1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "codegen"
42
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
44 : BB(B), Number(-1), xParent(&MF) {
45 Insts.Parent = this;
46 if (B)
47 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
48 }
49
~MachineBasicBlock()50 MachineBasicBlock::~MachineBasicBlock() {
51 }
52
53 /// Return the MCSymbol for this basic block.
getSymbol() const54 MCSymbol *MachineBasicBlock::getSymbol() const {
55 if (!CachedMCSymbol) {
56 const MachineFunction *MF = getParent();
57 MCContext &Ctx = MF->getContext();
58 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
59 assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
60 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
61 Twine(MF->getFunctionNumber()) +
62 "_" + Twine(getNumber()));
63 }
64
65 return CachedMCSymbol;
66 }
67
68
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
70 MBB.print(OS);
71 return OS;
72 }
73
printMBBReference(const MachineBasicBlock & MBB)74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
75 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
76 }
77
78 /// When an MBB is added to an MF, we need to update the parent pointer of the
79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
80 /// operand list for registers.
81 ///
82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
83 /// gets the next available unique MBB number. If it is removed from a
84 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
86 MachineBasicBlock *N) {
87 MachineFunction &MF = *N->getParent();
88 N->Number = MF.addToMBBNumbering(N);
89
90 // Make sure the instructions have their operands in the reginfo lists.
91 MachineRegisterInfo &RegInfo = MF.getRegInfo();
92 for (MachineBasicBlock::instr_iterator
93 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
94 I->AddRegOperandsToUseLists(RegInfo);
95 }
96
removeNodeFromList(MachineBasicBlock * N)97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
98 MachineBasicBlock *N) {
99 N->getParent()->removeFromMBBNumbering(N->Number);
100 N->Number = -1;
101 }
102
103 /// When we add an instruction to a basic block list, we update its parent
104 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
106 assert(!N->getParent() && "machine instruction already in a basic block");
107 N->setParent(Parent);
108
109 // Add the instruction's register operands to their corresponding
110 // use/def lists.
111 MachineFunction *MF = Parent->getParent();
112 N->AddRegOperandsToUseLists(MF->getRegInfo());
113 MF->handleInsertion(*N);
114 }
115
116 /// When we remove an instruction from a basic block list, we update its parent
117 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)118 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
119 assert(N->getParent() && "machine instruction not in a basic block");
120
121 // Remove from the use/def lists.
122 if (MachineFunction *MF = N->getMF()) {
123 MF->handleRemoval(*N);
124 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
125 }
126
127 N->setParent(nullptr);
128 }
129
130 /// When moving a range of instructions from one MBB list to another, we need to
131 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)132 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
133 instr_iterator First,
134 instr_iterator Last) {
135 assert(Parent->getParent() == FromList.Parent->getParent() &&
136 "MachineInstr parent mismatch!");
137 assert(this != &FromList && "Called without a real transfer...");
138 assert(Parent != FromList.Parent && "Two lists have the same parent?");
139
140 // If splicing between two blocks within the same function, just update the
141 // parent pointers.
142 for (; First != Last; ++First)
143 First->setParent(Parent);
144 }
145
deleteNode(MachineInstr * MI)146 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
147 assert(!MI->getParent() && "MI is still in a block!");
148 Parent->getParent()->DeleteMachineInstr(MI);
149 }
150
getFirstNonPHI()151 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
152 instr_iterator I = instr_begin(), E = instr_end();
153 while (I != E && I->isPHI())
154 ++I;
155 assert((I == E || !I->isInsideBundle()) &&
156 "First non-phi MI cannot be inside a bundle!");
157 return I;
158 }
159
160 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
162 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
163
164 iterator E = end();
165 while (I != E && (I->isPHI() || I->isPosition() ||
166 TII->isBasicBlockPrologue(*I)))
167 ++I;
168 // FIXME: This needs to change if we wish to bundle labels
169 // inside the bundle.
170 assert((I == E || !I->isInsideBundle()) &&
171 "First non-phi / non-label instruction is inside a bundle!");
172 return I;
173 }
174
175 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)176 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
177 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
178
179 iterator E = end();
180 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
181 TII->isBasicBlockPrologue(*I)))
182 ++I;
183 // FIXME: This needs to change if we wish to bundle labels / dbg_values
184 // inside the bundle.
185 assert((I == E || !I->isInsideBundle()) &&
186 "First non-phi / non-label / non-debug "
187 "instruction is inside a bundle!");
188 return I;
189 }
190
getFirstTerminator()191 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
192 iterator B = begin(), E = end(), I = E;
193 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
194 ; /*noop */
195 while (I != E && !I->isTerminator())
196 ++I;
197 return I;
198 }
199
getFirstInstrTerminator()200 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
201 instr_iterator B = instr_begin(), E = instr_end(), I = E;
202 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
203 ; /*noop */
204 while (I != E && !I->isTerminator())
205 ++I;
206 return I;
207 }
208
getFirstNonDebugInstr()209 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
210 // Skip over begin-of-block dbg_value instructions.
211 return skipDebugInstructionsForward(begin(), end());
212 }
213
getLastNonDebugInstr()214 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
215 // Skip over end-of-block dbg_value instructions.
216 instr_iterator B = instr_begin(), I = instr_end();
217 while (I != B) {
218 --I;
219 // Return instruction that starts a bundle.
220 if (I->isDebugInstr() || I->isInsideBundle())
221 continue;
222 return I;
223 }
224 // The block is all debug values.
225 return end();
226 }
227
hasEHPadSuccessor() const228 bool MachineBasicBlock::hasEHPadSuccessor() const {
229 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
230 if ((*I)->isEHPad())
231 return true;
232 return false;
233 }
234
235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const236 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
237 print(dbgs());
238 }
239 #endif
240
isLegalToHoistInto() const241 bool MachineBasicBlock::isLegalToHoistInto() const {
242 if (isReturnBlock() || hasEHPadSuccessor())
243 return false;
244 return true;
245 }
246
getName() const247 StringRef MachineBasicBlock::getName() const {
248 if (const BasicBlock *LBB = getBasicBlock())
249 return LBB->getName();
250 else
251 return StringRef("", 0);
252 }
253
254 /// Return a hopefully unique identifier for this block.
getFullName() const255 std::string MachineBasicBlock::getFullName() const {
256 std::string Name;
257 if (getParent())
258 Name = (getParent()->getName() + ":").str();
259 if (getBasicBlock())
260 Name += getBasicBlock()->getName();
261 else
262 Name += ("BB" + Twine(getNumber())).str();
263 return Name;
264 }
265
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const266 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
267 bool IsStandalone) const {
268 const MachineFunction *MF = getParent();
269 if (!MF) {
270 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
271 << " is null\n";
272 return;
273 }
274 const Function &F = MF->getFunction();
275 const Module *M = F.getParent();
276 ModuleSlotTracker MST(M);
277 MST.incorporateFunction(F);
278 print(OS, MST, Indexes, IsStandalone);
279 }
280
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const281 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
282 const SlotIndexes *Indexes,
283 bool IsStandalone) const {
284 const MachineFunction *MF = getParent();
285 if (!MF) {
286 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
287 << " is null\n";
288 return;
289 }
290
291 if (Indexes)
292 OS << Indexes->getMBBStartIdx(this) << '\t';
293
294 OS << "bb." << getNumber();
295 bool HasAttributes = false;
296 if (const auto *BB = getBasicBlock()) {
297 if (BB->hasName()) {
298 OS << "." << BB->getName();
299 } else {
300 HasAttributes = true;
301 OS << " (";
302 int Slot = MST.getLocalSlot(BB);
303 if (Slot == -1)
304 OS << "<ir-block badref>";
305 else
306 OS << (Twine("%ir-block.") + Twine(Slot)).str();
307 }
308 }
309
310 if (hasAddressTaken()) {
311 OS << (HasAttributes ? ", " : " (");
312 OS << "address-taken";
313 HasAttributes = true;
314 }
315 if (isEHPad()) {
316 OS << (HasAttributes ? ", " : " (");
317 OS << "landing-pad";
318 HasAttributes = true;
319 }
320 if (getAlignment()) {
321 OS << (HasAttributes ? ", " : " (");
322 OS << "align " << getAlignment();
323 HasAttributes = true;
324 }
325 if (HasAttributes)
326 OS << ")";
327 OS << ":\n";
328
329 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
330 const MachineRegisterInfo &MRI = MF->getRegInfo();
331 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
332 bool HasLineAttributes = false;
333
334 // Print the preds of this block according to the CFG.
335 if (!pred_empty() && IsStandalone) {
336 if (Indexes) OS << '\t';
337 // Don't indent(2), align with previous line attributes.
338 OS << "; predecessors: ";
339 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
340 if (I != pred_begin())
341 OS << ", ";
342 OS << printMBBReference(**I);
343 }
344 OS << '\n';
345 HasLineAttributes = true;
346 }
347
348 if (!succ_empty()) {
349 if (Indexes) OS << '\t';
350 // Print the successors
351 OS.indent(2) << "successors: ";
352 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
353 if (I != succ_begin())
354 OS << ", ";
355 OS << printMBBReference(**I);
356 if (!Probs.empty())
357 OS << '('
358 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
359 << ')';
360 }
361 if (!Probs.empty() && IsStandalone) {
362 // Print human readable probabilities as comments.
363 OS << "; ";
364 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
365 const BranchProbability &BP = getSuccProbability(I);
366 if (I != succ_begin())
367 OS << ", ";
368 OS << printMBBReference(**I) << '('
369 << format("%.2f%%",
370 rint(((double)BP.getNumerator() / BP.getDenominator()) *
371 100.0 * 100.0) /
372 100.0)
373 << ')';
374 }
375 }
376
377 OS << '\n';
378 HasLineAttributes = true;
379 }
380
381 if (!livein_empty() && MRI.tracksLiveness()) {
382 if (Indexes) OS << '\t';
383 OS.indent(2) << "liveins: ";
384
385 bool First = true;
386 for (const auto &LI : liveins()) {
387 if (!First)
388 OS << ", ";
389 First = false;
390 OS << printReg(LI.PhysReg, TRI);
391 if (!LI.LaneMask.all())
392 OS << ":0x" << PrintLaneMask(LI.LaneMask);
393 }
394 HasLineAttributes = true;
395 }
396
397 if (HasLineAttributes)
398 OS << '\n';
399
400 bool IsInBundle = false;
401 for (const MachineInstr &MI : instrs()) {
402 if (Indexes) {
403 if (Indexes->hasIndex(MI))
404 OS << Indexes->getInstructionIndex(MI);
405 OS << '\t';
406 }
407
408 if (IsInBundle && !MI.isInsideBundle()) {
409 OS.indent(2) << "}\n";
410 IsInBundle = false;
411 }
412
413 OS.indent(IsInBundle ? 4 : 2);
414 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
415 /*AddNewLine=*/false, &TII);
416
417 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
418 OS << " {";
419 IsInBundle = true;
420 }
421 OS << '\n';
422 }
423
424 if (IsInBundle)
425 OS.indent(2) << "}\n";
426
427 if (IrrLoopHeaderWeight && IsStandalone) {
428 if (Indexes) OS << '\t';
429 OS.indent(2) << "; Irreducible loop header weight: "
430 << IrrLoopHeaderWeight.getValue() << '\n';
431 }
432 }
433
printAsOperand(raw_ostream & OS,bool) const434 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
435 bool /*PrintType*/) const {
436 OS << "%bb." << getNumber();
437 }
438
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)439 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
440 LiveInVector::iterator I = find_if(
441 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
442 if (I == LiveIns.end())
443 return;
444
445 I->LaneMask &= ~LaneMask;
446 if (I->LaneMask.none())
447 LiveIns.erase(I);
448 }
449
450 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)451 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
452 // Get non-const version of iterator.
453 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
454 return LiveIns.erase(LI);
455 }
456
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const457 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
458 livein_iterator I = find_if(
459 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
460 return I != livein_end() && (I->LaneMask & LaneMask).any();
461 }
462
sortUniqueLiveIns()463 void MachineBasicBlock::sortUniqueLiveIns() {
464 llvm::sort(LiveIns,
465 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
466 return LI0.PhysReg < LI1.PhysReg;
467 });
468 // Liveins are sorted by physreg now we can merge their lanemasks.
469 LiveInVector::const_iterator I = LiveIns.begin();
470 LiveInVector::const_iterator J;
471 LiveInVector::iterator Out = LiveIns.begin();
472 for (; I != LiveIns.end(); ++Out, I = J) {
473 unsigned PhysReg = I->PhysReg;
474 LaneBitmask LaneMask = I->LaneMask;
475 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
476 LaneMask |= J->LaneMask;
477 Out->PhysReg = PhysReg;
478 Out->LaneMask = LaneMask;
479 }
480 LiveIns.erase(Out, LiveIns.end());
481 }
482
483 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)484 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
485 assert(getParent() && "MBB must be inserted in function");
486 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
487 assert(RC && "Register class is required");
488 assert((isEHPad() || this == &getParent()->front()) &&
489 "Only the entry block and landing pads can have physreg live ins");
490
491 bool LiveIn = isLiveIn(PhysReg);
492 iterator I = SkipPHIsAndLabels(begin()), E = end();
493 MachineRegisterInfo &MRI = getParent()->getRegInfo();
494 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
495
496 // Look for an existing copy.
497 if (LiveIn)
498 for (;I != E && I->isCopy(); ++I)
499 if (I->getOperand(1).getReg() == PhysReg) {
500 unsigned VirtReg = I->getOperand(0).getReg();
501 if (!MRI.constrainRegClass(VirtReg, RC))
502 llvm_unreachable("Incompatible live-in register class.");
503 return VirtReg;
504 }
505
506 // No luck, create a virtual register.
507 unsigned VirtReg = MRI.createVirtualRegister(RC);
508 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
509 .addReg(PhysReg, RegState::Kill);
510 if (!LiveIn)
511 addLiveIn(PhysReg);
512 return VirtReg;
513 }
514
moveBefore(MachineBasicBlock * NewAfter)515 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
516 getParent()->splice(NewAfter->getIterator(), getIterator());
517 }
518
moveAfter(MachineBasicBlock * NewBefore)519 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
520 getParent()->splice(++NewBefore->getIterator(), getIterator());
521 }
522
updateTerminator()523 void MachineBasicBlock::updateTerminator() {
524 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
525 // A block with no successors has no concerns with fall-through edges.
526 if (this->succ_empty())
527 return;
528
529 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
530 SmallVector<MachineOperand, 4> Cond;
531 DebugLoc DL = findBranchDebugLoc();
532 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
533 (void) B;
534 assert(!B && "UpdateTerminators requires analyzable predecessors!");
535 if (Cond.empty()) {
536 if (TBB) {
537 // The block has an unconditional branch. If its successor is now its
538 // layout successor, delete the branch.
539 if (isLayoutSuccessor(TBB))
540 TII->removeBranch(*this);
541 } else {
542 // The block has an unconditional fallthrough. If its successor is not its
543 // layout successor, insert a branch. First we have to locate the only
544 // non-landing-pad successor, as that is the fallthrough block.
545 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
546 if ((*SI)->isEHPad())
547 continue;
548 assert(!TBB && "Found more than one non-landing-pad successor!");
549 TBB = *SI;
550 }
551
552 // If there is no non-landing-pad successor, the block has no fall-through
553 // edges to be concerned with.
554 if (!TBB)
555 return;
556
557 // Finally update the unconditional successor to be reached via a branch
558 // if it would not be reached by fallthrough.
559 if (!isLayoutSuccessor(TBB))
560 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
561 }
562 return;
563 }
564
565 if (FBB) {
566 // The block has a non-fallthrough conditional branch. If one of its
567 // successors is its layout successor, rewrite it to a fallthrough
568 // conditional branch.
569 if (isLayoutSuccessor(TBB)) {
570 if (TII->reverseBranchCondition(Cond))
571 return;
572 TII->removeBranch(*this);
573 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
574 } else if (isLayoutSuccessor(FBB)) {
575 TII->removeBranch(*this);
576 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
577 }
578 return;
579 }
580
581 // Walk through the successors and find the successor which is not a landing
582 // pad and is not the conditional branch destination (in TBB) as the
583 // fallthrough successor.
584 MachineBasicBlock *FallthroughBB = nullptr;
585 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
586 if ((*SI)->isEHPad() || *SI == TBB)
587 continue;
588 assert(!FallthroughBB && "Found more than one fallthrough successor.");
589 FallthroughBB = *SI;
590 }
591
592 if (!FallthroughBB) {
593 if (canFallThrough()) {
594 // We fallthrough to the same basic block as the conditional jump targets.
595 // Remove the conditional jump, leaving unconditional fallthrough.
596 // FIXME: This does not seem like a reasonable pattern to support, but it
597 // has been seen in the wild coming out of degenerate ARM test cases.
598 TII->removeBranch(*this);
599
600 // Finally update the unconditional successor to be reached via a branch if
601 // it would not be reached by fallthrough.
602 if (!isLayoutSuccessor(TBB))
603 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
604 return;
605 }
606
607 // We enter here iff exactly one successor is TBB which cannot fallthrough
608 // and the rest successors if any are EHPads. In this case, we need to
609 // change the conditional branch into unconditional branch.
610 TII->removeBranch(*this);
611 Cond.clear();
612 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
613 return;
614 }
615
616 // The block has a fallthrough conditional branch.
617 if (isLayoutSuccessor(TBB)) {
618 if (TII->reverseBranchCondition(Cond)) {
619 // We can't reverse the condition, add an unconditional branch.
620 Cond.clear();
621 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
622 return;
623 }
624 TII->removeBranch(*this);
625 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
626 } else if (!isLayoutSuccessor(FallthroughBB)) {
627 TII->removeBranch(*this);
628 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
629 }
630 }
631
validateSuccProbs() const632 void MachineBasicBlock::validateSuccProbs() const {
633 #ifndef NDEBUG
634 int64_t Sum = 0;
635 for (auto Prob : Probs)
636 Sum += Prob.getNumerator();
637 // Due to precision issue, we assume that the sum of probabilities is one if
638 // the difference between the sum of their numerators and the denominator is
639 // no greater than the number of successors.
640 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
641 Probs.size() &&
642 "The sum of successors's probabilities exceeds one.");
643 #endif // NDEBUG
644 }
645
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)646 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
647 BranchProbability Prob) {
648 // Probability list is either empty (if successor list isn't empty, this means
649 // disabled optimization) or has the same size as successor list.
650 if (!(Probs.empty() && !Successors.empty()))
651 Probs.push_back(Prob);
652 Successors.push_back(Succ);
653 Succ->addPredecessor(this);
654 }
655
addSuccessorWithoutProb(MachineBasicBlock * Succ)656 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
657 // We need to make sure probability list is either empty or has the same size
658 // of successor list. When this function is called, we can safely delete all
659 // probability in the list.
660 Probs.clear();
661 Successors.push_back(Succ);
662 Succ->addPredecessor(this);
663 }
664
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)665 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
666 MachineBasicBlock *New,
667 bool NormalizeSuccProbs) {
668 succ_iterator OldI = llvm::find(successors(), Old);
669 assert(OldI != succ_end() && "Old is not a successor of this block!");
670 assert(llvm::find(successors(), New) == succ_end() &&
671 "New is already a successor of this block!");
672
673 // Add a new successor with equal probability as the original one. Note
674 // that we directly copy the probability using the iterator rather than
675 // getting a potentially synthetic probability computed when unknown. This
676 // preserves the probabilities as-is and then we can renormalize them and
677 // query them effectively afterward.
678 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
679 : *getProbabilityIterator(OldI));
680 if (NormalizeSuccProbs)
681 normalizeSuccProbs();
682 }
683
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)684 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
685 bool NormalizeSuccProbs) {
686 succ_iterator I = find(Successors, Succ);
687 removeSuccessor(I, NormalizeSuccProbs);
688 }
689
690 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)691 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
692 assert(I != Successors.end() && "Not a current successor!");
693
694 // If probability list is empty it means we don't use it (disabled
695 // optimization).
696 if (!Probs.empty()) {
697 probability_iterator WI = getProbabilityIterator(I);
698 Probs.erase(WI);
699 if (NormalizeSuccProbs)
700 normalizeSuccProbs();
701 }
702
703 (*I)->removePredecessor(this);
704 return Successors.erase(I);
705 }
706
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)707 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
708 MachineBasicBlock *New) {
709 if (Old == New)
710 return;
711
712 succ_iterator E = succ_end();
713 succ_iterator NewI = E;
714 succ_iterator OldI = E;
715 for (succ_iterator I = succ_begin(); I != E; ++I) {
716 if (*I == Old) {
717 OldI = I;
718 if (NewI != E)
719 break;
720 }
721 if (*I == New) {
722 NewI = I;
723 if (OldI != E)
724 break;
725 }
726 }
727 assert(OldI != E && "Old is not a successor of this block");
728
729 // If New isn't already a successor, let it take Old's place.
730 if (NewI == E) {
731 Old->removePredecessor(this);
732 New->addPredecessor(this);
733 *OldI = New;
734 return;
735 }
736
737 // New is already a successor.
738 // Update its probability instead of adding a duplicate edge.
739 if (!Probs.empty()) {
740 auto ProbIter = getProbabilityIterator(NewI);
741 if (!ProbIter->isUnknown())
742 *ProbIter += *getProbabilityIterator(OldI);
743 }
744 removeSuccessor(OldI);
745 }
746
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)747 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
748 succ_iterator I) {
749 if (Orig->Probs.empty())
750 addSuccessor(*I, Orig->getSuccProbability(I));
751 else
752 addSuccessorWithoutProb(*I);
753 }
754
addPredecessor(MachineBasicBlock * Pred)755 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
756 Predecessors.push_back(Pred);
757 }
758
removePredecessor(MachineBasicBlock * Pred)759 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
760 pred_iterator I = find(Predecessors, Pred);
761 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
762 Predecessors.erase(I);
763 }
764
transferSuccessors(MachineBasicBlock * FromMBB)765 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
766 if (this == FromMBB)
767 return;
768
769 while (!FromMBB->succ_empty()) {
770 MachineBasicBlock *Succ = *FromMBB->succ_begin();
771
772 // If probability list is empty it means we don't use it (disabled optimization).
773 if (!FromMBB->Probs.empty()) {
774 auto Prob = *FromMBB->Probs.begin();
775 addSuccessor(Succ, Prob);
776 } else
777 addSuccessorWithoutProb(Succ);
778
779 FromMBB->removeSuccessor(Succ);
780 }
781 }
782
783 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)784 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
785 if (this == FromMBB)
786 return;
787
788 while (!FromMBB->succ_empty()) {
789 MachineBasicBlock *Succ = *FromMBB->succ_begin();
790 if (!FromMBB->Probs.empty()) {
791 auto Prob = *FromMBB->Probs.begin();
792 addSuccessor(Succ, Prob);
793 } else
794 addSuccessorWithoutProb(Succ);
795 FromMBB->removeSuccessor(Succ);
796
797 // Fix up any PHI nodes in the successor.
798 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
799 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
800 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
801 MachineOperand &MO = MI->getOperand(i);
802 if (MO.getMBB() == FromMBB)
803 MO.setMBB(this);
804 }
805 }
806 normalizeSuccProbs();
807 }
808
isPredecessor(const MachineBasicBlock * MBB) const809 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
810 return is_contained(predecessors(), MBB);
811 }
812
isSuccessor(const MachineBasicBlock * MBB) const813 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
814 return is_contained(successors(), MBB);
815 }
816
isLayoutSuccessor(const MachineBasicBlock * MBB) const817 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
818 MachineFunction::const_iterator I(this);
819 return std::next(I) == MachineFunction::const_iterator(MBB);
820 }
821
getFallThrough()822 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
823 MachineFunction::iterator Fallthrough = getIterator();
824 ++Fallthrough;
825 // If FallthroughBlock is off the end of the function, it can't fall through.
826 if (Fallthrough == getParent()->end())
827 return nullptr;
828
829 // If FallthroughBlock isn't a successor, no fallthrough is possible.
830 if (!isSuccessor(&*Fallthrough))
831 return nullptr;
832
833 // Analyze the branches, if any, at the end of the block.
834 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
835 SmallVector<MachineOperand, 4> Cond;
836 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
837 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
838 // If we couldn't analyze the branch, examine the last instruction.
839 // If the block doesn't end in a known control barrier, assume fallthrough
840 // is possible. The isPredicated check is needed because this code can be
841 // called during IfConversion, where an instruction which is normally a
842 // Barrier is predicated and thus no longer an actual control barrier.
843 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
844 ? &*Fallthrough
845 : nullptr;
846 }
847
848 // If there is no branch, control always falls through.
849 if (!TBB) return &*Fallthrough;
850
851 // If there is some explicit branch to the fallthrough block, it can obviously
852 // reach, even though the branch should get folded to fall through implicitly.
853 if (MachineFunction::iterator(TBB) == Fallthrough ||
854 MachineFunction::iterator(FBB) == Fallthrough)
855 return &*Fallthrough;
856
857 // If it's an unconditional branch to some block not the fall through, it
858 // doesn't fall through.
859 if (Cond.empty()) return nullptr;
860
861 // Otherwise, if it is conditional and has no explicit false block, it falls
862 // through.
863 return (FBB == nullptr) ? &*Fallthrough : nullptr;
864 }
865
canFallThrough()866 bool MachineBasicBlock::canFallThrough() {
867 return getFallThrough() != nullptr;
868 }
869
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P)870 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
871 Pass &P) {
872 if (!canSplitCriticalEdge(Succ))
873 return nullptr;
874
875 MachineFunction *MF = getParent();
876 DebugLoc DL; // FIXME: this is nowhere
877
878 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
879 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
880 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
881 << " -- " << printMBBReference(*NMBB) << " -- "
882 << printMBBReference(*Succ) << '\n');
883
884 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
885 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
886 if (LIS)
887 LIS->insertMBBInMaps(NMBB);
888 else if (Indexes)
889 Indexes->insertMBBInMaps(NMBB);
890
891 // On some targets like Mips, branches may kill virtual registers. Make sure
892 // that LiveVariables is properly updated after updateTerminator replaces the
893 // terminators.
894 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
895
896 // Collect a list of virtual registers killed by the terminators.
897 SmallVector<unsigned, 4> KilledRegs;
898 if (LV)
899 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
900 I != E; ++I) {
901 MachineInstr *MI = &*I;
902 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
903 OE = MI->operands_end(); OI != OE; ++OI) {
904 if (!OI->isReg() || OI->getReg() == 0 ||
905 !OI->isUse() || !OI->isKill() || OI->isUndef())
906 continue;
907 unsigned Reg = OI->getReg();
908 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
909 LV->getVarInfo(Reg).removeKill(*MI)) {
910 KilledRegs.push_back(Reg);
911 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
912 OI->setIsKill(false);
913 }
914 }
915 }
916
917 SmallVector<unsigned, 4> UsedRegs;
918 if (LIS) {
919 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
920 I != E; ++I) {
921 MachineInstr *MI = &*I;
922
923 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
924 OE = MI->operands_end(); OI != OE; ++OI) {
925 if (!OI->isReg() || OI->getReg() == 0)
926 continue;
927
928 unsigned Reg = OI->getReg();
929 if (!is_contained(UsedRegs, Reg))
930 UsedRegs.push_back(Reg);
931 }
932 }
933 }
934
935 ReplaceUsesOfBlockWith(Succ, NMBB);
936
937 // If updateTerminator() removes instructions, we need to remove them from
938 // SlotIndexes.
939 SmallVector<MachineInstr*, 4> Terminators;
940 if (Indexes) {
941 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
942 I != E; ++I)
943 Terminators.push_back(&*I);
944 }
945
946 updateTerminator();
947
948 if (Indexes) {
949 SmallVector<MachineInstr*, 4> NewTerminators;
950 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
951 I != E; ++I)
952 NewTerminators.push_back(&*I);
953
954 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
955 E = Terminators.end(); I != E; ++I) {
956 if (!is_contained(NewTerminators, *I))
957 Indexes->removeMachineInstrFromMaps(**I);
958 }
959 }
960
961 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
962 NMBB->addSuccessor(Succ);
963 if (!NMBB->isLayoutSuccessor(Succ)) {
964 SmallVector<MachineOperand, 4> Cond;
965 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
966 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
967
968 if (Indexes) {
969 for (MachineInstr &MI : NMBB->instrs()) {
970 // Some instructions may have been moved to NMBB by updateTerminator(),
971 // so we first remove any instruction that already has an index.
972 if (Indexes->hasIndex(MI))
973 Indexes->removeMachineInstrFromMaps(MI);
974 Indexes->insertMachineInstrInMaps(MI);
975 }
976 }
977 }
978
979 // Fix PHI nodes in Succ so they refer to NMBB instead of this
980 for (MachineBasicBlock::instr_iterator
981 i = Succ->instr_begin(),e = Succ->instr_end();
982 i != e && i->isPHI(); ++i)
983 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
984 if (i->getOperand(ni+1).getMBB() == this)
985 i->getOperand(ni+1).setMBB(NMBB);
986
987 // Inherit live-ins from the successor
988 for (const auto &LI : Succ->liveins())
989 NMBB->addLiveIn(LI);
990
991 // Update LiveVariables.
992 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
993 if (LV) {
994 // Restore kills of virtual registers that were killed by the terminators.
995 while (!KilledRegs.empty()) {
996 unsigned Reg = KilledRegs.pop_back_val();
997 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
998 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
999 continue;
1000 if (TargetRegisterInfo::isVirtualRegister(Reg))
1001 LV->getVarInfo(Reg).Kills.push_back(&*I);
1002 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1003 break;
1004 }
1005 }
1006 // Update relevant live-through information.
1007 LV->addNewBlock(NMBB, this, Succ);
1008 }
1009
1010 if (LIS) {
1011 // After splitting the edge and updating SlotIndexes, live intervals may be
1012 // in one of two situations, depending on whether this block was the last in
1013 // the function. If the original block was the last in the function, all
1014 // live intervals will end prior to the beginning of the new split block. If
1015 // the original block was not at the end of the function, all live intervals
1016 // will extend to the end of the new split block.
1017
1018 bool isLastMBB =
1019 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1020
1021 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1022 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1023 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1024
1025 // Find the registers used from NMBB in PHIs in Succ.
1026 SmallSet<unsigned, 8> PHISrcRegs;
1027 for (MachineBasicBlock::instr_iterator
1028 I = Succ->instr_begin(), E = Succ->instr_end();
1029 I != E && I->isPHI(); ++I) {
1030 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1031 if (I->getOperand(ni+1).getMBB() == NMBB) {
1032 MachineOperand &MO = I->getOperand(ni);
1033 unsigned Reg = MO.getReg();
1034 PHISrcRegs.insert(Reg);
1035 if (MO.isUndef())
1036 continue;
1037
1038 LiveInterval &LI = LIS->getInterval(Reg);
1039 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1040 assert(VNI &&
1041 "PHI sources should be live out of their predecessors.");
1042 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1043 }
1044 }
1045 }
1046
1047 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1048 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1049 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1050 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1051 continue;
1052
1053 LiveInterval &LI = LIS->getInterval(Reg);
1054 if (!LI.liveAt(PrevIndex))
1055 continue;
1056
1057 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1058 if (isLiveOut && isLastMBB) {
1059 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1060 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1061 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1062 } else if (!isLiveOut && !isLastMBB) {
1063 LI.removeSegment(StartIndex, EndIndex);
1064 }
1065 }
1066
1067 // Update all intervals for registers whose uses may have been modified by
1068 // updateTerminator().
1069 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1070 }
1071
1072 if (MachineDominatorTree *MDT =
1073 P.getAnalysisIfAvailable<MachineDominatorTree>())
1074 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1075
1076 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1077 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1078 // If one or the other blocks were not in a loop, the new block is not
1079 // either, and thus LI doesn't need to be updated.
1080 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1081 if (TIL == DestLoop) {
1082 // Both in the same loop, the NMBB joins loop.
1083 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1084 } else if (TIL->contains(DestLoop)) {
1085 // Edge from an outer loop to an inner loop. Add to the outer loop.
1086 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1087 } else if (DestLoop->contains(TIL)) {
1088 // Edge from an inner loop to an outer loop. Add to the outer loop.
1089 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1090 } else {
1091 // Edge from two loops with no containment relation. Because these
1092 // are natural loops, we know that the destination block must be the
1093 // header of its loop (adding a branch into a loop elsewhere would
1094 // create an irreducible loop).
1095 assert(DestLoop->getHeader() == Succ &&
1096 "Should not create irreducible loops!");
1097 if (MachineLoop *P = DestLoop->getParentLoop())
1098 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1099 }
1100 }
1101 }
1102
1103 return NMBB;
1104 }
1105
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1106 bool MachineBasicBlock::canSplitCriticalEdge(
1107 const MachineBasicBlock *Succ) const {
1108 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1109 // it in this generic function.
1110 if (Succ->isEHPad())
1111 return false;
1112
1113 const MachineFunction *MF = getParent();
1114
1115 // Performance might be harmed on HW that implements branching using exec mask
1116 // where both sides of the branches are always executed.
1117 if (MF->getTarget().requiresStructuredCFG())
1118 return false;
1119
1120 // We may need to update this's terminator, but we can't do that if
1121 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1122 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1123 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1124 SmallVector<MachineOperand, 4> Cond;
1125 // AnalyzeBanch should modify this, since we did not allow modification.
1126 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1127 /*AllowModify*/ false))
1128 return false;
1129
1130 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1131 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1132 // case that we can't handle. Since this never happens in properly optimized
1133 // code, just skip those edges.
1134 if (TBB && TBB == FBB) {
1135 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1136 << printMBBReference(*this) << '\n');
1137 return false;
1138 }
1139 return true;
1140 }
1141
1142 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1143 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1144 static void unbundleSingleMI(MachineInstr *MI) {
1145 // Removing the first instruction in a bundle.
1146 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1147 MI->unbundleFromSucc();
1148 // Removing the last instruction in a bundle.
1149 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1150 MI->unbundleFromPred();
1151 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1152 // are already fine.
1153 }
1154
1155 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1156 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1157 unbundleSingleMI(&*I);
1158 return Insts.erase(I);
1159 }
1160
remove_instr(MachineInstr * MI)1161 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1162 unbundleSingleMI(MI);
1163 MI->clearFlag(MachineInstr::BundledPred);
1164 MI->clearFlag(MachineInstr::BundledSucc);
1165 return Insts.remove(MI);
1166 }
1167
1168 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1169 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1170 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1171 "Cannot insert instruction with bundle flags");
1172 // Set the bundle flags when inserting inside a bundle.
1173 if (I != instr_end() && I->isBundledWithPred()) {
1174 MI->setFlag(MachineInstr::BundledPred);
1175 MI->setFlag(MachineInstr::BundledSucc);
1176 }
1177 return Insts.insert(I, MI);
1178 }
1179
1180 /// This method unlinks 'this' from the containing function, and returns it, but
1181 /// does not delete it.
removeFromParent()1182 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1183 assert(getParent() && "Not embedded in a function!");
1184 getParent()->remove(this);
1185 return this;
1186 }
1187
1188 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1189 void MachineBasicBlock::eraseFromParent() {
1190 assert(getParent() && "Not embedded in a function!");
1191 getParent()->erase(this);
1192 }
1193
1194 /// Given a machine basic block that branched to 'Old', change the code and CFG
1195 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1196 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1197 MachineBasicBlock *New) {
1198 assert(Old != New && "Cannot replace self with self!");
1199
1200 MachineBasicBlock::instr_iterator I = instr_end();
1201 while (I != instr_begin()) {
1202 --I;
1203 if (!I->isTerminator()) break;
1204
1205 // Scan the operands of this machine instruction, replacing any uses of Old
1206 // with New.
1207 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1208 if (I->getOperand(i).isMBB() &&
1209 I->getOperand(i).getMBB() == Old)
1210 I->getOperand(i).setMBB(New);
1211 }
1212
1213 // Update the successor information.
1214 replaceSuccessor(Old, New);
1215 }
1216
1217 /// Various pieces of code can cause excess edges in the CFG to be inserted. If
1218 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1219 /// MBB successors from the CFG. DestA and DestB can be null.
1220 ///
1221 /// Besides DestA and DestB, retain other edges leading to LandingPads
1222 /// (currently there can be only one; we don't check or require that here).
1223 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1224 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1225 MachineBasicBlock *DestB,
1226 bool IsCond) {
1227 // The values of DestA and DestB frequently come from a call to the
1228 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1229 // values from there.
1230 //
1231 // 1. If both DestA and DestB are null, then the block ends with no branches
1232 // (it falls through to its successor).
1233 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1234 // with only an unconditional branch.
1235 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1236 // with a conditional branch that falls through to a successor (DestB).
1237 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1238 // conditional branch followed by an unconditional branch. DestA is the
1239 // 'true' destination and DestB is the 'false' destination.
1240
1241 bool Changed = false;
1242
1243 MachineBasicBlock *FallThru = getNextNode();
1244
1245 if (!DestA && !DestB) {
1246 // Block falls through to successor.
1247 DestA = FallThru;
1248 DestB = FallThru;
1249 } else if (DestA && !DestB) {
1250 if (IsCond)
1251 // Block ends in conditional jump that falls through to successor.
1252 DestB = FallThru;
1253 } else {
1254 assert(DestA && DestB && IsCond &&
1255 "CFG in a bad state. Cannot correct CFG edges");
1256 }
1257
1258 // Remove superfluous edges. I.e., those which aren't destinations of this
1259 // basic block, duplicate edges, or landing pads.
1260 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1261 MachineBasicBlock::succ_iterator SI = succ_begin();
1262 while (SI != succ_end()) {
1263 const MachineBasicBlock *MBB = *SI;
1264 if (!SeenMBBs.insert(MBB).second ||
1265 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1266 // This is a superfluous edge, remove it.
1267 SI = removeSuccessor(SI);
1268 Changed = true;
1269 } else {
1270 ++SI;
1271 }
1272 }
1273
1274 if (Changed)
1275 normalizeSuccProbs();
1276 return Changed;
1277 }
1278
1279 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1280 /// instructions. Return UnknownLoc if there is none.
1281 DebugLoc
findDebugLoc(instr_iterator MBBI)1282 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1283 // Skip debug declarations, we don't want a DebugLoc from them.
1284 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1285 if (MBBI != instr_end())
1286 return MBBI->getDebugLoc();
1287 return {};
1288 }
1289
1290 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1291 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1292 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1293 if (MBBI == instr_begin()) return {};
1294 // Skip debug declarations, we don't want a DebugLoc from them.
1295 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1296 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1297 return {};
1298 }
1299
1300 /// Find and return the merged DebugLoc of the branch instructions of the block.
1301 /// Return UnknownLoc if there is none.
1302 DebugLoc
findBranchDebugLoc()1303 MachineBasicBlock::findBranchDebugLoc() {
1304 DebugLoc DL;
1305 auto TI = getFirstTerminator();
1306 while (TI != end() && !TI->isBranch())
1307 ++TI;
1308
1309 if (TI != end()) {
1310 DL = TI->getDebugLoc();
1311 for (++TI ; TI != end() ; ++TI)
1312 if (TI->isBranch())
1313 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1314 }
1315 return DL;
1316 }
1317
1318 /// Return probability of the edge from this block to MBB.
1319 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1320 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1321 if (Probs.empty())
1322 return BranchProbability(1, succ_size());
1323
1324 const auto &Prob = *getProbabilityIterator(Succ);
1325 if (Prob.isUnknown()) {
1326 // For unknown probabilities, collect the sum of all known ones, and evenly
1327 // ditribute the complemental of the sum to each unknown probability.
1328 unsigned KnownProbNum = 0;
1329 auto Sum = BranchProbability::getZero();
1330 for (auto &P : Probs) {
1331 if (!P.isUnknown()) {
1332 Sum += P;
1333 KnownProbNum++;
1334 }
1335 }
1336 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1337 } else
1338 return Prob;
1339 }
1340
1341 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1342 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1343 BranchProbability Prob) {
1344 assert(!Prob.isUnknown());
1345 if (Probs.empty())
1346 return;
1347 *getProbabilityIterator(I) = Prob;
1348 }
1349
1350 /// Return probability iterator corresonding to the I successor iterator
1351 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1352 MachineBasicBlock::getProbabilityIterator(
1353 MachineBasicBlock::const_succ_iterator I) const {
1354 assert(Probs.size() == Successors.size() && "Async probability list!");
1355 const size_t index = std::distance(Successors.begin(), I);
1356 assert(index < Probs.size() && "Not a current successor!");
1357 return Probs.begin() + index;
1358 }
1359
1360 /// Return probability iterator corresonding to the I successor iterator.
1361 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1362 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1363 assert(Probs.size() == Successors.size() && "Async probability list!");
1364 const size_t index = std::distance(Successors.begin(), I);
1365 assert(index < Probs.size() && "Not a current successor!");
1366 return Probs.begin() + index;
1367 }
1368
1369 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1370 /// as of just before "MI".
1371 ///
1372 /// Search is localised to a neighborhood of
1373 /// Neighborhood instructions before (searching for defs or kills) and N
1374 /// instructions after (searching just for defs) MI.
1375 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1376 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1377 unsigned Reg, const_iterator Before,
1378 unsigned Neighborhood) const {
1379 unsigned N = Neighborhood;
1380
1381 // Try searching forwards from Before, looking for reads or defs.
1382 const_iterator I(Before);
1383 for (; I != end() && N > 0; ++I) {
1384 if (I->isDebugInstr())
1385 continue;
1386
1387 --N;
1388
1389 MachineOperandIteratorBase::PhysRegInfo Info =
1390 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1391
1392 // Register is live when we read it here.
1393 if (Info.Read)
1394 return LQR_Live;
1395 // Register is dead if we can fully overwrite or clobber it here.
1396 if (Info.FullyDefined || Info.Clobbered)
1397 return LQR_Dead;
1398 }
1399
1400 // If we reached the end, it is safe to clobber Reg at the end of a block of
1401 // no successor has it live in.
1402 if (I == end()) {
1403 for (MachineBasicBlock *S : successors()) {
1404 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1405 if (TRI->regsOverlap(LI.PhysReg, Reg))
1406 return LQR_Live;
1407 }
1408 }
1409
1410 return LQR_Dead;
1411 }
1412
1413
1414 N = Neighborhood;
1415
1416 // Start by searching backwards from Before, looking for kills, reads or defs.
1417 I = const_iterator(Before);
1418 // If this is the first insn in the block, don't search backwards.
1419 if (I != begin()) {
1420 do {
1421 --I;
1422
1423 if (I->isDebugInstr())
1424 continue;
1425
1426 --N;
1427
1428 MachineOperandIteratorBase::PhysRegInfo Info =
1429 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1430
1431 // Defs happen after uses so they take precedence if both are present.
1432
1433 // Register is dead after a dead def of the full register.
1434 if (Info.DeadDef)
1435 return LQR_Dead;
1436 // Register is (at least partially) live after a def.
1437 if (Info.Defined) {
1438 if (!Info.PartialDeadDef)
1439 return LQR_Live;
1440 // As soon as we saw a partial definition (dead or not),
1441 // we cannot tell if the value is partial live without
1442 // tracking the lanemasks. We are not going to do this,
1443 // so fall back on the remaining of the analysis.
1444 break;
1445 }
1446 // Register is dead after a full kill or clobber and no def.
1447 if (Info.Killed || Info.Clobbered)
1448 return LQR_Dead;
1449 // Register must be live if we read it.
1450 if (Info.Read)
1451 return LQR_Live;
1452
1453 } while (I != begin() && N > 0);
1454 }
1455
1456 // Did we get to the start of the block?
1457 if (I == begin()) {
1458 // If so, the register's state is definitely defined by the live-in state.
1459 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1460 if (TRI->regsOverlap(LI.PhysReg, Reg))
1461 return LQR_Live;
1462
1463 return LQR_Dead;
1464 }
1465
1466 // At this point we have no idea of the liveness of the register.
1467 return LQR_Unknown;
1468 }
1469
1470 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1471 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1472 // EH funclet entry does not preserve any registers.
1473 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1474 }
1475
1476 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1477 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1478 // If we see a return block with successors, this must be a funclet return,
1479 // which does not preserve any registers. If there are no successors, we don't
1480 // care what kind of return it is, putting a mask after it is a no-op.
1481 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1482 }
1483
clearLiveIns()1484 void MachineBasicBlock::clearLiveIns() {
1485 LiveIns.clear();
1486 }
1487
livein_begin() const1488 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1489 assert(getParent()->getProperties().hasProperty(
1490 MachineFunctionProperties::Property::TracksLiveness) &&
1491 "Liveness information is accurate");
1492 return LiveIns.begin();
1493 }
1494