698 void IntervalMap<KeyT, ValT, N, Traits>::
setStop(KeyT b)1699 iterator::setStop(KeyT b) {
1700   assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
1701   if (Traits::startLess(b, this->stop()) ||
1702       !canCoalesceRight(b, this->value())) {
1703     setStopUnchecked(b);
1704     return;
1705   }
1706   // Coalesce with interval to the right.
1707   KeyT a = this->start();
1708   erase();
1709   setStartUnchecked(a);
1710 }
1711 
1712 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1713 void IntervalMap<KeyT, ValT, N, Traits>::
setValue(ValT x)1714 iterator::setValue(ValT x) {
1715   setValueUnchecked(x);
1716   if (canCoalesceRight(this->stop(), x)) {
1717     KeyT a = this->start();
1718     erase();
1719     setStartUnchecked(a);
1720   }
1721   if (canCoalesceLeft(this->start(), x)) {
1722     --*this;
1723     KeyT a = this->start();
1724     erase();
1725     setStartUnchecked(a);
1726   }
1727 }
1728 
1729 /// insertNode - insert a node before the current path at level.
1730 /// Leave the current path pointing at the new node.
1731 /// @param Level path index of the node to be inserted.
1732 /// @param Node The node to be inserted.
1733 /// @param Stop The last index in the new node.
1734 /// @return True if the tree height was increased.
1735 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1736 bool IntervalMap<KeyT, ValT, N, Traits>::
insertNode(unsigned Level,IntervalMapImpl::NodeRef Node,KeyT Stop)1737 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1738   assert(Level && "Cannot insert next to the root");
1739   bool SplitRoot = false;
1740   IntervalMap &IM = *this->map;
1741   IntervalMapImpl::Path &P = this->path;
1742 
1743   if (Level == 1) {
1744     // Insert into the root branch node.
1745     if (IM.rootSize < RootBranch::Capacity) {
1746       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1747       P.setSize(0, ++IM.rootSize);
1748       P.reset(Level);
1749       return SplitRoot;
1750     }
1751 
1752     // We need to split the root while keeping our position.
1753     SplitRoot = true;
1754     IdxPair Offset = IM.splitRoot(P.offset(0));
1755     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1756 
1757     // Fall through to insert at the new higher level.
1758     ++Level;
1759   }
1760 
1761   // When inserting before end(), make sure we have a valid path.
1762   P.legalizeForInsert(--Level);
1763 
1764   // Insert into the branch node at Level-1.
1765   if (P.size(Level) == Branch::Capacity) {
1766     // Branch node is full, handle handle the overflow.
1767     assert(!SplitRoot && "Cannot overflow after splitting the root");
1768     SplitRoot = overflow<Branch>(Level);
1769     Level += SplitRoot;
1770   }
1771   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1772   P.setSize(Level, P.size(Level) + 1);
1773   if (P.atLastEntry(Level))
1774     setNodeStop(Level, Stop);
1775   P.reset(Level + 1);
1776   return SplitRoot;
1777 }
1778 
1779 // insert
1780 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1781 void IntervalMap<KeyT, ValT, N, Traits>::
insert(KeyT a,KeyT b,ValT y)1782 iterator::insert(KeyT a, KeyT b, ValT y) {
1783   if (this->branched())
1784     return treeInsert(a, b, y);
1785   IntervalMap &IM = *this->map;
1786   IntervalMapImpl::Path &P = this->path;
1787 
1788   // Try simple root leaf insert.
1789   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1790 
1791   // Was the root node insert successful?
1792   if (Size <= RootLeaf::Capacity) {
1793     P.setSize(0, IM.rootSize = Size);
1794     return;
1795   }
1796 
1797   // Root leaf node is full, we must branch.
1798   IdxPair Offset = IM.branchRoot(P.leafOffset());
1799   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1800 
1801   // Now it fits in the new leaf.
1802   treeInsert(a, b, y);
1803 }
1804 
1805 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1806 void IntervalMap<KeyT, ValT, N, Traits>::
treeInsert(KeyT a,KeyT b,ValT y)1807 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1808   using namespace IntervalMapImpl;
1809   Path &P = this->path;
1810 
1811   if (!P.valid())
1812     P.legalizeForInsert(this->map->height);
1813 
1814   // Check if this insertion will extend the node to the left.
1815   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1816     // Node is growing to the left, will it affect a left sibling node?
1817     if (NodeRef Sib = P.getLeftSibling(P.height())) {
1818       Leaf &SibLeaf = Sib.get<Leaf>();
1819       unsigned SibOfs = Sib.size() - 1;
1820       if (SibLeaf.value(SibOfs) == y &&
1821           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1822         // This insertion will coalesce with the last entry in SibLeaf. We can
1823         // handle it in two ways:
1824         //  1. Extend SibLeaf.stop to b and be done, or
1825         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1826         // We prefer 1., but need 2 when coalescing to the right as well.
1827         Leaf &CurLeaf = P.leaf<Leaf>();
1828         P.moveLeft(P.height());
1829         if (Traits::stopLess(b, CurLeaf.start(0)) &&
1830             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1831           // Easy, just extend SibLeaf and we're done.
1832           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1833           return;
1834         } else {
1835           // We have both left and right coalescing. Erase the old SibLeaf entry
1836           // and continue inserting the larger interval.
1837           a = SibLeaf.start(SibOfs);
1838           treeErase(/* UpdateRoot= */false);
1839         }
1840       }
1841     } else {
1842       // No left sibling means we are at begin(). Update cached bound.
1843       this->map->rootBranchStart() = a;
1844     }
1845   }
1846 
1847   // When we are inserting at the end of a leaf node, we must update stops.
1848   unsigned Size = P.leafSize();
1849   bool Grow = P.leafOffset() == Size;
1850   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1851 
1852   // Leaf insertion unsuccessful? Overflow and try again.
1853   if (Size > Leaf::Capacity) {
1854     overflow<Leaf>(P.height());
1855     Grow = P.leafOffset() == P.leafSize();
1856     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1857     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1858   }
1859 
1860   // Inserted, update offset and leaf size.
1861   P.setSize(P.height(), Size);
1862 
1863   // Insert was the last node entry, update stops.
1864   if (Grow)
1865     setNodeStop(P.height(), b);
1866 }
1867 
1868 /// erase - erase the current interval and move to the next position.
1869 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1870 void IntervalMap<KeyT, ValT, N, Traits>::
erase()1871 iterator::erase() {
1872   IntervalMap &IM = *this->map;
1873   IntervalMapImpl::Path &P = this->path;
1874   assert(P.valid() && "Cannot erase end()");
1875   if (this->branched())
1876     return treeErase();
1877   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1878   P.setSize(0, --IM.rootSize);
1879 }
1880 
1881 /// treeErase - erase() for a branched tree.
1882 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1883 void IntervalMap<KeyT, ValT, N, Traits>::
treeErase(bool UpdateRoot)1884 iterator::treeErase(bool UpdateRoot) {
1885   IntervalMap &IM = *this->map;
1886   IntervalMapImpl::Path &P = this->path;
1887   Leaf &Node = P.leaf<Leaf>();
1888 
1889   // Nodes are not allowed to become empty.
1890   if (P.leafSize() == 1) {
1891     IM.deleteNode(&Node);
1892     eraseNode(IM.height);
1893     // Update rootBranchStart if we erased begin().
1894     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1895       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1896     return;
1897   }
1898 
1899   // Erase current entry.
1900   Node.erase(P.leafOffset(), P.leafSize());
1901   unsigned NewSize = P.leafSize() - 1;
1902   P.setSize(IM.height, NewSize);
1903   // When we erase the last entry, update stop and move to a legal position.
1904   if (P.leafOffset() == NewSize) {
1905     setNodeStop(IM.height, Node.stop(NewSize - 1));
1906     P.moveRight(IM.height);
1907   } else if (UpdateRoot && P.atBegin())
1908     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1909 }
1910 
1911 /// eraseNode - Erase the current node at Level from its parent and move path to
1912 /// the first entry of the next sibling node.
1913 /// The node must be deallocated by the caller.
1914 /// @param Level 1..height, the root node cannot be erased.
1915 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1916 void IntervalMap<KeyT, ValT, N, Traits>::
eraseNode(unsigned Level)1917 iterator::eraseNode(unsigned Level) {
1918   assert(Level && "Cannot erase root node");
1919   IntervalMap &IM = *this->map;
1920   IntervalMapImpl::Path &P = this->path;
1921 
1922   if (--Level == 0) {
1923     IM.rootBranch().erase(P.offset(0), IM.rootSize);
1924     P.setSize(0, --IM.rootSize);
1925     // If this cleared the root, switch to height=0.
1926     if (IM.empty()) {
1927       IM.switchRootToLeaf();
1928       this->setRoot(0);
1929       return;
1930     }
1931   } else {
1932     // Remove node ref from branch node at Level.
1933     Branch &Parent = P.node<Branch>(Level);
1934     if (P.size(Level) == 1) {
1935       // Branch node became empty, remove it recursively.
1936       IM.deleteNode(&Parent);
1937       eraseNode(Level);
1938     } else {
1939       // Branch node won't become empty.
1940       Parent.erase(P.offset(Level), P.size(Level));
1941       unsigned NewSize = P.size(Level) - 1;
1942       P.setSize(Level, NewSize);
1943       // If we removed the last branch, update stop and move to a legal pos.
1944       if (P.offset(Level) == NewSize) {
1945         setNodeStop(Level, Parent.stop(NewSize - 1));
1946         P.moveRight(Level);
1947       }
1948     }
1949   }
1950   // Update path cache for the new right sibling position.
1951   if (P.valid()) {
1952     P.reset(Level + 1);
1953     P.offset(Level + 1) = 0;
1954   }
1955 }
1956 
1957 /// overflow - Distribute entries of the current node evenly among
1958 /// its siblings and ensure that the current node is not full.
1959 /// This may require allocating a new node.
1960 /// @tparam NodeT The type of node at Level (Leaf or Branch).
1961 /// @param Level path index of the overflowing node.
1962 /// @return True when the tree height was changed.
1963 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1964 template <typename NodeT>
1965 bool IntervalMap<KeyT, ValT, N, Traits>::
overflow(unsigned Level)1966 iterator::overflow(unsigned Level) {
1967   using namespace IntervalMapImpl;
1968   Path &P = this->path;
1969   unsigned CurSize[4];
1970   NodeT *Node[4];
1971   unsigned Nodes = 0;
1972   unsigned Elements = 0;
1973   unsigned Offset = P.offset(Level);
1974 
1975   // Do we have a left sibling?
1976   NodeRef LeftSib = P.getLeftSibling(Level);
1977   if (LeftSib) {
1978     Offset += Elements = CurSize[Nodes] = LeftSib.size();
1979     Node[Nodes++] = &LeftSib.get<NodeT>();
1980   }
1981 
1982   // Current node.
1983   Elements += CurSize[Nodes] = P.size(Level);
1984   Node[Nodes++] = &P.node<NodeT>(Level);
1985 
1986   // Do we have a right sibling?
1987   NodeRef RightSib = P.getRightSibling(Level);
1988   if (RightSib) {
1989     Elements += CurSize[Nodes] = RightSib.size();
1990     Node[Nodes++] = &RightSib.get<NodeT>();
1991   }
1992 
1993   // Do we need to allocate a new node?
1994   unsigned NewNode = 0;
1995   if (Elements + 1 > Nodes * NodeT::Capacity) {
1996     // Insert NewNode at the penultimate position, or after a single node.
1997     NewNode = Nodes == 1 ? 1 : Nodes - 1;
1998     CurSize[Nodes] = CurSize[NewNode];
1999     Node[Nodes] = Node[NewNode];
2000     CurSize[NewNode] = 0;
2001     Node[NewNode] = this->map->template newNode<NodeT>();
2002     ++Nodes;
2003   }
2004 
2005   // Compute the new element distribution.
2006   unsigned NewSize[4];
2007   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
2008                                  CurSize, NewSize, Offset, true);
2009   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
2010 
2011   // Move current location to the leftmost node.
2012   if (LeftSib)
2013     P.moveLeft(Level);
2014 
2015   // Elements have been rearranged, now update node sizes and stops.
2016   bool SplitRoot = false;
2017   unsigned Pos = 0;
2018   while (true) {
2019     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2020     if (NewNode && Pos == NewNode) {
2021       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2022       Level += SplitRoot;
2023     } else {
2024       P.setSize(Level, NewSize[Pos]);
2025       setNodeStop(Level, Stop);
2026     }
2027     if (Pos + 1 == Nodes)
2028       break;
2029     P.moveRight(Level);
2030     ++Pos;
2031   }
2032 
2033   // Where was I? Find NewOffset.
2034   while(Pos != NewOffset.first) {
2035     P.moveLeft(Level);
2036     --Pos;
2037   }
2038   P.offset(Level) = NewOffset.second;
2039   return SplitRoot;
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 //---                       IntervalMapOverlaps                           ----//
2044 //===----------------------------------------------------------------------===//
2045 
2046 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2047 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2048 /// should be the same.
2049 ///
2050 /// Typical uses:
2051 ///
2052 /// 1. Test for overlap:
2053 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
2054 ///
2055 /// 2. Enumerate overlaps:
2056 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2057 ///
2058 template <typename MapA, typename MapB>
2059 class IntervalMapOverlaps {
2060   using KeyType = typename MapA::KeyType;
2061   using Traits = typename MapA::KeyTraits;
2062 
2063   typename MapA::const_iterator posA;
2064   typename MapB::const_iterator posB;
2065 
2066   /// advance - Move posA and posB forward until reaching an overlap, or until
2067   /// either meets end.
2068   /// Don't move the iterators if they are already overlapping.
advance()2069   void advance() {
2070     if (!valid())
2071       return;
2072 
2073     if (Traits::stopLess(posA.stop(), posB.start())) {
2074       // A ends before B begins. Catch up.
2075       posA.advanceTo(posB.start());
2076       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2077         return;
2078     } else if (Traits::stopLess(posB.stop(), posA.start())) {
2079       // B ends before A begins. Catch up.
2080       posB.advanceTo(posA.start());
2081       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2082         return;
2083     } else
2084       // Already overlapping.
2085       return;
2086 
2087     while (true) {
2088       // Make a.end > b.start.
2089       posA.advanceTo(posB.start());
2090       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2091         return;
2092       // Make b.end > a.start.
2093       posB.advanceTo(posA.start());
2094       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2095         return;
2096     }
2097   }
2098 
2099 public:
2100   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA & a,const MapB & b)2101   IntervalMapOverlaps(const MapA &a, const MapB &b)
2102     : posA(b.empty() ? a.end() : a.find(b.start())),
2103       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2104 
2105   /// valid - Return true if iterator is at an overlap.
valid()2106   bool valid() const {
2107     return posA.valid() && posB.valid();
2108   }
2109 
2110   /// a - access the left hand side in the overlap.
a()2111   const typename MapA::const_iterator &a() const { return posA; }
2112 
2113   /// b - access the right hand side in the overlap.
b()2114   const typename MapB::const_iterator &b() const { return posB; }
2115 
2116   /// start - Beginning of the overlapping interval.
start()2117   KeyType start() const {
2118     KeyType ak = a().start();
2119     KeyType bk = b().start();
2120     return Traits::startLess(ak, bk) ? bk : ak;
2121   }
2122 
2123   /// stop - End of the overlapping interval.
stop()2124   KeyType stop() const {
2125     KeyType ak = a().stop();
2126     KeyType bk = b().stop();
2127     return Traits::startLess(ak, bk) ? ak : bk;
2128   }
2129 
2130   /// skipA - Move to the next overlap that doesn't involve a().
skipA()2131   void skipA() {
2132     ++posA;
2133     advance();
2134   }
2135 
2136   /// skipB - Move to the next overlap that doesn't involve b().
skipB()2137   void skipB() {
2138     ++posB;
2139     advance();
2140   }
2141 
2142   /// Preincrement - Move to the next overlap.
2143   IntervalMapOverlaps &operator++() {
2144     // Bump the iterator that ends first. The other one may have more overlaps.
2145     if (Traits::startLess(posB.stop(), posA.stop()))
2146       skipB();
2147     else
2148       skipA();
2149     return *this;
2150   }
2151 
2152   /// advanceTo - Move to the first overlapping interval with
2153   /// stopLess(x, stop()).
advanceTo(KeyType x)2154   void advanceTo(KeyType x) {
2155     if (!valid())
2156       return;
2157     // Make sure advanceTo sees monotonic keys.
2158     if (Traits::stopLess(posA.stop(), x))
2159       posA.advanceTo(x);
2160     if (Traits::stopLess(posB.stop(), x))
2161       posB.advanceTo(x);
2162     advance();
2163   }
2164 };
2165 
2166 } // end namespace llvm
2167 
2168 #endif // LLVM_ADT_INTERVALMAP_H
2169