1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRPrintingPasses.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
41 template class llvm::LoopBase<BasicBlock, Loop>;
42 template class llvm::LoopInfoBase<BasicBlock, Loop>;
43 
44 // Always verify loopinfo if expensive checking is enabled.
45 #ifdef EXPENSIVE_CHECKS
46 bool llvm::VerifyLoopInfo = true;
47 #else
48 bool llvm::VerifyLoopInfo = false;
49 #endif
50 static cl::opt<bool, true>
51     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
52                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
53 
54 //===----------------------------------------------------------------------===//
55 // Loop implementation
56 //
57 
isLoopInvariant(const Value * V) const58 bool Loop::isLoopInvariant(const Value *V) const {
59   if (const Instruction *I = dyn_cast<Instruction>(V))
60     return !contains(I);
61   return true; // All non-instructions are loop invariant
62 }
63 
hasLoopInvariantOperands(const Instruction * I) const64 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
65   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
66 }
67 
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt) const68 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
69                              Instruction *InsertPt) const {
70   if (Instruction *I = dyn_cast<Instruction>(V))
71     return makeLoopInvariant(I, Changed, InsertPt);
72   return true; // All non-instructions are loop-invariant.
73 }
74 
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt) const75 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
76                              Instruction *InsertPt) const {
77   // Test if the value is already loop-invariant.
78   if (isLoopInvariant(I))
79     return true;
80   if (!isSafeToSpeculativelyExecute(I))
81     return false;
82   if (I->mayReadFromMemory())
83     return false;
84   // EH block instructions are immobile.
85   if (I->isEHPad())
86     return false;
87   // Determine the insertion point, unless one was given.
88   if (!InsertPt) {
89     BasicBlock *Preheader = getLoopPreheader();
90     // Without a preheader, hoisting is not feasible.
91     if (!Preheader)
92       return false;
93     InsertPt = Preheader->getTerminator();
94   }
95   // Don't hoist instructions with loop-variant operands.
96   for (Value *Operand : I->operands())
97     if (!makeLoopInvariant(Operand, Changed, InsertPt))
98       return false;
99 
100   // Hoist.
101   I->moveBefore(InsertPt);
102 
103   // There is possibility of hoisting this instruction above some arbitrary
104   // condition. Any metadata defined on it can be control dependent on this
105   // condition. Conservatively strip it here so that we don't give any wrong
106   // information to the optimizer.
107   I->dropUnknownNonDebugMetadata();
108 
109   Changed = true;
110   return true;
111 }
112 
getCanonicalInductionVariable() const113 PHINode *Loop::getCanonicalInductionVariable() const {
114   BasicBlock *H = getHeader();
115 
116   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
117   pred_iterator PI = pred_begin(H);
118   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
119   Backedge = *PI++;
120   if (PI == pred_end(H))
121     return nullptr; // dead loop
122   Incoming = *PI++;
123   if (PI != pred_end(H))
124     return nullptr; // multiple backedges?
125 
126   if (contains(Incoming)) {
127     if (contains(Backedge))
128       return nullptr;
129     std::swap(Incoming, Backedge);
130   } else if (!contains(Backedge))
131     return nullptr;
132 
133   // Loop over all of the PHI nodes, looking for a canonical indvar.
134   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
135     PHINode *PN = cast<PHINode>(I);
136     if (ConstantInt *CI =
137             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
138       if (CI->isZero())
139         if (Instruction *Inc =
140                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
141           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
142             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
143               if (CI->isOne())
144                 return PN;
145   }
146   return nullptr;
147 }
148 
149 // Check that 'BB' doesn't have any uses outside of the 'L'
isBlockInLCSSAForm(const Loop & L,const BasicBlock & BB,DominatorTree & DT)150 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
151                                DominatorTree &DT) {
152   for (const Instruction &I : BB) {
153     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
154     // optimizations, so for the purposes of considered LCSSA form, we
155     // can ignore them.
156     if (I.getType()->isTokenTy())
157       continue;
158 
159     for (const Use &U : I.uses()) {
160       const Instruction *UI = cast<Instruction>(U.getUser());
161       const BasicBlock *UserBB = UI->getParent();
162       if (const PHINode *P = dyn_cast<PHINode>(UI))
163         UserBB = P->getIncomingBlock(U);
164 
165       // Check the current block, as a fast-path, before checking whether
166       // the use is anywhere in the loop.  Most values are used in the same
167       // block they are defined in.  Also, blocks not reachable from the
168       // entry are special; uses in them don't need to go through PHIs.
169       if (UserBB != &BB && !L.contains(UserBB) &&
170           DT.isReachableFromEntry(UserBB))
171         return false;
172     }
173   }
174   return true;
175 }
176 
isLCSSAForm(DominatorTree & DT) const177 bool Loop::isLCSSAForm(DominatorTree &DT) const {
178   // For each block we check that it doesn't have any uses outside of this loop.
179   return all_of(this->blocks(), [&](const BasicBlock *BB) {
180     return isBlockInLCSSAForm(*this, *BB, DT);
181   });
182 }
183 
isRecursivelyLCSSAForm(DominatorTree & DT,const LoopInfo & LI) const184 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
185   // For each block we check that it doesn't have any uses outside of its
186   // innermost loop. This process will transitively guarantee that the current
187   // loop and all of the nested loops are in LCSSA form.
188   return all_of(this->blocks(), [&](const BasicBlock *BB) {
189     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
190   });
191 }
192 
isLoopSimplifyForm() const193 bool Loop::isLoopSimplifyForm() const {
194   // Normal-form loops have a preheader, a single backedge, and all of their
195   // exits have all their predecessors inside the loop.
196   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
197 }
198 
199 // Routines that reform the loop CFG and split edges often fail on indirectbr.
isSafeToClone() const200 bool Loop::isSafeToClone() const {
201   // Return false if any loop blocks contain indirectbrs, or there are any calls
202   // to noduplicate functions.
203   for (BasicBlock *BB : this->blocks()) {
204     if (isa<IndirectBrInst>(BB->getTerminator()))
205       return false;
206 
207     for (Instruction &I : *BB)
208       if (auto CS = CallSite(&I))
209         if (CS.cannotDuplicate())
210           return false;
211   }
212   return true;
213 }
214 
getLoopID() const215 MDNode *Loop::getLoopID() const {
216   MDNode *LoopID = nullptr;
217 
218   // Go through the latch blocks and check the terminator for the metadata.
219   SmallVector<BasicBlock *, 4> LatchesBlocks;
220   getLoopLatches(LatchesBlocks);
221   for (BasicBlock *BB : LatchesBlocks) {
222     Instruction *TI = BB->getTerminator();
223     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
224 
225     if (!MD)
226       return nullptr;
227 
228     if (!LoopID)
229       LoopID = MD;
230     else if (MD != LoopID)
231       return nullptr;
232   }
233   if (!LoopID || LoopID->getNumOperands() == 0 ||
234       LoopID->getOperand(0) != LoopID)
235     return nullptr;
236   return LoopID;
237 }
238 
setLoopID(MDNode * LoopID) const239 void Loop::setLoopID(MDNode *LoopID) const {
240   assert((!LoopID || LoopID->getNumOperands() > 0) &&
241          "Loop ID needs at least one operand");
242   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
243          "Loop ID should refer to itself");
244 
245   BasicBlock *H = getHeader();
246   for (BasicBlock *BB : this->blocks()) {
247     Instruction *TI = BB->getTerminator();
248     for (BasicBlock *Successor : successors(TI)) {
249       if (Successor == H) {
250         TI->setMetadata(LLVMContext::MD_loop, LoopID);
251         break;
252       }
253     }
254   }
255 }
256 
setLoopAlreadyUnrolled()257 void Loop::setLoopAlreadyUnrolled() {
258   MDNode *LoopID = getLoopID();
259   // First remove any existing loop unrolling metadata.
260   SmallVector<Metadata *, 4> MDs;
261   // Reserve first location for self reference to the LoopID metadata node.
262   MDs.push_back(nullptr);
263 
264   if (LoopID) {
265     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
266       bool IsUnrollMetadata = false;
267       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
268       if (MD) {
269         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
270         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
271       }
272       if (!IsUnrollMetadata)
273         MDs.push_back(LoopID->getOperand(i));
274     }
275   }
276 
277   // Add unroll(disable) metadata to disable future unrolling.
278   LLVMContext &Context = getHeader()->getContext();
279   SmallVector<Metadata *, 1> DisableOperands;
280   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
281   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
282   MDs.push_back(DisableNode);
283 
284   MDNode *NewLoopID = MDNode::get(Context, MDs);
285   // Set operand 0 to refer to the loop id itself.
286   NewLoopID->replaceOperandWith(0, NewLoopID);
287   setLoopID(NewLoopID);
288 }
289 
isAnnotatedParallel() const290 bool Loop::isAnnotatedParallel() const {
291   MDNode *DesiredLoopIdMetadata = getLoopID();
292 
293   if (!DesiredLoopIdMetadata)
294     return false;
295 
296   MDNode *ParallelAccesses =
297       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
298   SmallPtrSet<MDNode *, 4>
299       ParallelAccessGroups; // For scalable 'contains' check.
300   if (ParallelAccesses) {
301     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
302       MDNode *AccGroup = cast<MDNode>(MD.get());
303       assert(isValidAsAccessGroup(AccGroup) &&
304              "List item must be an access group");
305       ParallelAccessGroups.insert(AccGroup);
306     }
307   }
308 
309   // The loop branch contains the parallel loop metadata. In order to ensure
310   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
311   // dependencies (thus converted the loop back to a sequential loop), check
312   // that all the memory instructions in the loop belong to an access group that
313   // is parallel to this loop.
314   for (BasicBlock *BB : this->blocks()) {
315     for (Instruction &I : *BB) {
316       if (!I.mayReadOrWriteMemory())
317         continue;
318 
319       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
320         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
321           if (AG->getNumOperands() == 0) {
322             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
323             return ParallelAccessGroups.count(AG);
324           }
325 
326           for (const MDOperand &AccessListItem : AG->operands()) {
327             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
328             assert(isValidAsAccessGroup(AccGroup) &&
329                    "List item must be an access group");
330             if (ParallelAccessGroups.count(AccGroup))
331               return true;
332           }
333           return false;
334         };
335 
336         if (ContainsAccessGroup(AccessGroup))
337           continue;
338       }
339 
340       // The memory instruction can refer to the loop identifier metadata
341       // directly or indirectly through another list metadata (in case of
342       // nested parallel loops). The loop identifier metadata refers to
343       // itself so we can check both cases with the same routine.
344       MDNode *LoopIdMD =
345           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
346 
347       if (!LoopIdMD)
348         return false;
349 
350       bool LoopIdMDFound = false;
351       for (const MDOperand &MDOp : LoopIdMD->operands()) {
352         if (MDOp == DesiredLoopIdMetadata) {
353           LoopIdMDFound = true;
354           break;
355         }
356       }
357 
358       if (!LoopIdMDFound)
359         return false;
360     }
361   }
362   return true;
363 }
364 
getStartLoc() const365 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
366 
getLocRange() const367 Loop::LocRange Loop::getLocRange() const {
368   // If we have a debug location in the loop ID, then use it.
369   if (MDNode *LoopID = getLoopID()) {
370     DebugLoc Start;
371     // We use the first DebugLoc in the header as the start location of the loop
372     // and if there is a second DebugLoc in the header we use it as end location
373     // of the loop.
374     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
375       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
376         if (!Start)
377           Start = DebugLoc(L);
378         else
379           return LocRange(Start, DebugLoc(L));
380       }
381     }
382 
383     if (Start)
384       return LocRange(Start);
385   }
386 
387   // Try the pre-header first.
388   if (BasicBlock *PHeadBB = getLoopPreheader())
389     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
390       return LocRange(DL);
391 
392   // If we have no pre-header or there are no instructions with debug
393   // info in it, try the header.
394   if (BasicBlock *HeadBB = getHeader())
395     return LocRange(HeadBB->getTerminator()->getDebugLoc());
396 
397   return LocRange();
398 }
399 
400 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const401 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
402 
dumpVerbose() const403 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
404   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
405 }
406 #endif
407 
408 //===----------------------------------------------------------------------===//
409 // UnloopUpdater implementation
410 //
411 
412 namespace {
413 /// Find the new parent loop for all blocks within the "unloop" whose last
414 /// backedges has just been removed.
415 class UnloopUpdater {
416   Loop &Unloop;
417   LoopInfo *LI;
418 
419   LoopBlocksDFS DFS;
420 
421   // Map unloop's immediate subloops to their nearest reachable parents. Nested
422   // loops within these subloops will not change parents. However, an immediate
423   // subloop's new parent will be the nearest loop reachable from either its own
424   // exits *or* any of its nested loop's exits.
425   DenseMap<Loop *, Loop *> SubloopParents;
426 
427   // Flag the presence of an irreducible backedge whose destination is a block
428   // directly contained by the original unloop.
429   bool FoundIB;
430 
431 public:
UnloopUpdater(Loop * UL,LoopInfo * LInfo)432   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
433       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
434 
435   void updateBlockParents();
436 
437   void removeBlocksFromAncestors();
438 
439   void updateSubloopParents();
440 
441 protected:
442   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
443 };
444 } // end anonymous namespace
445 
446 /// Update the parent loop for all blocks that are directly contained within the
447 /// original "unloop".
updateBlockParents()448 void UnloopUpdater::updateBlockParents() {
449   if (Unloop.getNumBlocks()) {
450     // Perform a post order CFG traversal of all blocks within this loop,
451     // propagating the nearest loop from successors to predecessors.
452     LoopBlocksTraversal Traversal(DFS, LI);
453     for (BasicBlock *POI : Traversal) {
454 
455       Loop *L = LI->getLoopFor(POI);
456       Loop *NL = getNearestLoop(POI, L);
457 
458       if (NL != L) {
459         // For reducible loops, NL is now an ancestor of Unloop.
460         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
461                "uninitialized successor");
462         LI->changeLoopFor(POI, NL);
463       } else {
464         // Or the current block is part of a subloop, in which case its parent
465         // is unchanged.
466         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
467       }
468     }
469   }
470   // Each irreducible loop within the unloop induces a round of iteration using
471   // the DFS result cached by Traversal.
472   bool Changed = FoundIB;
473   for (unsigned NIters = 0; Changed; ++NIters) {
474     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
475 
476     // Iterate over the postorder list of blocks, propagating the nearest loop
477     // from successors to predecessors as before.
478     Changed = false;
479     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
480                                    POE = DFS.endPostorder();
481          POI != POE; ++POI) {
482 
483       Loop *L = LI->getLoopFor(*POI);
484       Loop *NL = getNearestLoop(*POI, L);
485       if (NL != L) {
486         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
487                "uninitialized successor");
488         LI->changeLoopFor(*POI, NL);
489         Changed = true;
490       }
491     }
492   }
493 }
494 
495 /// Remove unloop's blocks from all ancestors below their new parents.
removeBlocksFromAncestors()496 void UnloopUpdater::removeBlocksFromAncestors() {
497   // Remove all unloop's blocks (including those in nested subloops) from
498   // ancestors below the new parent loop.
499   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
500        BI != BE; ++BI) {
501     Loop *OuterParent = LI->getLoopFor(*BI);
502     if (Unloop.contains(OuterParent)) {
503       while (OuterParent->getParentLoop() != &Unloop)
504         OuterParent = OuterParent->getParentLoop();
505       OuterParent = SubloopParents[OuterParent];
506     }
507     // Remove blocks from former Ancestors except Unloop itself which will be
508     // deleted.
509     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
510          OldParent = OldParent->getParentLoop()) {
511       assert(OldParent && "new loop is not an ancestor of the original");
512       OldParent->removeBlockFromLoop(*BI);
513     }
514   }
515 }
516 
517 /// Update the parent loop for all subloops directly nested within unloop.
updateSubloopParents()518 void UnloopUpdater::updateSubloopParents() {
519   while (!Unloop.empty()) {
520     Loop *Subloop = *std::prev(Unloop.end());
521     Unloop.removeChildLoop(std::prev(Unloop.end()));
522 
523     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
524     if (Loop *Parent = SubloopParents[Subloop])
525       Parent->addChildLoop(Subloop);
526     else
527       LI->addTopLevelLoop(Subloop);
528   }
529 }
530 
531 /// Return the nearest parent loop among this block's successors. If a successor
532 /// is a subloop header, consider its parent to be the nearest parent of the
533 /// subloop's exits.
534 ///
535 /// For subloop blocks, simply update SubloopParents and return NULL.
getNearestLoop(BasicBlock * BB,Loop * BBLoop)536 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
537 
538   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
539   // is considered uninitialized.
540   Loop *NearLoop = BBLoop;
541 
542   Loop *Subloop = nullptr;
543   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
544     Subloop = NearLoop;
545     // Find the subloop ancestor that is directly contained within Unloop.
546     while (Subloop->getParentLoop() != &Unloop) {
547       Subloop = Subloop->getParentLoop();
548       assert(Subloop && "subloop is not an ancestor of the original loop");
549     }
550     // Get the current nearest parent of the Subloop exits, initially Unloop.
551     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
552   }
553 
554   succ_iterator I = succ_begin(BB), E = succ_end(BB);
555   if (I == E) {
556     assert(!Subloop && "subloop blocks must have a successor");
557     NearLoop = nullptr; // unloop blocks may now exit the function.
558   }
559   for (; I != E; ++I) {
560     if (*I == BB)
561       continue; // self loops are uninteresting
562 
563     Loop *L = LI->getLoopFor(*I);
564     if (L == &Unloop) {
565       // This successor has not been processed. This path must lead to an
566       // irreducible backedge.
567       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
568       FoundIB = true;
569     }
570     if (L != &Unloop && Unloop.contains(L)) {
571       // Successor is in a subloop.
572       if (Subloop)
573         continue; // Branching within subloops. Ignore it.
574 
575       // BB branches from the original into a subloop header.
576       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
577 
578       // Get the current nearest parent of the Subloop's exits.
579       L = SubloopParents[L];
580       // L could be Unloop if the only exit was an irreducible backedge.
581     }
582     if (L == &Unloop) {
583       continue;
584     }
585     // Handle critical edges from Unloop into a sibling loop.
586     if (L && !L->contains(&Unloop)) {
587       L = L->getParentLoop();
588     }
589     // Remember the nearest parent loop among successors or subloop exits.
590     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
591       NearLoop = L;
592   }
593   if (Subloop) {
594     SubloopParents[Subloop] = NearLoop;
595     return BBLoop;
596   }
597   return NearLoop;
598 }
599 
LoopInfo(const DomTreeBase<BasicBlock> & DomTree)600 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
601 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator &)602 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
603                           FunctionAnalysisManager::Invalidator &) {
604   // Check whether the analysis, all analyses on functions, or the function's
605   // CFG have been preserved.
606   auto PAC = PA.getChecker<LoopAnalysis>();
607   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
608            PAC.preservedSet<CFGAnalyses>());
609 }
610 
erase(Loop * Unloop)611 void LoopInfo::erase(Loop *Unloop) {
612   assert(!Unloop->isInvalid() && "Loop has already been erased!");
613 
614   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
615 
616   // First handle the special case of no parent loop to simplify the algorithm.
617   if (!Unloop->getParentLoop()) {
618     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
619     for (Loop::block_iterator I = Unloop->block_begin(),
620                               E = Unloop->block_end();
621          I != E; ++I) {
622 
623       // Don't reparent blocks in subloops.
624       if (getLoopFor(*I) != Unloop)
625         continue;
626 
627       // Blocks no longer have a parent but are still referenced by Unloop until
628       // the Unloop object is deleted.
629       changeLoopFor(*I, nullptr);
630     }
631 
632     // Remove the loop from the top-level LoopInfo object.
633     for (iterator I = begin();; ++I) {
634       assert(I != end() && "Couldn't find loop");
635       if (*I == Unloop) {
636         removeLoop(I);
637         break;
638       }
639     }
640 
641     // Move all of the subloops to the top-level.
642     while (!Unloop->empty())
643       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
644 
645     return;
646   }
647 
648   // Update the parent loop for all blocks within the loop. Blocks within
649   // subloops will not change parents.
650   UnloopUpdater Updater(Unloop, this);
651   Updater.updateBlockParents();
652 
653   // Remove blocks from former ancestor loops.
654   Updater.removeBlocksFromAncestors();
655 
656   // Add direct subloops as children in their new parent loop.
657   Updater.updateSubloopParents();
658 
659   // Remove unloop from its parent loop.
660   Loop *ParentLoop = Unloop->getParentLoop();
661   for (Loop::iterator I = ParentLoop->begin();; ++I) {
662     assert(I != ParentLoop->end() && "Couldn't find loop");
663     if (*I == Unloop) {
664       ParentLoop->removeChildLoop(I);
665       break;
666     }
667   }
668 }
669 
670 AnalysisKey LoopAnalysis::Key;
671 
run(Function & F,FunctionAnalysisManager & AM)672 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
673   // FIXME: Currently we create a LoopInfo from scratch for every function.
674   // This may prove to be too wasteful due to deallocating and re-allocating
675   // memory each time for the underlying map and vector datastructures. At some
676   // point it may prove worthwhile to use a freelist and recycle LoopInfo
677   // objects. I don't want to add that kind of complexity until the scope of
678   // the problem is better understood.
679   LoopInfo LI;
680   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
681   return LI;
682 }
683 
run(Function & F,FunctionAnalysisManager & AM)684 PreservedAnalyses LoopPrinterPass::run(Function &F,
685                                        FunctionAnalysisManager &AM) {
686   AM.getResult<LoopAnalysis>(F).print(OS);
687   return PreservedAnalyses::all();
688 }
689 
printLoop(Loop & L,raw_ostream & OS,const std::string & Banner)690 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
691 
692   if (forcePrintModuleIR()) {
693     // handling -print-module-scope
694     OS << Banner << " (loop: ";
695     L.getHeader()->printAsOperand(OS, false);
696     OS << ")\n";
697 
698     // printing whole module
699     OS << *L.getHeader()->getModule();
700     return;
701   }
702 
703   OS << Banner;
704 
705   auto *PreHeader = L.getLoopPreheader();
706   if (PreHeader) {
707     OS << "\n; Preheader:";
708     PreHeader->print(OS);
709     OS << "\n; Loop:";
710   }
711 
712   for (auto *Block : L.blocks())
713     if (Block)
714       Block->print(OS);
715     else
716       OS << "Printing <null> block";
717 
718   SmallVector<BasicBlock *, 8> ExitBlocks;
719   L.getExitBlocks(ExitBlocks);
720   if (!ExitBlocks.empty()) {
721     OS << "\n; Exit blocks";
722     for (auto *Block : ExitBlocks)
723       if (Block)
724         Block->print(OS);
725       else
726         OS << "Printing <null> block";
727   }
728 }
729 
findOptionMDForLoopID(MDNode * LoopID,StringRef Name)730 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
731   // No loop metadata node, no loop properties.
732   if (!LoopID)
733     return nullptr;
734 
735   // First operand should refer to the metadata node itself, for legacy reasons.
736   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
737   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
738 
739   // Iterate over the metdata node operands and look for MDString metadata.
740   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
741     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
742     if (!MD || MD->getNumOperands() < 1)
743       continue;
744     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
745     if (!S)
746       continue;
747     // Return the operand node if MDString holds expected metadata.
748     if (Name.equals(S->getString()))
749       return MD;
750   }
751 
752   // Loop property not found.
753   return nullptr;
754 }
755 
findOptionMDForLoop(const Loop * TheLoop,StringRef Name)756 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
757   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
758 }
759 
isValidAsAccessGroup(MDNode * Node)760 bool llvm::isValidAsAccessGroup(MDNode *Node) {
761   return Node->getNumOperands() == 0 && Node->isDistinct();
762 }
763 
764 //===----------------------------------------------------------------------===//
765 // LoopInfo implementation
766 //
767 
768 char LoopInfoWrapperPass::ID = 0;
769 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
770                       true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)771 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
772 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
773                     true, true)
774 
775 bool LoopInfoWrapperPass::runOnFunction(Function &) {
776   releaseMemory();
777   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
778   return false;
779 }
780 
verifyAnalysis() const781 void LoopInfoWrapperPass::verifyAnalysis() const {
782   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
783   // function each time verifyAnalysis is called is very expensive. The
784   // -verify-loop-info option can enable this. In order to perform some
785   // checking by default, LoopPass has been taught to call verifyLoop manually
786   // during loop pass sequences.
787   if (VerifyLoopInfo) {
788     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
789     LI.verify(DT);
790   }
791 }
792 
getAnalysisUsage(AnalysisUsage & AU) const793 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
794   AU.setPreservesAll();
795   AU.addRequired<DominatorTreeWrapperPass>();
796 }
797 
print(raw_ostream & OS,const Module *) const798 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
799   LI.print(OS);
800 }
801 
run(Function & F,FunctionAnalysisManager & AM)802 PreservedAnalyses LoopVerifierPass::run(Function &F,
803                                         FunctionAnalysisManager &AM) {
804   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
805   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
806   LI.verify(DT);
807   return PreservedAnalyses::all();
808 }
809 
810 //===----------------------------------------------------------------------===//
811 // LoopBlocksDFS implementation
812 //
813 
814 /// Traverse the loop blocks and store the DFS result.
815 /// Useful for clients that just want the final DFS result and don't need to
816 /// visit blocks during the initial traversal.
perform(LoopInfo * LI)817 void LoopBlocksDFS::perform(LoopInfo *LI) {
818   LoopBlocksTraversal Traversal(*this, LI);
819   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
820                                         POE = Traversal.end();
821        POI != POE; ++POI)
822     ;
823 }
824