1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/CallingConvLower.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetCallingConv.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/OperandTraits.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CodeGen.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MachineValueType.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Target/TargetMachine.h"
76 #include "llvm/Target/TargetOptions.h"
77 #include <algorithm>
78 #include <bitset>
79 #include <cassert>
80 #include <cctype>
81 #include <cstdint>
82 #include <cstdlib>
83 #include <iterator>
84 #include <limits>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "aarch64-lower"
92 
93 STATISTIC(NumTailCalls, "Number of tail calls");
94 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
95 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
96 
97 static cl::opt<bool>
98 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
99                            cl::desc("Allow AArch64 SLI/SRI formation"),
100                            cl::init(false));
101 
102 // FIXME: The necessary dtprel relocations don't seem to be supported
103 // well in the GNU bfd and gold linkers at the moment. Therefore, by
104 // default, for now, fall back to GeneralDynamic code generation.
105 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
106     "aarch64-elf-ldtls-generation", cl::Hidden,
107     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
108     cl::init(false));
109 
110 static cl::opt<bool>
111 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
112                          cl::desc("Enable AArch64 logical imm instruction "
113                                   "optimization"),
114                          cl::init(true));
115 
116 /// Value type used for condition codes.
117 static const MVT MVT_CC = MVT::i32;
118 
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)119 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
120                                              const AArch64Subtarget &STI)
121     : TargetLowering(TM), Subtarget(&STI) {
122   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
123   // we have to make something up. Arbitrarily, choose ZeroOrOne.
124   setBooleanContents(ZeroOrOneBooleanContent);
125   // When comparing vectors the result sets the different elements in the
126   // vector to all-one or all-zero.
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Set up the register classes.
130   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
131   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
132 
133   if (Subtarget->hasFPARMv8()) {
134     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
135     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
136     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
137     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
138   }
139 
140   if (Subtarget->hasNEON()) {
141     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
142     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
143     // Someone set us up the NEON.
144     addDRTypeForNEON(MVT::v2f32);
145     addDRTypeForNEON(MVT::v8i8);
146     addDRTypeForNEON(MVT::v4i16);
147     addDRTypeForNEON(MVT::v2i32);
148     addDRTypeForNEON(MVT::v1i64);
149     addDRTypeForNEON(MVT::v1f64);
150     addDRTypeForNEON(MVT::v4f16);
151 
152     addQRTypeForNEON(MVT::v4f32);
153     addQRTypeForNEON(MVT::v2f64);
154     addQRTypeForNEON(MVT::v16i8);
155     addQRTypeForNEON(MVT::v8i16);
156     addQRTypeForNEON(MVT::v4i32);
157     addQRTypeForNEON(MVT::v2i64);
158     addQRTypeForNEON(MVT::v8f16);
159   }
160 
161   // Compute derived properties from the register classes
162   computeRegisterProperties(Subtarget->getRegisterInfo());
163 
164   // Provide all sorts of operation actions
165   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
166   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
167   setOperationAction(ISD::SETCC, MVT::i32, Custom);
168   setOperationAction(ISD::SETCC, MVT::i64, Custom);
169   setOperationAction(ISD::SETCC, MVT::f16, Custom);
170   setOperationAction(ISD::SETCC, MVT::f32, Custom);
171   setOperationAction(ISD::SETCC, MVT::f64, Custom);
172   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
173   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
174   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
175   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
176   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
177   setOperationAction(ISD::BR_CC, MVT::f16, Custom);
178   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
179   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
180   setOperationAction(ISD::SELECT, MVT::i32, Custom);
181   setOperationAction(ISD::SELECT, MVT::i64, Custom);
182   setOperationAction(ISD::SELECT, MVT::f16, Custom);
183   setOperationAction(ISD::SELECT, MVT::f32, Custom);
184   setOperationAction(ISD::SELECT, MVT::f64, Custom);
185   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
186   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
187   setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
188   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
189   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
190   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
191   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
192 
193   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
194   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
195   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
196 
197   setOperationAction(ISD::FREM, MVT::f32, Expand);
198   setOperationAction(ISD::FREM, MVT::f64, Expand);
199   setOperationAction(ISD::FREM, MVT::f80, Expand);
200 
201   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
202 
203   // Custom lowering hooks are needed for XOR
204   // to fold it into CSINC/CSINV.
205   setOperationAction(ISD::XOR, MVT::i32, Custom);
206   setOperationAction(ISD::XOR, MVT::i64, Custom);
207 
208   // Virtually no operation on f128 is legal, but LLVM can't expand them when
209   // there's a valid register class, so we need custom operations in most cases.
210   setOperationAction(ISD::FABS, MVT::f128, Expand);
211   setOperationAction(ISD::FADD, MVT::f128, Custom);
212   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
213   setOperationAction(ISD::FCOS, MVT::f128, Expand);
214   setOperationAction(ISD::FDIV, MVT::f128, Custom);
215   setOperationAction(ISD::FMA, MVT::f128, Expand);
216   setOperationAction(ISD::FMUL, MVT::f128, Custom);
217   setOperationAction(ISD::FNEG, MVT::f128, Expand);
218   setOperationAction(ISD::FPOW, MVT::f128, Expand);
219   setOperationAction(ISD::FREM, MVT::f128, Expand);
220   setOperationAction(ISD::FRINT, MVT::f128, Expand);
221   setOperationAction(ISD::FSIN, MVT::f128, Expand);
222   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
223   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
224   setOperationAction(ISD::FSUB, MVT::f128, Custom);
225   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
226   setOperationAction(ISD::SETCC, MVT::f128, Custom);
227   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
228   setOperationAction(ISD::SELECT, MVT::f128, Custom);
229   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
230   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
231 
232   // Lowering for many of the conversions is actually specified by the non-f128
233   // type. The LowerXXX function will be trivial when f128 isn't involved.
234   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
235   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
236   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
237   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
238   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
239   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
240   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
241   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
242   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
243   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
244   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
245   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
246   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
247   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
248 
249   // Variable arguments.
250   setOperationAction(ISD::VASTART, MVT::Other, Custom);
251   setOperationAction(ISD::VAARG, MVT::Other, Custom);
252   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
253   setOperationAction(ISD::VAEND, MVT::Other, Expand);
254 
255   // Variable-sized objects.
256   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
257   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
258 
259   if (Subtarget->isTargetWindows())
260     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
261   else
262     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
263 
264   // Constant pool entries
265   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
266 
267   // BlockAddress
268   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
269 
270   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
271   setOperationAction(ISD::ADDC, MVT::i32, Custom);
272   setOperationAction(ISD::ADDE, MVT::i32, Custom);
273   setOperationAction(ISD::SUBC, MVT::i32, Custom);
274   setOperationAction(ISD::SUBE, MVT::i32, Custom);
275   setOperationAction(ISD::ADDC, MVT::i64, Custom);
276   setOperationAction(ISD::ADDE, MVT::i64, Custom);
277   setOperationAction(ISD::SUBC, MVT::i64, Custom);
278   setOperationAction(ISD::SUBE, MVT::i64, Custom);
279 
280   // AArch64 lacks both left-rotate and popcount instructions.
281   setOperationAction(ISD::ROTL, MVT::i32, Expand);
282   setOperationAction(ISD::ROTL, MVT::i64, Expand);
283   for (MVT VT : MVT::vector_valuetypes()) {
284     setOperationAction(ISD::ROTL, VT, Expand);
285     setOperationAction(ISD::ROTR, VT, Expand);
286   }
287 
288   // AArch64 doesn't have {U|S}MUL_LOHI.
289   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
290   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
291 
292   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
293   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
294 
295   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
296   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
297   for (MVT VT : MVT::vector_valuetypes()) {
298     setOperationAction(ISD::SDIVREM, VT, Expand);
299     setOperationAction(ISD::UDIVREM, VT, Expand);
300   }
301   setOperationAction(ISD::SREM, MVT::i32, Expand);
302   setOperationAction(ISD::SREM, MVT::i64, Expand);
303   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
304   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
305   setOperationAction(ISD::UREM, MVT::i32, Expand);
306   setOperationAction(ISD::UREM, MVT::i64, Expand);
307 
308   // Custom lower Add/Sub/Mul with overflow.
309   setOperationAction(ISD::SADDO, MVT::i32, Custom);
310   setOperationAction(ISD::SADDO, MVT::i64, Custom);
311   setOperationAction(ISD::UADDO, MVT::i32, Custom);
312   setOperationAction(ISD::UADDO, MVT::i64, Custom);
313   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
314   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
315   setOperationAction(ISD::USUBO, MVT::i32, Custom);
316   setOperationAction(ISD::USUBO, MVT::i64, Custom);
317   setOperationAction(ISD::SMULO, MVT::i32, Custom);
318   setOperationAction(ISD::SMULO, MVT::i64, Custom);
319   setOperationAction(ISD::UMULO, MVT::i32, Custom);
320   setOperationAction(ISD::UMULO, MVT::i64, Custom);
321 
322   setOperationAction(ISD::FSIN, MVT::f32, Expand);
323   setOperationAction(ISD::FSIN, MVT::f64, Expand);
324   setOperationAction(ISD::FCOS, MVT::f32, Expand);
325   setOperationAction(ISD::FCOS, MVT::f64, Expand);
326   setOperationAction(ISD::FPOW, MVT::f32, Expand);
327   setOperationAction(ISD::FPOW, MVT::f64, Expand);
328   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330   if (Subtarget->hasFullFP16())
331     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
332   else
333     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
334 
335   setOperationAction(ISD::FREM,    MVT::f16,   Promote);
336   setOperationAction(ISD::FREM,    MVT::v4f16, Expand);
337   setOperationAction(ISD::FREM,    MVT::v8f16, Expand);
338   setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
339   setOperationAction(ISD::FPOW,    MVT::v4f16, Expand);
340   setOperationAction(ISD::FPOW,    MVT::v8f16, Expand);
341   setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
342   setOperationAction(ISD::FPOWI,   MVT::v4f16, Expand);
343   setOperationAction(ISD::FPOWI,   MVT::v8f16, Expand);
344   setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
345   setOperationAction(ISD::FCOS,    MVT::v4f16, Expand);
346   setOperationAction(ISD::FCOS,    MVT::v8f16, Expand);
347   setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
348   setOperationAction(ISD::FSIN,    MVT::v4f16, Expand);
349   setOperationAction(ISD::FSIN,    MVT::v8f16, Expand);
350   setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
351   setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
352   setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
353   setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
354   setOperationAction(ISD::FEXP,    MVT::v4f16, Expand);
355   setOperationAction(ISD::FEXP,    MVT::v8f16, Expand);
356   setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
357   setOperationAction(ISD::FEXP2,   MVT::v4f16, Expand);
358   setOperationAction(ISD::FEXP2,   MVT::v8f16, Expand);
359   setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
360   setOperationAction(ISD::FLOG,    MVT::v4f16, Expand);
361   setOperationAction(ISD::FLOG,    MVT::v8f16, Expand);
362   setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
363   setOperationAction(ISD::FLOG2,   MVT::v4f16, Expand);
364   setOperationAction(ISD::FLOG2,   MVT::v8f16, Expand);
365   setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
366   setOperationAction(ISD::FLOG10,  MVT::v4f16, Expand);
367   setOperationAction(ISD::FLOG10,  MVT::v8f16, Expand);
368 
369   if (!Subtarget->hasFullFP16()) {
370     setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
371     setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
372     setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
373     setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
374     setOperationAction(ISD::FADD,        MVT::f16,  Promote);
375     setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
376     setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
377     setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
378     setOperationAction(ISD::FMA,         MVT::f16,  Promote);
379     setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
380     setOperationAction(ISD::FABS,        MVT::f16,  Promote);
381     setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
382     setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
383     setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
384     setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
385     setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
386     setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
387     setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
388     setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
389     setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
390     setOperationAction(ISD::FMINIMUM,    MVT::f16,  Promote);
391     setOperationAction(ISD::FMAXIMUM,    MVT::f16,  Promote);
392 
393     // promote v4f16 to v4f32 when that is known to be safe.
394     setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
395     setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
396     setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
397     setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
398     setOperationAction(ISD::FP_EXTEND,   MVT::v4f16, Promote);
399     setOperationAction(ISD::FP_ROUND,    MVT::v4f16, Promote);
400     AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
401     AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
402     AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
403     AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);
404     AddPromotedToType(ISD::FP_EXTEND,    MVT::v4f16, MVT::v4f32);
405     AddPromotedToType(ISD::FP_ROUND,     MVT::v4f16, MVT::v4f32);
406 
407     setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
408     setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
409     setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
410     setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
411     setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
412     setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
413     setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
414     setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
415     setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
416     setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
417     setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
418     setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
419     setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
420     setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
421     setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);
422 
423     setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
424     setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
425     setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
426     setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
427     setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
428     setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
429     setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
430     setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
431     setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
432     setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
433     setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
434     setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
435     setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
436     setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
437     setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
438     setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
439     setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
440     setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
441     setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
442     setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
443   }
444 
445   // AArch64 has implementations of a lot of rounding-like FP operations.
446   for (MVT Ty : {MVT::f32, MVT::f64}) {
447     setOperationAction(ISD::FFLOOR, Ty, Legal);
448     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
449     setOperationAction(ISD::FCEIL, Ty, Legal);
450     setOperationAction(ISD::FRINT, Ty, Legal);
451     setOperationAction(ISD::FTRUNC, Ty, Legal);
452     setOperationAction(ISD::FROUND, Ty, Legal);
453     setOperationAction(ISD::FMINNUM, Ty, Legal);
454     setOperationAction(ISD::FMAXNUM, Ty, Legal);
455     setOperationAction(ISD::FMINIMUM, Ty, Legal);
456     setOperationAction(ISD::FMAXIMUM, Ty, Legal);
457   }
458 
459   if (Subtarget->hasFullFP16()) {
460     setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
461     setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
462     setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
463     setOperationAction(ISD::FRINT,   MVT::f16, Legal);
464     setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
465     setOperationAction(ISD::FROUND,  MVT::f16, Legal);
466     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
467     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
468     setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
469     setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
470   }
471 
472   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
473 
474   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
475 
476   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
477   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
478   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
479   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
480   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
481 
482   // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
483   // This requires the Performance Monitors extension.
484   if (Subtarget->hasPerfMon())
485     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
486 
487   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
488       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
489     // Issue __sincos_stret if available.
490     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
491     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
492   } else {
493     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
494     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
495   }
496 
497   // Make floating-point constants legal for the large code model, so they don't
498   // become loads from the constant pool.
499   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
500     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
501     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
502   }
503 
504   // AArch64 does not have floating-point extending loads, i1 sign-extending
505   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
506   for (MVT VT : MVT::fp_valuetypes()) {
507     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
508     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
509     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
510     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
511   }
512   for (MVT VT : MVT::integer_valuetypes())
513     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
514 
515   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
516   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
517   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
518   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
519   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
520   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
521   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
522 
523   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
524   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
525 
526   // Indexed loads and stores are supported.
527   for (unsigned im = (unsigned)ISD::PRE_INC;
528        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
529     setIndexedLoadAction(im, MVT::i8, Legal);
530     setIndexedLoadAction(im, MVT::i16, Legal);
531     setIndexedLoadAction(im, MVT::i32, Legal);
532     setIndexedLoadAction(im, MVT::i64, Legal);
533     setIndexedLoadAction(im, MVT::f64, Legal);
534     setIndexedLoadAction(im, MVT::f32, Legal);
535     setIndexedLoadAction(im, MVT::f16, Legal);
536     setIndexedStoreAction(im, MVT::i8, Legal);
537     setIndexedStoreAction(im, MVT::i16, Legal);
538     setIndexedStoreAction(im, MVT::i32, Legal);
539     setIndexedStoreAction(im, MVT::i64, Legal);
540     setIndexedStoreAction(im, MVT::f64, Legal);
541     setIndexedStoreAction(im, MVT::f32, Legal);
542     setIndexedStoreAction(im, MVT::f16, Legal);
543   }
544 
545   // Trap.
546   setOperationAction(ISD::TRAP, MVT::Other, Legal);
547 
548   // We combine OR nodes for bitfield operations.
549   setTargetDAGCombine(ISD::OR);
550 
551   // Vector add and sub nodes may conceal a high-half opportunity.
552   // Also, try to fold ADD into CSINC/CSINV..
553   setTargetDAGCombine(ISD::ADD);
554   setTargetDAGCombine(ISD::SUB);
555   setTargetDAGCombine(ISD::SRL);
556   setTargetDAGCombine(ISD::XOR);
557   setTargetDAGCombine(ISD::SINT_TO_FP);
558   setTargetDAGCombine(ISD::UINT_TO_FP);
559 
560   setTargetDAGCombine(ISD::FP_TO_SINT);
561   setTargetDAGCombine(ISD::FP_TO_UINT);
562   setTargetDAGCombine(ISD::FDIV);
563 
564   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
565 
566   setTargetDAGCombine(ISD::ANY_EXTEND);
567   setTargetDAGCombine(ISD::ZERO_EXTEND);
568   setTargetDAGCombine(ISD::SIGN_EXTEND);
569   setTargetDAGCombine(ISD::BITCAST);
570   setTargetDAGCombine(ISD::CONCAT_VECTORS);
571   setTargetDAGCombine(ISD::STORE);
572   if (Subtarget->supportsAddressTopByteIgnored())
573     setTargetDAGCombine(ISD::LOAD);
574 
575   setTargetDAGCombine(ISD::MUL);
576 
577   setTargetDAGCombine(ISD::SELECT);
578   setTargetDAGCombine(ISD::VSELECT);
579 
580   setTargetDAGCombine(ISD::INTRINSIC_VOID);
581   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
582   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
583 
584   setTargetDAGCombine(ISD::GlobalAddress);
585 
586   // In case of strict alignment, avoid an excessive number of byte wide stores.
587   MaxStoresPerMemsetOptSize = 8;
588   MaxStoresPerMemset = Subtarget->requiresStrictAlign()
589                        ? MaxStoresPerMemsetOptSize : 32;
590 
591   MaxGluedStoresPerMemcpy = 4;
592   MaxStoresPerMemcpyOptSize = 4;
593   MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
594                        ? MaxStoresPerMemcpyOptSize : 16;
595 
596   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
597 
598   setStackPointerRegisterToSaveRestore(AArch64::SP);
599 
600   setSchedulingPreference(Sched::Hybrid);
601 
602   EnableExtLdPromotion = true;
603 
604   // Set required alignment.
605   setMinFunctionAlignment(2);
606   // Set preferred alignments.
607   setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
608   setPrefLoopAlignment(STI.getPrefLoopAlignment());
609 
610   // Only change the limit for entries in a jump table if specified by
611   // the subtarget, but not at the command line.
612   unsigned MaxJT = STI.getMaximumJumpTableSize();
613   if (MaxJT && getMaximumJumpTableSize() == 0)
614     setMaximumJumpTableSize(MaxJT);
615 
616   setHasExtractBitsInsn(true);
617 
618   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
619 
620   if (Subtarget->hasNEON()) {
621     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
622     // silliness like this:
623     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
624     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
625     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
626     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
627     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
628     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
629     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
630     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
631     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
632     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
633     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
634     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
635     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
636     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
637     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
638     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
639     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
640     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
641     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
642     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
643     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
644     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
645     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
646     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
647     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
648 
649     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
650     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
651     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
652     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
653     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
654 
655     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
656 
657     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
658     // elements smaller than i32, so promote the input to i32 first.
659     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
660     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
661     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
662     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
663     // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
664     // -> v8f16 conversions.
665     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
666     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
667     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
668     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
669     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
670     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
671     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
672     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
673     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
674     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
675     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
676     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
677     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
678 
679     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
680     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
681 
682     setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand);
683     setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand);
684     setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand);
685     setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand);
686     setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand);
687     setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand);
688     setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand);
689     setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand);
690 
691     // AArch64 doesn't have MUL.2d:
692     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
693     // Custom handling for some quad-vector types to detect MULL.
694     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
695     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
696     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
697 
698     // Vector reductions
699     for (MVT VT : MVT::integer_valuetypes()) {
700       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
701       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
702       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
703       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
704       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
705     }
706     for (MVT VT : MVT::fp_valuetypes()) {
707       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
708       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
709     }
710 
711     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
712     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
713     // Likewise, narrowing and extending vector loads/stores aren't handled
714     // directly.
715     for (MVT VT : MVT::vector_valuetypes()) {
716       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
717 
718       if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
719         setOperationAction(ISD::MULHS, VT, Legal);
720         setOperationAction(ISD::MULHU, VT, Legal);
721       } else {
722         setOperationAction(ISD::MULHS, VT, Expand);
723         setOperationAction(ISD::MULHU, VT, Expand);
724       }
725       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
726       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
727 
728       setOperationAction(ISD::BSWAP, VT, Expand);
729 
730       for (MVT InnerVT : MVT::vector_valuetypes()) {
731         setTruncStoreAction(VT, InnerVT, Expand);
732         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
733         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
734         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
735       }
736     }
737 
738     // AArch64 has implementations of a lot of rounding-like FP operations.
739     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
740       setOperationAction(ISD::FFLOOR, Ty, Legal);
741       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
742       setOperationAction(ISD::FCEIL, Ty, Legal);
743       setOperationAction(ISD::FRINT, Ty, Legal);
744       setOperationAction(ISD::FTRUNC, Ty, Legal);
745       setOperationAction(ISD::FROUND, Ty, Legal);
746     }
747 
748     setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
749   }
750 
751   PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
752 }
753 
addTypeForNEON(MVT VT,MVT PromotedBitwiseVT)754 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
755   assert(VT.isVector() && "VT should be a vector type");
756 
757   if (VT.isFloatingPoint()) {
758     MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
759     setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
760     setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
761   }
762 
763   // Mark vector float intrinsics as expand.
764   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
765     setOperationAction(ISD::FSIN, VT, Expand);
766     setOperationAction(ISD::FCOS, VT, Expand);
767     setOperationAction(ISD::FPOW, VT, Expand);
768     setOperationAction(ISD::FLOG, VT, Expand);
769     setOperationAction(ISD::FLOG2, VT, Expand);
770     setOperationAction(ISD::FLOG10, VT, Expand);
771     setOperationAction(ISD::FEXP, VT, Expand);
772     setOperationAction(ISD::FEXP2, VT, Expand);
773 
774     // But we do support custom-lowering for FCOPYSIGN.
775     setOperationAction(ISD::FCOPYSIGN, VT, Custom);
776   }
777 
778   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
779   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
780   setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
781   setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
782   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
783   setOperationAction(ISD::SRA, VT, Custom);
784   setOperationAction(ISD::SRL, VT, Custom);
785   setOperationAction(ISD::SHL, VT, Custom);
786   setOperationAction(ISD::AND, VT, Custom);
787   setOperationAction(ISD::OR, VT, Custom);
788   setOperationAction(ISD::SETCC, VT, Custom);
789   setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
790 
791   setOperationAction(ISD::SELECT, VT, Expand);
792   setOperationAction(ISD::SELECT_CC, VT, Expand);
793   setOperationAction(ISD::VSELECT, VT, Expand);
794   for (MVT InnerVT : MVT::all_valuetypes())
795     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
796 
797   // CNT supports only B element sizes, then use UADDLP to widen.
798   if (VT != MVT::v8i8 && VT != MVT::v16i8)
799     setOperationAction(ISD::CTPOP, VT, Custom);
800 
801   setOperationAction(ISD::UDIV, VT, Expand);
802   setOperationAction(ISD::SDIV, VT, Expand);
803   setOperationAction(ISD::UREM, VT, Expand);
804   setOperationAction(ISD::SREM, VT, Expand);
805   setOperationAction(ISD::FREM, VT, Expand);
806 
807   setOperationAction(ISD::FP_TO_SINT, VT, Custom);
808   setOperationAction(ISD::FP_TO_UINT, VT, Custom);
809 
810   if (!VT.isFloatingPoint())
811     setOperationAction(ISD::ABS, VT, Legal);
812 
813   // [SU][MIN|MAX] are available for all NEON types apart from i64.
814   if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
815     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
816       setOperationAction(Opcode, VT, Legal);
817 
818   // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
819   if (VT.isFloatingPoint() &&
820       (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
821     for (unsigned Opcode :
822          {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
823       setOperationAction(Opcode, VT, Legal);
824 
825   if (Subtarget->isLittleEndian()) {
826     for (unsigned im = (unsigned)ISD::PRE_INC;
827          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
828       setIndexedLoadAction(im, VT, Legal);
829       setIndexedStoreAction(im, VT, Legal);
830     }
831   }
832 }
833 
addDRTypeForNEON(MVT VT)834 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
835   addRegisterClass(VT, &AArch64::FPR64RegClass);
836   addTypeForNEON(VT, MVT::v2i32);
837 }
838 
addQRTypeForNEON(MVT VT)839 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
840   addRegisterClass(VT, &AArch64::FPR128RegClass);
841   addTypeForNEON(VT, MVT::v4i32);
842 }
843 
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const844 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
845                                               EVT VT) const {
846   if (!VT.isVector())
847     return MVT::i32;
848   return VT.changeVectorElementTypeToInteger();
849 }
850 
optimizeLogicalImm(SDValue Op,unsigned Size,uint64_t Imm,const APInt & Demanded,TargetLowering::TargetLoweringOpt & TLO,unsigned NewOpc)851 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
852                                const APInt &Demanded,
853                                TargetLowering::TargetLoweringOpt &TLO,
854                                unsigned NewOpc) {
855   uint64_t OldImm = Imm, NewImm, Enc;
856   uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
857 
858   // Return if the immediate is already all zeros, all ones, a bimm32 or a
859   // bimm64.
860   if (Imm == 0 || Imm == Mask ||
861       AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
862     return false;
863 
864   unsigned EltSize = Size;
865   uint64_t DemandedBits = Demanded.getZExtValue();
866 
867   // Clear bits that are not demanded.
868   Imm &= DemandedBits;
869 
870   while (true) {
871     // The goal here is to set the non-demanded bits in a way that minimizes
872     // the number of switching between 0 and 1. In order to achieve this goal,
873     // we set the non-demanded bits to the value of the preceding demanded bits.
874     // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
875     // non-demanded bit), we copy bit0 (1) to the least significant 'x',
876     // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
877     // The final result is 0b11000011.
878     uint64_t NonDemandedBits = ~DemandedBits;
879     uint64_t InvertedImm = ~Imm & DemandedBits;
880     uint64_t RotatedImm =
881         ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
882         NonDemandedBits;
883     uint64_t Sum = RotatedImm + NonDemandedBits;
884     bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
885     uint64_t Ones = (Sum + Carry) & NonDemandedBits;
886     NewImm = (Imm | Ones) & Mask;
887 
888     // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
889     // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
890     // we halve the element size and continue the search.
891     if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
892       break;
893 
894     // We cannot shrink the element size any further if it is 2-bits.
895     if (EltSize == 2)
896       return false;
897 
898     EltSize /= 2;
899     Mask >>= EltSize;
900     uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
901 
902     // Return if there is mismatch in any of the demanded bits of Imm and Hi.
903     if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
904       return false;
905 
906     // Merge the upper and lower halves of Imm and DemandedBits.
907     Imm |= Hi;
908     DemandedBits |= DemandedBitsHi;
909   }
910 
911   ++NumOptimizedImms;
912 
913   // Replicate the element across the register width.
914   while (EltSize < Size) {
915     NewImm |= NewImm << EltSize;
916     EltSize *= 2;
917   }
918 
919   (void)OldImm;
920   assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
921          "demanded bits should never be altered");
922   assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
923 
924   // Create the new constant immediate node.
925   EVT VT = Op.getValueType();
926   SDLoc DL(Op);
927   SDValue New;
928 
929   // If the new constant immediate is all-zeros or all-ones, let the target
930   // independent DAG combine optimize this node.
931   if (NewImm == 0 || NewImm == OrigMask) {
932     New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
933                           TLO.DAG.getConstant(NewImm, DL, VT));
934   // Otherwise, create a machine node so that target independent DAG combine
935   // doesn't undo this optimization.
936   } else {
937     Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
938     SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
939     New = SDValue(
940         TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
941   }
942 
943   return TLO.CombineTo(Op, New);
944 }
945 
targetShrinkDemandedConstant(SDValue Op,const APInt & Demanded,TargetLoweringOpt & TLO) const946 bool AArch64TargetLowering::targetShrinkDemandedConstant(
947     SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
948   // Delay this optimization to as late as possible.
949   if (!TLO.LegalOps)
950     return false;
951 
952   if (!EnableOptimizeLogicalImm)
953     return false;
954 
955   EVT VT = Op.getValueType();
956   if (VT.isVector())
957     return false;
958 
959   unsigned Size = VT.getSizeInBits();
960   assert((Size == 32 || Size == 64) &&
961          "i32 or i64 is expected after legalization.");
962 
963   // Exit early if we demand all bits.
964   if (Demanded.countPopulation() == Size)
965     return false;
966 
967   unsigned NewOpc;
968   switch (Op.getOpcode()) {
969   default:
970     return false;
971   case ISD::AND:
972     NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
973     break;
974   case ISD::OR:
975     NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
976     break;
977   case ISD::XOR:
978     NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
979     break;
980   }
981   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
982   if (!C)
983     return false;
984   uint64_t Imm = C->getZExtValue();
985   return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
986 }
987 
988 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
989 /// Mask are known to be either zero or one and return them Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const990 void AArch64TargetLowering::computeKnownBitsForTargetNode(
991     const SDValue Op, KnownBits &Known,
992     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
993   switch (Op.getOpcode()) {
994   default:
995     break;
996   case AArch64ISD::CSEL: {
997     KnownBits Known2;
998     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
999     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1000     Known.Zero &= Known2.Zero;
1001     Known.One &= Known2.One;
1002     break;
1003   }
1004   case ISD::INTRINSIC_W_CHAIN: {
1005     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1006     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1007     switch (IntID) {
1008     default: return;
1009     case Intrinsic::aarch64_ldaxr:
1010     case Intrinsic::aarch64_ldxr: {
1011       unsigned BitWidth = Known.getBitWidth();
1012       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1013       unsigned MemBits = VT.getScalarSizeInBits();
1014       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1015       return;
1016     }
1017     }
1018     break;
1019   }
1020   case ISD::INTRINSIC_WO_CHAIN:
1021   case ISD::INTRINSIC_VOID: {
1022     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1023     switch (IntNo) {
1024     default:
1025       break;
1026     case Intrinsic::aarch64_neon_umaxv:
1027     case Intrinsic::aarch64_neon_uminv: {
1028       // Figure out the datatype of the vector operand. The UMINV instruction
1029       // will zero extend the result, so we can mark as known zero all the
1030       // bits larger than the element datatype. 32-bit or larget doesn't need
1031       // this as those are legal types and will be handled by isel directly.
1032       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1033       unsigned BitWidth = Known.getBitWidth();
1034       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1035         assert(BitWidth >= 8 && "Unexpected width!");
1036         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1037         Known.Zero |= Mask;
1038       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1039         assert(BitWidth >= 16 && "Unexpected width!");
1040         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1041         Known.Zero |= Mask;
1042       }
1043       break;
1044     } break;
1045     }
1046   }
1047   }
1048 }
1049 
getScalarShiftAmountTy(const DataLayout & DL,EVT) const1050 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1051                                                   EVT) const {
1052   return MVT::i64;
1053 }
1054 
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * Fast) const1055 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1056                                                            unsigned AddrSpace,
1057                                                            unsigned Align,
1058                                                            bool *Fast) const {
1059   if (Subtarget->requiresStrictAlign())
1060     return false;
1061 
1062   if (Fast) {
1063     // Some CPUs are fine with unaligned stores except for 128-bit ones.
1064     *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1065             // See comments in performSTORECombine() for more details about
1066             // these conditions.
1067 
1068             // Code that uses clang vector extensions can mark that it
1069             // wants unaligned accesses to be treated as fast by
1070             // underspecifying alignment to be 1 or 2.
1071             Align <= 2 ||
1072 
1073             // Disregard v2i64. Memcpy lowering produces those and splitting
1074             // them regresses performance on micro-benchmarks and olden/bh.
1075             VT == MVT::v2i64;
1076   }
1077   return true;
1078 }
1079 
1080 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1081 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1082                                       const TargetLibraryInfo *libInfo) const {
1083   return AArch64::createFastISel(funcInfo, libInfo);
1084 }
1085 
getTargetNodeName(unsigned Opcode) const1086 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1087   switch ((AArch64ISD::NodeType)Opcode) {
1088   case AArch64ISD::FIRST_NUMBER:      break;
1089   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
1090   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
1091   case AArch64ISD::ADR:               return "AArch64ISD::ADR";
1092   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
1093   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
1094   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
1095   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
1096   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
1097   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
1098   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
1099   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
1100   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
1101   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
1102   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
1103   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
1104   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
1105   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
1106   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
1107   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
1108   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
1109   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
1110   case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
1111   case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
1112   case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
1113   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
1114   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
1115   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
1116   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
1117   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
1118   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
1119   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
1120   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
1121   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
1122   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
1123   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
1124   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
1125   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
1126   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
1127   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
1128   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
1129   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
1130   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
1131   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
1132   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
1133   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
1134   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
1135   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
1136   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
1137   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
1138   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
1139   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
1140   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
1141   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
1142   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
1143   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
1144   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
1145   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
1146   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
1147   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
1148   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
1149   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
1150   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
1151   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
1152   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
1153   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
1154   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
1155   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
1156   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
1157   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
1158   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
1159   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
1160   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
1161   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
1162   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
1163   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
1164   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
1165   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
1166   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
1167   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
1168   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
1169   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
1170   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
1171   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
1172   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
1173   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
1174   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
1175   case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
1176   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
1177   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
1178   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
1179   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
1180   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
1181   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
1182   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
1183   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
1184   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
1185   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
1186   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
1187   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
1188   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
1189   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
1190   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
1191   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
1192   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
1193   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
1194   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
1195   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
1196   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
1197   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
1198   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
1199   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
1200   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
1201   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
1202   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
1203   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
1204   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
1205   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
1206   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
1207   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
1208   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
1209   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
1210   case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
1211   case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
1212   case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
1213   case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
1214   }
1215   return nullptr;
1216 }
1217 
1218 MachineBasicBlock *
EmitF128CSEL(MachineInstr & MI,MachineBasicBlock * MBB) const1219 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1220                                     MachineBasicBlock *MBB) const {
1221   // We materialise the F128CSEL pseudo-instruction as some control flow and a
1222   // phi node:
1223 
1224   // OrigBB:
1225   //     [... previous instrs leading to comparison ...]
1226   //     b.ne TrueBB
1227   //     b EndBB
1228   // TrueBB:
1229   //     ; Fallthrough
1230   // EndBB:
1231   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1232 
1233   MachineFunction *MF = MBB->getParent();
1234   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1235   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1236   DebugLoc DL = MI.getDebugLoc();
1237   MachineFunction::iterator It = ++MBB->getIterator();
1238 
1239   unsigned DestReg = MI.getOperand(0).getReg();
1240   unsigned IfTrueReg = MI.getOperand(1).getReg();
1241   unsigned IfFalseReg = MI.getOperand(2).getReg();
1242   unsigned CondCode = MI.getOperand(3).getImm();
1243   bool NZCVKilled = MI.getOperand(4).isKill();
1244 
1245   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1246   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1247   MF->insert(It, TrueBB);
1248   MF->insert(It, EndBB);
1249 
1250   // Transfer rest of current basic-block to EndBB
1251   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1252                 MBB->end());
1253   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1254 
1255   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1256   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1257   MBB->addSuccessor(TrueBB);
1258   MBB->addSuccessor(EndBB);
1259 
1260   // TrueBB falls through to the end.
1261   TrueBB->addSuccessor(EndBB);
1262 
1263   if (!NZCVKilled) {
1264     TrueBB->addLiveIn(AArch64::NZCV);
1265     EndBB->addLiveIn(AArch64::NZCV);
1266   }
1267 
1268   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1269       .addReg(IfTrueReg)
1270       .addMBB(TrueBB)
1271       .addReg(IfFalseReg)
1272       .addMBB(MBB);
1273 
1274   MI.eraseFromParent();
1275   return EndBB;
1276 }
1277 
EmitLoweredCatchRet(MachineInstr & MI,MachineBasicBlock * BB) const1278 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
1279        MachineInstr &MI, MachineBasicBlock *BB) const {
1280   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1281              BB->getParent()->getFunction().getPersonalityFn())) &&
1282          "SEH does not use catchret!");
1283   return BB;
1284 }
1285 
EmitLoweredCatchPad(MachineInstr & MI,MachineBasicBlock * BB) const1286 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
1287      MachineInstr &MI, MachineBasicBlock *BB) const {
1288   MI.eraseFromParent();
1289   return BB;
1290 }
1291 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1292 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1293     MachineInstr &MI, MachineBasicBlock *BB) const {
1294   switch (MI.getOpcode()) {
1295   default:
1296 #ifndef NDEBUG
1297     MI.dump();
1298 #endif
1299     llvm_unreachable("Unexpected instruction for custom inserter!");
1300 
1301   case AArch64::F128CSEL:
1302     return EmitF128CSEL(MI, BB);
1303 
1304   case TargetOpcode::STACKMAP:
1305   case TargetOpcode::PATCHPOINT:
1306     return emitPatchPoint(MI, BB);
1307 
1308   case AArch64::CATCHRET:
1309     return EmitLoweredCatchRet(MI, BB);
1310   case AArch64::CATCHPAD:
1311     return EmitLoweredCatchPad(MI, BB);
1312   }
1313 }
1314 
1315 //===----------------------------------------------------------------------===//
1316 // AArch64 Lowering private implementation.
1317 //===----------------------------------------------------------------------===//
1318 
1319 //===----------------------------------------------------------------------===//
1320 // Lowering Code
1321 //===----------------------------------------------------------------------===//
1322 
1323 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1324 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)1325 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1326   switch (CC) {
1327   default:
1328     llvm_unreachable("Unknown condition code!");
1329   case ISD::SETNE:
1330     return AArch64CC::NE;
1331   case ISD::SETEQ:
1332     return AArch64CC::EQ;
1333   case ISD::SETGT:
1334     return AArch64CC::GT;
1335   case ISD::SETGE:
1336     return AArch64CC::GE;
1337   case ISD::SETLT:
1338     return AArch64CC::LT;
1339   case ISD::SETLE:
1340     return AArch64CC::LE;
1341   case ISD::SETUGT:
1342     return AArch64CC::HI;
1343   case ISD::SETUGE:
1344     return AArch64CC::HS;
1345   case ISD::SETULT:
1346     return AArch64CC::LO;
1347   case ISD::SETULE:
1348     return AArch64CC::LS;
1349   }
1350 }
1351 
1352 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1353 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1354                                   AArch64CC::CondCode &CondCode,
1355                                   AArch64CC::CondCode &CondCode2) {
1356   CondCode2 = AArch64CC::AL;
1357   switch (CC) {
1358   default:
1359     llvm_unreachable("Unknown FP condition!");
1360   case ISD::SETEQ:
1361   case ISD::SETOEQ:
1362     CondCode = AArch64CC::EQ;
1363     break;
1364   case ISD::SETGT:
1365   case ISD::SETOGT:
1366     CondCode = AArch64CC::GT;
1367     break;
1368   case ISD::SETGE:
1369   case ISD::SETOGE:
1370     CondCode = AArch64CC::GE;
1371     break;
1372   case ISD::SETOLT:
1373     CondCode = AArch64CC::MI;
1374     break;
1375   case ISD::SETOLE:
1376     CondCode = AArch64CC::LS;
1377     break;
1378   case ISD::SETONE:
1379     CondCode = AArch64CC::MI;
1380     CondCode2 = AArch64CC::GT;
1381     break;
1382   case ISD::SETO:
1383     CondCode = AArch64CC::VC;
1384     break;
1385   case ISD::SETUO:
1386     CondCode = AArch64CC::VS;
1387     break;
1388   case ISD::SETUEQ:
1389     CondCode = AArch64CC::EQ;
1390     CondCode2 = AArch64CC::VS;
1391     break;
1392   case ISD::SETUGT:
1393     CondCode = AArch64CC::HI;
1394     break;
1395   case ISD::SETUGE:
1396     CondCode = AArch64CC::PL;
1397     break;
1398   case ISD::SETLT:
1399   case ISD::SETULT:
1400     CondCode = AArch64CC::LT;
1401     break;
1402   case ISD::SETLE:
1403   case ISD::SETULE:
1404     CondCode = AArch64CC::LE;
1405     break;
1406   case ISD::SETNE:
1407   case ISD::SETUNE:
1408     CondCode = AArch64CC::NE;
1409     break;
1410   }
1411 }
1412 
1413 /// Convert a DAG fp condition code to an AArch64 CC.
1414 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1415 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1416 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1417                                      AArch64CC::CondCode &CondCode,
1418                                      AArch64CC::CondCode &CondCode2) {
1419   CondCode2 = AArch64CC::AL;
1420   switch (CC) {
1421   default:
1422     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1423     assert(CondCode2 == AArch64CC::AL);
1424     break;
1425   case ISD::SETONE:
1426     // (a one b)
1427     // == ((a olt b) || (a ogt b))
1428     // == ((a ord b) && (a une b))
1429     CondCode = AArch64CC::VC;
1430     CondCode2 = AArch64CC::NE;
1431     break;
1432   case ISD::SETUEQ:
1433     // (a ueq b)
1434     // == ((a uno b) || (a oeq b))
1435     // == ((a ule b) && (a uge b))
1436     CondCode = AArch64CC::PL;
1437     CondCode2 = AArch64CC::LE;
1438     break;
1439   }
1440 }
1441 
1442 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1443 /// CC usable with the vector instructions. Fewer operations are available
1444 /// without a real NZCV register, so we have to use less efficient combinations
1445 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)1446 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1447                                         AArch64CC::CondCode &CondCode,
1448                                         AArch64CC::CondCode &CondCode2,
1449                                         bool &Invert) {
1450   Invert = false;
1451   switch (CC) {
1452   default:
1453     // Mostly the scalar mappings work fine.
1454     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1455     break;
1456   case ISD::SETUO:
1457     Invert = true;
1458     LLVM_FALLTHROUGH;
1459   case ISD::SETO:
1460     CondCode = AArch64CC::MI;
1461     CondCode2 = AArch64CC::GE;
1462     break;
1463   case ISD::SETUEQ:
1464   case ISD::SETULT:
1465   case ISD::SETULE:
1466   case ISD::SETUGT:
1467   case ISD::SETUGE:
1468     // All of the compare-mask comparisons are ordered, but we can switch
1469     // between the two by a double inversion. E.g. ULE == !OGT.
1470     Invert = true;
1471     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1472     break;
1473   }
1474 }
1475 
isLegalArithImmed(uint64_t C)1476 static bool isLegalArithImmed(uint64_t C) {
1477   // Matches AArch64DAGToDAGISel::SelectArithImmed().
1478   bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1479   LLVM_DEBUG(dbgs() << "Is imm " << C
1480                     << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1481   return IsLegal;
1482 }
1483 
1484 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1485 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1486 // can be set differently by this operation. It comes down to whether
1487 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1488 // everything is fine. If not then the optimization is wrong. Thus general
1489 // comparisons are only valid if op2 != 0.
1490 //
1491 // So, finally, the only LLVM-native comparisons that don't mention C and V
1492 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1493 // the absence of information about op2.
isCMN(SDValue Op,ISD::CondCode CC)1494 static bool isCMN(SDValue Op, ISD::CondCode CC) {
1495   return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
1496          (CC == ISD::SETEQ || CC == ISD::SETNE);
1497 }
1498 
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SelectionDAG & DAG)1499 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1500                               const SDLoc &dl, SelectionDAG &DAG) {
1501   EVT VT = LHS.getValueType();
1502   const bool FullFP16 =
1503     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1504 
1505   if (VT.isFloatingPoint()) {
1506     assert(VT != MVT::f128);
1507     if (VT == MVT::f16 && !FullFP16) {
1508       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1509       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1510       VT = MVT::f32;
1511     }
1512     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1513   }
1514 
1515   // The CMP instruction is just an alias for SUBS, and representing it as
1516   // SUBS means that it's possible to get CSE with subtract operations.
1517   // A later phase can perform the optimization of setting the destination
1518   // register to WZR/XZR if it ends up being unused.
1519   unsigned Opcode = AArch64ISD::SUBS;
1520 
1521   if (isCMN(RHS, CC)) {
1522     // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1523     Opcode = AArch64ISD::ADDS;
1524     RHS = RHS.getOperand(1);
1525   } else if (isCMN(LHS, CC)) {
1526     // As we are looking for EQ/NE compares, the operands can be commuted ; can
1527     // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1528     Opcode = AArch64ISD::ADDS;
1529     LHS = LHS.getOperand(1);
1530   } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1531              !isUnsignedIntSetCC(CC)) {
1532     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1533     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1534     // of the signed comparisons.
1535     Opcode = AArch64ISD::ANDS;
1536     RHS = LHS.getOperand(1);
1537     LHS = LHS.getOperand(0);
1538   }
1539 
1540   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1541       .getValue(1);
1542 }
1543 
1544 /// \defgroup AArch64CCMP CMP;CCMP matching
1545 ///
1546 /// These functions deal with the formation of CMP;CCMP;... sequences.
1547 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1548 /// a comparison. They set the NZCV flags to a predefined value if their
1549 /// predicate is false. This allows to express arbitrary conjunctions, for
1550 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1551 /// expressed as:
1552 ///   cmp A
1553 ///   ccmp B, inv(CB), CA
1554 ///   check for CB flags
1555 ///
1556 /// This naturally lets us implement chains of AND operations with SETCC
1557 /// operands. And we can even implement some other situations by transforming
1558 /// them:
1559 ///   - We can implement (NEG SETCC) i.e. negating a single comparison by
1560 ///     negating the flags used in a CCMP/FCCMP operations.
1561 ///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1562 ///     by negating the flags we test for afterwards. i.e.
1563 ///     NEG (CMP CCMP CCCMP ...) can be implemented.
1564 ///   - Note that we can only ever negate all previously processed results.
1565 ///     What we can not implement by flipping the flags to test is a negation
1566 ///     of two sub-trees (because the negation affects all sub-trees emitted so
1567 ///     far, so the 2nd sub-tree we emit would also affect the first).
1568 /// With those tools we can implement some OR operations:
1569 ///   - (OR (SETCC A) (SETCC B)) can be implemented via:
1570 ///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1571 ///   - After transforming OR to NEG/AND combinations we may be able to use NEG
1572 ///     elimination rules from earlier to implement the whole thing as a
1573 ///     CCMP/FCCMP chain.
1574 ///
1575 /// As complete example:
1576 ///     or (or (setCA (cmp A)) (setCB (cmp B)))
1577 ///        (and (setCC (cmp C)) (setCD (cmp D)))"
1578 /// can be reassociated to:
1579 ///     or (and (setCC (cmp C)) setCD (cmp D))
1580 //         (or (setCA (cmp A)) (setCB (cmp B)))
1581 /// can be transformed to:
1582 ///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1583 ///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1584 /// which can be implemented as:
1585 ///   cmp C
1586 ///   ccmp D, inv(CD), CC
1587 ///   ccmp A, CA, inv(CD)
1588 ///   ccmp B, CB, inv(CA)
1589 ///   check for CB flags
1590 ///
1591 /// A counterexample is "or (and A B) (and C D)" which translates to
1592 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1593 /// can only implement 1 of the inner (not) operations, but not both!
1594 /// @{
1595 
1596 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,const SDLoc & DL,SelectionDAG & DAG)1597 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1598                                          ISD::CondCode CC, SDValue CCOp,
1599                                          AArch64CC::CondCode Predicate,
1600                                          AArch64CC::CondCode OutCC,
1601                                          const SDLoc &DL, SelectionDAG &DAG) {
1602   unsigned Opcode = 0;
1603   const bool FullFP16 =
1604     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1605 
1606   if (LHS.getValueType().isFloatingPoint()) {
1607     assert(LHS.getValueType() != MVT::f128);
1608     if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1609       LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1610       RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1611     }
1612     Opcode = AArch64ISD::FCCMP;
1613   } else if (RHS.getOpcode() == ISD::SUB) {
1614     SDValue SubOp0 = RHS.getOperand(0);
1615     if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1616       // See emitComparison() on why we can only do this for SETEQ and SETNE.
1617       Opcode = AArch64ISD::CCMN;
1618       RHS = RHS.getOperand(1);
1619     }
1620   }
1621   if (Opcode == 0)
1622     Opcode = AArch64ISD::CCMP;
1623 
1624   SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1625   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1626   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1627   SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1628   return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1629 }
1630 
1631 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1632 /// expressed as a conjunction. See \ref AArch64CCMP.
1633 /// \param CanNegate    Set to true if we can negate the whole sub-tree just by
1634 ///                     changing the conditions on the SETCC tests.
1635 ///                     (this means we can call emitConjunctionRec() with
1636 ///                      Negate==true on this sub-tree)
1637 /// \param MustBeFirst  Set to true if this subtree needs to be negated and we
1638 ///                     cannot do the negation naturally. We are required to
1639 ///                     emit the subtree first in this case.
1640 /// \param WillNegate   Is true if are called when the result of this
1641 ///                     subexpression must be negated. This happens when the
1642 ///                     outer expression is an OR. We can use this fact to know
1643 ///                     that we have a double negation (or (or ...) ...) that
1644 ///                     can be implemented for free.
canEmitConjunction(const SDValue Val,bool & CanNegate,bool & MustBeFirst,bool WillNegate,unsigned Depth=0)1645 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1646                                bool &MustBeFirst, bool WillNegate,
1647                                unsigned Depth = 0) {
1648   if (!Val.hasOneUse())
1649     return false;
1650   unsigned Opcode = Val->getOpcode();
1651   if (Opcode == ISD::SETCC) {
1652     if (Val->getOperand(0).getValueType() == MVT::f128)
1653       return false;
1654     CanNegate = true;
1655     MustBeFirst = false;
1656     return true;
1657   }
1658   // Protect against exponential runtime and stack overflow.
1659   if (Depth > 6)
1660     return false;
1661   if (Opcode == ISD::AND || Opcode == ISD::OR) {
1662     bool IsOR = Opcode == ISD::OR;
1663     SDValue O0 = Val->getOperand(0);
1664     SDValue O1 = Val->getOperand(1);
1665     bool CanNegateL;
1666     bool MustBeFirstL;
1667     if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1668       return false;
1669     bool CanNegateR;
1670     bool MustBeFirstR;
1671     if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1672       return false;
1673 
1674     if (MustBeFirstL && MustBeFirstR)
1675       return false;
1676 
1677     if (IsOR) {
1678       // For an OR expression we need to be able to naturally negate at least
1679       // one side or we cannot do the transformation at all.
1680       if (!CanNegateL && !CanNegateR)
1681         return false;
1682       // If we the result of the OR will be negated and we can naturally negate
1683       // the leafs, then this sub-tree as a whole negates naturally.
1684       CanNegate = WillNegate && CanNegateL && CanNegateR;
1685       // If we cannot naturally negate the whole sub-tree, then this must be
1686       // emitted first.
1687       MustBeFirst = !CanNegate;
1688     } else {
1689       assert(Opcode == ISD::AND && "Must be OR or AND");
1690       // We cannot naturally negate an AND operation.
1691       CanNegate = false;
1692       MustBeFirst = MustBeFirstL || MustBeFirstR;
1693     }
1694     return true;
1695   }
1696   return false;
1697 }
1698 
1699 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1700 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1701 /// Tries to transform the given i1 producing node @p Val to a series compare
1702 /// and conditional compare operations. @returns an NZCV flags producing node
1703 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1704 /// transformation was not possible.
1705 /// \p Negate is true if we want this sub-tree being negated just by changing
1706 /// SETCC conditions.
emitConjunctionRec(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool Negate,SDValue CCOp,AArch64CC::CondCode Predicate)1707 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1708     AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1709     AArch64CC::CondCode Predicate) {
1710   // We're at a tree leaf, produce a conditional comparison operation.
1711   unsigned Opcode = Val->getOpcode();
1712   if (Opcode == ISD::SETCC) {
1713     SDValue LHS = Val->getOperand(0);
1714     SDValue RHS = Val->getOperand(1);
1715     ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1716     bool isInteger = LHS.getValueType().isInteger();
1717     if (Negate)
1718       CC = getSetCCInverse(CC, isInteger);
1719     SDLoc DL(Val);
1720     // Determine OutCC and handle FP special case.
1721     if (isInteger) {
1722       OutCC = changeIntCCToAArch64CC(CC);
1723     } else {
1724       assert(LHS.getValueType().isFloatingPoint());
1725       AArch64CC::CondCode ExtraCC;
1726       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1727       // Some floating point conditions can't be tested with a single condition
1728       // code. Construct an additional comparison in this case.
1729       if (ExtraCC != AArch64CC::AL) {
1730         SDValue ExtraCmp;
1731         if (!CCOp.getNode())
1732           ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1733         else
1734           ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1735                                                ExtraCC, DL, DAG);
1736         CCOp = ExtraCmp;
1737         Predicate = ExtraCC;
1738       }
1739     }
1740 
1741     // Produce a normal comparison if we are first in the chain
1742     if (!CCOp)
1743       return emitComparison(LHS, RHS, CC, DL, DAG);
1744     // Otherwise produce a ccmp.
1745     return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1746                                      DAG);
1747   }
1748   assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1749 
1750   bool IsOR = Opcode == ISD::OR;
1751 
1752   SDValue LHS = Val->getOperand(0);
1753   bool CanNegateL;
1754   bool MustBeFirstL;
1755   bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1756   assert(ValidL && "Valid conjunction/disjunction tree");
1757   (void)ValidL;
1758 
1759   SDValue RHS = Val->getOperand(1);
1760   bool CanNegateR;
1761   bool MustBeFirstR;
1762   bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1763   assert(ValidR && "Valid conjunction/disjunction tree");
1764   (void)ValidR;
1765 
1766   // Swap sub-tree that must come first to the right side.
1767   if (MustBeFirstL) {
1768     assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1769     std::swap(LHS, RHS);
1770     std::swap(CanNegateL, CanNegateR);
1771     std::swap(MustBeFirstL, MustBeFirstR);
1772   }
1773 
1774   bool NegateR;
1775   bool NegateAfterR;
1776   bool NegateL;
1777   bool NegateAfterAll;
1778   if (Opcode == ISD::OR) {
1779     // Swap the sub-tree that we can negate naturally to the left.
1780     if (!CanNegateL) {
1781       assert(CanNegateR && "at least one side must be negatable");
1782       assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1783       assert(!Negate);
1784       std::swap(LHS, RHS);
1785       NegateR = false;
1786       NegateAfterR = true;
1787     } else {
1788       // Negate the left sub-tree if possible, otherwise negate the result.
1789       NegateR = CanNegateR;
1790       NegateAfterR = !CanNegateR;
1791     }
1792     NegateL = true;
1793     NegateAfterAll = !Negate;
1794   } else {
1795     assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
1796     assert(!Negate && "Valid conjunction/disjunction tree");
1797 
1798     NegateL = false;
1799     NegateR = false;
1800     NegateAfterR = false;
1801     NegateAfterAll = false;
1802   }
1803 
1804   // Emit sub-trees.
1805   AArch64CC::CondCode RHSCC;
1806   SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
1807   if (NegateAfterR)
1808     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1809   SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
1810   if (NegateAfterAll)
1811     OutCC = AArch64CC::getInvertedCondCode(OutCC);
1812   return CmpL;
1813 }
1814 
1815 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1816 /// In some cases this is even possible with OR operations in the expression.
1817 /// See \ref AArch64CCMP.
1818 /// \see emitConjunctionRec().
emitConjunction(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC)1819 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
1820                                AArch64CC::CondCode &OutCC) {
1821   bool DummyCanNegate;
1822   bool DummyMustBeFirst;
1823   if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
1824     return SDValue();
1825 
1826   return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
1827 }
1828 
1829 /// @}
1830 
1831 /// Returns how profitable it is to fold a comparison's operand's shift and/or
1832 /// extension operations.
getCmpOperandFoldingProfit(SDValue Op)1833 static unsigned getCmpOperandFoldingProfit(SDValue Op) {
1834   auto isSupportedExtend = [&](SDValue V) {
1835     if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
1836       return true;
1837 
1838     if (V.getOpcode() == ISD::AND)
1839       if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
1840         uint64_t Mask = MaskCst->getZExtValue();
1841         return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
1842       }
1843 
1844     return false;
1845   };
1846 
1847   if (!Op.hasOneUse())
1848     return 0;
1849 
1850   if (isSupportedExtend(Op))
1851     return 1;
1852 
1853   unsigned Opc = Op.getOpcode();
1854   if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
1855     if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1856       uint64_t Shift = ShiftCst->getZExtValue();
1857       if (isSupportedExtend(Op.getOperand(0)))
1858         return (Shift <= 4) ? 2 : 1;
1859       EVT VT = Op.getValueType();
1860       if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
1861         return 1;
1862     }
1863 
1864   return 0;
1865 }
1866 
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,const SDLoc & dl)1867 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1868                              SDValue &AArch64cc, SelectionDAG &DAG,
1869                              const SDLoc &dl) {
1870   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1871     EVT VT = RHS.getValueType();
1872     uint64_t C = RHSC->getZExtValue();
1873     if (!isLegalArithImmed(C)) {
1874       // Constant does not fit, try adjusting it by one?
1875       switch (CC) {
1876       default:
1877         break;
1878       case ISD::SETLT:
1879       case ISD::SETGE:
1880         if ((VT == MVT::i32 && C != 0x80000000 &&
1881              isLegalArithImmed((uint32_t)(C - 1))) ||
1882             (VT == MVT::i64 && C != 0x80000000ULL &&
1883              isLegalArithImmed(C - 1ULL))) {
1884           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1885           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1886           RHS = DAG.getConstant(C, dl, VT);
1887         }
1888         break;
1889       case ISD::SETULT:
1890       case ISD::SETUGE:
1891         if ((VT == MVT::i32 && C != 0 &&
1892              isLegalArithImmed((uint32_t)(C - 1))) ||
1893             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1894           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1895           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1896           RHS = DAG.getConstant(C, dl, VT);
1897         }
1898         break;
1899       case ISD::SETLE:
1900       case ISD::SETGT:
1901         if ((VT == MVT::i32 && C != INT32_MAX &&
1902              isLegalArithImmed((uint32_t)(C + 1))) ||
1903             (VT == MVT::i64 && C != INT64_MAX &&
1904              isLegalArithImmed(C + 1ULL))) {
1905           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1906           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1907           RHS = DAG.getConstant(C, dl, VT);
1908         }
1909         break;
1910       case ISD::SETULE:
1911       case ISD::SETUGT:
1912         if ((VT == MVT::i32 && C != UINT32_MAX &&
1913              isLegalArithImmed((uint32_t)(C + 1))) ||
1914             (VT == MVT::i64 && C != UINT64_MAX &&
1915              isLegalArithImmed(C + 1ULL))) {
1916           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1917           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1918           RHS = DAG.getConstant(C, dl, VT);
1919         }
1920         break;
1921       }
1922     }
1923   }
1924 
1925   // Comparisons are canonicalized so that the RHS operand is simpler than the
1926   // LHS one, the extreme case being when RHS is an immediate. However, AArch64
1927   // can fold some shift+extend operations on the RHS operand, so swap the
1928   // operands if that can be done.
1929   //
1930   // For example:
1931   //    lsl     w13, w11, #1
1932   //    cmp     w13, w12
1933   // can be turned into:
1934   //    cmp     w12, w11, lsl #1
1935   if (!isa<ConstantSDNode>(RHS) ||
1936       !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
1937     SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
1938 
1939     if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
1940       std::swap(LHS, RHS);
1941       CC = ISD::getSetCCSwappedOperands(CC);
1942     }
1943   }
1944 
1945   SDValue Cmp;
1946   AArch64CC::CondCode AArch64CC;
1947   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1948     const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1949 
1950     // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1951     // For the i8 operand, the largest immediate is 255, so this can be easily
1952     // encoded in the compare instruction. For the i16 operand, however, the
1953     // largest immediate cannot be encoded in the compare.
1954     // Therefore, use a sign extending load and cmn to avoid materializing the
1955     // -1 constant. For example,
1956     // movz w1, #65535
1957     // ldrh w0, [x0, #0]
1958     // cmp w0, w1
1959     // >
1960     // ldrsh w0, [x0, #0]
1961     // cmn w0, #1
1962     // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1963     // if and only if (sext LHS) == (sext RHS). The checks are in place to
1964     // ensure both the LHS and RHS are truly zero extended and to make sure the
1965     // transformation is profitable.
1966     if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1967         cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1968         cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1969         LHS.getNode()->hasNUsesOfValue(1, 0)) {
1970       int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1971       if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1972         SDValue SExt =
1973             DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1974                         DAG.getValueType(MVT::i16));
1975         Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1976                                                    RHS.getValueType()),
1977                              CC, dl, DAG);
1978         AArch64CC = changeIntCCToAArch64CC(CC);
1979       }
1980     }
1981 
1982     if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1983       if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
1984         if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1985           AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1986       }
1987     }
1988   }
1989 
1990   if (!Cmp) {
1991     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1992     AArch64CC = changeIntCCToAArch64CC(CC);
1993   }
1994   AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1995   return Cmp;
1996 }
1997 
1998 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)1999 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
2000   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
2001          "Unsupported value type");
2002   SDValue Value, Overflow;
2003   SDLoc DL(Op);
2004   SDValue LHS = Op.getOperand(0);
2005   SDValue RHS = Op.getOperand(1);
2006   unsigned Opc = 0;
2007   switch (Op.getOpcode()) {
2008   default:
2009     llvm_unreachable("Unknown overflow instruction!");
2010   case ISD::SADDO:
2011     Opc = AArch64ISD::ADDS;
2012     CC = AArch64CC::VS;
2013     break;
2014   case ISD::UADDO:
2015     Opc = AArch64ISD::ADDS;
2016     CC = AArch64CC::HS;
2017     break;
2018   case ISD::SSUBO:
2019     Opc = AArch64ISD::SUBS;
2020     CC = AArch64CC::VS;
2021     break;
2022   case ISD::USUBO:
2023     Opc = AArch64ISD::SUBS;
2024     CC = AArch64CC::LO;
2025     break;
2026   // Multiply needs a little bit extra work.
2027   case ISD::SMULO:
2028   case ISD::UMULO: {
2029     CC = AArch64CC::NE;
2030     bool IsSigned = Op.getOpcode() == ISD::SMULO;
2031     if (Op.getValueType() == MVT::i32) {
2032       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2033       // For a 32 bit multiply with overflow check we want the instruction
2034       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2035       // need to generate the following pattern:
2036       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2037       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
2038       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
2039       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2040       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
2041                                 DAG.getConstant(0, DL, MVT::i64));
2042       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2043       // operation. We need to clear out the upper 32 bits, because we used a
2044       // widening multiply that wrote all 64 bits. In the end this should be a
2045       // noop.
2046       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
2047       if (IsSigned) {
2048         // The signed overflow check requires more than just a simple check for
2049         // any bit set in the upper 32 bits of the result. These bits could be
2050         // just the sign bits of a negative number. To perform the overflow
2051         // check we have to arithmetic shift right the 32nd bit of the result by
2052         // 31 bits. Then we compare the result to the upper 32 bits.
2053         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
2054                                         DAG.getConstant(32, DL, MVT::i64));
2055         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
2056         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
2057                                         DAG.getConstant(31, DL, MVT::i64));
2058         // It is important that LowerBits is last, otherwise the arithmetic
2059         // shift will not be folded into the compare (SUBS).
2060         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
2061         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2062                        .getValue(1);
2063       } else {
2064         // The overflow check for unsigned multiply is easy. We only need to
2065         // check if any of the upper 32 bits are set. This can be done with a
2066         // CMP (shifted register). For that we need to generate the following
2067         // pattern:
2068         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2069         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2070                                         DAG.getConstant(32, DL, MVT::i64));
2071         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2072         Overflow =
2073             DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2074                         DAG.getConstant(0, DL, MVT::i64),
2075                         UpperBits).getValue(1);
2076       }
2077       break;
2078     }
2079     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
2080     // For the 64 bit multiply
2081     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2082     if (IsSigned) {
2083       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
2084       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
2085                                       DAG.getConstant(63, DL, MVT::i64));
2086       // It is important that LowerBits is last, otherwise the arithmetic
2087       // shift will not be folded into the compare (SUBS).
2088       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2089       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2090                      .getValue(1);
2091     } else {
2092       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2093       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2094       Overflow =
2095           DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2096                       DAG.getConstant(0, DL, MVT::i64),
2097                       UpperBits).getValue(1);
2098     }
2099     break;
2100   }
2101   } // switch (...)
2102 
2103   if (Opc) {
2104     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2105 
2106     // Emit the AArch64 operation with overflow check.
2107     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2108     Overflow = Value.getValue(1);
2109   }
2110   return std::make_pair(Value, Overflow);
2111 }
2112 
LowerF128Call(SDValue Op,SelectionDAG & DAG,RTLIB::Libcall Call) const2113 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2114                                              RTLIB::Libcall Call) const {
2115   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2116   return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
2117 }
2118 
2119 // Returns true if the given Op is the overflow flag result of an overflow
2120 // intrinsic operation.
isOverflowIntrOpRes(SDValue Op)2121 static bool isOverflowIntrOpRes(SDValue Op) {
2122   unsigned Opc = Op.getOpcode();
2123   return (Op.getResNo() == 1 &&
2124           (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2125            Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2126 }
2127 
LowerXOR(SDValue Op,SelectionDAG & DAG)2128 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2129   SDValue Sel = Op.getOperand(0);
2130   SDValue Other = Op.getOperand(1);
2131   SDLoc dl(Sel);
2132 
2133   // If the operand is an overflow checking operation, invert the condition
2134   // code and kill the Not operation. I.e., transform:
2135   // (xor (overflow_op_bool, 1))
2136   //   -->
2137   // (csel 1, 0, invert(cc), overflow_op_bool)
2138   // ... which later gets transformed to just a cset instruction with an
2139   // inverted condition code, rather than a cset + eor sequence.
2140   if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2141     // Only lower legal XALUO ops.
2142     if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2143       return SDValue();
2144 
2145     SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2146     SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2147     AArch64CC::CondCode CC;
2148     SDValue Value, Overflow;
2149     std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2150     SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2151     return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2152                        CCVal, Overflow);
2153   }
2154   // If neither operand is a SELECT_CC, give up.
2155   if (Sel.getOpcode() != ISD::SELECT_CC)
2156     std::swap(Sel, Other);
2157   if (Sel.getOpcode() != ISD::SELECT_CC)
2158     return Op;
2159 
2160   // The folding we want to perform is:
2161   // (xor x, (select_cc a, b, cc, 0, -1) )
2162   //   -->
2163   // (csel x, (xor x, -1), cc ...)
2164   //
2165   // The latter will get matched to a CSINV instruction.
2166 
2167   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2168   SDValue LHS = Sel.getOperand(0);
2169   SDValue RHS = Sel.getOperand(1);
2170   SDValue TVal = Sel.getOperand(2);
2171   SDValue FVal = Sel.getOperand(3);
2172 
2173   // FIXME: This could be generalized to non-integer comparisons.
2174   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2175     return Op;
2176 
2177   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2178   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2179 
2180   // The values aren't constants, this isn't the pattern we're looking for.
2181   if (!CFVal || !CTVal)
2182     return Op;
2183 
2184   // We can commute the SELECT_CC by inverting the condition.  This
2185   // might be needed to make this fit into a CSINV pattern.
2186   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2187     std::swap(TVal, FVal);
2188     std::swap(CTVal, CFVal);
2189     CC = ISD::getSetCCInverse(CC, true);
2190   }
2191 
2192   // If the constants line up, perform the transform!
2193   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2194     SDValue CCVal;
2195     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2196 
2197     FVal = Other;
2198     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2199                        DAG.getConstant(-1ULL, dl, Other.getValueType()));
2200 
2201     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2202                        CCVal, Cmp);
2203   }
2204 
2205   return Op;
2206 }
2207 
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)2208 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2209   EVT VT = Op.getValueType();
2210 
2211   // Let legalize expand this if it isn't a legal type yet.
2212   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2213     return SDValue();
2214 
2215   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2216 
2217   unsigned Opc;
2218   bool ExtraOp = false;
2219   switch (Op.getOpcode()) {
2220   default:
2221     llvm_unreachable("Invalid code");
2222   case ISD::ADDC:
2223     Opc = AArch64ISD::ADDS;
2224     break;
2225   case ISD::SUBC:
2226     Opc = AArch64ISD::SUBS;
2227     break;
2228   case ISD::ADDE:
2229     Opc = AArch64ISD::ADCS;
2230     ExtraOp = true;
2231     break;
2232   case ISD::SUBE:
2233     Opc = AArch64ISD::SBCS;
2234     ExtraOp = true;
2235     break;
2236   }
2237 
2238   if (!ExtraOp)
2239     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2240   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2241                      Op.getOperand(2));
2242 }
2243 
LowerXALUO(SDValue Op,SelectionDAG & DAG)2244 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2245   // Let legalize expand this if it isn't a legal type yet.
2246   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2247     return SDValue();
2248 
2249   SDLoc dl(Op);
2250   AArch64CC::CondCode CC;
2251   // The actual operation that sets the overflow or carry flag.
2252   SDValue Value, Overflow;
2253   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2254 
2255   // We use 0 and 1 as false and true values.
2256   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2257   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2258 
2259   // We use an inverted condition, because the conditional select is inverted
2260   // too. This will allow it to be selected to a single instruction:
2261   // CSINC Wd, WZR, WZR, invert(cond).
2262   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2263   Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2264                          CCVal, Overflow);
2265 
2266   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2267   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2268 }
2269 
2270 // Prefetch operands are:
2271 // 1: Address to prefetch
2272 // 2: bool isWrite
2273 // 3: int locality (0 = no locality ... 3 = extreme locality)
2274 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)2275 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2276   SDLoc DL(Op);
2277   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2278   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2279   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2280 
2281   bool IsStream = !Locality;
2282   // When the locality number is set
2283   if (Locality) {
2284     // The front-end should have filtered out the out-of-range values
2285     assert(Locality <= 3 && "Prefetch locality out-of-range");
2286     // The locality degree is the opposite of the cache speed.
2287     // Put the number the other way around.
2288     // The encoding starts at 0 for level 1
2289     Locality = 3 - Locality;
2290   }
2291 
2292   // built the mask value encoding the expected behavior.
2293   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
2294                    (!IsData << 3) |     // IsDataCache bit
2295                    (Locality << 1) |    // Cache level bits
2296                    (unsigned)IsStream;  // Stream bit
2297   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2298                      DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2299 }
2300 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const2301 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2302                                               SelectionDAG &DAG) const {
2303   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2304 
2305   RTLIB::Libcall LC;
2306   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2307 
2308   return LowerF128Call(Op, DAG, LC);
2309 }
2310 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const2311 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2312                                              SelectionDAG &DAG) const {
2313   if (Op.getOperand(0).getValueType() != MVT::f128) {
2314     // It's legal except when f128 is involved
2315     return Op;
2316   }
2317 
2318   RTLIB::Libcall LC;
2319   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2320 
2321   // FP_ROUND node has a second operand indicating whether it is known to be
2322   // precise. That doesn't take part in the LibCall so we can't directly use
2323   // LowerF128Call.
2324   SDValue SrcVal = Op.getOperand(0);
2325   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
2326                      SDLoc(Op)).first;
2327 }
2328 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)2329 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2330   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2331   // Any additional optimization in this function should be recorded
2332   // in the cost tables.
2333   EVT InVT = Op.getOperand(0).getValueType();
2334   EVT VT = Op.getValueType();
2335   unsigned NumElts = InVT.getVectorNumElements();
2336 
2337   // f16 vectors are promoted to f32 before a conversion.
2338   if (InVT.getVectorElementType() == MVT::f16) {
2339     MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2340     SDLoc dl(Op);
2341     return DAG.getNode(
2342         Op.getOpcode(), dl, Op.getValueType(),
2343         DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2344   }
2345 
2346   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2347     SDLoc dl(Op);
2348     SDValue Cv =
2349         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2350                     Op.getOperand(0));
2351     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2352   }
2353 
2354   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2355     SDLoc dl(Op);
2356     MVT ExtVT =
2357         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2358                          VT.getVectorNumElements());
2359     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2360     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2361   }
2362 
2363   // Type changing conversions are illegal.
2364   return Op;
2365 }
2366 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const2367 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2368                                               SelectionDAG &DAG) const {
2369   if (Op.getOperand(0).getValueType().isVector())
2370     return LowerVectorFP_TO_INT(Op, DAG);
2371 
2372   // f16 conversions are promoted to f32 when full fp16 is not supported.
2373   if (Op.getOperand(0).getValueType() == MVT::f16 &&
2374       !Subtarget->hasFullFP16()) {
2375     SDLoc dl(Op);
2376     return DAG.getNode(
2377         Op.getOpcode(), dl, Op.getValueType(),
2378         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2379   }
2380 
2381   if (Op.getOperand(0).getValueType() != MVT::f128) {
2382     // It's legal except when f128 is involved
2383     return Op;
2384   }
2385 
2386   RTLIB::Libcall LC;
2387   if (Op.getOpcode() == ISD::FP_TO_SINT)
2388     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2389   else
2390     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2391 
2392   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2393   return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
2394 }
2395 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)2396 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2397   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2398   // Any additional optimization in this function should be recorded
2399   // in the cost tables.
2400   EVT VT = Op.getValueType();
2401   SDLoc dl(Op);
2402   SDValue In = Op.getOperand(0);
2403   EVT InVT = In.getValueType();
2404 
2405   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2406     MVT CastVT =
2407         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2408                          InVT.getVectorNumElements());
2409     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2410     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2411   }
2412 
2413   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2414     unsigned CastOpc =
2415         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2416     EVT CastVT = VT.changeVectorElementTypeToInteger();
2417     In = DAG.getNode(CastOpc, dl, CastVT, In);
2418     return DAG.getNode(Op.getOpcode(), dl, VT, In);
2419   }
2420 
2421   return Op;
2422 }
2423 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2424 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2425                                             SelectionDAG &DAG) const {
2426   if (Op.getValueType().isVector())
2427     return LowerVectorINT_TO_FP(Op, DAG);
2428 
2429   // f16 conversions are promoted to f32 when full fp16 is not supported.
2430   if (Op.getValueType() == MVT::f16 &&
2431       !Subtarget->hasFullFP16()) {
2432     SDLoc dl(Op);
2433     return DAG.getNode(
2434         ISD::FP_ROUND, dl, MVT::f16,
2435         DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2436         DAG.getIntPtrConstant(0, dl));
2437   }
2438 
2439   // i128 conversions are libcalls.
2440   if (Op.getOperand(0).getValueType() == MVT::i128)
2441     return SDValue();
2442 
2443   // Other conversions are legal, unless it's to the completely software-based
2444   // fp128.
2445   if (Op.getValueType() != MVT::f128)
2446     return Op;
2447 
2448   RTLIB::Libcall LC;
2449   if (Op.getOpcode() == ISD::SINT_TO_FP)
2450     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2451   else
2452     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2453 
2454   return LowerF128Call(Op, DAG, LC);
2455 }
2456 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const2457 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2458                                             SelectionDAG &DAG) const {
2459   // For iOS, we want to call an alternative entry point: __sincos_stret,
2460   // which returns the values in two S / D registers.
2461   SDLoc dl(Op);
2462   SDValue Arg = Op.getOperand(0);
2463   EVT ArgVT = Arg.getValueType();
2464   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2465 
2466   ArgListTy Args;
2467   ArgListEntry Entry;
2468 
2469   Entry.Node = Arg;
2470   Entry.Ty = ArgTy;
2471   Entry.IsSExt = false;
2472   Entry.IsZExt = false;
2473   Args.push_back(Entry);
2474 
2475   RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2476                                         : RTLIB::SINCOS_STRET_F32;
2477   const char *LibcallName = getLibcallName(LC);
2478   SDValue Callee =
2479       DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2480 
2481   StructType *RetTy = StructType::get(ArgTy, ArgTy);
2482   TargetLowering::CallLoweringInfo CLI(DAG);
2483   CLI.setDebugLoc(dl)
2484       .setChain(DAG.getEntryNode())
2485       .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2486 
2487   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2488   return CallResult.first;
2489 }
2490 
LowerBITCAST(SDValue Op,SelectionDAG & DAG)2491 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2492   if (Op.getValueType() != MVT::f16)
2493     return SDValue();
2494 
2495   assert(Op.getOperand(0).getValueType() == MVT::i16);
2496   SDLoc DL(Op);
2497 
2498   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2499   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2500   return SDValue(
2501       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2502                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2503       0);
2504 }
2505 
getExtensionTo64Bits(const EVT & OrigVT)2506 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2507   if (OrigVT.getSizeInBits() >= 64)
2508     return OrigVT;
2509 
2510   assert(OrigVT.isSimple() && "Expecting a simple value type");
2511 
2512   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2513   switch (OrigSimpleTy) {
2514   default: llvm_unreachable("Unexpected Vector Type");
2515   case MVT::v2i8:
2516   case MVT::v2i16:
2517      return MVT::v2i32;
2518   case MVT::v4i8:
2519     return  MVT::v4i16;
2520   }
2521 }
2522 
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)2523 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2524                                                  const EVT &OrigTy,
2525                                                  const EVT &ExtTy,
2526                                                  unsigned ExtOpcode) {
2527   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2528   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2529   // 64-bits we need to insert a new extension so that it will be 64-bits.
2530   assert(ExtTy.is128BitVector() && "Unexpected extension size");
2531   if (OrigTy.getSizeInBits() >= 64)
2532     return N;
2533 
2534   // Must extend size to at least 64 bits to be used as an operand for VMULL.
2535   EVT NewVT = getExtensionTo64Bits(OrigTy);
2536 
2537   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2538 }
2539 
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)2540 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2541                                    bool isSigned) {
2542   EVT VT = N->getValueType(0);
2543 
2544   if (N->getOpcode() != ISD::BUILD_VECTOR)
2545     return false;
2546 
2547   for (const SDValue &Elt : N->op_values()) {
2548     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2549       unsigned EltSize = VT.getScalarSizeInBits();
2550       unsigned HalfSize = EltSize / 2;
2551       if (isSigned) {
2552         if (!isIntN(HalfSize, C->getSExtValue()))
2553           return false;
2554       } else {
2555         if (!isUIntN(HalfSize, C->getZExtValue()))
2556           return false;
2557       }
2558       continue;
2559     }
2560     return false;
2561   }
2562 
2563   return true;
2564 }
2565 
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)2566 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2567   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2568     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2569                                              N->getOperand(0)->getValueType(0),
2570                                              N->getValueType(0),
2571                                              N->getOpcode());
2572 
2573   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2574   EVT VT = N->getValueType(0);
2575   SDLoc dl(N);
2576   unsigned EltSize = VT.getScalarSizeInBits() / 2;
2577   unsigned NumElts = VT.getVectorNumElements();
2578   MVT TruncVT = MVT::getIntegerVT(EltSize);
2579   SmallVector<SDValue, 8> Ops;
2580   for (unsigned i = 0; i != NumElts; ++i) {
2581     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2582     const APInt &CInt = C->getAPIntValue();
2583     // Element types smaller than 32 bits are not legal, so use i32 elements.
2584     // The values are implicitly truncated so sext vs. zext doesn't matter.
2585     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2586   }
2587   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2588 }
2589 
isSignExtended(SDNode * N,SelectionDAG & DAG)2590 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2591   return N->getOpcode() == ISD::SIGN_EXTEND ||
2592          isExtendedBUILD_VECTOR(N, DAG, true);
2593 }
2594 
isZeroExtended(SDNode * N,SelectionDAG & DAG)2595 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2596   return N->getOpcode() == ISD::ZERO_EXTEND ||
2597          isExtendedBUILD_VECTOR(N, DAG, false);
2598 }
2599 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)2600 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2601   unsigned Opcode = N->getOpcode();
2602   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2603     SDNode *N0 = N->getOperand(0).getNode();
2604     SDNode *N1 = N->getOperand(1).getNode();
2605     return N0->hasOneUse() && N1->hasOneUse() &&
2606       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2607   }
2608   return false;
2609 }
2610 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)2611 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2612   unsigned Opcode = N->getOpcode();
2613   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2614     SDNode *N0 = N->getOperand(0).getNode();
2615     SDNode *N1 = N->getOperand(1).getNode();
2616     return N0->hasOneUse() && N1->hasOneUse() &&
2617       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2618   }
2619   return false;
2620 }
2621 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const2622 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2623                                                 SelectionDAG &DAG) const {
2624   // The rounding mode is in bits 23:22 of the FPSCR.
2625   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2626   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2627   // so that the shift + and get folded into a bitfield extract.
2628   SDLoc dl(Op);
2629 
2630   SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2631                                 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2632                                                 MVT::i64));
2633   SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2634   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2635                                   DAG.getConstant(1U << 22, dl, MVT::i32));
2636   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2637                               DAG.getConstant(22, dl, MVT::i32));
2638   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2639                      DAG.getConstant(3, dl, MVT::i32));
2640 }
2641 
LowerMUL(SDValue Op,SelectionDAG & DAG)2642 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2643   // Multiplications are only custom-lowered for 128-bit vectors so that
2644   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
2645   EVT VT = Op.getValueType();
2646   assert(VT.is128BitVector() && VT.isInteger() &&
2647          "unexpected type for custom-lowering ISD::MUL");
2648   SDNode *N0 = Op.getOperand(0).getNode();
2649   SDNode *N1 = Op.getOperand(1).getNode();
2650   unsigned NewOpc = 0;
2651   bool isMLA = false;
2652   bool isN0SExt = isSignExtended(N0, DAG);
2653   bool isN1SExt = isSignExtended(N1, DAG);
2654   if (isN0SExt && isN1SExt)
2655     NewOpc = AArch64ISD::SMULL;
2656   else {
2657     bool isN0ZExt = isZeroExtended(N0, DAG);
2658     bool isN1ZExt = isZeroExtended(N1, DAG);
2659     if (isN0ZExt && isN1ZExt)
2660       NewOpc = AArch64ISD::UMULL;
2661     else if (isN1SExt || isN1ZExt) {
2662       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2663       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2664       if (isN1SExt && isAddSubSExt(N0, DAG)) {
2665         NewOpc = AArch64ISD::SMULL;
2666         isMLA = true;
2667       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2668         NewOpc =  AArch64ISD::UMULL;
2669         isMLA = true;
2670       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2671         std::swap(N0, N1);
2672         NewOpc =  AArch64ISD::UMULL;
2673         isMLA = true;
2674       }
2675     }
2676 
2677     if (!NewOpc) {
2678       if (VT == MVT::v2i64)
2679         // Fall through to expand this.  It is not legal.
2680         return SDValue();
2681       else
2682         // Other vector multiplications are legal.
2683         return Op;
2684     }
2685   }
2686 
2687   // Legalize to a S/UMULL instruction
2688   SDLoc DL(Op);
2689   SDValue Op0;
2690   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2691   if (!isMLA) {
2692     Op0 = skipExtensionForVectorMULL(N0, DAG);
2693     assert(Op0.getValueType().is64BitVector() &&
2694            Op1.getValueType().is64BitVector() &&
2695            "unexpected types for extended operands to VMULL");
2696     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2697   }
2698   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2699   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2700   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2701   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2702   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2703   EVT Op1VT = Op1.getValueType();
2704   return DAG.getNode(N0->getOpcode(), DL, VT,
2705                      DAG.getNode(NewOpc, DL, VT,
2706                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2707                      DAG.getNode(NewOpc, DL, VT,
2708                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2709 }
2710 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const2711 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2712                                                      SelectionDAG &DAG) const {
2713   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2714   SDLoc dl(Op);
2715   switch (IntNo) {
2716   default: return SDValue();    // Don't custom lower most intrinsics.
2717   case Intrinsic::thread_pointer: {
2718     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2719     return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2720   }
2721   case Intrinsic::aarch64_neon_abs: {
2722     EVT Ty = Op.getValueType();
2723     if (Ty == MVT::i64) {
2724       SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
2725                                    Op.getOperand(1));
2726       Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
2727       return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
2728     } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
2729       return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
2730     } else {
2731       report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2732     }
2733   }
2734   case Intrinsic::aarch64_neon_smax:
2735     return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2736                        Op.getOperand(1), Op.getOperand(2));
2737   case Intrinsic::aarch64_neon_umax:
2738     return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2739                        Op.getOperand(1), Op.getOperand(2));
2740   case Intrinsic::aarch64_neon_smin:
2741     return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2742                        Op.getOperand(1), Op.getOperand(2));
2743   case Intrinsic::aarch64_neon_umin:
2744     return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2745                        Op.getOperand(1), Op.getOperand(2));
2746 
2747   case Intrinsic::localaddress: {
2748     // Returns one of the stack, base, or frame pointer registers, depending on
2749     // which is used to reference local variables.
2750     MachineFunction &MF = DAG.getMachineFunction();
2751     const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2752     unsigned Reg;
2753     if (RegInfo->hasBasePointer(MF))
2754       Reg = RegInfo->getBaseRegister();
2755     else // This function handles the SP or FP case.
2756       Reg = RegInfo->getFrameRegister(MF);
2757     return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
2758                               Op.getSimpleValueType());
2759   }
2760 
2761   case Intrinsic::eh_recoverfp: {
2762     // FIXME: This needs to be implemented to correctly handle highly aligned
2763     // stack objects. For now we simply return the incoming FP. Refer D53541
2764     // for more details.
2765     SDValue FnOp = Op.getOperand(1);
2766     SDValue IncomingFPOp = Op.getOperand(2);
2767     GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
2768     auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
2769     if (!Fn)
2770       report_fatal_error(
2771           "llvm.eh.recoverfp must take a function as the first argument");
2772     return IncomingFPOp;
2773   }
2774   }
2775 }
2776 
2777 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
LowerTruncateVectorStore(SDLoc DL,StoreSDNode * ST,EVT VT,EVT MemVT,SelectionDAG & DAG)2778 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
2779                                         EVT VT, EVT MemVT,
2780                                         SelectionDAG &DAG) {
2781   assert(VT.isVector() && "VT should be a vector type");
2782   assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
2783 
2784   SDValue Value = ST->getValue();
2785 
2786   // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2787   // the word lane which represent the v4i8 subvector.  It optimizes the store
2788   // to:
2789   //
2790   //   xtn  v0.8b, v0.8h
2791   //   str  s0, [x0]
2792 
2793   SDValue Undef = DAG.getUNDEF(MVT::i16);
2794   SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
2795                                         {Undef, Undef, Undef, Undef});
2796 
2797   SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
2798                                  Value, UndefVec);
2799   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
2800 
2801   Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
2802   SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
2803                                      Trunc, DAG.getConstant(0, DL, MVT::i64));
2804 
2805   return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
2806                       ST->getBasePtr(), ST->getMemOperand());
2807 }
2808 
2809 // Custom lowering for any store, vector or scalar and/or default or with
2810 // a truncate operations.  Currently only custom lower truncate operation
2811 // from vector v4i16 to v4i8.
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2812 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
2813                                           SelectionDAG &DAG) const {
2814   SDLoc Dl(Op);
2815   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
2816   assert (StoreNode && "Can only custom lower store nodes");
2817 
2818   SDValue Value = StoreNode->getValue();
2819 
2820   EVT VT = Value.getValueType();
2821   EVT MemVT = StoreNode->getMemoryVT();
2822 
2823   assert (VT.isVector() && "Can only custom lower vector store types");
2824 
2825   unsigned AS = StoreNode->getAddressSpace();
2826   unsigned Align = StoreNode->getAlignment();
2827   if (Align < MemVT.getStoreSize() &&
2828       !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
2829     return scalarizeVectorStore(StoreNode, DAG);
2830   }
2831 
2832   if (StoreNode->isTruncatingStore()) {
2833     return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
2834   }
2835 
2836   return SDValue();
2837 }
2838 
LowerOperation(SDValue Op,SelectionDAG & DAG) const2839 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2840                                               SelectionDAG &DAG) const {
2841   LLVM_DEBUG(dbgs() << "Custom lowering: ");
2842   LLVM_DEBUG(Op.dump());
2843 
2844   switch (Op.getOpcode()) {
2845   default:
2846     llvm_unreachable("unimplemented operand");
2847     return SDValue();
2848   case ISD::BITCAST:
2849     return LowerBITCAST(Op, DAG);
2850   case ISD::GlobalAddress:
2851     return LowerGlobalAddress(Op, DAG);
2852   case ISD::GlobalTLSAddress:
2853     return LowerGlobalTLSAddress(Op, DAG);
2854   case ISD::SETCC:
2855     return LowerSETCC(Op, DAG);
2856   case ISD::BR_CC:
2857     return LowerBR_CC(Op, DAG);
2858   case ISD::SELECT:
2859     return LowerSELECT(Op, DAG);
2860   case ISD::SELECT_CC:
2861     return LowerSELECT_CC(Op, DAG);
2862   case ISD::JumpTable:
2863     return LowerJumpTable(Op, DAG);
2864   case ISD::BR_JT:
2865     return LowerBR_JT(Op, DAG);
2866   case ISD::ConstantPool:
2867     return LowerConstantPool(Op, DAG);
2868   case ISD::BlockAddress:
2869     return LowerBlockAddress(Op, DAG);
2870   case ISD::VASTART:
2871     return LowerVASTART(Op, DAG);
2872   case ISD::VACOPY:
2873     return LowerVACOPY(Op, DAG);
2874   case ISD::VAARG:
2875     return LowerVAARG(Op, DAG);
2876   case ISD::ADDC:
2877   case ISD::ADDE:
2878   case ISD::SUBC:
2879   case ISD::SUBE:
2880     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2881   case ISD::SADDO:
2882   case ISD::UADDO:
2883   case ISD::SSUBO:
2884   case ISD::USUBO:
2885   case ISD::SMULO:
2886   case ISD::UMULO:
2887     return LowerXALUO(Op, DAG);
2888   case ISD::FADD:
2889     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2890   case ISD::FSUB:
2891     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2892   case ISD::FMUL:
2893     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2894   case ISD::FDIV:
2895     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2896   case ISD::FP_ROUND:
2897     return LowerFP_ROUND(Op, DAG);
2898   case ISD::FP_EXTEND:
2899     return LowerFP_EXTEND(Op, DAG);
2900   case ISD::FRAMEADDR:
2901     return LowerFRAMEADDR(Op, DAG);
2902   case ISD::SPONENTRY:
2903     return LowerSPONENTRY(Op, DAG);
2904   case ISD::RETURNADDR:
2905     return LowerRETURNADDR(Op, DAG);
2906   case ISD::ADDROFRETURNADDR:
2907     return LowerADDROFRETURNADDR(Op, DAG);
2908   case ISD::INSERT_VECTOR_ELT:
2909     return LowerINSERT_VECTOR_ELT(Op, DAG);
2910   case ISD::EXTRACT_VECTOR_ELT:
2911     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2912   case ISD::BUILD_VECTOR:
2913     return LowerBUILD_VECTOR(Op, DAG);
2914   case ISD::VECTOR_SHUFFLE:
2915     return LowerVECTOR_SHUFFLE(Op, DAG);
2916   case ISD::EXTRACT_SUBVECTOR:
2917     return LowerEXTRACT_SUBVECTOR(Op, DAG);
2918   case ISD::SRA:
2919   case ISD::SRL:
2920   case ISD::SHL:
2921     return LowerVectorSRA_SRL_SHL(Op, DAG);
2922   case ISD::SHL_PARTS:
2923     return LowerShiftLeftParts(Op, DAG);
2924   case ISD::SRL_PARTS:
2925   case ISD::SRA_PARTS:
2926     return LowerShiftRightParts(Op, DAG);
2927   case ISD::CTPOP:
2928     return LowerCTPOP(Op, DAG);
2929   case ISD::FCOPYSIGN:
2930     return LowerFCOPYSIGN(Op, DAG);
2931   case ISD::AND:
2932     return LowerVectorAND(Op, DAG);
2933   case ISD::OR:
2934     return LowerVectorOR(Op, DAG);
2935   case ISD::XOR:
2936     return LowerXOR(Op, DAG);
2937   case ISD::PREFETCH:
2938     return LowerPREFETCH(Op, DAG);
2939   case ISD::SINT_TO_FP:
2940   case ISD::UINT_TO_FP:
2941     return LowerINT_TO_FP(Op, DAG);
2942   case ISD::FP_TO_SINT:
2943   case ISD::FP_TO_UINT:
2944     return LowerFP_TO_INT(Op, DAG);
2945   case ISD::FSINCOS:
2946     return LowerFSINCOS(Op, DAG);
2947   case ISD::FLT_ROUNDS_:
2948     return LowerFLT_ROUNDS_(Op, DAG);
2949   case ISD::MUL:
2950     return LowerMUL(Op, DAG);
2951   case ISD::INTRINSIC_WO_CHAIN:
2952     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2953   case ISD::STORE:
2954     return LowerSTORE(Op, DAG);
2955   case ISD::VECREDUCE_ADD:
2956   case ISD::VECREDUCE_SMAX:
2957   case ISD::VECREDUCE_SMIN:
2958   case ISD::VECREDUCE_UMAX:
2959   case ISD::VECREDUCE_UMIN:
2960   case ISD::VECREDUCE_FMAX:
2961   case ISD::VECREDUCE_FMIN:
2962     return LowerVECREDUCE(Op, DAG);
2963   case ISD::ATOMIC_LOAD_SUB:
2964     return LowerATOMIC_LOAD_SUB(Op, DAG);
2965   case ISD::ATOMIC_LOAD_AND:
2966     return LowerATOMIC_LOAD_AND(Op, DAG);
2967   case ISD::DYNAMIC_STACKALLOC:
2968     return LowerDYNAMIC_STACKALLOC(Op, DAG);
2969   }
2970 }
2971 
2972 //===----------------------------------------------------------------------===//
2973 //                      Calling Convention Implementation
2974 //===----------------------------------------------------------------------===//
2975 
2976 #include "AArch64GenCallingConv.inc"
2977 
2978 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const2979 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2980                                                      bool IsVarArg) const {
2981   switch (CC) {
2982   default:
2983     report_fatal_error("Unsupported calling convention.");
2984   case CallingConv::WebKit_JS:
2985     return CC_AArch64_WebKit_JS;
2986   case CallingConv::GHC:
2987     return CC_AArch64_GHC;
2988   case CallingConv::C:
2989   case CallingConv::Fast:
2990   case CallingConv::PreserveMost:
2991   case CallingConv::CXX_FAST_TLS:
2992   case CallingConv::Swift:
2993     if (Subtarget->isTargetWindows() && IsVarArg)
2994       return CC_AArch64_Win64_VarArg;
2995     if (!Subtarget->isTargetDarwin())
2996       return CC_AArch64_AAPCS;
2997     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2998   case CallingConv::Win64:
2999     return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
3000   case CallingConv::AArch64_VectorCall:
3001     return CC_AArch64_AAPCS;
3002   }
3003 }
3004 
3005 CCAssignFn *
CCAssignFnForReturn(CallingConv::ID CC) const3006 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
3007   return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3008                                       : RetCC_AArch64_AAPCS;
3009 }
3010 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3011 SDValue AArch64TargetLowering::LowerFormalArguments(
3012     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3013     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3014     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3015   MachineFunction &MF = DAG.getMachineFunction();
3016   MachineFrameInfo &MFI = MF.getFrameInfo();
3017   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3018 
3019   // Assign locations to all of the incoming arguments.
3020   SmallVector<CCValAssign, 16> ArgLocs;
3021   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3022                  *DAG.getContext());
3023 
3024   // At this point, Ins[].VT may already be promoted to i32. To correctly
3025   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3026   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3027   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3028   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3029   // LocVT.
3030   unsigned NumArgs = Ins.size();
3031   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3032   unsigned CurArgIdx = 0;
3033   for (unsigned i = 0; i != NumArgs; ++i) {
3034     MVT ValVT = Ins[i].VT;
3035     if (Ins[i].isOrigArg()) {
3036       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3037       CurArgIdx = Ins[i].getOrigArgIndex();
3038 
3039       // Get type of the original argument.
3040       EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
3041                                   /*AllowUnknown*/ true);
3042       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
3043       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3044       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3045         ValVT = MVT::i8;
3046       else if (ActualMVT == MVT::i16)
3047         ValVT = MVT::i16;
3048     }
3049     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3050     bool Res =
3051         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
3052     assert(!Res && "Call operand has unhandled type");
3053     (void)Res;
3054   }
3055   assert(ArgLocs.size() == Ins.size());
3056   SmallVector<SDValue, 16> ArgValues;
3057   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3058     CCValAssign &VA = ArgLocs[i];
3059 
3060     if (Ins[i].Flags.isByVal()) {
3061       // Byval is used for HFAs in the PCS, but the system should work in a
3062       // non-compliant manner for larger structs.
3063       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3064       int Size = Ins[i].Flags.getByValSize();
3065       unsigned NumRegs = (Size + 7) / 8;
3066 
3067       // FIXME: This works on big-endian for composite byvals, which are the common
3068       // case. It should also work for fundamental types too.
3069       unsigned FrameIdx =
3070         MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
3071       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3072       InVals.push_back(FrameIdxN);
3073 
3074       continue;
3075     }
3076 
3077     if (VA.isRegLoc()) {
3078       // Arguments stored in registers.
3079       EVT RegVT = VA.getLocVT();
3080 
3081       SDValue ArgValue;
3082       const TargetRegisterClass *RC;
3083 
3084       if (RegVT == MVT::i32)
3085         RC = &AArch64::GPR32RegClass;
3086       else if (RegVT == MVT::i64)
3087         RC = &AArch64::GPR64RegClass;
3088       else if (RegVT == MVT::f16)
3089         RC = &AArch64::FPR16RegClass;
3090       else if (RegVT == MVT::f32)
3091         RC = &AArch64::FPR32RegClass;
3092       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3093         RC = &AArch64::FPR64RegClass;
3094       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3095         RC = &AArch64::FPR128RegClass;
3096       else
3097         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3098 
3099       // Transform the arguments in physical registers into virtual ones.
3100       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3101       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3102 
3103       // If this is an 8, 16 or 32-bit value, it is really passed promoted
3104       // to 64 bits.  Insert an assert[sz]ext to capture this, then
3105       // truncate to the right size.
3106       switch (VA.getLocInfo()) {
3107       default:
3108         llvm_unreachable("Unknown loc info!");
3109       case CCValAssign::Full:
3110         break;
3111       case CCValAssign::BCvt:
3112         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3113         break;
3114       case CCValAssign::AExt:
3115       case CCValAssign::SExt:
3116       case CCValAssign::ZExt:
3117         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
3118         // nodes after our lowering.
3119         assert(RegVT == Ins[i].VT && "incorrect register location selected");
3120         break;
3121       }
3122 
3123       InVals.push_back(ArgValue);
3124 
3125     } else { // VA.isRegLoc()
3126       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3127       unsigned ArgOffset = VA.getLocMemOffset();
3128       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3129 
3130       uint32_t BEAlign = 0;
3131       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3132           !Ins[i].Flags.isInConsecutiveRegs())
3133         BEAlign = 8 - ArgSize;
3134 
3135       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3136 
3137       // Create load nodes to retrieve arguments from the stack.
3138       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3139       SDValue ArgValue;
3140 
3141       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3142       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3143       MVT MemVT = VA.getValVT();
3144 
3145       switch (VA.getLocInfo()) {
3146       default:
3147         break;
3148       case CCValAssign::BCvt:
3149         MemVT = VA.getLocVT();
3150         break;
3151       case CCValAssign::SExt:
3152         ExtType = ISD::SEXTLOAD;
3153         break;
3154       case CCValAssign::ZExt:
3155         ExtType = ISD::ZEXTLOAD;
3156         break;
3157       case CCValAssign::AExt:
3158         ExtType = ISD::EXTLOAD;
3159         break;
3160       }
3161 
3162       ArgValue = DAG.getExtLoad(
3163           ExtType, DL, VA.getLocVT(), Chain, FIN,
3164           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3165           MemVT);
3166 
3167       InVals.push_back(ArgValue);
3168     }
3169   }
3170 
3171   // varargs
3172   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3173   if (isVarArg) {
3174     if (!Subtarget->isTargetDarwin() || IsWin64) {
3175       // The AAPCS variadic function ABI is identical to the non-variadic
3176       // one. As a result there may be more arguments in registers and we should
3177       // save them for future reference.
3178       // Win64 variadic functions also pass arguments in registers, but all float
3179       // arguments are passed in integer registers.
3180       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3181     }
3182 
3183     // This will point to the next argument passed via stack.
3184     unsigned StackOffset = CCInfo.getNextStackOffset();
3185     // We currently pass all varargs at 8-byte alignment.
3186     StackOffset = ((StackOffset + 7) & ~7);
3187     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3188 
3189     if (MFI.hasMustTailInVarArgFunc()) {
3190       SmallVector<MVT, 2> RegParmTypes;
3191       RegParmTypes.push_back(MVT::i64);
3192       RegParmTypes.push_back(MVT::f128);
3193       // Compute the set of forwarded registers. The rest are scratch.
3194       SmallVectorImpl<ForwardedRegister> &Forwards =
3195                                        FuncInfo->getForwardedMustTailRegParms();
3196       CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
3197                                                CC_AArch64_AAPCS);
3198     }
3199   }
3200 
3201   unsigned StackArgSize = CCInfo.getNextStackOffset();
3202   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3203   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3204     // This is a non-standard ABI so by fiat I say we're allowed to make full
3205     // use of the stack area to be popped, which must be aligned to 16 bytes in
3206     // any case:
3207     StackArgSize = alignTo(StackArgSize, 16);
3208 
3209     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3210     // a multiple of 16.
3211     FuncInfo->setArgumentStackToRestore(StackArgSize);
3212 
3213     // This realignment carries over to the available bytes below. Our own
3214     // callers will guarantee the space is free by giving an aligned value to
3215     // CALLSEQ_START.
3216   }
3217   // Even if we're not expected to free up the space, it's useful to know how
3218   // much is there while considering tail calls (because we can reuse it).
3219   FuncInfo->setBytesInStackArgArea(StackArgSize);
3220 
3221   if (Subtarget->hasCustomCallingConv())
3222     Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
3223 
3224   return Chain;
3225 }
3226 
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain) const3227 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3228                                                 SelectionDAG &DAG,
3229                                                 const SDLoc &DL,
3230                                                 SDValue &Chain) const {
3231   MachineFunction &MF = DAG.getMachineFunction();
3232   MachineFrameInfo &MFI = MF.getFrameInfo();
3233   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3234   auto PtrVT = getPointerTy(DAG.getDataLayout());
3235   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3236 
3237   SmallVector<SDValue, 8> MemOps;
3238 
3239   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3240                                           AArch64::X3, AArch64::X4, AArch64::X5,
3241                                           AArch64::X6, AArch64::X7 };
3242   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3243   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3244 
3245   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3246   int GPRIdx = 0;
3247   if (GPRSaveSize != 0) {
3248     if (IsWin64) {
3249       GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3250       if (GPRSaveSize & 15)
3251         // The extra size here, if triggered, will always be 8.
3252         MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3253     } else
3254       GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3255 
3256     SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3257 
3258     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3259       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3260       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3261       SDValue Store = DAG.getStore(
3262           Val.getValue(1), DL, Val, FIN,
3263           IsWin64
3264               ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3265                                                   GPRIdx,
3266                                                   (i - FirstVariadicGPR) * 8)
3267               : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3268       MemOps.push_back(Store);
3269       FIN =
3270           DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3271     }
3272   }
3273   FuncInfo->setVarArgsGPRIndex(GPRIdx);
3274   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3275 
3276   if (Subtarget->hasFPARMv8() && !IsWin64) {
3277     static const MCPhysReg FPRArgRegs[] = {
3278         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3279         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3280     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3281     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3282 
3283     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3284     int FPRIdx = 0;
3285     if (FPRSaveSize != 0) {
3286       FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3287 
3288       SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3289 
3290       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3291         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3292         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3293 
3294         SDValue Store = DAG.getStore(
3295             Val.getValue(1), DL, Val, FIN,
3296             MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3297         MemOps.push_back(Store);
3298         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3299                           DAG.getConstant(16, DL, PtrVT));
3300       }
3301     }
3302     FuncInfo->setVarArgsFPRIndex(FPRIdx);
3303     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3304   }
3305 
3306   if (!MemOps.empty()) {
3307     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3308   }
3309 }
3310 
3311 /// LowerCallResult - Lower the result values of a call into the
3312 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const3313 SDValue AArch64TargetLowering::LowerCallResult(
3314     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3315     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3316     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3317     SDValue ThisVal) const {
3318   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3319                           ? RetCC_AArch64_WebKit_JS
3320                           : RetCC_AArch64_AAPCS;
3321   // Assign locations to each value returned by this call.
3322   SmallVector<CCValAssign, 16> RVLocs;
3323   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3324                  *DAG.getContext());
3325   CCInfo.AnalyzeCallResult(Ins, RetCC);
3326 
3327   // Copy all of the result registers out of their specified physreg.
3328   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3329     CCValAssign VA = RVLocs[i];
3330 
3331     // Pass 'this' value directly from the argument to return value, to avoid
3332     // reg unit interference
3333     if (i == 0 && isThisReturn) {
3334       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3335              "unexpected return calling convention register assignment");
3336       InVals.push_back(ThisVal);
3337       continue;
3338     }
3339 
3340     SDValue Val =
3341         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3342     Chain = Val.getValue(1);
3343     InFlag = Val.getValue(2);
3344 
3345     switch (VA.getLocInfo()) {
3346     default:
3347       llvm_unreachable("Unknown loc info!");
3348     case CCValAssign::Full:
3349       break;
3350     case CCValAssign::BCvt:
3351       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3352       break;
3353     }
3354 
3355     InVals.push_back(Val);
3356   }
3357 
3358   return Chain;
3359 }
3360 
3361 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC)3362 static bool canGuaranteeTCO(CallingConv::ID CC) {
3363   return CC == CallingConv::Fast;
3364 }
3365 
3366 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)3367 static bool mayTailCallThisCC(CallingConv::ID CC) {
3368   switch (CC) {
3369   case CallingConv::C:
3370   case CallingConv::PreserveMost:
3371   case CallingConv::Swift:
3372     return true;
3373   default:
3374     return canGuaranteeTCO(CC);
3375   }
3376 }
3377 
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3378 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3379     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3380     const SmallVectorImpl<ISD::OutputArg> &Outs,
3381     const SmallVectorImpl<SDValue> &OutVals,
3382     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3383   if (!mayTailCallThisCC(CalleeCC))
3384     return false;
3385 
3386   MachineFunction &MF = DAG.getMachineFunction();
3387   const Function &CallerF = MF.getFunction();
3388   CallingConv::ID CallerCC = CallerF.getCallingConv();
3389   bool CCMatch = CallerCC == CalleeCC;
3390 
3391   // Byval parameters hand the function a pointer directly into the stack area
3392   // we want to reuse during a tail call. Working around this *is* possible (see
3393   // X86) but less efficient and uglier in LowerCall.
3394   for (Function::const_arg_iterator i = CallerF.arg_begin(),
3395                                     e = CallerF.arg_end();
3396        i != e; ++i)
3397     if (i->hasByValAttr())
3398       return false;
3399 
3400   if (getTargetMachine().Options.GuaranteedTailCallOpt)
3401     return canGuaranteeTCO(CalleeCC) && CCMatch;
3402 
3403   // Externally-defined functions with weak linkage should not be
3404   // tail-called on AArch64 when the OS does not support dynamic
3405   // pre-emption of symbols, as the AAELF spec requires normal calls
3406   // to undefined weak functions to be replaced with a NOP or jump to the
3407   // next instruction. The behaviour of branch instructions in this
3408   // situation (as used for tail calls) is implementation-defined, so we
3409   // cannot rely on the linker replacing the tail call with a return.
3410   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3411     const GlobalValue *GV = G->getGlobal();
3412     const Triple &TT = getTargetMachine().getTargetTriple();
3413     if (GV->hasExternalWeakLinkage() &&
3414         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3415       return false;
3416   }
3417 
3418   // Now we search for cases where we can use a tail call without changing the
3419   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3420   // concept.
3421 
3422   // I want anyone implementing a new calling convention to think long and hard
3423   // about this assert.
3424   assert((!isVarArg || CalleeCC == CallingConv::C) &&
3425          "Unexpected variadic calling convention");
3426 
3427   LLVMContext &C = *DAG.getContext();
3428   if (isVarArg && !Outs.empty()) {
3429     // At least two cases here: if caller is fastcc then we can't have any
3430     // memory arguments (we'd be expected to clean up the stack afterwards). If
3431     // caller is C then we could potentially use its argument area.
3432 
3433     // FIXME: for now we take the most conservative of these in both cases:
3434     // disallow all variadic memory operands.
3435     SmallVector<CCValAssign, 16> ArgLocs;
3436     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3437 
3438     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3439     for (const CCValAssign &ArgLoc : ArgLocs)
3440       if (!ArgLoc.isRegLoc())
3441         return false;
3442   }
3443 
3444   // Check that the call results are passed in the same way.
3445   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3446                                   CCAssignFnForCall(CalleeCC, isVarArg),
3447                                   CCAssignFnForCall(CallerCC, isVarArg)))
3448     return false;
3449   // The callee has to preserve all registers the caller needs to preserve.
3450   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3451   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3452   if (!CCMatch) {
3453     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3454     if (Subtarget->hasCustomCallingConv()) {
3455       TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
3456       TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
3457     }
3458     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3459       return false;
3460   }
3461 
3462   // Nothing more to check if the callee is taking no arguments
3463   if (Outs.empty())
3464     return true;
3465 
3466   SmallVector<CCValAssign, 16> ArgLocs;
3467   CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3468 
3469   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3470 
3471   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3472 
3473   // If the stack arguments for this call do not fit into our own save area then
3474   // the call cannot be made tail.
3475   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3476     return false;
3477 
3478   const MachineRegisterInfo &MRI = MF.getRegInfo();
3479   if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3480     return false;
3481 
3482   return true;
3483 }
3484 
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo & MFI,int ClobberedFI) const3485 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3486                                                    SelectionDAG &DAG,
3487                                                    MachineFrameInfo &MFI,
3488                                                    int ClobberedFI) const {
3489   SmallVector<SDValue, 8> ArgChains;
3490   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3491   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3492 
3493   // Include the original chain at the beginning of the list. When this is
3494   // used by target LowerCall hooks, this helps legalize find the
3495   // CALLSEQ_BEGIN node.
3496   ArgChains.push_back(Chain);
3497 
3498   // Add a chain value for each stack argument corresponding
3499   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3500                             UE = DAG.getEntryNode().getNode()->use_end();
3501        U != UE; ++U)
3502     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3503       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3504         if (FI->getIndex() < 0) {
3505           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3506           int64_t InLastByte = InFirstByte;
3507           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3508 
3509           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3510               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3511             ArgChains.push_back(SDValue(L, 1));
3512         }
3513 
3514   // Build a tokenfactor for all the chains.
3515   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3516 }
3517 
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const3518 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3519                                                    bool TailCallOpt) const {
3520   return CallCC == CallingConv::Fast && TailCallOpt;
3521 }
3522 
3523 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3524 /// and add input and output parameter nodes.
3525 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const3526 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3527                                  SmallVectorImpl<SDValue> &InVals) const {
3528   SelectionDAG &DAG = CLI.DAG;
3529   SDLoc &DL = CLI.DL;
3530   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3531   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3532   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3533   SDValue Chain = CLI.Chain;
3534   SDValue Callee = CLI.Callee;
3535   bool &IsTailCall = CLI.IsTailCall;
3536   CallingConv::ID CallConv = CLI.CallConv;
3537   bool IsVarArg = CLI.IsVarArg;
3538 
3539   MachineFunction &MF = DAG.getMachineFunction();
3540   bool IsThisReturn = false;
3541 
3542   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3543   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3544   bool IsSibCall = false;
3545 
3546   if (IsTailCall) {
3547     // Check if it's really possible to do a tail call.
3548     IsTailCall = isEligibleForTailCallOptimization(
3549         Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3550     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3551       report_fatal_error("failed to perform tail call elimination on a call "
3552                          "site marked musttail");
3553 
3554     // A sibling call is one where we're under the usual C ABI and not planning
3555     // to change that but can still do a tail call:
3556     if (!TailCallOpt && IsTailCall)
3557       IsSibCall = true;
3558 
3559     if (IsTailCall)
3560       ++NumTailCalls;
3561   }
3562 
3563   // Analyze operands of the call, assigning locations to each operand.
3564   SmallVector<CCValAssign, 16> ArgLocs;
3565   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3566                  *DAG.getContext());
3567 
3568   if (IsVarArg) {
3569     // Handle fixed and variable vector arguments differently.
3570     // Variable vector arguments always go into memory.
3571     unsigned NumArgs = Outs.size();
3572 
3573     for (unsigned i = 0; i != NumArgs; ++i) {
3574       MVT ArgVT = Outs[i].VT;
3575       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3576       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3577                                                /*IsVarArg=*/ !Outs[i].IsFixed);
3578       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3579       assert(!Res && "Call operand has unhandled type");
3580       (void)Res;
3581     }
3582   } else {
3583     // At this point, Outs[].VT may already be promoted to i32. To correctly
3584     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3585     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3586     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3587     // we use a special version of AnalyzeCallOperands to pass in ValVT and
3588     // LocVT.
3589     unsigned NumArgs = Outs.size();
3590     for (unsigned i = 0; i != NumArgs; ++i) {
3591       MVT ValVT = Outs[i].VT;
3592       // Get type of the original argument.
3593       EVT ActualVT = getValueType(DAG.getDataLayout(),
3594                                   CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3595                                   /*AllowUnknown*/ true);
3596       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3597       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3598       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3599       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3600         ValVT = MVT::i8;
3601       else if (ActualMVT == MVT::i16)
3602         ValVT = MVT::i16;
3603 
3604       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3605       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3606       assert(!Res && "Call operand has unhandled type");
3607       (void)Res;
3608     }
3609   }
3610 
3611   // Get a count of how many bytes are to be pushed on the stack.
3612   unsigned NumBytes = CCInfo.getNextStackOffset();
3613 
3614   if (IsSibCall) {
3615     // Since we're not changing the ABI to make this a tail call, the memory
3616     // operands are already available in the caller's incoming argument space.
3617     NumBytes = 0;
3618   }
3619 
3620   // FPDiff is the byte offset of the call's argument area from the callee's.
3621   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3622   // by this amount for a tail call. In a sibling call it must be 0 because the
3623   // caller will deallocate the entire stack and the callee still expects its
3624   // arguments to begin at SP+0. Completely unused for non-tail calls.
3625   int FPDiff = 0;
3626 
3627   if (IsTailCall && !IsSibCall) {
3628     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3629 
3630     // Since callee will pop argument stack as a tail call, we must keep the
3631     // popped size 16-byte aligned.
3632     NumBytes = alignTo(NumBytes, 16);
3633 
3634     // FPDiff will be negative if this tail call requires more space than we
3635     // would automatically have in our incoming argument space. Positive if we
3636     // can actually shrink the stack.
3637     FPDiff = NumReusableBytes - NumBytes;
3638 
3639     // The stack pointer must be 16-byte aligned at all times it's used for a
3640     // memory operation, which in practice means at *all* times and in
3641     // particular across call boundaries. Therefore our own arguments started at
3642     // a 16-byte aligned SP and the delta applied for the tail call should
3643     // satisfy the same constraint.
3644     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3645   }
3646 
3647   // Adjust the stack pointer for the new arguments...
3648   // These operations are automatically eliminated by the prolog/epilog pass
3649   if (!IsSibCall)
3650     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
3651 
3652   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3653                                         getPointerTy(DAG.getDataLayout()));
3654 
3655   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3656   SmallVector<SDValue, 8> MemOpChains;
3657   auto PtrVT = getPointerTy(DAG.getDataLayout());
3658 
3659   if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
3660     const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
3661     for (const auto &F : Forwards) {
3662       SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
3663        RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
3664     }
3665   }
3666 
3667   // Walk the register/memloc assignments, inserting copies/loads.
3668   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3669        ++i, ++realArgIdx) {
3670     CCValAssign &VA = ArgLocs[i];
3671     SDValue Arg = OutVals[realArgIdx];
3672     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3673 
3674     // Promote the value if needed.
3675     switch (VA.getLocInfo()) {
3676     default:
3677       llvm_unreachable("Unknown loc info!");
3678     case CCValAssign::Full:
3679       break;
3680     case CCValAssign::SExt:
3681       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3682       break;
3683     case CCValAssign::ZExt:
3684       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3685       break;
3686     case CCValAssign::AExt:
3687       if (Outs[realArgIdx].ArgVT == MVT::i1) {
3688         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3689         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3690         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3691       }
3692       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3693       break;
3694     case CCValAssign::BCvt:
3695       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3696       break;
3697     case CCValAssign::FPExt:
3698       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3699       break;
3700     }
3701 
3702     if (VA.isRegLoc()) {
3703       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3704           Outs[0].VT == MVT::i64) {
3705         assert(VA.getLocVT() == MVT::i64 &&
3706                "unexpected calling convention register assignment");
3707         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3708                "unexpected use of 'returned'");
3709         IsThisReturn = true;
3710       }
3711       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3712     } else {
3713       assert(VA.isMemLoc());
3714 
3715       SDValue DstAddr;
3716       MachinePointerInfo DstInfo;
3717 
3718       // FIXME: This works on big-endian for composite byvals, which are the
3719       // common case. It should also work for fundamental types too.
3720       uint32_t BEAlign = 0;
3721       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3722                                         : VA.getValVT().getSizeInBits();
3723       OpSize = (OpSize + 7) / 8;
3724       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3725           !Flags.isInConsecutiveRegs()) {
3726         if (OpSize < 8)
3727           BEAlign = 8 - OpSize;
3728       }
3729       unsigned LocMemOffset = VA.getLocMemOffset();
3730       int32_t Offset = LocMemOffset + BEAlign;
3731       SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3732       PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3733 
3734       if (IsTailCall) {
3735         Offset = Offset + FPDiff;
3736         int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
3737 
3738         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3739         DstInfo =
3740             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3741 
3742         // Make sure any stack arguments overlapping with where we're storing
3743         // are loaded before this eventual operation. Otherwise they'll be
3744         // clobbered.
3745         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3746       } else {
3747         SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3748 
3749         DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3750         DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3751                                                LocMemOffset);
3752       }
3753 
3754       if (Outs[i].Flags.isByVal()) {
3755         SDValue SizeNode =
3756             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3757         SDValue Cpy = DAG.getMemcpy(
3758             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3759             /*isVol = */ false, /*AlwaysInline = */ false,
3760             /*isTailCall = */ false,
3761             DstInfo, MachinePointerInfo());
3762 
3763         MemOpChains.push_back(Cpy);
3764       } else {
3765         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3766         // promoted to a legal register type i32, we should truncate Arg back to
3767         // i1/i8/i16.
3768         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3769             VA.getValVT() == MVT::i16)
3770           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3771 
3772         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
3773         MemOpChains.push_back(Store);
3774       }
3775     }
3776   }
3777 
3778   if (!MemOpChains.empty())
3779     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3780 
3781   // Build a sequence of copy-to-reg nodes chained together with token chain
3782   // and flag operands which copy the outgoing args into the appropriate regs.
3783   SDValue InFlag;
3784   for (auto &RegToPass : RegsToPass) {
3785     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3786                              RegToPass.second, InFlag);
3787     InFlag = Chain.getValue(1);
3788   }
3789 
3790   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3791   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3792   // node so that legalize doesn't hack it.
3793   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3794     auto GV = G->getGlobal();
3795     if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
3796         AArch64II::MO_GOT) {
3797       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3798       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3799     } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
3800       assert(Subtarget->isTargetWindows() &&
3801              "Windows is the only supported COFF target");
3802       Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
3803     } else {
3804       const GlobalValue *GV = G->getGlobal();
3805       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3806     }
3807   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3808     if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3809         Subtarget->isTargetMachO()) {
3810       const char *Sym = S->getSymbol();
3811       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3812       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3813     } else {
3814       const char *Sym = S->getSymbol();
3815       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3816     }
3817   }
3818 
3819   // We don't usually want to end the call-sequence here because we would tidy
3820   // the frame up *after* the call, however in the ABI-changing tail-call case
3821   // we've carefully laid out the parameters so that when sp is reset they'll be
3822   // in the correct location.
3823   if (IsTailCall && !IsSibCall) {
3824     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3825                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3826     InFlag = Chain.getValue(1);
3827   }
3828 
3829   std::vector<SDValue> Ops;
3830   Ops.push_back(Chain);
3831   Ops.push_back(Callee);
3832 
3833   if (IsTailCall) {
3834     // Each tail call may have to adjust the stack by a different amount, so
3835     // this information must travel along with the operation for eventual
3836     // consumption by emitEpilogue.
3837     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3838   }
3839 
3840   // Add argument registers to the end of the list so that they are known live
3841   // into the call.
3842   for (auto &RegToPass : RegsToPass)
3843     Ops.push_back(DAG.getRegister(RegToPass.first,
3844                                   RegToPass.second.getValueType()));
3845 
3846   // Add a register mask operand representing the call-preserved registers.
3847   const uint32_t *Mask;
3848   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3849   if (IsThisReturn) {
3850     // For 'this' returns, use the X0-preserving mask if applicable
3851     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3852     if (!Mask) {
3853       IsThisReturn = false;
3854       Mask = TRI->getCallPreservedMask(MF, CallConv);
3855     }
3856   } else
3857     Mask = TRI->getCallPreservedMask(MF, CallConv);
3858 
3859   if (Subtarget->hasCustomCallingConv())
3860     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
3861 
3862   if (TRI->isAnyArgRegReserved(MF))
3863     TRI->emitReservedArgRegCallError(MF);
3864 
3865   assert(Mask && "Missing call preserved mask for calling convention");
3866   Ops.push_back(DAG.getRegisterMask(Mask));
3867 
3868   if (InFlag.getNode())
3869     Ops.push_back(InFlag);
3870 
3871   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3872 
3873   // If we're doing a tall call, use a TC_RETURN here rather than an
3874   // actual call instruction.
3875   if (IsTailCall) {
3876     MF.getFrameInfo().setHasTailCall();
3877     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3878   }
3879 
3880   // Returns a chain and a flag for retval copy to use.
3881   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3882   InFlag = Chain.getValue(1);
3883 
3884   uint64_t CalleePopBytes =
3885       DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3886 
3887   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3888                              DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3889                              InFlag, DL);
3890   if (!Ins.empty())
3891     InFlag = Chain.getValue(1);
3892 
3893   // Handle result values, copying them out of physregs into vregs that we
3894   // return.
3895   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3896                          InVals, IsThisReturn,
3897                          IsThisReturn ? OutVals[0] : SDValue());
3898 }
3899 
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3900 bool AArch64TargetLowering::CanLowerReturn(
3901     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3902     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3903   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3904                           ? RetCC_AArch64_WebKit_JS
3905                           : RetCC_AArch64_AAPCS;
3906   SmallVector<CCValAssign, 16> RVLocs;
3907   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3908   return CCInfo.CheckReturn(Outs, RetCC);
3909 }
3910 
3911 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const3912 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3913                                    bool isVarArg,
3914                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3915                                    const SmallVectorImpl<SDValue> &OutVals,
3916                                    const SDLoc &DL, SelectionDAG &DAG) const {
3917   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3918                           ? RetCC_AArch64_WebKit_JS
3919                           : RetCC_AArch64_AAPCS;
3920   SmallVector<CCValAssign, 16> RVLocs;
3921   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3922                  *DAG.getContext());
3923   CCInfo.AnalyzeReturn(Outs, RetCC);
3924 
3925   // Copy the result values into the output registers.
3926   SDValue Flag;
3927   SmallVector<SDValue, 4> RetOps(1, Chain);
3928   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3929        ++i, ++realRVLocIdx) {
3930     CCValAssign &VA = RVLocs[i];
3931     assert(VA.isRegLoc() && "Can only return in registers!");
3932     SDValue Arg = OutVals[realRVLocIdx];
3933 
3934     switch (VA.getLocInfo()) {
3935     default:
3936       llvm_unreachable("Unknown loc info!");
3937     case CCValAssign::Full:
3938       if (Outs[i].ArgVT == MVT::i1) {
3939         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3940         // value. This is strictly redundant on Darwin (which uses "zeroext
3941         // i1"), but will be optimised out before ISel.
3942         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3943         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3944       }
3945       break;
3946     case CCValAssign::BCvt:
3947       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3948       break;
3949     }
3950 
3951     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3952     Flag = Chain.getValue(1);
3953     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3954   }
3955   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3956   const MCPhysReg *I =
3957       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3958   if (I) {
3959     for (; *I; ++I) {
3960       if (AArch64::GPR64RegClass.contains(*I))
3961         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3962       else if (AArch64::FPR64RegClass.contains(*I))
3963         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3964       else
3965         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3966     }
3967   }
3968 
3969   RetOps[0] = Chain; // Update chain.
3970 
3971   // Add the flag if we have it.
3972   if (Flag.getNode())
3973     RetOps.push_back(Flag);
3974 
3975   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3976 }
3977 
3978 //===----------------------------------------------------------------------===//
3979 //  Other Lowering Code
3980 //===----------------------------------------------------------------------===//
3981 
getTargetNode(GlobalAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3982 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
3983                                              SelectionDAG &DAG,
3984                                              unsigned Flag) const {
3985   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
3986                                     N->getOffset(), Flag);
3987 }
3988 
getTargetNode(JumpTableSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3989 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
3990                                              SelectionDAG &DAG,
3991                                              unsigned Flag) const {
3992   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
3993 }
3994 
getTargetNode(ConstantPoolSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3995 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
3996                                              SelectionDAG &DAG,
3997                                              unsigned Flag) const {
3998   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
3999                                    N->getOffset(), Flag);
4000 }
4001 
getTargetNode(BlockAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const4002 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
4003                                              SelectionDAG &DAG,
4004                                              unsigned Flag) const {
4005   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
4006 }
4007 
4008 // (loadGOT sym)
4009 template <class NodeTy>
getGOT(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const4010 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
4011                                       unsigned Flags) const {
4012   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4013   SDLoc DL(N);
4014   EVT Ty = getPointerTy(DAG.getDataLayout());
4015   SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
4016   // FIXME: Once remat is capable of dealing with instructions with register
4017   // operands, expand this into two nodes instead of using a wrapper node.
4018   return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
4019 }
4020 
4021 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4022 template <class NodeTy>
getAddrLarge(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const4023 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
4024                                             unsigned Flags) const {
4025   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4026   SDLoc DL(N);
4027   EVT Ty = getPointerTy(DAG.getDataLayout());
4028   const unsigned char MO_NC = AArch64II::MO_NC;
4029   return DAG.getNode(
4030       AArch64ISD::WrapperLarge, DL, Ty,
4031       getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
4032       getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
4033       getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
4034       getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
4035 }
4036 
4037 // (addlow (adrp %hi(sym)) %lo(sym))
4038 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const4039 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
4040                                        unsigned Flags) const {
4041   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4042   SDLoc DL(N);
4043   EVT Ty = getPointerTy(DAG.getDataLayout());
4044   SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
4045   SDValue Lo = getTargetNode(N, Ty, DAG,
4046                              AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
4047   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
4048   return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
4049 }
4050 
4051 // (adr sym)
4052 template <class NodeTy>
getAddrTiny(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const4053 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
4054                                            unsigned Flags) const {
4055   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4056   SDLoc DL(N);
4057   EVT Ty = getPointerTy(DAG.getDataLayout());
4058   SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
4059   return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
4060 }
4061 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const4062 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
4063                                                   SelectionDAG &DAG) const {
4064   GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
4065   const GlobalValue *GV = GN->getGlobal();
4066   unsigned char OpFlags =
4067       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4068 
4069   if (OpFlags != AArch64II::MO_NO_FLAG)
4070     assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
4071            "unexpected offset in global node");
4072 
4073   // This also catches the large code model case for Darwin, and tiny code
4074   // model with got relocations.
4075   if ((OpFlags & AArch64II::MO_GOT) != 0) {
4076     return getGOT(GN, DAG, OpFlags);
4077   }
4078 
4079   SDValue Result;
4080   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4081     Result = getAddrLarge(GN, DAG, OpFlags);
4082   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4083     Result = getAddrTiny(GN, DAG, OpFlags);
4084   } else {
4085     Result = getAddr(GN, DAG, OpFlags);
4086   }
4087   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4088   SDLoc DL(GN);
4089   if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
4090     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4091                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4092   return Result;
4093 }
4094 
4095 /// Convert a TLS address reference into the correct sequence of loads
4096 /// and calls to compute the variable's address (for Darwin, currently) and
4097 /// return an SDValue containing the final node.
4098 
4099 /// Darwin only has one TLS scheme which must be capable of dealing with the
4100 /// fully general situation, in the worst case. This means:
4101 ///     + "extern __thread" declaration.
4102 ///     + Defined in a possibly unknown dynamic library.
4103 ///
4104 /// The general system is that each __thread variable has a [3 x i64] descriptor
4105 /// which contains information used by the runtime to calculate the address. The
4106 /// only part of this the compiler needs to know about is the first xword, which
4107 /// contains a function pointer that must be called with the address of the
4108 /// entire descriptor in "x0".
4109 ///
4110 /// Since this descriptor may be in a different unit, in general even the
4111 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4112 /// is:
4113 ///     adrp x0, _var@TLVPPAGE
4114 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
4115 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
4116 ///                                      ; the function pointer
4117 ///     blr x1                           ; Uses descriptor address in x0
4118 ///     ; Address of _var is now in x0.
4119 ///
4120 /// If the address of _var's descriptor *is* known to the linker, then it can
4121 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4122 /// a slight efficiency gain.
4123 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4124 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4125                                                    SelectionDAG &DAG) const {
4126   assert(Subtarget->isTargetDarwin() &&
4127          "This function expects a Darwin target");
4128 
4129   SDLoc DL(Op);
4130   MVT PtrVT = getPointerTy(DAG.getDataLayout());
4131   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4132 
4133   SDValue TLVPAddr =
4134       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4135   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4136 
4137   // The first entry in the descriptor is a function pointer that we must call
4138   // to obtain the address of the variable.
4139   SDValue Chain = DAG.getEntryNode();
4140   SDValue FuncTLVGet = DAG.getLoad(
4141       MVT::i64, DL, Chain, DescAddr,
4142       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4143       /* Alignment = */ 8,
4144       MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
4145           MachineMemOperand::MODereferenceable);
4146   Chain = FuncTLVGet.getValue(1);
4147 
4148   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4149   MFI.setAdjustsStack(true);
4150 
4151   // TLS calls preserve all registers except those that absolutely must be
4152   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4153   // silly).
4154   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4155   const uint32_t *Mask = TRI->getTLSCallPreservedMask();
4156   if (Subtarget->hasCustomCallingConv())
4157     TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
4158 
4159   // Finally, we can make the call. This is just a degenerate version of a
4160   // normal AArch64 call node: x0 takes the address of the descriptor, and
4161   // returns the address of the variable in this thread.
4162   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4163   Chain =
4164       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4165                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4166                   DAG.getRegisterMask(Mask), Chain.getValue(1));
4167   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4168 }
4169 
4170 /// When accessing thread-local variables under either the general-dynamic or
4171 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4172 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4173 /// is a function pointer to carry out the resolution.
4174 ///
4175 /// The sequence is:
4176 ///    adrp  x0, :tlsdesc:var
4177 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
4178 ///    add   x0, x0, #:tlsdesc_lo12:var
4179 ///    .tlsdesccall var
4180 ///    blr   x1
4181 ///    (TPIDR_EL0 offset now in x0)
4182 ///
4183 ///  The above sequence must be produced unscheduled, to enable the linker to
4184 ///  optimize/relax this sequence.
4185 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4186 ///  above sequence, and expanded really late in the compilation flow, to ensure
4187 ///  the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,const SDLoc & DL,SelectionDAG & DAG) const4188 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4189                                                       const SDLoc &DL,
4190                                                       SelectionDAG &DAG) const {
4191   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4192 
4193   SDValue Chain = DAG.getEntryNode();
4194   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4195 
4196   Chain =
4197       DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4198   SDValue Glue = Chain.getValue(1);
4199 
4200   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4201 }
4202 
4203 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4204 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4205                                                 SelectionDAG &DAG) const {
4206   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4207   if (getTargetMachine().getCodeModel() == CodeModel::Large)
4208     report_fatal_error("ELF TLS only supported in small memory model");
4209   // Different choices can be made for the maximum size of the TLS area for a
4210   // module. For the small address model, the default TLS size is 16MiB and the
4211   // maximum TLS size is 4GiB.
4212   // FIXME: add -mtls-size command line option and make it control the 16MiB
4213   // vs. 4GiB code sequence generation.
4214   // FIXME: add tiny codemodel support. We currently generate the same code as
4215   // small, which may be larger than needed.
4216   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4217 
4218   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4219 
4220   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4221     if (Model == TLSModel::LocalDynamic)
4222       Model = TLSModel::GeneralDynamic;
4223   }
4224 
4225   SDValue TPOff;
4226   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4227   SDLoc DL(Op);
4228   const GlobalValue *GV = GA->getGlobal();
4229 
4230   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4231 
4232   if (Model == TLSModel::LocalExec) {
4233     SDValue HiVar = DAG.getTargetGlobalAddress(
4234         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4235     SDValue LoVar = DAG.getTargetGlobalAddress(
4236         GV, DL, PtrVT, 0,
4237         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4238 
4239     SDValue TPWithOff_lo =
4240         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4241                                    HiVar,
4242                                    DAG.getTargetConstant(0, DL, MVT::i32)),
4243                 0);
4244     SDValue TPWithOff =
4245         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
4246                                    LoVar,
4247                                    DAG.getTargetConstant(0, DL, MVT::i32)),
4248                 0);
4249     return TPWithOff;
4250   } else if (Model == TLSModel::InitialExec) {
4251     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4252     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4253   } else if (Model == TLSModel::LocalDynamic) {
4254     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4255     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4256     // the beginning of the module's TLS region, followed by a DTPREL offset
4257     // calculation.
4258 
4259     // These accesses will need deduplicating if there's more than one.
4260     AArch64FunctionInfo *MFI =
4261         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4262     MFI->incNumLocalDynamicTLSAccesses();
4263 
4264     // The call needs a relocation too for linker relaxation. It doesn't make
4265     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4266     // the address.
4267     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4268                                                   AArch64II::MO_TLS);
4269 
4270     // Now we can calculate the offset from TPIDR_EL0 to this module's
4271     // thread-local area.
4272     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4273 
4274     // Now use :dtprel_whatever: operations to calculate this variable's offset
4275     // in its thread-storage area.
4276     SDValue HiVar = DAG.getTargetGlobalAddress(
4277         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4278     SDValue LoVar = DAG.getTargetGlobalAddress(
4279         GV, DL, MVT::i64, 0,
4280         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4281 
4282     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4283                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4284                     0);
4285     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4286                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4287                     0);
4288   } else if (Model == TLSModel::GeneralDynamic) {
4289     // The call needs a relocation too for linker relaxation. It doesn't make
4290     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4291     // the address.
4292     SDValue SymAddr =
4293         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4294 
4295     // Finally we can make a call to calculate the offset from tpidr_el0.
4296     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4297   } else
4298     llvm_unreachable("Unsupported ELF TLS access model");
4299 
4300   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4301 }
4302 
4303 SDValue
LowerWindowsGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4304 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4305                                                     SelectionDAG &DAG) const {
4306   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4307 
4308   SDValue Chain = DAG.getEntryNode();
4309   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4310   SDLoc DL(Op);
4311 
4312   SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4313 
4314   // Load the ThreadLocalStoragePointer from the TEB
4315   // A pointer to the TLS array is located at offset 0x58 from the TEB.
4316   SDValue TLSArray =
4317       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4318   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4319   Chain = TLSArray.getValue(1);
4320 
4321   // Load the TLS index from the C runtime;
4322   // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4323   // This also does the same as LOADgot, but using a generic i32 load,
4324   // while LOADgot only loads i64.
4325   SDValue TLSIndexHi =
4326       DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4327   SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4328       "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4329   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4330   SDValue TLSIndex =
4331       DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4332   TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4333   Chain = TLSIndex.getValue(1);
4334 
4335   // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4336   // offset into the TLSArray.
4337   TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4338   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4339                              DAG.getConstant(3, DL, PtrVT));
4340   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4341                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4342                             MachinePointerInfo());
4343   Chain = TLS.getValue(1);
4344 
4345   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4346   const GlobalValue *GV = GA->getGlobal();
4347   SDValue TGAHi = DAG.getTargetGlobalAddress(
4348       GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4349   SDValue TGALo = DAG.getTargetGlobalAddress(
4350       GV, DL, PtrVT, 0,
4351       AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4352 
4353   // Add the offset from the start of the .tls section (section base).
4354   SDValue Addr =
4355       SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4356                                  DAG.getTargetConstant(0, DL, MVT::i32)),
4357               0);
4358   Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4359   return Addr;
4360 }
4361 
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4362 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4363                                                      SelectionDAG &DAG) const {
4364   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4365   if (DAG.getTarget().useEmulatedTLS())
4366     return LowerToTLSEmulatedModel(GA, DAG);
4367 
4368   if (Subtarget->isTargetDarwin())
4369     return LowerDarwinGlobalTLSAddress(Op, DAG);
4370   if (Subtarget->isTargetELF())
4371     return LowerELFGlobalTLSAddress(Op, DAG);
4372   if (Subtarget->isTargetWindows())
4373     return LowerWindowsGlobalTLSAddress(Op, DAG);
4374 
4375   llvm_unreachable("Unexpected platform trying to use TLS");
4376 }
4377 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4378 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4379   SDValue Chain = Op.getOperand(0);
4380   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4381   SDValue LHS = Op.getOperand(2);
4382   SDValue RHS = Op.getOperand(3);
4383   SDValue Dest = Op.getOperand(4);
4384   SDLoc dl(Op);
4385 
4386   MachineFunction &MF = DAG.getMachineFunction();
4387   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4388   // will not be produced, as they are conditional branch instructions that do
4389   // not set flags.
4390   bool ProduceNonFlagSettingCondBr =
4391       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
4392 
4393   // Handle f128 first, since lowering it will result in comparing the return
4394   // value of a libcall against zero, which is just what the rest of LowerBR_CC
4395   // is expecting to deal with.
4396   if (LHS.getValueType() == MVT::f128) {
4397     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4398 
4399     // If softenSetCCOperands returned a scalar, we need to compare the result
4400     // against zero to select between true and false values.
4401     if (!RHS.getNode()) {
4402       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4403       CC = ISD::SETNE;
4404     }
4405   }
4406 
4407   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4408   // instruction.
4409   if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4410       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4411     // Only lower legal XALUO ops.
4412     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4413       return SDValue();
4414 
4415     // The actual operation with overflow check.
4416     AArch64CC::CondCode OFCC;
4417     SDValue Value, Overflow;
4418     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4419 
4420     if (CC == ISD::SETNE)
4421       OFCC = getInvertedCondCode(OFCC);
4422     SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4423 
4424     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4425                        Overflow);
4426   }
4427 
4428   if (LHS.getValueType().isInteger()) {
4429     assert((LHS.getValueType() == RHS.getValueType()) &&
4430            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4431 
4432     // If the RHS of the comparison is zero, we can potentially fold this
4433     // to a specialized branch.
4434     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
4435     if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
4436       if (CC == ISD::SETEQ) {
4437         // See if we can use a TBZ to fold in an AND as well.
4438         // TBZ has a smaller branch displacement than CBZ.  If the offset is
4439         // out of bounds, a late MI-layer pass rewrites branches.
4440         // 403.gcc is an example that hits this case.
4441         if (LHS.getOpcode() == ISD::AND &&
4442             isa<ConstantSDNode>(LHS.getOperand(1)) &&
4443             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4444           SDValue Test = LHS.getOperand(0);
4445           uint64_t Mask = LHS.getConstantOperandVal(1);
4446           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
4447                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4448                              Dest);
4449         }
4450 
4451         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
4452       } else if (CC == ISD::SETNE) {
4453         // See if we can use a TBZ to fold in an AND as well.
4454         // TBZ has a smaller branch displacement than CBZ.  If the offset is
4455         // out of bounds, a late MI-layer pass rewrites branches.
4456         // 403.gcc is an example that hits this case.
4457         if (LHS.getOpcode() == ISD::AND &&
4458             isa<ConstantSDNode>(LHS.getOperand(1)) &&
4459             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4460           SDValue Test = LHS.getOperand(0);
4461           uint64_t Mask = LHS.getConstantOperandVal(1);
4462           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
4463                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4464                              Dest);
4465         }
4466 
4467         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
4468       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
4469         // Don't combine AND since emitComparison converts the AND to an ANDS
4470         // (a.k.a. TST) and the test in the test bit and branch instruction
4471         // becomes redundant.  This would also increase register pressure.
4472         uint64_t Mask = LHS.getValueSizeInBits() - 1;
4473         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
4474                            DAG.getConstant(Mask, dl, MVT::i64), Dest);
4475       }
4476     }
4477     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
4478         LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
4479       // Don't combine AND since emitComparison converts the AND to an ANDS
4480       // (a.k.a. TST) and the test in the test bit and branch instruction
4481       // becomes redundant.  This would also increase register pressure.
4482       uint64_t Mask = LHS.getValueSizeInBits() - 1;
4483       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
4484                          DAG.getConstant(Mask, dl, MVT::i64), Dest);
4485     }
4486 
4487     SDValue CCVal;
4488     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4489     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4490                        Cmp);
4491   }
4492 
4493   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4494          LHS.getValueType() == MVT::f64);
4495 
4496   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4497   // clean.  Some of them require two branches to implement.
4498   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4499   AArch64CC::CondCode CC1, CC2;
4500   changeFPCCToAArch64CC(CC, CC1, CC2);
4501   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4502   SDValue BR1 =
4503       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
4504   if (CC2 != AArch64CC::AL) {
4505     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4506     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
4507                        Cmp);
4508   }
4509 
4510   return BR1;
4511 }
4512 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4513 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
4514                                               SelectionDAG &DAG) const {
4515   EVT VT = Op.getValueType();
4516   SDLoc DL(Op);
4517 
4518   SDValue In1 = Op.getOperand(0);
4519   SDValue In2 = Op.getOperand(1);
4520   EVT SrcVT = In2.getValueType();
4521 
4522   if (SrcVT.bitsLT(VT))
4523     In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
4524   else if (SrcVT.bitsGT(VT))
4525     In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
4526 
4527   EVT VecVT;
4528   uint64_t EltMask;
4529   SDValue VecVal1, VecVal2;
4530 
4531   auto setVecVal = [&] (int Idx) {
4532     if (!VT.isVector()) {
4533       VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4534                                           DAG.getUNDEF(VecVT), In1);
4535       VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4536                                           DAG.getUNDEF(VecVT), In2);
4537     } else {
4538       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
4539       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
4540     }
4541   };
4542 
4543   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
4544     VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
4545     EltMask = 0x80000000ULL;
4546     setVecVal(AArch64::ssub);
4547   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
4548     VecVT = MVT::v2i64;
4549 
4550     // We want to materialize a mask with the high bit set, but the AdvSIMD
4551     // immediate moves cannot materialize that in a single instruction for
4552     // 64-bit elements. Instead, materialize zero and then negate it.
4553     EltMask = 0;
4554 
4555     setVecVal(AArch64::dsub);
4556   } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
4557     VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
4558     EltMask = 0x8000ULL;
4559     setVecVal(AArch64::hsub);
4560   } else {
4561     llvm_unreachable("Invalid type for copysign!");
4562   }
4563 
4564   SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
4565 
4566   // If we couldn't materialize the mask above, then the mask vector will be
4567   // the zero vector, and we need to negate it here.
4568   if (VT == MVT::f64 || VT == MVT::v2f64) {
4569     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
4570     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
4571     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
4572   }
4573 
4574   SDValue Sel =
4575       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
4576 
4577   if (VT == MVT::f16)
4578     return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
4579   if (VT == MVT::f32)
4580     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
4581   else if (VT == MVT::f64)
4582     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
4583   else
4584     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
4585 }
4586 
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const4587 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
4588   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
4589           Attribute::NoImplicitFloat))
4590     return SDValue();
4591 
4592   if (!Subtarget->hasNEON())
4593     return SDValue();
4594 
4595   // While there is no integer popcount instruction, it can
4596   // be more efficiently lowered to the following sequence that uses
4597   // AdvSIMD registers/instructions as long as the copies to/from
4598   // the AdvSIMD registers are cheap.
4599   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
4600   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
4601   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
4602   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
4603   SDValue Val = Op.getOperand(0);
4604   SDLoc DL(Op);
4605   EVT VT = Op.getValueType();
4606 
4607   if (VT == MVT::i32 || VT == MVT::i64) {
4608     if (VT == MVT::i32)
4609       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
4610     Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
4611 
4612     SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
4613     SDValue UaddLV = DAG.getNode(
4614         ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
4615         DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
4616 
4617     if (VT == MVT::i64)
4618       UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
4619     return UaddLV;
4620   }
4621 
4622   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
4623           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
4624          "Unexpected type for custom ctpop lowering");
4625 
4626   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4627   Val = DAG.getBitcast(VT8Bit, Val);
4628   Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
4629 
4630   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
4631   unsigned EltSize = 8;
4632   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
4633   while (EltSize != VT.getScalarSizeInBits()) {
4634     EltSize *= 2;
4635     NumElts /= 2;
4636     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
4637     Val = DAG.getNode(
4638         ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
4639         DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
4640   }
4641 
4642   return Val;
4643 }
4644 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const4645 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
4646 
4647   if (Op.getValueType().isVector())
4648     return LowerVSETCC(Op, DAG);
4649 
4650   SDValue LHS = Op.getOperand(0);
4651   SDValue RHS = Op.getOperand(1);
4652   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4653   SDLoc dl(Op);
4654 
4655   // We chose ZeroOrOneBooleanContents, so use zero and one.
4656   EVT VT = Op.getValueType();
4657   SDValue TVal = DAG.getConstant(1, dl, VT);
4658   SDValue FVal = DAG.getConstant(0, dl, VT);
4659 
4660   // Handle f128 first, since one possible outcome is a normal integer
4661   // comparison which gets picked up by the next if statement.
4662   if (LHS.getValueType() == MVT::f128) {
4663     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4664 
4665     // If softenSetCCOperands returned a scalar, use it.
4666     if (!RHS.getNode()) {
4667       assert(LHS.getValueType() == Op.getValueType() &&
4668              "Unexpected setcc expansion!");
4669       return LHS;
4670     }
4671   }
4672 
4673   if (LHS.getValueType().isInteger()) {
4674     SDValue CCVal;
4675     SDValue Cmp =
4676         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
4677 
4678     // Note that we inverted the condition above, so we reverse the order of
4679     // the true and false operands here.  This will allow the setcc to be
4680     // matched to a single CSINC instruction.
4681     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
4682   }
4683 
4684   // Now we know we're dealing with FP values.
4685   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4686          LHS.getValueType() == MVT::f64);
4687 
4688   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
4689   // and do the comparison.
4690   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4691 
4692   AArch64CC::CondCode CC1, CC2;
4693   changeFPCCToAArch64CC(CC, CC1, CC2);
4694   if (CC2 == AArch64CC::AL) {
4695     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
4696     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4697 
4698     // Note that we inverted the condition above, so we reverse the order of
4699     // the true and false operands here.  This will allow the setcc to be
4700     // matched to a single CSINC instruction.
4701     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
4702   } else {
4703     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4704     // totally clean.  Some of them require two CSELs to implement.  As is in
4705     // this case, we emit the first CSEL and then emit a second using the output
4706     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
4707 
4708     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4709     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4710     SDValue CS1 =
4711         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4712 
4713     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4714     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4715   }
4716 }
4717 
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,const SDLoc & dl,SelectionDAG & DAG) const4718 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
4719                                               SDValue RHS, SDValue TVal,
4720                                               SDValue FVal, const SDLoc &dl,
4721                                               SelectionDAG &DAG) const {
4722   // Handle f128 first, because it will result in a comparison of some RTLIB
4723   // call result against zero.
4724   if (LHS.getValueType() == MVT::f128) {
4725     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4726 
4727     // If softenSetCCOperands returned a scalar, we need to compare the result
4728     // against zero to select between true and false values.
4729     if (!RHS.getNode()) {
4730       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4731       CC = ISD::SETNE;
4732     }
4733   }
4734 
4735   // Also handle f16, for which we need to do a f32 comparison.
4736   if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
4737     LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
4738     RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
4739   }
4740 
4741   // Next, handle integers.
4742   if (LHS.getValueType().isInteger()) {
4743     assert((LHS.getValueType() == RHS.getValueType()) &&
4744            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4745 
4746     unsigned Opcode = AArch64ISD::CSEL;
4747 
4748     // If both the TVal and the FVal are constants, see if we can swap them in
4749     // order to for a CSINV or CSINC out of them.
4750     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
4751     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
4752 
4753     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
4754       std::swap(TVal, FVal);
4755       std::swap(CTVal, CFVal);
4756       CC = ISD::getSetCCInverse(CC, true);
4757     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
4758       std::swap(TVal, FVal);
4759       std::swap(CTVal, CFVal);
4760       CC = ISD::getSetCCInverse(CC, true);
4761     } else if (TVal.getOpcode() == ISD::XOR) {
4762       // If TVal is a NOT we want to swap TVal and FVal so that we can match
4763       // with a CSINV rather than a CSEL.
4764       if (isAllOnesConstant(TVal.getOperand(1))) {
4765         std::swap(TVal, FVal);
4766         std::swap(CTVal, CFVal);
4767         CC = ISD::getSetCCInverse(CC, true);
4768       }
4769     } else if (TVal.getOpcode() == ISD::SUB) {
4770       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
4771       // that we can match with a CSNEG rather than a CSEL.
4772       if (isNullConstant(TVal.getOperand(0))) {
4773         std::swap(TVal, FVal);
4774         std::swap(CTVal, CFVal);
4775         CC = ISD::getSetCCInverse(CC, true);
4776       }
4777     } else if (CTVal && CFVal) {
4778       const int64_t TrueVal = CTVal->getSExtValue();
4779       const int64_t FalseVal = CFVal->getSExtValue();
4780       bool Swap = false;
4781 
4782       // If both TVal and FVal are constants, see if FVal is the
4783       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4784       // instead of a CSEL in that case.
4785       if (TrueVal == ~FalseVal) {
4786         Opcode = AArch64ISD::CSINV;
4787       } else if (TrueVal == -FalseVal) {
4788         Opcode = AArch64ISD::CSNEG;
4789       } else if (TVal.getValueType() == MVT::i32) {
4790         // If our operands are only 32-bit wide, make sure we use 32-bit
4791         // arithmetic for the check whether we can use CSINC. This ensures that
4792         // the addition in the check will wrap around properly in case there is
4793         // an overflow (which would not be the case if we do the check with
4794         // 64-bit arithmetic).
4795         const uint32_t TrueVal32 = CTVal->getZExtValue();
4796         const uint32_t FalseVal32 = CFVal->getZExtValue();
4797 
4798         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4799           Opcode = AArch64ISD::CSINC;
4800 
4801           if (TrueVal32 > FalseVal32) {
4802             Swap = true;
4803           }
4804         }
4805         // 64-bit check whether we can use CSINC.
4806       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4807         Opcode = AArch64ISD::CSINC;
4808 
4809         if (TrueVal > FalseVal) {
4810           Swap = true;
4811         }
4812       }
4813 
4814       // Swap TVal and FVal if necessary.
4815       if (Swap) {
4816         std::swap(TVal, FVal);
4817         std::swap(CTVal, CFVal);
4818         CC = ISD::getSetCCInverse(CC, true);
4819       }
4820 
4821       if (Opcode != AArch64ISD::CSEL) {
4822         // Drop FVal since we can get its value by simply inverting/negating
4823         // TVal.
4824         FVal = TVal;
4825       }
4826     }
4827 
4828     // Avoid materializing a constant when possible by reusing a known value in
4829     // a register.  However, don't perform this optimization if the known value
4830     // is one, zero or negative one in the case of a CSEL.  We can always
4831     // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
4832     // FVal, respectively.
4833     ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
4834     if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
4835         !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
4836       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4837       // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
4838       // "a != C ? x : a" to avoid materializing C.
4839       if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
4840         TVal = LHS;
4841       else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
4842         FVal = LHS;
4843     } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
4844       assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
4845       // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
4846       // avoid materializing C.
4847       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4848       if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
4849         Opcode = AArch64ISD::CSINV;
4850         TVal = LHS;
4851         FVal = DAG.getConstant(0, dl, FVal.getValueType());
4852       }
4853     }
4854 
4855     SDValue CCVal;
4856     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4857     EVT VT = TVal.getValueType();
4858     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4859   }
4860 
4861   // Now we know we're dealing with FP values.
4862   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4863          LHS.getValueType() == MVT::f64);
4864   assert(LHS.getValueType() == RHS.getValueType());
4865   EVT VT = TVal.getValueType();
4866   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4867 
4868   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4869   // clean.  Some of them require two CSELs to implement.
4870   AArch64CC::CondCode CC1, CC2;
4871   changeFPCCToAArch64CC(CC, CC1, CC2);
4872 
4873   if (DAG.getTarget().Options.UnsafeFPMath) {
4874     // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
4875     // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
4876     ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
4877     if (RHSVal && RHSVal->isZero()) {
4878       ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
4879       ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
4880 
4881       if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
4882           CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
4883         TVal = LHS;
4884       else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
4885                CFVal && CFVal->isZero() &&
4886                FVal.getValueType() == LHS.getValueType())
4887         FVal = LHS;
4888     }
4889   }
4890 
4891   // Emit first, and possibly only, CSEL.
4892   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4893   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4894 
4895   // If we need a second CSEL, emit it, using the output of the first as the
4896   // RHS.  We're effectively OR'ing the two CC's together.
4897   if (CC2 != AArch64CC::AL) {
4898     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4899     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4900   }
4901 
4902   // Otherwise, return the output of the first CSEL.
4903   return CS1;
4904 }
4905 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4906 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4907                                               SelectionDAG &DAG) const {
4908   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4909   SDValue LHS = Op.getOperand(0);
4910   SDValue RHS = Op.getOperand(1);
4911   SDValue TVal = Op.getOperand(2);
4912   SDValue FVal = Op.getOperand(3);
4913   SDLoc DL(Op);
4914   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4915 }
4916 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4917 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4918                                            SelectionDAG &DAG) const {
4919   SDValue CCVal = Op->getOperand(0);
4920   SDValue TVal = Op->getOperand(1);
4921   SDValue FVal = Op->getOperand(2);
4922   SDLoc DL(Op);
4923 
4924   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4925   // instruction.
4926   if (isOverflowIntrOpRes(CCVal)) {
4927     // Only lower legal XALUO ops.
4928     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4929       return SDValue();
4930 
4931     AArch64CC::CondCode OFCC;
4932     SDValue Value, Overflow;
4933     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4934     SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4935 
4936     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4937                        CCVal, Overflow);
4938   }
4939 
4940   // Lower it the same way as we would lower a SELECT_CC node.
4941   ISD::CondCode CC;
4942   SDValue LHS, RHS;
4943   if (CCVal.getOpcode() == ISD::SETCC) {
4944     LHS = CCVal.getOperand(0);
4945     RHS = CCVal.getOperand(1);
4946     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4947   } else {
4948     LHS = CCVal;
4949     RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4950     CC = ISD::SETNE;
4951   }
4952   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4953 }
4954 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const4955 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4956                                               SelectionDAG &DAG) const {
4957   // Jump table entries as PC relative offsets. No additional tweaking
4958   // is necessary here. Just get the address of the jump table.
4959   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4960 
4961   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4962       !Subtarget->isTargetMachO()) {
4963     return getAddrLarge(JT, DAG);
4964   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4965     return getAddrTiny(JT, DAG);
4966   }
4967   return getAddr(JT, DAG);
4968 }
4969 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const4970 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
4971                                           SelectionDAG &DAG) const {
4972   // Jump table entries as PC relative offsets. No additional tweaking
4973   // is necessary here. Just get the address of the jump table.
4974   SDLoc DL(Op);
4975   SDValue JT = Op.getOperand(1);
4976   SDValue Entry = Op.getOperand(2);
4977   int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
4978 
4979   SDNode *Dest =
4980       DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
4981                          Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
4982   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
4983                      SDValue(Dest, 0));
4984 }
4985 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const4986 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4987                                                  SelectionDAG &DAG) const {
4988   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4989 
4990   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4991     // Use the GOT for the large code model on iOS.
4992     if (Subtarget->isTargetMachO()) {
4993       return getGOT(CP, DAG);
4994     }
4995     return getAddrLarge(CP, DAG);
4996   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4997     return getAddrTiny(CP, DAG);
4998   } else {
4999     return getAddr(CP, DAG);
5000   }
5001 }
5002 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const5003 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
5004                                                SelectionDAG &DAG) const {
5005   BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
5006   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5007       !Subtarget->isTargetMachO()) {
5008     return getAddrLarge(BA, DAG);
5009   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5010     return getAddrTiny(BA, DAG);
5011   }
5012   return getAddr(BA, DAG);
5013 }
5014 
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const5015 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
5016                                                  SelectionDAG &DAG) const {
5017   AArch64FunctionInfo *FuncInfo =
5018       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5019 
5020   SDLoc DL(Op);
5021   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
5022                                  getPointerTy(DAG.getDataLayout()));
5023   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5024   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5025                       MachinePointerInfo(SV));
5026 }
5027 
LowerWin64_VASTART(SDValue Op,SelectionDAG & DAG) const5028 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
5029                                                   SelectionDAG &DAG) const {
5030   AArch64FunctionInfo *FuncInfo =
5031       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5032 
5033   SDLoc DL(Op);
5034   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
5035                                      ? FuncInfo->getVarArgsGPRIndex()
5036                                      : FuncInfo->getVarArgsStackIndex(),
5037                                  getPointerTy(DAG.getDataLayout()));
5038   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5039   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5040                       MachinePointerInfo(SV));
5041 }
5042 
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const5043 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
5044                                                 SelectionDAG &DAG) const {
5045   // The layout of the va_list struct is specified in the AArch64 Procedure Call
5046   // Standard, section B.3.
5047   MachineFunction &MF = DAG.getMachineFunction();
5048   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5049   auto PtrVT = getPointerTy(DAG.getDataLayout());
5050   SDLoc DL(Op);
5051 
5052   SDValue Chain = Op.getOperand(0);
5053   SDValue VAList = Op.getOperand(1);
5054   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5055   SmallVector<SDValue, 4> MemOps;
5056 
5057   // void *__stack at offset 0
5058   SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
5059   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
5060                                 MachinePointerInfo(SV), /* Alignment = */ 8));
5061 
5062   // void *__gr_top at offset 8
5063   int GPRSize = FuncInfo->getVarArgsGPRSize();
5064   if (GPRSize > 0) {
5065     SDValue GRTop, GRTopAddr;
5066 
5067     GRTopAddr =
5068         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
5069 
5070     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
5071     GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
5072                         DAG.getConstant(GPRSize, DL, PtrVT));
5073 
5074     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
5075                                   MachinePointerInfo(SV, 8),
5076                                   /* Alignment = */ 8));
5077   }
5078 
5079   // void *__vr_top at offset 16
5080   int FPRSize = FuncInfo->getVarArgsFPRSize();
5081   if (FPRSize > 0) {
5082     SDValue VRTop, VRTopAddr;
5083     VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5084                             DAG.getConstant(16, DL, PtrVT));
5085 
5086     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
5087     VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
5088                         DAG.getConstant(FPRSize, DL, PtrVT));
5089 
5090     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
5091                                   MachinePointerInfo(SV, 16),
5092                                   /* Alignment = */ 8));
5093   }
5094 
5095   // int __gr_offs at offset 24
5096   SDValue GROffsAddr =
5097       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
5098   MemOps.push_back(DAG.getStore(
5099       Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
5100       MachinePointerInfo(SV, 24), /* Alignment = */ 4));
5101 
5102   // int __vr_offs at offset 28
5103   SDValue VROffsAddr =
5104       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
5105   MemOps.push_back(DAG.getStore(
5106       Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
5107       MachinePointerInfo(SV, 28), /* Alignment = */ 4));
5108 
5109   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
5110 }
5111 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const5112 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
5113                                             SelectionDAG &DAG) const {
5114   MachineFunction &MF = DAG.getMachineFunction();
5115 
5116   if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
5117     return LowerWin64_VASTART(Op, DAG);
5118   else if (Subtarget->isTargetDarwin())
5119     return LowerDarwin_VASTART(Op, DAG);
5120   else
5121     return LowerAAPCS_VASTART(Op, DAG);
5122 }
5123 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const5124 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
5125                                            SelectionDAG &DAG) const {
5126   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5127   // pointer.
5128   SDLoc DL(Op);
5129   unsigned VaListSize =
5130       Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
5131   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5132   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5133 
5134   return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
5135                        Op.getOperand(2),
5136                        DAG.getConstant(VaListSize, DL, MVT::i32),
5137                        8, false, false, false, MachinePointerInfo(DestSV),
5138                        MachinePointerInfo(SrcSV));
5139 }
5140 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const5141 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
5142   assert(Subtarget->isTargetDarwin() &&
5143          "automatic va_arg instruction only works on Darwin");
5144 
5145   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5146   EVT VT = Op.getValueType();
5147   SDLoc DL(Op);
5148   SDValue Chain = Op.getOperand(0);
5149   SDValue Addr = Op.getOperand(1);
5150   unsigned Align = Op.getConstantOperandVal(3);
5151   auto PtrVT = getPointerTy(DAG.getDataLayout());
5152 
5153   SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
5154   Chain = VAList.getValue(1);
5155 
5156   if (Align > 8) {
5157     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
5158     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5159                          DAG.getConstant(Align - 1, DL, PtrVT));
5160     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
5161                          DAG.getConstant(-(int64_t)Align, DL, PtrVT));
5162   }
5163 
5164   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5165   uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
5166 
5167   // Scalar integer and FP values smaller than 64 bits are implicitly extended
5168   // up to 64 bits.  At the very least, we have to increase the striding of the
5169   // vaargs list to match this, and for FP values we need to introduce
5170   // FP_ROUND nodes as well.
5171   if (VT.isInteger() && !VT.isVector())
5172     ArgSize = 8;
5173   bool NeedFPTrunc = false;
5174   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5175     ArgSize = 8;
5176     NeedFPTrunc = true;
5177   }
5178 
5179   // Increment the pointer, VAList, to the next vaarg
5180   SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5181                                DAG.getConstant(ArgSize, DL, PtrVT));
5182   // Store the incremented VAList to the legalized pointer
5183   SDValue APStore =
5184       DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5185 
5186   // Load the actual argument out of the pointer VAList
5187   if (NeedFPTrunc) {
5188     // Load the value as an f64.
5189     SDValue WideFP =
5190         DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5191     // Round the value down to an f32.
5192     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5193                                    DAG.getIntPtrConstant(1, DL));
5194     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5195     // Merge the rounded value with the chain output of the load.
5196     return DAG.getMergeValues(Ops, DL);
5197   }
5198 
5199   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5200 }
5201 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5202 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5203                                               SelectionDAG &DAG) const {
5204   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5205   MFI.setFrameAddressIsTaken(true);
5206 
5207   EVT VT = Op.getValueType();
5208   SDLoc DL(Op);
5209   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5210   SDValue FrameAddr =
5211       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5212   while (Depth--)
5213     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5214                             MachinePointerInfo());
5215   return FrameAddr;
5216 }
5217 
LowerSPONENTRY(SDValue Op,SelectionDAG & DAG) const5218 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
5219                                               SelectionDAG &DAG) const {
5220   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5221 
5222   EVT VT = getPointerTy(DAG.getDataLayout());
5223   SDLoc DL(Op);
5224   int FI = MFI.CreateFixedObject(4, 0, false);
5225   return DAG.getFrameIndex(FI, VT);
5226 }
5227 
5228 // FIXME? Maybe this could be a TableGen attribute on some registers and
5229 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const5230 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
5231                                                   SelectionDAG &DAG) const {
5232   unsigned Reg = StringSwitch<unsigned>(RegName)
5233                        .Case("sp", AArch64::SP)
5234                        .Case("x1", AArch64::X1)
5235                        .Case("w1", AArch64::W1)
5236                        .Case("x2", AArch64::X2)
5237                        .Case("w2", AArch64::W2)
5238                        .Case("x3", AArch64::X3)
5239                        .Case("w3", AArch64::W3)
5240                        .Case("x4", AArch64::X4)
5241                        .Case("w4", AArch64::W4)
5242                        .Case("x5", AArch64::X5)
5243                        .Case("w5", AArch64::W5)
5244                        .Case("x6", AArch64::X6)
5245                        .Case("w6", AArch64::W6)
5246                        .Case("x7", AArch64::X7)
5247                        .Case("w7", AArch64::W7)
5248                        .Case("x18", AArch64::X18)
5249                        .Case("w18", AArch64::W18)
5250                        .Case("x20", AArch64::X20)
5251                        .Case("w20", AArch64::W20)
5252                        .Default(0);
5253   if (((Reg == AArch64::X1 || Reg == AArch64::W1) &&
5254       !Subtarget->isXRegisterReserved(1)) ||
5255       ((Reg == AArch64::X2 || Reg == AArch64::W2) &&
5256       !Subtarget->isXRegisterReserved(2)) ||
5257       ((Reg == AArch64::X3 || Reg == AArch64::W3) &&
5258       !Subtarget->isXRegisterReserved(3)) ||
5259       ((Reg == AArch64::X4 || Reg == AArch64::W4) &&
5260       !Subtarget->isXRegisterReserved(4)) ||
5261       ((Reg == AArch64::X5 || Reg == AArch64::W5) &&
5262       !Subtarget->isXRegisterReserved(5)) ||
5263       ((Reg == AArch64::X6 || Reg == AArch64::W6) &&
5264       !Subtarget->isXRegisterReserved(6)) ||
5265       ((Reg == AArch64::X7 || Reg == AArch64::W7) &&
5266       !Subtarget->isXRegisterReserved(7)) ||
5267       ((Reg == AArch64::X18 || Reg == AArch64::W18) &&
5268       !Subtarget->isXRegisterReserved(18)) ||
5269       ((Reg == AArch64::X20 || Reg == AArch64::W20) &&
5270       !Subtarget->isXRegisterReserved(20)))
5271     Reg = 0;
5272   if (Reg)
5273     return Reg;
5274   report_fatal_error(Twine("Invalid register name \""
5275                               + StringRef(RegName)  + "\"."));
5276 }
5277 
LowerADDROFRETURNADDR(SDValue Op,SelectionDAG & DAG) const5278 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
5279                                                      SelectionDAG &DAG) const {
5280   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5281 
5282   EVT VT = Op.getValueType();
5283   SDLoc DL(Op);
5284 
5285   SDValue FrameAddr =
5286       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5287   SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5288 
5289   return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
5290 }
5291 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5292 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5293                                                SelectionDAG &DAG) const {
5294   MachineFunction &MF = DAG.getMachineFunction();
5295   MachineFrameInfo &MFI = MF.getFrameInfo();
5296   MFI.setReturnAddressIsTaken(true);
5297 
5298   EVT VT = Op.getValueType();
5299   SDLoc DL(Op);
5300   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5301   if (Depth) {
5302     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5303     SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5304     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5305                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5306                        MachinePointerInfo());
5307   }
5308 
5309   // Return LR, which contains the return address. Mark it an implicit live-in.
5310   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5311   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5312 }
5313 
5314 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5315 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5316 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5317                                                     SelectionDAG &DAG) const {
5318   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5319   EVT VT = Op.getValueType();
5320   unsigned VTBits = VT.getSizeInBits();
5321   SDLoc dl(Op);
5322   SDValue ShOpLo = Op.getOperand(0);
5323   SDValue ShOpHi = Op.getOperand(1);
5324   SDValue ShAmt = Op.getOperand(2);
5325   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5326 
5327   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5328 
5329   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5330                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5331   SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5332 
5333   // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5334   // is "undef". We wanted 0, so CSEL it directly.
5335   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5336                                ISD::SETEQ, dl, DAG);
5337   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5338   HiBitsForLo =
5339       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5340                   HiBitsForLo, CCVal, Cmp);
5341 
5342   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5343                                    DAG.getConstant(VTBits, dl, MVT::i64));
5344 
5345   SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5346   SDValue LoForNormalShift =
5347       DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5348 
5349   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5350                        dl, DAG);
5351   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5352   SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5353   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5354                            LoForNormalShift, CCVal, Cmp);
5355 
5356   // AArch64 shifts larger than the register width are wrapped rather than
5357   // clamped, so we can't just emit "hi >> x".
5358   SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5359   SDValue HiForBigShift =
5360       Opc == ISD::SRA
5361           ? DAG.getNode(Opc, dl, VT, ShOpHi,
5362                         DAG.getConstant(VTBits - 1, dl, MVT::i64))
5363           : DAG.getConstant(0, dl, VT);
5364   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5365                            HiForNormalShift, CCVal, Cmp);
5366 
5367   SDValue Ops[2] = { Lo, Hi };
5368   return DAG.getMergeValues(Ops, dl);
5369 }
5370 
5371 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5372 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5373 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5374                                                    SelectionDAG &DAG) const {
5375   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5376   EVT VT = Op.getValueType();
5377   unsigned VTBits = VT.getSizeInBits();
5378   SDLoc dl(Op);
5379   SDValue ShOpLo = Op.getOperand(0);
5380   SDValue ShOpHi = Op.getOperand(1);
5381   SDValue ShAmt = Op.getOperand(2);
5382 
5383   assert(Op.getOpcode() == ISD::SHL_PARTS);
5384   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5385                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5386   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5387 
5388   // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5389   // is "undef". We wanted 0, so CSEL it directly.
5390   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5391                                ISD::SETEQ, dl, DAG);
5392   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5393   LoBitsForHi =
5394       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5395                   LoBitsForHi, CCVal, Cmp);
5396 
5397   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5398                                    DAG.getConstant(VTBits, dl, MVT::i64));
5399   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5400   SDValue HiForNormalShift =
5401       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5402 
5403   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5404 
5405   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5406                        dl, DAG);
5407   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5408   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5409                            HiForNormalShift, CCVal, Cmp);
5410 
5411   // AArch64 shifts of larger than register sizes are wrapped rather than
5412   // clamped, so we can't just emit "lo << a" if a is too big.
5413   SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5414   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5415   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5416                            LoForNormalShift, CCVal, Cmp);
5417 
5418   SDValue Ops[2] = { Lo, Hi };
5419   return DAG.getMergeValues(Ops, dl);
5420 }
5421 
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const5422 bool AArch64TargetLowering::isOffsetFoldingLegal(
5423     const GlobalAddressSDNode *GA) const {
5424   // Offsets are folded in the DAG combine rather than here so that we can
5425   // intelligently choose an offset based on the uses.
5426   return false;
5427 }
5428 
isFPImmLegal(const APFloat & Imm,EVT VT) const5429 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5430   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
5431   // FIXME: We should be able to handle f128 as well with a clever lowering.
5432   if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32 ||
5433                           (VT == MVT::f16 && Subtarget->hasFullFP16()))) {
5434     LLVM_DEBUG(dbgs() << "Legal " << VT.getEVTString() << " imm value: 0\n");
5435     return true;
5436   }
5437 
5438   bool IsLegal = false;
5439   SmallString<128> ImmStrVal;
5440   Imm.toString(ImmStrVal);
5441 
5442   if (VT == MVT::f64)
5443     IsLegal = AArch64_AM::getFP64Imm(Imm) != -1;
5444   else if (VT == MVT::f32)
5445     IsLegal = AArch64_AM::getFP32Imm(Imm) != -1;
5446   else if (VT == MVT::f16 && Subtarget->hasFullFP16())
5447     IsLegal = AArch64_AM::getFP16Imm(Imm) != -1;
5448 
5449   if (IsLegal) {
5450     LLVM_DEBUG(dbgs() << "Legal " << VT.getEVTString()
5451                       << " imm value: " << ImmStrVal << "\n");
5452     return true;
5453   }
5454 
5455   LLVM_DEBUG(dbgs() << "Illegal " << VT.getEVTString()
5456                     << " imm value: " << ImmStrVal << "\n");
5457   return false;
5458 }
5459 
5460 //===----------------------------------------------------------------------===//
5461 //                          AArch64 Optimization Hooks
5462 //===----------------------------------------------------------------------===//
5463 
getEstimate(const AArch64Subtarget * ST,unsigned Opcode,SDValue Operand,SelectionDAG & DAG,int & ExtraSteps)5464 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
5465                            SDValue Operand, SelectionDAG &DAG,
5466                            int &ExtraSteps) {
5467   EVT VT = Operand.getValueType();
5468   if (ST->hasNEON() &&
5469       (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
5470        VT == MVT::f32 || VT == MVT::v1f32 ||
5471        VT == MVT::v2f32 || VT == MVT::v4f32)) {
5472     if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
5473       // For the reciprocal estimates, convergence is quadratic, so the number
5474       // of digits is doubled after each iteration.  In ARMv8, the accuracy of
5475       // the initial estimate is 2^-8.  Thus the number of extra steps to refine
5476       // the result for float (23 mantissa bits) is 2 and for double (52
5477       // mantissa bits) is 3.
5478       ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
5479 
5480     return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
5481   }
5482 
5483   return SDValue();
5484 }
5485 
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const5486 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
5487                                                SelectionDAG &DAG, int Enabled,
5488                                                int &ExtraSteps,
5489                                                bool &UseOneConst,
5490                                                bool Reciprocal) const {
5491   if (Enabled == ReciprocalEstimate::Enabled ||
5492       (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
5493     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
5494                                        DAG, ExtraSteps)) {
5495       SDLoc DL(Operand);
5496       EVT VT = Operand.getValueType();
5497 
5498       SDNodeFlags Flags;
5499       Flags.setAllowReassociation(true);
5500 
5501       // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5502       // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5503       for (int i = ExtraSteps; i > 0; --i) {
5504         SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
5505                                    Flags);
5506         Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
5507         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5508       }
5509       if (!Reciprocal) {
5510         EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
5511                                       VT);
5512         SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5513         SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
5514 
5515         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
5516         // Correct the result if the operand is 0.0.
5517         Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
5518                                VT, Eq, Operand, Estimate);
5519       }
5520 
5521       ExtraSteps = 0;
5522       return Estimate;
5523     }
5524 
5525   return SDValue();
5526 }
5527 
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps) const5528 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
5529                                                 SelectionDAG &DAG, int Enabled,
5530                                                 int &ExtraSteps) const {
5531   if (Enabled == ReciprocalEstimate::Enabled)
5532     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
5533                                        DAG, ExtraSteps)) {
5534       SDLoc DL(Operand);
5535       EVT VT = Operand.getValueType();
5536 
5537       SDNodeFlags Flags;
5538       Flags.setAllowReassociation(true);
5539 
5540       // Newton reciprocal iteration: E * (2 - X * E)
5541       // AArch64 reciprocal iteration instruction: (2 - M * N)
5542       for (int i = ExtraSteps; i > 0; --i) {
5543         SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
5544                                    Estimate, Flags);
5545         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5546       }
5547 
5548       ExtraSteps = 0;
5549       return Estimate;
5550     }
5551 
5552   return SDValue();
5553 }
5554 
5555 //===----------------------------------------------------------------------===//
5556 //                          AArch64 Inline Assembly Support
5557 //===----------------------------------------------------------------------===//
5558 
5559 // Table of Constraints
5560 // TODO: This is the current set of constraints supported by ARM for the
5561 // compiler, not all of them may make sense.
5562 //
5563 // r - A general register
5564 // w - An FP/SIMD register of some size in the range v0-v31
5565 // x - An FP/SIMD register of some size in the range v0-v15
5566 // I - Constant that can be used with an ADD instruction
5567 // J - Constant that can be used with a SUB instruction
5568 // K - Constant that can be used with a 32-bit logical instruction
5569 // L - Constant that can be used with a 64-bit logical instruction
5570 // M - Constant that can be used as a 32-bit MOV immediate
5571 // N - Constant that can be used as a 64-bit MOV immediate
5572 // Q - A memory reference with base register and no offset
5573 // S - A symbolic address
5574 // Y - Floating point constant zero
5575 // Z - Integer constant zero
5576 //
5577 //   Note that general register operands will be output using their 64-bit x
5578 // register name, whatever the size of the variable, unless the asm operand
5579 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5580 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5581 // %q modifier.
LowerXConstraint(EVT ConstraintVT) const5582 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5583   // At this point, we have to lower this constraint to something else, so we
5584   // lower it to an "r" or "w". However, by doing this we will force the result
5585   // to be in register, while the X constraint is much more permissive.
5586   //
5587   // Although we are correct (we are free to emit anything, without
5588   // constraints), we might break use cases that would expect us to be more
5589   // efficient and emit something else.
5590   if (!Subtarget->hasFPARMv8())
5591     return "r";
5592 
5593   if (ConstraintVT.isFloatingPoint())
5594     return "w";
5595 
5596   if (ConstraintVT.isVector() &&
5597      (ConstraintVT.getSizeInBits() == 64 ||
5598       ConstraintVT.getSizeInBits() == 128))
5599     return "w";
5600 
5601   return "r";
5602 }
5603 
5604 /// getConstraintType - Given a constraint letter, return the type of
5605 /// constraint it is for this target.
5606 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const5607 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
5608   if (Constraint.size() == 1) {
5609     switch (Constraint[0]) {
5610     default:
5611       break;
5612     case 'z':
5613       return C_Other;
5614     case 'x':
5615     case 'w':
5616       return C_RegisterClass;
5617     // An address with a single base register. Due to the way we
5618     // currently handle addresses it is the same as 'r'.
5619     case 'Q':
5620       return C_Memory;
5621     case 'S': // A symbolic address
5622       return C_Other;
5623     }
5624   }
5625   return TargetLowering::getConstraintType(Constraint);
5626 }
5627 
5628 /// Examine constraint type and operand type and determine a weight value.
5629 /// This object must already have been set up with the operand type
5630 /// and the current alternative constraint selected.
5631 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const5632 AArch64TargetLowering::getSingleConstraintMatchWeight(
5633     AsmOperandInfo &info, const char *constraint) const {
5634   ConstraintWeight weight = CW_Invalid;
5635   Value *CallOperandVal = info.CallOperandVal;
5636   // If we don't have a value, we can't do a match,
5637   // but allow it at the lowest weight.
5638   if (!CallOperandVal)
5639     return CW_Default;
5640   Type *type = CallOperandVal->getType();
5641   // Look at the constraint type.
5642   switch (*constraint) {
5643   default:
5644     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5645     break;
5646   case 'x':
5647   case 'w':
5648     if (type->isFloatingPointTy() || type->isVectorTy())
5649       weight = CW_Register;
5650     break;
5651   case 'z':
5652     weight = CW_Constant;
5653     break;
5654   }
5655   return weight;
5656 }
5657 
5658 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const5659 AArch64TargetLowering::getRegForInlineAsmConstraint(
5660     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5661   if (Constraint.size() == 1) {
5662     switch (Constraint[0]) {
5663     case 'r':
5664       if (VT.getSizeInBits() == 64)
5665         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
5666       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
5667     case 'w':
5668       if (!Subtarget->hasFPARMv8())
5669         break;
5670       if (VT.getSizeInBits() == 16)
5671         return std::make_pair(0U, &AArch64::FPR16RegClass);
5672       if (VT.getSizeInBits() == 32)
5673         return std::make_pair(0U, &AArch64::FPR32RegClass);
5674       if (VT.getSizeInBits() == 64)
5675         return std::make_pair(0U, &AArch64::FPR64RegClass);
5676       if (VT.getSizeInBits() == 128)
5677         return std::make_pair(0U, &AArch64::FPR128RegClass);
5678       break;
5679     // The instructions that this constraint is designed for can
5680     // only take 128-bit registers so just use that regclass.
5681     case 'x':
5682       if (!Subtarget->hasFPARMv8())
5683         break;
5684       if (VT.getSizeInBits() == 128)
5685         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
5686       break;
5687     }
5688   }
5689   if (StringRef("{cc}").equals_lower(Constraint))
5690     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
5691 
5692   // Use the default implementation in TargetLowering to convert the register
5693   // constraint into a member of a register class.
5694   std::pair<unsigned, const TargetRegisterClass *> Res;
5695   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5696 
5697   // Not found as a standard register?
5698   if (!Res.second) {
5699     unsigned Size = Constraint.size();
5700     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
5701         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
5702       int RegNo;
5703       bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
5704       if (!Failed && RegNo >= 0 && RegNo <= 31) {
5705         // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
5706         // By default we'll emit v0-v31 for this unless there's a modifier where
5707         // we'll emit the correct register as well.
5708         if (VT != MVT::Other && VT.getSizeInBits() == 64) {
5709           Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
5710           Res.second = &AArch64::FPR64RegClass;
5711         } else {
5712           Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
5713           Res.second = &AArch64::FPR128RegClass;
5714         }
5715       }
5716     }
5717   }
5718 
5719   if (Res.second && !Subtarget->hasFPARMv8() &&
5720       !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
5721       !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
5722     return std::make_pair(0U, nullptr);
5723 
5724   return Res;
5725 }
5726 
5727 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5728 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const5729 void AArch64TargetLowering::LowerAsmOperandForConstraint(
5730     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
5731     SelectionDAG &DAG) const {
5732   SDValue Result;
5733 
5734   // Currently only support length 1 constraints.
5735   if (Constraint.length() != 1)
5736     return;
5737 
5738   char ConstraintLetter = Constraint[0];
5739   switch (ConstraintLetter) {
5740   default:
5741     break;
5742 
5743   // This set of constraints deal with valid constants for various instructions.
5744   // Validate and return a target constant for them if we can.
5745   case 'z': {
5746     // 'z' maps to xzr or wzr so it needs an input of 0.
5747     if (!isNullConstant(Op))
5748       return;
5749 
5750     if (Op.getValueType() == MVT::i64)
5751       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
5752     else
5753       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
5754     break;
5755   }
5756   case 'S': {
5757     // An absolute symbolic address or label reference.
5758     if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5759       Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5760                                           GA->getValueType(0));
5761     } else if (const BlockAddressSDNode *BA =
5762                    dyn_cast<BlockAddressSDNode>(Op)) {
5763       Result =
5764           DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
5765     } else if (const ExternalSymbolSDNode *ES =
5766                    dyn_cast<ExternalSymbolSDNode>(Op)) {
5767       Result =
5768           DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
5769     } else
5770       return;
5771     break;
5772   }
5773 
5774   case 'I':
5775   case 'J':
5776   case 'K':
5777   case 'L':
5778   case 'M':
5779   case 'N':
5780     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5781     if (!C)
5782       return;
5783 
5784     // Grab the value and do some validation.
5785     uint64_t CVal = C->getZExtValue();
5786     switch (ConstraintLetter) {
5787     // The I constraint applies only to simple ADD or SUB immediate operands:
5788     // i.e. 0 to 4095 with optional shift by 12
5789     // The J constraint applies only to ADD or SUB immediates that would be
5790     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
5791     // instruction [or vice versa], in other words -1 to -4095 with optional
5792     // left shift by 12.
5793     case 'I':
5794       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
5795         break;
5796       return;
5797     case 'J': {
5798       uint64_t NVal = -C->getSExtValue();
5799       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
5800         CVal = C->getSExtValue();
5801         break;
5802       }
5803       return;
5804     }
5805     // The K and L constraints apply *only* to logical immediates, including
5806     // what used to be the MOVI alias for ORR (though the MOVI alias has now
5807     // been removed and MOV should be used). So these constraints have to
5808     // distinguish between bit patterns that are valid 32-bit or 64-bit
5809     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
5810     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
5811     // versa.
5812     case 'K':
5813       if (AArch64_AM::isLogicalImmediate(CVal, 32))
5814         break;
5815       return;
5816     case 'L':
5817       if (AArch64_AM::isLogicalImmediate(CVal, 64))
5818         break;
5819       return;
5820     // The M and N constraints are a superset of K and L respectively, for use
5821     // with the MOV (immediate) alias. As well as the logical immediates they
5822     // also match 32 or 64-bit immediates that can be loaded either using a
5823     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
5824     // (M) or 64-bit 0x1234000000000000 (N) etc.
5825     // As a note some of this code is liberally stolen from the asm parser.
5826     case 'M': {
5827       if (!isUInt<32>(CVal))
5828         return;
5829       if (AArch64_AM::isLogicalImmediate(CVal, 32))
5830         break;
5831       if ((CVal & 0xFFFF) == CVal)
5832         break;
5833       if ((CVal & 0xFFFF0000ULL) == CVal)
5834         break;
5835       uint64_t NCVal = ~(uint32_t)CVal;
5836       if ((NCVal & 0xFFFFULL) == NCVal)
5837         break;
5838       if ((NCVal & 0xFFFF0000ULL) == NCVal)
5839         break;
5840       return;
5841     }
5842     case 'N': {
5843       if (AArch64_AM::isLogicalImmediate(CVal, 64))
5844         break;
5845       if ((CVal & 0xFFFFULL) == CVal)
5846         break;
5847       if ((CVal & 0xFFFF0000ULL) == CVal)
5848         break;
5849       if ((CVal & 0xFFFF00000000ULL) == CVal)
5850         break;
5851       if ((CVal & 0xFFFF000000000000ULL) == CVal)
5852         break;
5853       uint64_t NCVal = ~CVal;
5854       if ((NCVal & 0xFFFFULL) == NCVal)
5855         break;
5856       if ((NCVal & 0xFFFF0000ULL) == NCVal)
5857         break;
5858       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
5859         break;
5860       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
5861         break;
5862       return;
5863     }
5864     default:
5865       return;
5866     }
5867 
5868     // All assembler immediates are 64-bit integers.
5869     Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
5870     break;
5871   }
5872 
5873   if (Result.getNode()) {
5874     Ops.push_back(Result);
5875     return;
5876   }
5877 
5878   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5879 }
5880 
5881 //===----------------------------------------------------------------------===//
5882 //                     AArch64 Advanced SIMD Support
5883 //===----------------------------------------------------------------------===//
5884 
5885 /// WidenVector - Given a value in the V64 register class, produce the
5886 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)5887 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
5888   EVT VT = V64Reg.getValueType();
5889   unsigned NarrowSize = VT.getVectorNumElements();
5890   MVT EltTy = VT.getVectorElementType().getSimpleVT();
5891   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
5892   SDLoc DL(V64Reg);
5893 
5894   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
5895                      V64Reg, DAG.getConstant(0, DL, MVT::i32));
5896 }
5897 
5898 /// getExtFactor - Determine the adjustment factor for the position when
5899 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)5900 static unsigned getExtFactor(SDValue &V) {
5901   EVT EltType = V.getValueType().getVectorElementType();
5902   return EltType.getSizeInBits() / 8;
5903 }
5904 
5905 /// NarrowVector - Given a value in the V128 register class, produce the
5906 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)5907 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
5908   EVT VT = V128Reg.getValueType();
5909   unsigned WideSize = VT.getVectorNumElements();
5910   MVT EltTy = VT.getVectorElementType().getSimpleVT();
5911   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
5912   SDLoc DL(V128Reg);
5913 
5914   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
5915 }
5916 
5917 // Gather data to see if the operation can be modelled as a
5918 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const5919 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
5920                                                   SelectionDAG &DAG) const {
5921   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5922   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
5923   SDLoc dl(Op);
5924   EVT VT = Op.getValueType();
5925   unsigned NumElts = VT.getVectorNumElements();
5926 
5927   struct ShuffleSourceInfo {
5928     SDValue Vec;
5929     unsigned MinElt;
5930     unsigned MaxElt;
5931 
5932     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5933     // be compatible with the shuffle we intend to construct. As a result
5934     // ShuffleVec will be some sliding window into the original Vec.
5935     SDValue ShuffleVec;
5936 
5937     // Code should guarantee that element i in Vec starts at element "WindowBase
5938     // + i * WindowScale in ShuffleVec".
5939     int WindowBase;
5940     int WindowScale;
5941 
5942     ShuffleSourceInfo(SDValue Vec)
5943       : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
5944           ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
5945 
5946     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
5947   };
5948 
5949   // First gather all vectors used as an immediate source for this BUILD_VECTOR
5950   // node.
5951   SmallVector<ShuffleSourceInfo, 2> Sources;
5952   for (unsigned i = 0; i < NumElts; ++i) {
5953     SDValue V = Op.getOperand(i);
5954     if (V.isUndef())
5955       continue;
5956     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5957              !isa<ConstantSDNode>(V.getOperand(1))) {
5958       LLVM_DEBUG(
5959           dbgs() << "Reshuffle failed: "
5960                     "a shuffle can only come from building a vector from "
5961                     "various elements of other vectors, provided their "
5962                     "indices are constant\n");
5963       return SDValue();
5964     }
5965 
5966     // Add this element source to the list if it's not already there.
5967     SDValue SourceVec = V.getOperand(0);
5968     auto Source = find(Sources, SourceVec);
5969     if (Source == Sources.end())
5970       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
5971 
5972     // Update the minimum and maximum lane number seen.
5973     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5974     Source->MinElt = std::min(Source->MinElt, EltNo);
5975     Source->MaxElt = std::max(Source->MaxElt, EltNo);
5976   }
5977 
5978   if (Sources.size() > 2) {
5979     LLVM_DEBUG(
5980         dbgs() << "Reshuffle failed: currently only do something sane when at "
5981                   "most two source vectors are involved\n");
5982     return SDValue();
5983   }
5984 
5985   // Find out the smallest element size among result and two sources, and use
5986   // it as element size to build the shuffle_vector.
5987   EVT SmallestEltTy = VT.getVectorElementType();
5988   for (auto &Source : Sources) {
5989     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
5990     if (SrcEltTy.bitsLT(SmallestEltTy)) {
5991       SmallestEltTy = SrcEltTy;
5992     }
5993   }
5994   unsigned ResMultiplier =
5995       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
5996   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5997   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
5998 
5999   // If the source vector is too wide or too narrow, we may nevertheless be able
6000   // to construct a compatible shuffle either by concatenating it with UNDEF or
6001   // extracting a suitable range of elements.
6002   for (auto &Src : Sources) {
6003     EVT SrcVT = Src.ShuffleVec.getValueType();
6004 
6005     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6006       continue;
6007 
6008     // This stage of the search produces a source with the same element type as
6009     // the original, but with a total width matching the BUILD_VECTOR output.
6010     EVT EltVT = SrcVT.getVectorElementType();
6011     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6012     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6013 
6014     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6015       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
6016       // We can pad out the smaller vector for free, so if it's part of a
6017       // shuffle...
6018       Src.ShuffleVec =
6019           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6020                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6021       continue;
6022     }
6023 
6024     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
6025 
6026     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6027       LLVM_DEBUG(
6028           dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6029       return SDValue();
6030     }
6031 
6032     if (Src.MinElt >= NumSrcElts) {
6033       // The extraction can just take the second half
6034       Src.ShuffleVec =
6035           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6036                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
6037       Src.WindowBase = -NumSrcElts;
6038     } else if (Src.MaxElt < NumSrcElts) {
6039       // The extraction can just take the first half
6040       Src.ShuffleVec =
6041           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6042                       DAG.getConstant(0, dl, MVT::i64));
6043     } else {
6044       // An actual VEXT is needed
6045       SDValue VEXTSrc1 =
6046           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6047                       DAG.getConstant(0, dl, MVT::i64));
6048       SDValue VEXTSrc2 =
6049           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6050                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
6051       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
6052 
6053       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
6054                                    VEXTSrc2,
6055                                    DAG.getConstant(Imm, dl, MVT::i32));
6056       Src.WindowBase = -Src.MinElt;
6057     }
6058   }
6059 
6060   // Another possible incompatibility occurs from the vector element types. We
6061   // can fix this by bitcasting the source vectors to the same type we intend
6062   // for the shuffle.
6063   for (auto &Src : Sources) {
6064     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6065     if (SrcEltTy == SmallestEltTy)
6066       continue;
6067     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6068     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6069     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6070     Src.WindowBase *= Src.WindowScale;
6071   }
6072 
6073   // Final sanity check before we try to actually produce a shuffle.
6074   LLVM_DEBUG(for (auto Src
6075                   : Sources)
6076                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6077 
6078   // The stars all align, our next step is to produce the mask for the shuffle.
6079   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6080   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6081   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6082     SDValue Entry = Op.getOperand(i);
6083     if (Entry.isUndef())
6084       continue;
6085 
6086     auto Src = find(Sources, Entry.getOperand(0));
6087     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6088 
6089     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6090     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6091     // segment.
6092     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6093     int BitsDefined =
6094         std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
6095     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6096 
6097     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6098     // starting at the appropriate offset.
6099     int *LaneMask = &Mask[i * ResMultiplier];
6100 
6101     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6102     ExtractBase += NumElts * (Src - Sources.begin());
6103     for (int j = 0; j < LanesDefined; ++j)
6104       LaneMask[j] = ExtractBase + j;
6105   }
6106 
6107   // Final check before we try to produce nonsense...
6108   if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
6109     LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6110     return SDValue();
6111   }
6112 
6113   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6114   for (unsigned i = 0; i < Sources.size(); ++i)
6115     ShuffleOps[i] = Sources[i].ShuffleVec;
6116 
6117   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6118                                          ShuffleOps[1], Mask);
6119   SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6120 
6121   LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
6122              dbgs() << "Reshuffle, creating node: "; V.dump(););
6123 
6124   return V;
6125 }
6126 
6127 // check if an EXT instruction can handle the shuffle mask when the
6128 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6129 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6130   unsigned NumElts = VT.getVectorNumElements();
6131 
6132   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6133   if (M[0] < 0)
6134     return false;
6135 
6136   Imm = M[0];
6137 
6138   // If this is a VEXT shuffle, the immediate value is the index of the first
6139   // element.  The other shuffle indices must be the successive elements after
6140   // the first one.
6141   unsigned ExpectedElt = Imm;
6142   for (unsigned i = 1; i < NumElts; ++i) {
6143     // Increment the expected index.  If it wraps around, just follow it
6144     // back to index zero and keep going.
6145     ++ExpectedElt;
6146     if (ExpectedElt == NumElts)
6147       ExpectedElt = 0;
6148 
6149     if (M[i] < 0)
6150       continue; // ignore UNDEF indices
6151     if (ExpectedElt != static_cast<unsigned>(M[i]))
6152       return false;
6153   }
6154 
6155   return true;
6156 }
6157 
6158 // check if an EXT instruction can handle the shuffle mask when the
6159 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)6160 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
6161                       unsigned &Imm) {
6162   // Look for the first non-undef element.
6163   const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
6164 
6165   // Benefit form APInt to handle overflow when calculating expected element.
6166   unsigned NumElts = VT.getVectorNumElements();
6167   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
6168   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
6169   // The following shuffle indices must be the successive elements after the
6170   // first real element.
6171   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
6172       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
6173   if (FirstWrongElt != M.end())
6174     return false;
6175 
6176   // The index of an EXT is the first element if it is not UNDEF.
6177   // Watch out for the beginning UNDEFs. The EXT index should be the expected
6178   // value of the first element.  E.g.
6179   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6180   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6181   // ExpectedElt is the last mask index plus 1.
6182   Imm = ExpectedElt.getZExtValue();
6183 
6184   // There are two difference cases requiring to reverse input vectors.
6185   // For example, for vector <4 x i32> we have the following cases,
6186   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6187   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6188   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6189   // to reverse two input vectors.
6190   if (Imm < NumElts)
6191     ReverseEXT = true;
6192   else
6193     Imm -= NumElts;
6194 
6195   return true;
6196 }
6197 
6198 /// isREVMask - Check if a vector shuffle corresponds to a REV
6199 /// instruction with the specified blocksize.  (The order of the elements
6200 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6201 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6202   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
6203          "Only possible block sizes for REV are: 16, 32, 64");
6204 
6205   unsigned EltSz = VT.getScalarSizeInBits();
6206   if (EltSz == 64)
6207     return false;
6208 
6209   unsigned NumElts = VT.getVectorNumElements();
6210   unsigned BlockElts = M[0] + 1;
6211   // If the first shuffle index is UNDEF, be optimistic.
6212   if (M[0] < 0)
6213     BlockElts = BlockSize / EltSz;
6214 
6215   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6216     return false;
6217 
6218   for (unsigned i = 0; i < NumElts; ++i) {
6219     if (M[i] < 0)
6220       continue; // ignore UNDEF indices
6221     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6222       return false;
6223   }
6224 
6225   return true;
6226 }
6227 
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6228 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6229   unsigned NumElts = VT.getVectorNumElements();
6230   WhichResult = (M[0] == 0 ? 0 : 1);
6231   unsigned Idx = WhichResult * NumElts / 2;
6232   for (unsigned i = 0; i != NumElts; i += 2) {
6233     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6234         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6235       return false;
6236     Idx += 1;
6237   }
6238 
6239   return true;
6240 }
6241 
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6242 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6243   unsigned NumElts = VT.getVectorNumElements();
6244   WhichResult = (M[0] == 0 ? 0 : 1);
6245   for (unsigned i = 0; i != NumElts; ++i) {
6246     if (M[i] < 0)
6247       continue; // ignore UNDEF indices
6248     if ((unsigned)M[i] != 2 * i + WhichResult)
6249       return false;
6250   }
6251 
6252   return true;
6253 }
6254 
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6255 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6256   unsigned NumElts = VT.getVectorNumElements();
6257   WhichResult = (M[0] == 0 ? 0 : 1);
6258   for (unsigned i = 0; i < NumElts; i += 2) {
6259     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6260         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6261       return false;
6262   }
6263   return true;
6264 }
6265 
6266 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6267 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6268 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6269 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6270   unsigned NumElts = VT.getVectorNumElements();
6271   WhichResult = (M[0] == 0 ? 0 : 1);
6272   unsigned Idx = WhichResult * NumElts / 2;
6273   for (unsigned i = 0; i != NumElts; i += 2) {
6274     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6275         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6276       return false;
6277     Idx += 1;
6278   }
6279 
6280   return true;
6281 }
6282 
6283 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6284 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6285 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6286 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6287   unsigned Half = VT.getVectorNumElements() / 2;
6288   WhichResult = (M[0] == 0 ? 0 : 1);
6289   for (unsigned j = 0; j != 2; ++j) {
6290     unsigned Idx = WhichResult;
6291     for (unsigned i = 0; i != Half; ++i) {
6292       int MIdx = M[i + j * Half];
6293       if (MIdx >= 0 && (unsigned)MIdx != Idx)
6294         return false;
6295       Idx += 2;
6296     }
6297   }
6298 
6299   return true;
6300 }
6301 
6302 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6303 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6304 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6305 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6306   unsigned NumElts = VT.getVectorNumElements();
6307   WhichResult = (M[0] == 0 ? 0 : 1);
6308   for (unsigned i = 0; i < NumElts; i += 2) {
6309     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6310         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6311       return false;
6312   }
6313   return true;
6314 }
6315 
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)6316 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6317                       bool &DstIsLeft, int &Anomaly) {
6318   if (M.size() != static_cast<size_t>(NumInputElements))
6319     return false;
6320 
6321   int NumLHSMatch = 0, NumRHSMatch = 0;
6322   int LastLHSMismatch = -1, LastRHSMismatch = -1;
6323 
6324   for (int i = 0; i < NumInputElements; ++i) {
6325     if (M[i] == -1) {
6326       ++NumLHSMatch;
6327       ++NumRHSMatch;
6328       continue;
6329     }
6330 
6331     if (M[i] == i)
6332       ++NumLHSMatch;
6333     else
6334       LastLHSMismatch = i;
6335 
6336     if (M[i] == i + NumInputElements)
6337       ++NumRHSMatch;
6338     else
6339       LastRHSMismatch = i;
6340   }
6341 
6342   if (NumLHSMatch == NumInputElements - 1) {
6343     DstIsLeft = true;
6344     Anomaly = LastLHSMismatch;
6345     return true;
6346   } else if (NumRHSMatch == NumInputElements - 1) {
6347     DstIsLeft = false;
6348     Anomaly = LastRHSMismatch;
6349     return true;
6350   }
6351 
6352   return false;
6353 }
6354 
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)6355 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6356   if (VT.getSizeInBits() != 128)
6357     return false;
6358 
6359   unsigned NumElts = VT.getVectorNumElements();
6360 
6361   for (int I = 0, E = NumElts / 2; I != E; I++) {
6362     if (Mask[I] != I)
6363       return false;
6364   }
6365 
6366   int Offset = NumElts / 2;
6367   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6368     if (Mask[I] != I + SplitLHS * Offset)
6369       return false;
6370   }
6371 
6372   return true;
6373 }
6374 
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)6375 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
6376   SDLoc DL(Op);
6377   EVT VT = Op.getValueType();
6378   SDValue V0 = Op.getOperand(0);
6379   SDValue V1 = Op.getOperand(1);
6380   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
6381 
6382   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
6383       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
6384     return SDValue();
6385 
6386   bool SplitV0 = V0.getValueSizeInBits() == 128;
6387 
6388   if (!isConcatMask(Mask, VT, SplitV0))
6389     return SDValue();
6390 
6391   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
6392                                 VT.getVectorNumElements() / 2);
6393   if (SplitV0) {
6394     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
6395                      DAG.getConstant(0, DL, MVT::i64));
6396   }
6397   if (V1.getValueSizeInBits() == 128) {
6398     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
6399                      DAG.getConstant(0, DL, MVT::i64));
6400   }
6401   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
6402 }
6403 
6404 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6405 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6406 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6407                                       SDValue RHS, SelectionDAG &DAG,
6408                                       const SDLoc &dl) {
6409   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6410   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
6411   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
6412 
6413   enum {
6414     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6415     OP_VREV,
6416     OP_VDUP0,
6417     OP_VDUP1,
6418     OP_VDUP2,
6419     OP_VDUP3,
6420     OP_VEXT1,
6421     OP_VEXT2,
6422     OP_VEXT3,
6423     OP_VUZPL, // VUZP, left result
6424     OP_VUZPR, // VUZP, right result
6425     OP_VZIPL, // VZIP, left result
6426     OP_VZIPR, // VZIP, right result
6427     OP_VTRNL, // VTRN, left result
6428     OP_VTRNR  // VTRN, right result
6429   };
6430 
6431   if (OpNum == OP_COPY) {
6432     if (LHSID == (1 * 9 + 2) * 9 + 3)
6433       return LHS;
6434     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6435     return RHS;
6436   }
6437 
6438   SDValue OpLHS, OpRHS;
6439   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6440   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6441   EVT VT = OpLHS.getValueType();
6442 
6443   switch (OpNum) {
6444   default:
6445     llvm_unreachable("Unknown shuffle opcode!");
6446   case OP_VREV:
6447     // VREV divides the vector in half and swaps within the half.
6448     if (VT.getVectorElementType() == MVT::i32 ||
6449         VT.getVectorElementType() == MVT::f32)
6450       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
6451     // vrev <4 x i16> -> REV32
6452     if (VT.getVectorElementType() == MVT::i16 ||
6453         VT.getVectorElementType() == MVT::f16)
6454       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
6455     // vrev <4 x i8> -> REV16
6456     assert(VT.getVectorElementType() == MVT::i8);
6457     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
6458   case OP_VDUP0:
6459   case OP_VDUP1:
6460   case OP_VDUP2:
6461   case OP_VDUP3: {
6462     EVT EltTy = VT.getVectorElementType();
6463     unsigned Opcode;
6464     if (EltTy == MVT::i8)
6465       Opcode = AArch64ISD::DUPLANE8;
6466     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
6467       Opcode = AArch64ISD::DUPLANE16;
6468     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
6469       Opcode = AArch64ISD::DUPLANE32;
6470     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
6471       Opcode = AArch64ISD::DUPLANE64;
6472     else
6473       llvm_unreachable("Invalid vector element type?");
6474 
6475     if (VT.getSizeInBits() == 64)
6476       OpLHS = WidenVector(OpLHS, DAG);
6477     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
6478     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
6479   }
6480   case OP_VEXT1:
6481   case OP_VEXT2:
6482   case OP_VEXT3: {
6483     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
6484     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
6485                        DAG.getConstant(Imm, dl, MVT::i32));
6486   }
6487   case OP_VUZPL:
6488     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
6489                        OpRHS);
6490   case OP_VUZPR:
6491     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
6492                        OpRHS);
6493   case OP_VZIPL:
6494     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
6495                        OpRHS);
6496   case OP_VZIPR:
6497     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
6498                        OpRHS);
6499   case OP_VTRNL:
6500     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
6501                        OpRHS);
6502   case OP_VTRNR:
6503     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
6504                        OpRHS);
6505   }
6506 }
6507 
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)6508 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
6509                            SelectionDAG &DAG) {
6510   // Check to see if we can use the TBL instruction.
6511   SDValue V1 = Op.getOperand(0);
6512   SDValue V2 = Op.getOperand(1);
6513   SDLoc DL(Op);
6514 
6515   EVT EltVT = Op.getValueType().getVectorElementType();
6516   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
6517 
6518   SmallVector<SDValue, 8> TBLMask;
6519   for (int Val : ShuffleMask) {
6520     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
6521       unsigned Offset = Byte + Val * BytesPerElt;
6522       TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
6523     }
6524   }
6525 
6526   MVT IndexVT = MVT::v8i8;
6527   unsigned IndexLen = 8;
6528   if (Op.getValueSizeInBits() == 128) {
6529     IndexVT = MVT::v16i8;
6530     IndexLen = 16;
6531   }
6532 
6533   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
6534   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
6535 
6536   SDValue Shuffle;
6537   if (V2.getNode()->isUndef()) {
6538     if (IndexLen == 8)
6539       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
6540     Shuffle = DAG.getNode(
6541         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6542         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6543         DAG.getBuildVector(IndexVT, DL,
6544                            makeArrayRef(TBLMask.data(), IndexLen)));
6545   } else {
6546     if (IndexLen == 8) {
6547       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
6548       Shuffle = DAG.getNode(
6549           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6550           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6551           DAG.getBuildVector(IndexVT, DL,
6552                              makeArrayRef(TBLMask.data(), IndexLen)));
6553     } else {
6554       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6555       // cannot currently represent the register constraints on the input
6556       // table registers.
6557       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6558       //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6559       //                   IndexLen));
6560       Shuffle = DAG.getNode(
6561           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6562           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
6563           V2Cst, DAG.getBuildVector(IndexVT, DL,
6564                                     makeArrayRef(TBLMask.data(), IndexLen)));
6565     }
6566   }
6567   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
6568 }
6569 
getDUPLANEOp(EVT EltType)6570 static unsigned getDUPLANEOp(EVT EltType) {
6571   if (EltType == MVT::i8)
6572     return AArch64ISD::DUPLANE8;
6573   if (EltType == MVT::i16 || EltType == MVT::f16)
6574     return AArch64ISD::DUPLANE16;
6575   if (EltType == MVT::i32 || EltType == MVT::f32)
6576     return AArch64ISD::DUPLANE32;
6577   if (EltType == MVT::i64 || EltType == MVT::f64)
6578     return AArch64ISD::DUPLANE64;
6579 
6580   llvm_unreachable("Invalid vector element type?");
6581 }
6582 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const6583 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6584                                                    SelectionDAG &DAG) const {
6585   SDLoc dl(Op);
6586   EVT VT = Op.getValueType();
6587 
6588   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6589 
6590   // Convert shuffles that are directly supported on NEON to target-specific
6591   // DAG nodes, instead of keeping them as shuffles and matching them again
6592   // during code selection.  This is more efficient and avoids the possibility
6593   // of inconsistencies between legalization and selection.
6594   ArrayRef<int> ShuffleMask = SVN->getMask();
6595 
6596   SDValue V1 = Op.getOperand(0);
6597   SDValue V2 = Op.getOperand(1);
6598 
6599   if (SVN->isSplat()) {
6600     int Lane = SVN->getSplatIndex();
6601     // If this is undef splat, generate it via "just" vdup, if possible.
6602     if (Lane == -1)
6603       Lane = 0;
6604 
6605     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
6606       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
6607                          V1.getOperand(0));
6608     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6609     // constant. If so, we can just reference the lane's definition directly.
6610     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
6611         !isa<ConstantSDNode>(V1.getOperand(Lane)))
6612       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
6613 
6614     // Otherwise, duplicate from the lane of the input vector.
6615     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
6616 
6617     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6618     // to make a vector of the same size as this SHUFFLE. We can ignore the
6619     // extract entirely, and canonicalise the concat using WidenVector.
6620     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6621       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
6622       V1 = V1.getOperand(0);
6623     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
6624       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
6625       Lane -= Idx * VT.getVectorNumElements() / 2;
6626       V1 = WidenVector(V1.getOperand(Idx), DAG);
6627     } else if (VT.getSizeInBits() == 64)
6628       V1 = WidenVector(V1, DAG);
6629 
6630     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
6631   }
6632 
6633   if (isREVMask(ShuffleMask, VT, 64))
6634     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
6635   if (isREVMask(ShuffleMask, VT, 32))
6636     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
6637   if (isREVMask(ShuffleMask, VT, 16))
6638     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
6639 
6640   bool ReverseEXT = false;
6641   unsigned Imm;
6642   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
6643     if (ReverseEXT)
6644       std::swap(V1, V2);
6645     Imm *= getExtFactor(V1);
6646     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
6647                        DAG.getConstant(Imm, dl, MVT::i32));
6648   } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
6649     Imm *= getExtFactor(V1);
6650     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
6651                        DAG.getConstant(Imm, dl, MVT::i32));
6652   }
6653 
6654   unsigned WhichResult;
6655   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
6656     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6657     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6658   }
6659   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
6660     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6661     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6662   }
6663   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
6664     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6665     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6666   }
6667 
6668   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6669     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6670     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6671   }
6672   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6673     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6674     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6675   }
6676   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6677     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6678     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6679   }
6680 
6681   if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
6682     return Concat;
6683 
6684   bool DstIsLeft;
6685   int Anomaly;
6686   int NumInputElements = V1.getValueType().getVectorNumElements();
6687   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
6688     SDValue DstVec = DstIsLeft ? V1 : V2;
6689     SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
6690 
6691     SDValue SrcVec = V1;
6692     int SrcLane = ShuffleMask[Anomaly];
6693     if (SrcLane >= NumInputElements) {
6694       SrcVec = V2;
6695       SrcLane -= VT.getVectorNumElements();
6696     }
6697     SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
6698 
6699     EVT ScalarVT = VT.getVectorElementType();
6700 
6701     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
6702       ScalarVT = MVT::i32;
6703 
6704     return DAG.getNode(
6705         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6706         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
6707         DstLaneV);
6708   }
6709 
6710   // If the shuffle is not directly supported and it has 4 elements, use
6711   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6712   unsigned NumElts = VT.getVectorNumElements();
6713   if (NumElts == 4) {
6714     unsigned PFIndexes[4];
6715     for (unsigned i = 0; i != 4; ++i) {
6716       if (ShuffleMask[i] < 0)
6717         PFIndexes[i] = 8;
6718       else
6719         PFIndexes[i] = ShuffleMask[i];
6720     }
6721 
6722     // Compute the index in the perfect shuffle table.
6723     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6724                             PFIndexes[2] * 9 + PFIndexes[3];
6725     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6726     unsigned Cost = (PFEntry >> 30);
6727 
6728     if (Cost <= 4)
6729       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6730   }
6731 
6732   return GenerateTBL(Op, ShuffleMask, DAG);
6733 }
6734 
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)6735 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
6736                                APInt &UndefBits) {
6737   EVT VT = BVN->getValueType(0);
6738   APInt SplatBits, SplatUndef;
6739   unsigned SplatBitSize;
6740   bool HasAnyUndefs;
6741   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6742     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
6743 
6744     for (unsigned i = 0; i < NumSplats; ++i) {
6745       CnstBits <<= SplatBitSize;
6746       UndefBits <<= SplatBitSize;
6747       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
6748       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
6749     }
6750 
6751     return true;
6752   }
6753 
6754   return false;
6755 }
6756 
6757 // Try 64-bit splatted SIMD immediate.
tryAdvSIMDModImm64(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6758 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6759                                  const APInt &Bits) {
6760   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6761     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6762     EVT VT = Op.getValueType();
6763     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
6764 
6765     if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
6766       Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
6767 
6768       SDLoc dl(Op);
6769       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6770                                 DAG.getConstant(Value, dl, MVT::i32));
6771       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6772     }
6773   }
6774 
6775   return SDValue();
6776 }
6777 
6778 // Try 32-bit splatted SIMD immediate.
tryAdvSIMDModImm32(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)6779 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6780                                   const APInt &Bits,
6781                                   const SDValue *LHS = nullptr) {
6782   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6783     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6784     EVT VT = Op.getValueType();
6785     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6786     bool isAdvSIMDModImm = false;
6787     uint64_t Shift;
6788 
6789     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
6790       Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
6791       Shift = 0;
6792     }
6793     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
6794       Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
6795       Shift = 8;
6796     }
6797     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
6798       Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
6799       Shift = 16;
6800     }
6801     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
6802       Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
6803       Shift = 24;
6804     }
6805 
6806     if (isAdvSIMDModImm) {
6807       SDLoc dl(Op);
6808       SDValue Mov;
6809 
6810       if (LHS)
6811         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6812                           DAG.getConstant(Value, dl, MVT::i32),
6813                           DAG.getConstant(Shift, dl, MVT::i32));
6814       else
6815         Mov = DAG.getNode(NewOp, dl, MovTy,
6816                           DAG.getConstant(Value, dl, MVT::i32),
6817                           DAG.getConstant(Shift, dl, MVT::i32));
6818 
6819       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6820     }
6821   }
6822 
6823   return SDValue();
6824 }
6825 
6826 // Try 16-bit splatted SIMD immediate.
tryAdvSIMDModImm16(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)6827 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6828                                   const APInt &Bits,
6829                                   const SDValue *LHS = nullptr) {
6830   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6831     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6832     EVT VT = Op.getValueType();
6833     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6834     bool isAdvSIMDModImm = false;
6835     uint64_t Shift;
6836 
6837     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
6838       Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
6839       Shift = 0;
6840     }
6841     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
6842       Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
6843       Shift = 8;
6844     }
6845 
6846     if (isAdvSIMDModImm) {
6847       SDLoc dl(Op);
6848       SDValue Mov;
6849 
6850       if (LHS)
6851         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6852                           DAG.getConstant(Value, dl, MVT::i32),
6853                           DAG.getConstant(Shift, dl, MVT::i32));
6854       else
6855         Mov = DAG.getNode(NewOp, dl, MovTy,
6856                           DAG.getConstant(Value, dl, MVT::i32),
6857                           DAG.getConstant(Shift, dl, MVT::i32));
6858 
6859       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6860     }
6861   }
6862 
6863   return SDValue();
6864 }
6865 
6866 // Try 32-bit splatted SIMD immediate with shifted ones.
tryAdvSIMDModImm321s(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6867 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
6868                                     SelectionDAG &DAG, const APInt &Bits) {
6869   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6870     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6871     EVT VT = Op.getValueType();
6872     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6873     bool isAdvSIMDModImm = false;
6874     uint64_t Shift;
6875 
6876     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
6877       Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
6878       Shift = 264;
6879     }
6880     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
6881       Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
6882       Shift = 272;
6883     }
6884 
6885     if (isAdvSIMDModImm) {
6886       SDLoc dl(Op);
6887       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6888                                 DAG.getConstant(Value, dl, MVT::i32),
6889                                 DAG.getConstant(Shift, dl, MVT::i32));
6890       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6891     }
6892   }
6893 
6894   return SDValue();
6895 }
6896 
6897 // Try 8-bit splatted SIMD immediate.
tryAdvSIMDModImm8(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6898 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6899                                  const APInt &Bits) {
6900   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6901     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6902     EVT VT = Op.getValueType();
6903     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6904 
6905     if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
6906       Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
6907 
6908       SDLoc dl(Op);
6909       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6910                                 DAG.getConstant(Value, dl, MVT::i32));
6911       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6912     }
6913   }
6914 
6915   return SDValue();
6916 }
6917 
6918 // Try FP splatted SIMD immediate.
tryAdvSIMDModImmFP(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6919 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6920                                   const APInt &Bits) {
6921   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6922     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6923     EVT VT = Op.getValueType();
6924     bool isWide = (VT.getSizeInBits() == 128);
6925     MVT MovTy;
6926     bool isAdvSIMDModImm = false;
6927 
6928     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
6929       Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
6930       MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
6931     }
6932     else if (isWide &&
6933              (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
6934       Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
6935       MovTy = MVT::v2f64;
6936     }
6937 
6938     if (isAdvSIMDModImm) {
6939       SDLoc dl(Op);
6940       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6941                                 DAG.getConstant(Value, dl, MVT::i32));
6942       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6943     }
6944   }
6945 
6946   return SDValue();
6947 }
6948 
LowerVectorAND(SDValue Op,SelectionDAG & DAG) const6949 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
6950                                               SelectionDAG &DAG) const {
6951   SDValue LHS = Op.getOperand(0);
6952   EVT VT = Op.getValueType();
6953 
6954   BuildVectorSDNode *BVN =
6955       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
6956   if (!BVN) {
6957     // AND commutes, so try swapping the operands.
6958     LHS = Op.getOperand(1);
6959     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
6960   }
6961   if (!BVN)
6962     return Op;
6963 
6964   APInt DefBits(VT.getSizeInBits(), 0);
6965   APInt UndefBits(VT.getSizeInBits(), 0);
6966   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6967     SDValue NewOp;
6968 
6969     // We only have BIC vector immediate instruction, which is and-not.
6970     DefBits = ~DefBits;
6971     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
6972                                     DefBits, &LHS)) ||
6973         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
6974                                     DefBits, &LHS)))
6975       return NewOp;
6976 
6977     UndefBits = ~UndefBits;
6978     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
6979                                     UndefBits, &LHS)) ||
6980         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
6981                                     UndefBits, &LHS)))
6982       return NewOp;
6983   }
6984 
6985   // We can always fall back to a non-immediate AND.
6986   return Op;
6987 }
6988 
6989 // Specialized code to quickly find if PotentialBVec is a BuildVector that
6990 // consists of only the same constant int value, returned in reference arg
6991 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)6992 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
6993                                      uint64_t &ConstVal) {
6994   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
6995   if (!Bvec)
6996     return false;
6997   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
6998   if (!FirstElt)
6999     return false;
7000   EVT VT = Bvec->getValueType(0);
7001   unsigned NumElts = VT.getVectorNumElements();
7002   for (unsigned i = 1; i < NumElts; ++i)
7003     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
7004       return false;
7005   ConstVal = FirstElt->getZExtValue();
7006   return true;
7007 }
7008 
getIntrinsicID(const SDNode * N)7009 static unsigned getIntrinsicID(const SDNode *N) {
7010   unsigned Opcode = N->getOpcode();
7011   switch (Opcode) {
7012   default:
7013     return Intrinsic::not_intrinsic;
7014   case ISD::INTRINSIC_WO_CHAIN: {
7015     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7016     if (IID < Intrinsic::num_intrinsics)
7017       return IID;
7018     return Intrinsic::not_intrinsic;
7019   }
7020   }
7021 }
7022 
7023 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7024 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7025 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7026 // Also, logical shift right -> sri, with the same structure.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)7027 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
7028   EVT VT = N->getValueType(0);
7029 
7030   if (!VT.isVector())
7031     return SDValue();
7032 
7033   SDLoc DL(N);
7034 
7035   // Is the first op an AND?
7036   const SDValue And = N->getOperand(0);
7037   if (And.getOpcode() != ISD::AND)
7038     return SDValue();
7039 
7040   // Is the second op an shl or lshr?
7041   SDValue Shift = N->getOperand(1);
7042   // This will have been turned into: AArch64ISD::VSHL vector, #shift
7043   // or AArch64ISD::VLSHR vector, #shift
7044   unsigned ShiftOpc = Shift.getOpcode();
7045   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
7046     return SDValue();
7047   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
7048 
7049   // Is the shift amount constant?
7050   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7051   if (!C2node)
7052     return SDValue();
7053 
7054   // Is the and mask vector all constant?
7055   uint64_t C1;
7056   if (!isAllConstantBuildVector(And.getOperand(1), C1))
7057     return SDValue();
7058 
7059   // Is C1 == ~C2, taking into account how much one can shift elements of a
7060   // particular size?
7061   uint64_t C2 = C2node->getZExtValue();
7062   unsigned ElemSizeInBits = VT.getScalarSizeInBits();
7063   if (C2 > ElemSizeInBits)
7064     return SDValue();
7065   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
7066   if ((C1 & ElemMask) != (~C2 & ElemMask))
7067     return SDValue();
7068 
7069   SDValue X = And.getOperand(0);
7070   SDValue Y = Shift.getOperand(0);
7071 
7072   unsigned Intrin =
7073       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
7074   SDValue ResultSLI =
7075       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7076                   DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
7077                   Shift.getOperand(1));
7078 
7079   LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7080   LLVM_DEBUG(N->dump(&DAG));
7081   LLVM_DEBUG(dbgs() << "into: \n");
7082   LLVM_DEBUG(ResultSLI->dump(&DAG));
7083 
7084   ++NumShiftInserts;
7085   return ResultSLI;
7086 }
7087 
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const7088 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
7089                                              SelectionDAG &DAG) const {
7090   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7091   if (EnableAArch64SlrGeneration) {
7092     if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
7093       return Res;
7094   }
7095 
7096   EVT VT = Op.getValueType();
7097 
7098   SDValue LHS = Op.getOperand(0);
7099   BuildVectorSDNode *BVN =
7100       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
7101   if (!BVN) {
7102     // OR commutes, so try swapping the operands.
7103     LHS = Op.getOperand(1);
7104     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
7105   }
7106   if (!BVN)
7107     return Op;
7108 
7109   APInt DefBits(VT.getSizeInBits(), 0);
7110   APInt UndefBits(VT.getSizeInBits(), 0);
7111   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7112     SDValue NewOp;
7113 
7114     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7115                                     DefBits, &LHS)) ||
7116         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7117                                     DefBits, &LHS)))
7118       return NewOp;
7119 
7120     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7121                                     UndefBits, &LHS)) ||
7122         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7123                                     UndefBits, &LHS)))
7124       return NewOp;
7125   }
7126 
7127   // We can always fall back to a non-immediate OR.
7128   return Op;
7129 }
7130 
7131 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7132 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)7133 static SDValue NormalizeBuildVector(SDValue Op,
7134                                     SelectionDAG &DAG) {
7135   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7136   SDLoc dl(Op);
7137   EVT VT = Op.getValueType();
7138   EVT EltTy= VT.getVectorElementType();
7139 
7140   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
7141     return Op;
7142 
7143   SmallVector<SDValue, 16> Ops;
7144   for (SDValue Lane : Op->ops()) {
7145     // For integer vectors, type legalization would have promoted the
7146     // operands already. Otherwise, if Op is a floating-point splat
7147     // (with operands cast to integers), then the only possibilities
7148     // are constants and UNDEFs.
7149     if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
7150       APInt LowBits(EltTy.getSizeInBits(),
7151                     CstLane->getZExtValue());
7152       Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
7153     } else if (Lane.getNode()->isUndef()) {
7154       Lane = DAG.getUNDEF(MVT::i32);
7155     } else {
7156       assert(Lane.getValueType() == MVT::i32 &&
7157              "Unexpected BUILD_VECTOR operand type");
7158     }
7159     Ops.push_back(Lane);
7160   }
7161   return DAG.getBuildVector(VT, dl, Ops);
7162 }
7163 
ConstantBuildVector(SDValue Op,SelectionDAG & DAG)7164 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
7165   EVT VT = Op.getValueType();
7166 
7167   APInt DefBits(VT.getSizeInBits(), 0);
7168   APInt UndefBits(VT.getSizeInBits(), 0);
7169   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7170   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7171     SDValue NewOp;
7172     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7173         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7174         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7175         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7176         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7177         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7178       return NewOp;
7179 
7180     DefBits = ~DefBits;
7181     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7182         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7183         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7184       return NewOp;
7185 
7186     DefBits = UndefBits;
7187     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7188         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7189         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7190         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7191         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7192         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7193       return NewOp;
7194 
7195     DefBits = ~UndefBits;
7196     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7197         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7198         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7199       return NewOp;
7200   }
7201 
7202   return SDValue();
7203 }
7204 
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const7205 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
7206                                                  SelectionDAG &DAG) const {
7207   EVT VT = Op.getValueType();
7208 
7209   // Try to build a simple constant vector.
7210   Op = NormalizeBuildVector(Op, DAG);
7211   if (VT.isInteger()) {
7212     // Certain vector constants, used to express things like logical NOT and
7213     // arithmetic NEG, are passed through unmodified.  This allows special
7214     // patterns for these operations to match, which will lower these constants
7215     // to whatever is proven necessary.
7216     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7217     if (BVN->isConstant())
7218       if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
7219         unsigned BitSize = VT.getVectorElementType().getSizeInBits();
7220         APInt Val(BitSize,
7221                   Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
7222         if (Val.isNullValue() || Val.isAllOnesValue())
7223           return Op;
7224       }
7225   }
7226 
7227   if (SDValue V = ConstantBuildVector(Op, DAG))
7228     return V;
7229 
7230   // Scan through the operands to find some interesting properties we can
7231   // exploit:
7232   //   1) If only one value is used, we can use a DUP, or
7233   //   2) if only the low element is not undef, we can just insert that, or
7234   //   3) if only one constant value is used (w/ some non-constant lanes),
7235   //      we can splat the constant value into the whole vector then fill
7236   //      in the non-constant lanes.
7237   //   4) FIXME: If different constant values are used, but we can intelligently
7238   //             select the values we'll be overwriting for the non-constant
7239   //             lanes such that we can directly materialize the vector
7240   //             some other way (MOVI, e.g.), we can be sneaky.
7241   //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7242   SDLoc dl(Op);
7243   unsigned NumElts = VT.getVectorNumElements();
7244   bool isOnlyLowElement = true;
7245   bool usesOnlyOneValue = true;
7246   bool usesOnlyOneConstantValue = true;
7247   bool isConstant = true;
7248   bool AllLanesExtractElt = true;
7249   unsigned NumConstantLanes = 0;
7250   SDValue Value;
7251   SDValue ConstantValue;
7252   for (unsigned i = 0; i < NumElts; ++i) {
7253     SDValue V = Op.getOperand(i);
7254     if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7255       AllLanesExtractElt = false;
7256     if (V.isUndef())
7257       continue;
7258     if (i > 0)
7259       isOnlyLowElement = false;
7260     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7261       isConstant = false;
7262 
7263     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7264       ++NumConstantLanes;
7265       if (!ConstantValue.getNode())
7266         ConstantValue = V;
7267       else if (ConstantValue != V)
7268         usesOnlyOneConstantValue = false;
7269     }
7270 
7271     if (!Value.getNode())
7272       Value = V;
7273     else if (V != Value)
7274       usesOnlyOneValue = false;
7275   }
7276 
7277   if (!Value.getNode()) {
7278     LLVM_DEBUG(
7279         dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7280     return DAG.getUNDEF(VT);
7281   }
7282 
7283   // Convert BUILD_VECTOR where all elements but the lowest are undef into
7284   // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7285   // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7286   if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
7287     LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7288                          "SCALAR_TO_VECTOR node\n");
7289     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7290   }
7291 
7292   if (AllLanesExtractElt) {
7293     SDNode *Vector = nullptr;
7294     bool Even = false;
7295     bool Odd = false;
7296     // Check whether the extract elements match the Even pattern <0,2,4,...> or
7297     // the Odd pattern <1,3,5,...>.
7298     for (unsigned i = 0; i < NumElts; ++i) {
7299       SDValue V = Op.getOperand(i);
7300       const SDNode *N = V.getNode();
7301       if (!isa<ConstantSDNode>(N->getOperand(1)))
7302         break;
7303       SDValue N0 = N->getOperand(0);
7304 
7305       // All elements are extracted from the same vector.
7306       if (!Vector) {
7307         Vector = N0.getNode();
7308         // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7309         // BUILD_VECTOR.
7310         if (VT.getVectorElementType() !=
7311             N0.getValueType().getVectorElementType())
7312           break;
7313       } else if (Vector != N0.getNode()) {
7314         Odd = false;
7315         Even = false;
7316         break;
7317       }
7318 
7319       // Extracted values are either at Even indices <0,2,4,...> or at Odd
7320       // indices <1,3,5,...>.
7321       uint64_t Val = N->getConstantOperandVal(1);
7322       if (Val == 2 * i) {
7323         Even = true;
7324         continue;
7325       }
7326       if (Val - 1 == 2 * i) {
7327         Odd = true;
7328         continue;
7329       }
7330 
7331       // Something does not match: abort.
7332       Odd = false;
7333       Even = false;
7334       break;
7335     }
7336     if (Even || Odd) {
7337       SDValue LHS =
7338           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7339                       DAG.getConstant(0, dl, MVT::i64));
7340       SDValue RHS =
7341           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7342                       DAG.getConstant(NumElts, dl, MVT::i64));
7343 
7344       if (Even && !Odd)
7345         return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
7346                            RHS);
7347       if (Odd && !Even)
7348         return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
7349                            RHS);
7350     }
7351   }
7352 
7353   // Use DUP for non-constant splats. For f32 constant splats, reduce to
7354   // i32 and try again.
7355   if (usesOnlyOneValue) {
7356     if (!isConstant) {
7357       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7358           Value.getValueType() != VT) {
7359         LLVM_DEBUG(
7360             dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7361         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
7362       }
7363 
7364       // This is actually a DUPLANExx operation, which keeps everything vectory.
7365 
7366       SDValue Lane = Value.getOperand(1);
7367       Value = Value.getOperand(0);
7368       if (Value.getValueSizeInBits() == 64) {
7369         LLVM_DEBUG(
7370             dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7371                       "widening it\n");
7372         Value = WidenVector(Value, DAG);
7373       }
7374 
7375       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
7376       return DAG.getNode(Opcode, dl, VT, Value, Lane);
7377     }
7378 
7379     if (VT.getVectorElementType().isFloatingPoint()) {
7380       SmallVector<SDValue, 8> Ops;
7381       EVT EltTy = VT.getVectorElementType();
7382       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
7383               "Unsupported floating-point vector type");
7384       LLVM_DEBUG(
7385           dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7386                     "BITCASTS, and try again\n");
7387       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
7388       for (unsigned i = 0; i < NumElts; ++i)
7389         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
7390       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
7391       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7392       LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7393                  Val.dump(););
7394       Val = LowerBUILD_VECTOR(Val, DAG);
7395       if (Val.getNode())
7396         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7397     }
7398   }
7399 
7400   // If there was only one constant value used and for more than one lane,
7401   // start by splatting that value, then replace the non-constant lanes. This
7402   // is better than the default, which will perform a separate initialization
7403   // for each lane.
7404   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
7405     // Firstly, try to materialize the splat constant.
7406     SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
7407             Val = ConstantBuildVector(Vec, DAG);
7408     if (!Val) {
7409       // Otherwise, materialize the constant and splat it.
7410       Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
7411       DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
7412     }
7413 
7414     // Now insert the non-constant lanes.
7415     for (unsigned i = 0; i < NumElts; ++i) {
7416       SDValue V = Op.getOperand(i);
7417       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7418       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
7419         // Note that type legalization likely mucked about with the VT of the
7420         // source operand, so we may have to convert it here before inserting.
7421         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
7422     }
7423     return Val;
7424   }
7425 
7426   // This will generate a load from the constant pool.
7427   if (isConstant) {
7428     LLVM_DEBUG(
7429         dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7430                   "expansion\n");
7431     return SDValue();
7432   }
7433 
7434   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7435   if (NumElts >= 4) {
7436     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7437       return shuffle;
7438   }
7439 
7440   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7441   // know the default expansion would otherwise fall back on something even
7442   // worse. For a vector with one or two non-undef values, that's
7443   // scalar_to_vector for the elements followed by a shuffle (provided the
7444   // shuffle is valid for the target) and materialization element by element
7445   // on the stack followed by a load for everything else.
7446   if (!isConstant && !usesOnlyOneValue) {
7447     LLVM_DEBUG(
7448         dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7449                   "of INSERT_VECTOR_ELT\n");
7450 
7451     SDValue Vec = DAG.getUNDEF(VT);
7452     SDValue Op0 = Op.getOperand(0);
7453     unsigned i = 0;
7454 
7455     // Use SCALAR_TO_VECTOR for lane zero to
7456     // a) Avoid a RMW dependency on the full vector register, and
7457     // b) Allow the register coalescer to fold away the copy if the
7458     //    value is already in an S or D register, and we're forced to emit an
7459     //    INSERT_SUBREG that we can't fold anywhere.
7460     //
7461     // We also allow types like i8 and i16 which are illegal scalar but legal
7462     // vector element types. After type-legalization the inserted value is
7463     // extended (i32) and it is safe to cast them to the vector type by ignoring
7464     // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7465     if (!Op0.isUndef()) {
7466       LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7467       Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
7468       ++i;
7469     }
7470     LLVM_DEBUG(if (i < NumElts) dbgs()
7471                    << "Creating nodes for the other vector elements:\n";);
7472     for (; i < NumElts; ++i) {
7473       SDValue V = Op.getOperand(i);
7474       if (V.isUndef())
7475         continue;
7476       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7477       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7478     }
7479     return Vec;
7480   }
7481 
7482   LLVM_DEBUG(
7483       dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7484                 "better alternative\n");
7485   return SDValue();
7486 }
7487 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7488 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7489                                                       SelectionDAG &DAG) const {
7490   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
7491 
7492   // Check for non-constant or out of range lane.
7493   EVT VT = Op.getOperand(0).getValueType();
7494   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7495   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7496     return SDValue();
7497 
7498 
7499   // Insertion/extraction are legal for V128 types.
7500   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7501       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7502       VT == MVT::v8f16)
7503     return Op;
7504 
7505   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7506       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7507     return SDValue();
7508 
7509   // For V64 types, we perform insertion by expanding the value
7510   // to a V128 type and perform the insertion on that.
7511   SDLoc DL(Op);
7512   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7513   EVT WideTy = WideVec.getValueType();
7514 
7515   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
7516                              Op.getOperand(1), Op.getOperand(2));
7517   // Re-narrow the resultant vector.
7518   return NarrowVector(Node, DAG);
7519 }
7520 
7521 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7522 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7523                                                SelectionDAG &DAG) const {
7524   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
7525 
7526   // Check for non-constant or out of range lane.
7527   EVT VT = Op.getOperand(0).getValueType();
7528   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7529   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7530     return SDValue();
7531 
7532 
7533   // Insertion/extraction are legal for V128 types.
7534   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7535       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7536       VT == MVT::v8f16)
7537     return Op;
7538 
7539   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7540       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7541     return SDValue();
7542 
7543   // For V64 types, we perform extraction by expanding the value
7544   // to a V128 type and perform the extraction on that.
7545   SDLoc DL(Op);
7546   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7547   EVT WideTy = WideVec.getValueType();
7548 
7549   EVT ExtrTy = WideTy.getVectorElementType();
7550   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
7551     ExtrTy = MVT::i32;
7552 
7553   // For extractions, we just return the result directly.
7554   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
7555                      Op.getOperand(1));
7556 }
7557 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7558 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
7559                                                       SelectionDAG &DAG) const {
7560   EVT VT = Op.getOperand(0).getValueType();
7561   SDLoc dl(Op);
7562   // Just in case...
7563   if (!VT.isVector())
7564     return SDValue();
7565 
7566   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7567   if (!Cst)
7568     return SDValue();
7569   unsigned Val = Cst->getZExtValue();
7570 
7571   unsigned Size = Op.getValueSizeInBits();
7572 
7573   // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7574   if (Val == 0)
7575     return Op;
7576 
7577   // If this is extracting the upper 64-bits of a 128-bit vector, we match
7578   // that directly.
7579   if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
7580     return Op;
7581 
7582   return SDValue();
7583 }
7584 
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7585 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7586   if (VT.getVectorNumElements() == 4 &&
7587       (VT.is128BitVector() || VT.is64BitVector())) {
7588     unsigned PFIndexes[4];
7589     for (unsigned i = 0; i != 4; ++i) {
7590       if (M[i] < 0)
7591         PFIndexes[i] = 8;
7592       else
7593         PFIndexes[i] = M[i];
7594     }
7595 
7596     // Compute the index in the perfect shuffle table.
7597     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7598                             PFIndexes[2] * 9 + PFIndexes[3];
7599     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7600     unsigned Cost = (PFEntry >> 30);
7601 
7602     if (Cost <= 4)
7603       return true;
7604   }
7605 
7606   bool DummyBool;
7607   int DummyInt;
7608   unsigned DummyUnsigned;
7609 
7610   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
7611           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
7612           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
7613           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7614           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
7615           isZIPMask(M, VT, DummyUnsigned) ||
7616           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
7617           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
7618           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
7619           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
7620           isConcatMask(M, VT, VT.getSizeInBits() == 128));
7621 }
7622 
7623 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7624 /// operand of a vector shift operation, where all the elements of the
7625 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)7626 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7627   // Ignore bit_converts.
7628   while (Op.getOpcode() == ISD::BITCAST)
7629     Op = Op.getOperand(0);
7630   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7631   APInt SplatBits, SplatUndef;
7632   unsigned SplatBitSize;
7633   bool HasAnyUndefs;
7634   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7635                                     HasAnyUndefs, ElementBits) ||
7636       SplatBitSize > ElementBits)
7637     return false;
7638   Cnt = SplatBits.getSExtValue();
7639   return true;
7640 }
7641 
7642 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7643 /// operand of a vector shift left operation.  That value must be in the range:
7644 ///   0 <= Value < ElementBits for a left shift; or
7645 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)7646 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7647   assert(VT.isVector() && "vector shift count is not a vector type");
7648   int64_t ElementBits = VT.getScalarSizeInBits();
7649   if (!getVShiftImm(Op, ElementBits, Cnt))
7650     return false;
7651   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
7652 }
7653 
7654 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7655 /// operand of a vector shift right operation. The value must be in the range:
7656 ///   1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)7657 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
7658   assert(VT.isVector() && "vector shift count is not a vector type");
7659   int64_t ElementBits = VT.getScalarSizeInBits();
7660   if (!getVShiftImm(Op, ElementBits, Cnt))
7661     return false;
7662   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
7663 }
7664 
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const7665 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
7666                                                       SelectionDAG &DAG) const {
7667   EVT VT = Op.getValueType();
7668   SDLoc DL(Op);
7669   int64_t Cnt;
7670 
7671   if (!Op.getOperand(1).getValueType().isVector())
7672     return Op;
7673   unsigned EltSize = VT.getScalarSizeInBits();
7674 
7675   switch (Op.getOpcode()) {
7676   default:
7677     llvm_unreachable("unexpected shift opcode");
7678 
7679   case ISD::SHL:
7680     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
7681       return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
7682                          DAG.getConstant(Cnt, DL, MVT::i32));
7683     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7684                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
7685                                        MVT::i32),
7686                        Op.getOperand(0), Op.getOperand(1));
7687   case ISD::SRA:
7688   case ISD::SRL:
7689     // Right shift immediate
7690     if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
7691       unsigned Opc =
7692           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
7693       return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
7694                          DAG.getConstant(Cnt, DL, MVT::i32));
7695     }
7696 
7697     // Right shift register.  Note, there is not a shift right register
7698     // instruction, but the shift left register instruction takes a signed
7699     // value, where negative numbers specify a right shift.
7700     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
7701                                                 : Intrinsic::aarch64_neon_ushl;
7702     // negate the shift amount
7703     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
7704     SDValue NegShiftLeft =
7705         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7706                     DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
7707                     NegShift);
7708     return NegShiftLeft;
7709   }
7710 
7711   return SDValue();
7712 }
7713 
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,const SDLoc & dl,SelectionDAG & DAG)7714 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
7715                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
7716                                     const SDLoc &dl, SelectionDAG &DAG) {
7717   EVT SrcVT = LHS.getValueType();
7718   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
7719          "function only supposed to emit natural comparisons");
7720 
7721   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
7722   APInt CnstBits(VT.getSizeInBits(), 0);
7723   APInt UndefBits(VT.getSizeInBits(), 0);
7724   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
7725   bool IsZero = IsCnst && (CnstBits == 0);
7726 
7727   if (SrcVT.getVectorElementType().isFloatingPoint()) {
7728     switch (CC) {
7729     default:
7730       return SDValue();
7731     case AArch64CC::NE: {
7732       SDValue Fcmeq;
7733       if (IsZero)
7734         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7735       else
7736         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7737       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
7738     }
7739     case AArch64CC::EQ:
7740       if (IsZero)
7741         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7742       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7743     case AArch64CC::GE:
7744       if (IsZero)
7745         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
7746       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
7747     case AArch64CC::GT:
7748       if (IsZero)
7749         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
7750       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
7751     case AArch64CC::LS:
7752       if (IsZero)
7753         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
7754       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
7755     case AArch64CC::LT:
7756       if (!NoNans)
7757         return SDValue();
7758       // If we ignore NaNs then we can use to the MI implementation.
7759       LLVM_FALLTHROUGH;
7760     case AArch64CC::MI:
7761       if (IsZero)
7762         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
7763       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
7764     }
7765   }
7766 
7767   switch (CC) {
7768   default:
7769     return SDValue();
7770   case AArch64CC::NE: {
7771     SDValue Cmeq;
7772     if (IsZero)
7773       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7774     else
7775       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7776     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
7777   }
7778   case AArch64CC::EQ:
7779     if (IsZero)
7780       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7781     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7782   case AArch64CC::GE:
7783     if (IsZero)
7784       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
7785     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
7786   case AArch64CC::GT:
7787     if (IsZero)
7788       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
7789     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
7790   case AArch64CC::LE:
7791     if (IsZero)
7792       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
7793     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
7794   case AArch64CC::LS:
7795     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
7796   case AArch64CC::LO:
7797     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
7798   case AArch64CC::LT:
7799     if (IsZero)
7800       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
7801     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
7802   case AArch64CC::HI:
7803     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
7804   case AArch64CC::HS:
7805     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
7806   }
7807 }
7808 
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const7809 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
7810                                            SelectionDAG &DAG) const {
7811   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7812   SDValue LHS = Op.getOperand(0);
7813   SDValue RHS = Op.getOperand(1);
7814   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
7815   SDLoc dl(Op);
7816 
7817   if (LHS.getValueType().getVectorElementType().isInteger()) {
7818     assert(LHS.getValueType() == RHS.getValueType());
7819     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7820     SDValue Cmp =
7821         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
7822     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7823   }
7824 
7825   const bool FullFP16 =
7826     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
7827 
7828   // Make v4f16 (only) fcmp operations utilise vector instructions
7829   // v8f16 support will be a litle more complicated
7830   if (LHS.getValueType().getVectorElementType() == MVT::f16) {
7831     if (!FullFP16 && LHS.getValueType().getVectorNumElements() == 4) {
7832       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
7833       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
7834       SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
7835       DAG.ReplaceAllUsesWith(Op, NewSetcc);
7836       CmpVT = MVT::v4i32;
7837     } else
7838       return SDValue();
7839   }
7840 
7841   assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
7842          LHS.getValueType().getVectorElementType() == MVT::f64);
7843 
7844   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
7845   // clean.  Some of them require two branches to implement.
7846   AArch64CC::CondCode CC1, CC2;
7847   bool ShouldInvert;
7848   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
7849 
7850   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
7851   SDValue Cmp =
7852       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
7853   if (!Cmp.getNode())
7854     return SDValue();
7855 
7856   if (CC2 != AArch64CC::AL) {
7857     SDValue Cmp2 =
7858         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
7859     if (!Cmp2.getNode())
7860       return SDValue();
7861 
7862     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
7863   }
7864 
7865   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7866 
7867   if (ShouldInvert)
7868     Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
7869 
7870   return Cmp;
7871 }
7872 
getReductionSDNode(unsigned Op,SDLoc DL,SDValue ScalarOp,SelectionDAG & DAG)7873 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
7874                                   SelectionDAG &DAG) {
7875   SDValue VecOp = ScalarOp.getOperand(0);
7876   auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
7877   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
7878                      DAG.getConstant(0, DL, MVT::i64));
7879 }
7880 
LowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const7881 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
7882                                               SelectionDAG &DAG) const {
7883   SDLoc dl(Op);
7884   switch (Op.getOpcode()) {
7885   case ISD::VECREDUCE_ADD:
7886     return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
7887   case ISD::VECREDUCE_SMAX:
7888     return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
7889   case ISD::VECREDUCE_SMIN:
7890     return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
7891   case ISD::VECREDUCE_UMAX:
7892     return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
7893   case ISD::VECREDUCE_UMIN:
7894     return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
7895   case ISD::VECREDUCE_FMAX: {
7896     assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
7897     return DAG.getNode(
7898         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7899         DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
7900         Op.getOperand(0));
7901   }
7902   case ISD::VECREDUCE_FMIN: {
7903     assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
7904     return DAG.getNode(
7905         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7906         DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
7907         Op.getOperand(0));
7908   }
7909   default:
7910     llvm_unreachable("Unhandled reduction");
7911   }
7912 }
7913 
LowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const7914 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
7915                                                     SelectionDAG &DAG) const {
7916   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7917   if (!Subtarget.hasLSE())
7918     return SDValue();
7919 
7920   // LSE has an atomic load-add instruction, but not a load-sub.
7921   SDLoc dl(Op);
7922   MVT VT = Op.getSimpleValueType();
7923   SDValue RHS = Op.getOperand(2);
7924   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7925   RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
7926   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
7927                        Op.getOperand(0), Op.getOperand(1), RHS,
7928                        AN->getMemOperand());
7929 }
7930 
LowerATOMIC_LOAD_AND(SDValue Op,SelectionDAG & DAG) const7931 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
7932                                                     SelectionDAG &DAG) const {
7933   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7934   if (!Subtarget.hasLSE())
7935     return SDValue();
7936 
7937   // LSE has an atomic load-clear instruction, but not a load-and.
7938   SDLoc dl(Op);
7939   MVT VT = Op.getSimpleValueType();
7940   SDValue RHS = Op.getOperand(2);
7941   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7942   RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
7943   return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
7944                        Op.getOperand(0), Op.getOperand(1), RHS,
7945                        AN->getMemOperand());
7946 }
7947 
LowerWindowsDYNAMIC_STACKALLOC(SDValue Op,SDValue Chain,SDValue & Size,SelectionDAG & DAG) const7948 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
7949     SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
7950   SDLoc dl(Op);
7951   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7952   SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
7953 
7954   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
7955   const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
7956   if (Subtarget->hasCustomCallingConv())
7957     TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
7958 
7959   Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
7960                      DAG.getConstant(4, dl, MVT::i64));
7961   Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
7962   Chain =
7963       DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
7964                   Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
7965                   DAG.getRegisterMask(Mask), Chain.getValue(1));
7966   // To match the actual intent better, we should read the output from X15 here
7967   // again (instead of potentially spilling it to the stack), but rereading Size
7968   // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
7969   // here.
7970 
7971   Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
7972                      DAG.getConstant(4, dl, MVT::i64));
7973   return Chain;
7974 }
7975 
7976 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const7977 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7978                                                SelectionDAG &DAG) const {
7979   assert(Subtarget->isTargetWindows() &&
7980          "Only Windows alloca probing supported");
7981   SDLoc dl(Op);
7982   // Get the inputs.
7983   SDNode *Node = Op.getNode();
7984   SDValue Chain = Op.getOperand(0);
7985   SDValue Size = Op.getOperand(1);
7986   unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7987   EVT VT = Node->getValueType(0);
7988 
7989   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
7990           "no-stack-arg-probe")) {
7991     SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
7992     Chain = SP.getValue(1);
7993     SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
7994     if (Align)
7995       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
7996                        DAG.getConstant(-(uint64_t)Align, dl, VT));
7997     Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
7998     SDValue Ops[2] = {SP, Chain};
7999     return DAG.getMergeValues(Ops, dl);
8000   }
8001 
8002   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
8003 
8004   Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
8005 
8006   SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8007   Chain = SP.getValue(1);
8008   SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8009   if (Align)
8010     SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8011                      DAG.getConstant(-(uint64_t)Align, dl, VT));
8012   Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8013 
8014   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
8015                              DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
8016 
8017   SDValue Ops[2] = {SP, Chain};
8018   return DAG.getMergeValues(Ops, dl);
8019 }
8020 
8021 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8022 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8023 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const8024 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8025                                                const CallInst &I,
8026                                                MachineFunction &MF,
8027                                                unsigned Intrinsic) const {
8028   auto &DL = I.getModule()->getDataLayout();
8029   switch (Intrinsic) {
8030   case Intrinsic::aarch64_neon_ld2:
8031   case Intrinsic::aarch64_neon_ld3:
8032   case Intrinsic::aarch64_neon_ld4:
8033   case Intrinsic::aarch64_neon_ld1x2:
8034   case Intrinsic::aarch64_neon_ld1x3:
8035   case Intrinsic::aarch64_neon_ld1x4:
8036   case Intrinsic::aarch64_neon_ld2lane:
8037   case Intrinsic::aarch64_neon_ld3lane:
8038   case Intrinsic::aarch64_neon_ld4lane:
8039   case Intrinsic::aarch64_neon_ld2r:
8040   case Intrinsic::aarch64_neon_ld3r:
8041   case Intrinsic::aarch64_neon_ld4r: {
8042     Info.opc = ISD::INTRINSIC_W_CHAIN;
8043     // Conservatively set memVT to the entire set of vectors loaded.
8044     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
8045     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8046     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8047     Info.offset = 0;
8048     Info.align = 0;
8049     // volatile loads with NEON intrinsics not supported
8050     Info.flags = MachineMemOperand::MOLoad;
8051     return true;
8052   }
8053   case Intrinsic::aarch64_neon_st2:
8054   case Intrinsic::aarch64_neon_st3:
8055   case Intrinsic::aarch64_neon_st4:
8056   case Intrinsic::aarch64_neon_st1x2:
8057   case Intrinsic::aarch64_neon_st1x3:
8058   case Intrinsic::aarch64_neon_st1x4:
8059   case Intrinsic::aarch64_neon_st2lane:
8060   case Intrinsic::aarch64_neon_st3lane:
8061   case Intrinsic::aarch64_neon_st4lane: {
8062     Info.opc = ISD::INTRINSIC_VOID;
8063     // Conservatively set memVT to the entire set of vectors stored.
8064     unsigned NumElts = 0;
8065     for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8066       Type *ArgTy = I.getArgOperand(ArgI)->getType();
8067       if (!ArgTy->isVectorTy())
8068         break;
8069       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
8070     }
8071     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8072     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8073     Info.offset = 0;
8074     Info.align = 0;
8075     // volatile stores with NEON intrinsics not supported
8076     Info.flags = MachineMemOperand::MOStore;
8077     return true;
8078   }
8079   case Intrinsic::aarch64_ldaxr:
8080   case Intrinsic::aarch64_ldxr: {
8081     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
8082     Info.opc = ISD::INTRINSIC_W_CHAIN;
8083     Info.memVT = MVT::getVT(PtrTy->getElementType());
8084     Info.ptrVal = I.getArgOperand(0);
8085     Info.offset = 0;
8086     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
8087     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8088     return true;
8089   }
8090   case Intrinsic::aarch64_stlxr:
8091   case Intrinsic::aarch64_stxr: {
8092     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
8093     Info.opc = ISD::INTRINSIC_W_CHAIN;
8094     Info.memVT = MVT::getVT(PtrTy->getElementType());
8095     Info.ptrVal = I.getArgOperand(1);
8096     Info.offset = 0;
8097     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
8098     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8099     return true;
8100   }
8101   case Intrinsic::aarch64_ldaxp:
8102   case Intrinsic::aarch64_ldxp:
8103     Info.opc = ISD::INTRINSIC_W_CHAIN;
8104     Info.memVT = MVT::i128;
8105     Info.ptrVal = I.getArgOperand(0);
8106     Info.offset = 0;
8107     Info.align = 16;
8108     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8109     return true;
8110   case Intrinsic::aarch64_stlxp:
8111   case Intrinsic::aarch64_stxp:
8112     Info.opc = ISD::INTRINSIC_W_CHAIN;
8113     Info.memVT = MVT::i128;
8114     Info.ptrVal = I.getArgOperand(2);
8115     Info.offset = 0;
8116     Info.align = 16;
8117     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8118     return true;
8119   default:
8120     break;
8121   }
8122 
8123   return false;
8124 }
8125 
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const8126 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
8127                                                   ISD::LoadExtType ExtTy,
8128                                                   EVT NewVT) const {
8129   // TODO: This may be worth removing. Check regression tests for diffs.
8130   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
8131     return false;
8132 
8133   // If we're reducing the load width in order to avoid having to use an extra
8134   // instruction to do extension then it's probably a good idea.
8135   if (ExtTy != ISD::NON_EXTLOAD)
8136     return true;
8137   // Don't reduce load width if it would prevent us from combining a shift into
8138   // the offset.
8139   MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
8140   assert(Mem);
8141   const SDValue &Base = Mem->getBasePtr();
8142   if (Base.getOpcode() == ISD::ADD &&
8143       Base.getOperand(1).getOpcode() == ISD::SHL &&
8144       Base.getOperand(1).hasOneUse() &&
8145       Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
8146     // The shift can be combined if it matches the size of the value being
8147     // loaded (and so reducing the width would make it not match).
8148     uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
8149     uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
8150     if (ShiftAmount == Log2_32(LoadBytes))
8151       return false;
8152   }
8153   // We have no reason to disallow reducing the load width, so allow it.
8154   return true;
8155 }
8156 
8157 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const8158 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8159   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8160     return false;
8161   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8162   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8163   return NumBits1 > NumBits2;
8164 }
isTruncateFree(EVT VT1,EVT VT2) const8165 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8166   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8167     return false;
8168   unsigned NumBits1 = VT1.getSizeInBits();
8169   unsigned NumBits2 = VT2.getSizeInBits();
8170   return NumBits1 > NumBits2;
8171 }
8172 
8173 /// Check if it is profitable to hoist instruction in then/else to if.
8174 /// Not profitable if I and it's user can form a FMA instruction
8175 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const8176 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
8177   if (I->getOpcode() != Instruction::FMul)
8178     return true;
8179 
8180   if (!I->hasOneUse())
8181     return true;
8182 
8183   Instruction *User = I->user_back();
8184 
8185   if (User &&
8186       !(User->getOpcode() == Instruction::FSub ||
8187         User->getOpcode() == Instruction::FAdd))
8188     return true;
8189 
8190   const TargetOptions &Options = getTargetMachine().Options;
8191   const DataLayout &DL = I->getModule()->getDataLayout();
8192   EVT VT = getValueType(DL, User->getOperand(0)->getType());
8193 
8194   return !(isFMAFasterThanFMulAndFAdd(VT) &&
8195            isOperationLegalOrCustom(ISD::FMA, VT) &&
8196            (Options.AllowFPOpFusion == FPOpFusion::Fast ||
8197             Options.UnsafeFPMath));
8198 }
8199 
8200 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8201 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const8202 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
8203   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8204     return false;
8205   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8206   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8207   return NumBits1 == 32 && NumBits2 == 64;
8208 }
isZExtFree(EVT VT1,EVT VT2) const8209 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8210   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8211     return false;
8212   unsigned NumBits1 = VT1.getSizeInBits();
8213   unsigned NumBits2 = VT2.getSizeInBits();
8214   return NumBits1 == 32 && NumBits2 == 64;
8215 }
8216 
isZExtFree(SDValue Val,EVT VT2) const8217 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
8218   EVT VT1 = Val.getValueType();
8219   if (isZExtFree(VT1, VT2)) {
8220     return true;
8221   }
8222 
8223   if (Val.getOpcode() != ISD::LOAD)
8224     return false;
8225 
8226   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8227   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
8228           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
8229           VT1.getSizeInBits() <= 32);
8230 }
8231 
isExtFreeImpl(const Instruction * Ext) const8232 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
8233   if (isa<FPExtInst>(Ext))
8234     return false;
8235 
8236   // Vector types are not free.
8237   if (Ext->getType()->isVectorTy())
8238     return false;
8239 
8240   for (const Use &U : Ext->uses()) {
8241     // The extension is free if we can fold it with a left shift in an
8242     // addressing mode or an arithmetic operation: add, sub, and cmp.
8243 
8244     // Is there a shift?
8245     const Instruction *Instr = cast<Instruction>(U.getUser());
8246 
8247     // Is this a constant shift?
8248     switch (Instr->getOpcode()) {
8249     case Instruction::Shl:
8250       if (!isa<ConstantInt>(Instr->getOperand(1)))
8251         return false;
8252       break;
8253     case Instruction::GetElementPtr: {
8254       gep_type_iterator GTI = gep_type_begin(Instr);
8255       auto &DL = Ext->getModule()->getDataLayout();
8256       std::advance(GTI, U.getOperandNo()-1);
8257       Type *IdxTy = GTI.getIndexedType();
8258       // This extension will end up with a shift because of the scaling factor.
8259       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8260       // Get the shift amount based on the scaling factor:
8261       // log2(sizeof(IdxTy)) - log2(8).
8262       uint64_t ShiftAmt =
8263           countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
8264       // Is the constant foldable in the shift of the addressing mode?
8265       // I.e., shift amount is between 1 and 4 inclusive.
8266       if (ShiftAmt == 0 || ShiftAmt > 4)
8267         return false;
8268       break;
8269     }
8270     case Instruction::Trunc:
8271       // Check if this is a noop.
8272       // trunc(sext ty1 to ty2) to ty1.
8273       if (Instr->getType() == Ext->getOperand(0)->getType())
8274         continue;
8275       LLVM_FALLTHROUGH;
8276     default:
8277       return false;
8278     }
8279 
8280     // At this point we can use the bfm family, so this extension is free
8281     // for that use.
8282   }
8283   return true;
8284 }
8285 
hasPairedLoad(EVT LoadedType,unsigned & RequiredAligment) const8286 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
8287                                           unsigned &RequiredAligment) const {
8288   if (!LoadedType.isSimple() ||
8289       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
8290     return false;
8291   // Cyclone supports unaligned accesses.
8292   RequiredAligment = 0;
8293   unsigned NumBits = LoadedType.getSizeInBits();
8294   return NumBits == 32 || NumBits == 64;
8295 }
8296 
8297 /// A helper function for determining the number of interleaved accesses we
8298 /// will generate when lowering accesses of the given type.
8299 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const8300 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
8301                                                  const DataLayout &DL) const {
8302   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
8303 }
8304 
8305 MachineMemOperand::Flags
getMMOFlags(const Instruction & I) const8306 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
8307   if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
8308       I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
8309     return MOStridedAccess;
8310   return MachineMemOperand::MONone;
8311 }
8312 
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const8313 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8314     VectorType *VecTy, const DataLayout &DL) const {
8315 
8316   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
8317   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
8318 
8319   // Ensure the number of vector elements is greater than 1.
8320   if (VecTy->getNumElements() < 2)
8321     return false;
8322 
8323   // Ensure the element type is legal.
8324   if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
8325     return false;
8326 
8327   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8328   // 128 will be split into multiple interleaved accesses.
8329   return VecSize == 64 || VecSize % 128 == 0;
8330 }
8331 
8332 /// Lower an interleaved load into a ldN intrinsic.
8333 ///
8334 /// E.g. Lower an interleaved load (Factor = 2):
8335 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8336 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
8337 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
8338 ///
8339 ///      Into:
8340 ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8341 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8342 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const8343 bool AArch64TargetLowering::lowerInterleavedLoad(
8344     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
8345     ArrayRef<unsigned> Indices, unsigned Factor) const {
8346   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8347          "Invalid interleave factor");
8348   assert(!Shuffles.empty() && "Empty shufflevector input");
8349   assert(Shuffles.size() == Indices.size() &&
8350          "Unmatched number of shufflevectors and indices");
8351 
8352   const DataLayout &DL = LI->getModule()->getDataLayout();
8353 
8354   VectorType *VecTy = Shuffles[0]->getType();
8355 
8356   // Skip if we do not have NEON and skip illegal vector types. We can
8357   // "legalize" wide vector types into multiple interleaved accesses as long as
8358   // the vector types are divisible by 128.
8359   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
8360     return false;
8361 
8362   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
8363 
8364   // A pointer vector can not be the return type of the ldN intrinsics. Need to
8365   // load integer vectors first and then convert to pointer vectors.
8366   Type *EltTy = VecTy->getVectorElementType();
8367   if (EltTy->isPointerTy())
8368     VecTy =
8369         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
8370 
8371   IRBuilder<> Builder(LI);
8372 
8373   // The base address of the load.
8374   Value *BaseAddr = LI->getPointerOperand();
8375 
8376   if (NumLoads > 1) {
8377     // If we're going to generate more than one load, reset the sub-vector type
8378     // to something legal.
8379     VecTy = VectorType::get(VecTy->getVectorElementType(),
8380                             VecTy->getVectorNumElements() / NumLoads);
8381 
8382     // We will compute the pointer operand of each load from the original base
8383     // address using GEPs. Cast the base address to a pointer to the scalar
8384     // element type.
8385     BaseAddr = Builder.CreateBitCast(
8386         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
8387                       LI->getPointerAddressSpace()));
8388   }
8389 
8390   Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
8391   Type *Tys[2] = {VecTy, PtrTy};
8392   static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
8393                                             Intrinsic::aarch64_neon_ld3,
8394                                             Intrinsic::aarch64_neon_ld4};
8395   Function *LdNFunc =
8396       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
8397 
8398   // Holds sub-vectors extracted from the load intrinsic return values. The
8399   // sub-vectors are associated with the shufflevector instructions they will
8400   // replace.
8401   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
8402 
8403   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
8404 
8405     // If we're generating more than one load, compute the base address of
8406     // subsequent loads as an offset from the previous.
8407     if (LoadCount > 0)
8408       BaseAddr = Builder.CreateConstGEP1_32(
8409           BaseAddr, VecTy->getVectorNumElements() * Factor);
8410 
8411     CallInst *LdN = Builder.CreateCall(
8412         LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
8413 
8414     // Extract and store the sub-vectors returned by the load intrinsic.
8415     for (unsigned i = 0; i < Shuffles.size(); i++) {
8416       ShuffleVectorInst *SVI = Shuffles[i];
8417       unsigned Index = Indices[i];
8418 
8419       Value *SubVec = Builder.CreateExtractValue(LdN, Index);
8420 
8421       // Convert the integer vector to pointer vector if the element is pointer.
8422       if (EltTy->isPointerTy())
8423         SubVec = Builder.CreateIntToPtr(
8424             SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
8425                                     VecTy->getVectorNumElements()));
8426       SubVecs[SVI].push_back(SubVec);
8427     }
8428   }
8429 
8430   // Replace uses of the shufflevector instructions with the sub-vectors
8431   // returned by the load intrinsic. If a shufflevector instruction is
8432   // associated with more than one sub-vector, those sub-vectors will be
8433   // concatenated into a single wide vector.
8434   for (ShuffleVectorInst *SVI : Shuffles) {
8435     auto &SubVec = SubVecs[SVI];
8436     auto *WideVec =
8437         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
8438     SVI->replaceAllUsesWith(WideVec);
8439   }
8440 
8441   return true;
8442 }
8443 
8444 /// Lower an interleaved store into a stN intrinsic.
8445 ///
8446 /// E.g. Lower an interleaved store (Factor = 3):
8447 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8448 ///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8449 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
8450 ///
8451 ///      Into:
8452 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8453 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8454 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8455 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8456 ///
8457 /// Note that the new shufflevectors will be removed and we'll only generate one
8458 /// st3 instruction in CodeGen.
8459 ///
8460 /// Example for a more general valid mask (Factor 3). Lower:
8461 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8462 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8463 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
8464 ///
8465 ///      Into:
8466 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8467 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8468 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8469 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const8470 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
8471                                                   ShuffleVectorInst *SVI,
8472                                                   unsigned Factor) const {
8473   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8474          "Invalid interleave factor");
8475 
8476   VectorType *VecTy = SVI->getType();
8477   assert(VecTy->getVectorNumElements() % Factor == 0 &&
8478          "Invalid interleaved store");
8479 
8480   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
8481   Type *EltTy = VecTy->getVectorElementType();
8482   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
8483 
8484   const DataLayout &DL = SI->getModule()->getDataLayout();
8485 
8486   // Skip if we do not have NEON and skip illegal vector types. We can
8487   // "legalize" wide vector types into multiple interleaved accesses as long as
8488   // the vector types are divisible by 128.
8489   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
8490     return false;
8491 
8492   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
8493 
8494   Value *Op0 = SVI->getOperand(0);
8495   Value *Op1 = SVI->getOperand(1);
8496   IRBuilder<> Builder(SI);
8497 
8498   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8499   // vectors to integer vectors.
8500   if (EltTy->isPointerTy()) {
8501     Type *IntTy = DL.getIntPtrType(EltTy);
8502     unsigned NumOpElts = Op0->getType()->getVectorNumElements();
8503 
8504     // Convert to the corresponding integer vector.
8505     Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
8506     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
8507     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
8508 
8509     SubVecTy = VectorType::get(IntTy, LaneLen);
8510   }
8511 
8512   // The base address of the store.
8513   Value *BaseAddr = SI->getPointerOperand();
8514 
8515   if (NumStores > 1) {
8516     // If we're going to generate more than one store, reset the lane length
8517     // and sub-vector type to something legal.
8518     LaneLen /= NumStores;
8519     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
8520 
8521     // We will compute the pointer operand of each store from the original base
8522     // address using GEPs. Cast the base address to a pointer to the scalar
8523     // element type.
8524     BaseAddr = Builder.CreateBitCast(
8525         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
8526                       SI->getPointerAddressSpace()));
8527   }
8528 
8529   auto Mask = SVI->getShuffleMask();
8530 
8531   Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
8532   Type *Tys[2] = {SubVecTy, PtrTy};
8533   static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
8534                                              Intrinsic::aarch64_neon_st3,
8535                                              Intrinsic::aarch64_neon_st4};
8536   Function *StNFunc =
8537       Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
8538 
8539   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
8540 
8541     SmallVector<Value *, 5> Ops;
8542 
8543     // Split the shufflevector operands into sub vectors for the new stN call.
8544     for (unsigned i = 0; i < Factor; i++) {
8545       unsigned IdxI = StoreCount * LaneLen * Factor + i;
8546       if (Mask[IdxI] >= 0) {
8547         Ops.push_back(Builder.CreateShuffleVector(
8548             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
8549       } else {
8550         unsigned StartMask = 0;
8551         for (unsigned j = 1; j < LaneLen; j++) {
8552           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
8553           if (Mask[IdxJ * Factor + IdxI] >= 0) {
8554             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
8555             break;
8556           }
8557         }
8558         // Note: Filling undef gaps with random elements is ok, since
8559         // those elements were being written anyway (with undefs).
8560         // In the case of all undefs we're defaulting to using elems from 0
8561         // Note: StartMask cannot be negative, it's checked in
8562         // isReInterleaveMask
8563         Ops.push_back(Builder.CreateShuffleVector(
8564             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
8565       }
8566     }
8567 
8568     // If we generating more than one store, we compute the base address of
8569     // subsequent stores as an offset from the previous.
8570     if (StoreCount > 0)
8571       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
8572 
8573     Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
8574     Builder.CreateCall(StNFunc, Ops);
8575   }
8576   return true;
8577 }
8578 
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)8579 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8580                        unsigned AlignCheck) {
8581   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8582           (DstAlign == 0 || DstAlign % AlignCheck == 0));
8583 }
8584 
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const8585 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
8586                                                unsigned SrcAlign, bool IsMemset,
8587                                                bool ZeroMemset,
8588                                                bool MemcpyStrSrc,
8589                                                MachineFunction &MF) const {
8590   const Function &F = MF.getFunction();
8591   bool CanImplicitFloat = !F.hasFnAttribute(Attribute::NoImplicitFloat);
8592   bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
8593   bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
8594   // Only use AdvSIMD to implement memset of 32-byte and above. It would have
8595   // taken one instruction to materialize the v2i64 zero and one store (with
8596   // restrictive addressing mode). Just do i64 stores.
8597   bool IsSmallMemset = IsMemset && Size < 32;
8598   auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
8599     if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
8600       return true;
8601     bool Fast;
8602     return allowsMisalignedMemoryAccesses(VT, 0, 1, &Fast) && Fast;
8603   };
8604 
8605   if (CanUseNEON && IsMemset && !IsSmallMemset &&
8606       AlignmentIsAcceptable(MVT::v2i64, 16))
8607     return MVT::v2i64;
8608   if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
8609     return MVT::f128;
8610   if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
8611     return MVT::i64;
8612   if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
8613     return MVT::i32;
8614   return MVT::Other;
8615 }
8616 
8617 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const8618 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
8619   if (Immed == std::numeric_limits<int64_t>::min()) {
8620     LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
8621                       << ": avoid UB for INT64_MIN\n");
8622     return false;
8623   }
8624   // Same encoding for add/sub, just flip the sign.
8625   Immed = std::abs(Immed);
8626   bool IsLegal = ((Immed >> 12) == 0 ||
8627                   ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
8628   LLVM_DEBUG(dbgs() << "Is " << Immed
8629                     << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
8630   return IsLegal;
8631 }
8632 
8633 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
8634 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const8635 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
8636   return isLegalAddImmediate(Immed);
8637 }
8638 
8639 /// isLegalAddressingMode - Return true if the addressing mode represented
8640 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const8641 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
8642                                                   const AddrMode &AM, Type *Ty,
8643                                                   unsigned AS, Instruction *I) const {
8644   // AArch64 has five basic addressing modes:
8645   //  reg
8646   //  reg + 9-bit signed offset
8647   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
8648   //  reg1 + reg2
8649   //  reg + SIZE_IN_BYTES * reg
8650 
8651   // No global is ever allowed as a base.
8652   if (AM.BaseGV)
8653     return false;
8654 
8655   // No reg+reg+imm addressing.
8656   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
8657     return false;
8658 
8659   // check reg + imm case:
8660   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
8661   uint64_t NumBytes = 0;
8662   if (Ty->isSized()) {
8663     uint64_t NumBits = DL.getTypeSizeInBits(Ty);
8664     NumBytes = NumBits / 8;
8665     if (!isPowerOf2_64(NumBits))
8666       NumBytes = 0;
8667   }
8668 
8669   if (!AM.Scale) {
8670     int64_t Offset = AM.BaseOffs;
8671 
8672     // 9-bit signed offset
8673     if (isInt<9>(Offset))
8674       return true;
8675 
8676     // 12-bit unsigned offset
8677     unsigned shift = Log2_64(NumBytes);
8678     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
8679         // Must be a multiple of NumBytes (NumBytes is a power of 2)
8680         (Offset >> shift) << shift == Offset)
8681       return true;
8682     return false;
8683   }
8684 
8685   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
8686 
8687   return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
8688 }
8689 
shouldConsiderGEPOffsetSplit() const8690 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
8691   // Consider splitting large offset of struct or array.
8692   return true;
8693 }
8694 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const8695 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
8696                                                 const AddrMode &AM, Type *Ty,
8697                                                 unsigned AS) const {
8698   // Scaling factors are not free at all.
8699   // Operands                     | Rt Latency
8700   // -------------------------------------------
8701   // Rt, [Xn, Xm]                 | 4
8702   // -------------------------------------------
8703   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
8704   // Rt, [Xn, Wm, <extend> #imm]  |
8705   if (isLegalAddressingMode(DL, AM, Ty, AS))
8706     // Scale represents reg2 * scale, thus account for 1 if
8707     // it is not equal to 0 or 1.
8708     return AM.Scale != 0 && AM.Scale != 1;
8709   return -1;
8710 }
8711 
isFMAFasterThanFMulAndFAdd(EVT VT) const8712 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8713   VT = VT.getScalarType();
8714 
8715   if (!VT.isSimple())
8716     return false;
8717 
8718   switch (VT.getSimpleVT().SimpleTy) {
8719   case MVT::f32:
8720   case MVT::f64:
8721     return true;
8722   default:
8723     break;
8724   }
8725 
8726   return false;
8727 }
8728 
8729 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const8730 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
8731   // LR is a callee-save register, but we must treat it as clobbered by any call
8732   // site. Hence we include LR in the scratch registers, which are in turn added
8733   // as implicit-defs for stackmaps and patchpoints.
8734   static const MCPhysReg ScratchRegs[] = {
8735     AArch64::X16, AArch64::X17, AArch64::LR, 0
8736   };
8737   return ScratchRegs;
8738 }
8739 
8740 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const8741 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
8742                                                      CombineLevel Level) const {
8743   N = N->getOperand(0).getNode();
8744   EVT VT = N->getValueType(0);
8745     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
8746     // it with shift to let it be lowered to UBFX.
8747   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
8748       isa<ConstantSDNode>(N->getOperand(1))) {
8749     uint64_t TruncMask = N->getConstantOperandVal(1);
8750     if (isMask_64(TruncMask) &&
8751       N->getOperand(0).getOpcode() == ISD::SRL &&
8752       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
8753       return false;
8754   }
8755   return true;
8756 }
8757 
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const8758 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8759                                                               Type *Ty) const {
8760   assert(Ty->isIntegerTy());
8761 
8762   unsigned BitSize = Ty->getPrimitiveSizeInBits();
8763   if (BitSize == 0)
8764     return false;
8765 
8766   int64_t Val = Imm.getSExtValue();
8767   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
8768     return true;
8769 
8770   if ((int64_t)Val < 0)
8771     Val = ~Val;
8772   if (BitSize == 32)
8773     Val &= (1LL << 32) - 1;
8774 
8775   unsigned LZ = countLeadingZeros((uint64_t)Val);
8776   unsigned Shift = (63 - LZ) / 16;
8777   // MOVZ is free so return true for one or fewer MOVK.
8778   return Shift < 3;
8779 }
8780 
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const8781 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
8782                                                     unsigned Index) const {
8783   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
8784     return false;
8785 
8786   return (Index == 0 || Index == ResVT.getVectorNumElements());
8787 }
8788 
8789 /// Turn vector tests of the signbit in the form of:
8790 ///   xor (sra X, elt_size(X)-1), -1
8791 /// into:
8792 ///   cmge X, X, #0
foldVectorXorShiftIntoCmp(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8793 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
8794                                          const AArch64Subtarget *Subtarget) {
8795   EVT VT = N->getValueType(0);
8796   if (!Subtarget->hasNEON() || !VT.isVector())
8797     return SDValue();
8798 
8799   // There must be a shift right algebraic before the xor, and the xor must be a
8800   // 'not' operation.
8801   SDValue Shift = N->getOperand(0);
8802   SDValue Ones = N->getOperand(1);
8803   if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
8804       !ISD::isBuildVectorAllOnes(Ones.getNode()))
8805     return SDValue();
8806 
8807   // The shift should be smearing the sign bit across each vector element.
8808   auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
8809   EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
8810   if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
8811     return SDValue();
8812 
8813   return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
8814 }
8815 
8816 // Generate SUBS and CSEL for integer abs.
performIntegerAbsCombine(SDNode * N,SelectionDAG & DAG)8817 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
8818   EVT VT = N->getValueType(0);
8819 
8820   SDValue N0 = N->getOperand(0);
8821   SDValue N1 = N->getOperand(1);
8822   SDLoc DL(N);
8823 
8824   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
8825   // and change it to SUB and CSEL.
8826   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
8827       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
8828       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
8829     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
8830       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
8831         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
8832                                   N0.getOperand(0));
8833         // Generate SUBS & CSEL.
8834         SDValue Cmp =
8835             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
8836                         N0.getOperand(0), DAG.getConstant(0, DL, VT));
8837         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
8838                            DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
8839                            SDValue(Cmp.getNode(), 1));
8840       }
8841   return SDValue();
8842 }
8843 
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8844 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
8845                                  TargetLowering::DAGCombinerInfo &DCI,
8846                                  const AArch64Subtarget *Subtarget) {
8847   if (DCI.isBeforeLegalizeOps())
8848     return SDValue();
8849 
8850   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
8851     return Cmp;
8852 
8853   return performIntegerAbsCombine(N, DAG);
8854 }
8855 
8856 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const8857 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8858                                      SelectionDAG &DAG,
8859                                      SmallVectorImpl<SDNode *> &Created) const {
8860   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
8861   if (isIntDivCheap(N->getValueType(0), Attr))
8862     return SDValue(N,0); // Lower SDIV as SDIV
8863 
8864   // fold (sdiv X, pow2)
8865   EVT VT = N->getValueType(0);
8866   if ((VT != MVT::i32 && VT != MVT::i64) ||
8867       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
8868     return SDValue();
8869 
8870   SDLoc DL(N);
8871   SDValue N0 = N->getOperand(0);
8872   unsigned Lg2 = Divisor.countTrailingZeros();
8873   SDValue Zero = DAG.getConstant(0, DL, VT);
8874   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
8875 
8876   // Add (N0 < 0) ? Pow2 - 1 : 0;
8877   SDValue CCVal;
8878   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
8879   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
8880   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
8881 
8882   Created.push_back(Cmp.getNode());
8883   Created.push_back(Add.getNode());
8884   Created.push_back(CSel.getNode());
8885 
8886   // Divide by pow2.
8887   SDValue SRA =
8888       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
8889 
8890   // If we're dividing by a positive value, we're done.  Otherwise, we must
8891   // negate the result.
8892   if (Divisor.isNonNegative())
8893     return SRA;
8894 
8895   Created.push_back(SRA.getNode());
8896   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
8897 }
8898 
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8899 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
8900                                  TargetLowering::DAGCombinerInfo &DCI,
8901                                  const AArch64Subtarget *Subtarget) {
8902   if (DCI.isBeforeLegalizeOps())
8903     return SDValue();
8904 
8905   // The below optimizations require a constant RHS.
8906   if (!isa<ConstantSDNode>(N->getOperand(1)))
8907     return SDValue();
8908 
8909   ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
8910   const APInt &ConstValue = C->getAPIntValue();
8911 
8912   // Multiplication of a power of two plus/minus one can be done more
8913   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
8914   // future CPUs have a cheaper MADD instruction, this may need to be
8915   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
8916   // 64-bit is 5 cycles, so this is always a win.
8917   // More aggressively, some multiplications N0 * C can be lowered to
8918   // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
8919   // e.g. 6=3*2=(2+1)*2.
8920   // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
8921   // which equals to (1+2)*16-(1+2).
8922   SDValue N0 = N->getOperand(0);
8923   // TrailingZeroes is used to test if the mul can be lowered to
8924   // shift+add+shift.
8925   unsigned TrailingZeroes = ConstValue.countTrailingZeros();
8926   if (TrailingZeroes) {
8927     // Conservatively do not lower to shift+add+shift if the mul might be
8928     // folded into smul or umul.
8929     if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
8930                             isZeroExtended(N0.getNode(), DAG)))
8931       return SDValue();
8932     // Conservatively do not lower to shift+add+shift if the mul might be
8933     // folded into madd or msub.
8934     if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
8935                            N->use_begin()->getOpcode() == ISD::SUB))
8936       return SDValue();
8937   }
8938   // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
8939   // and shift+add+shift.
8940   APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
8941 
8942   unsigned ShiftAmt, AddSubOpc;
8943   // Is the shifted value the LHS operand of the add/sub?
8944   bool ShiftValUseIsN0 = true;
8945   // Do we need to negate the result?
8946   bool NegateResult = false;
8947 
8948   if (ConstValue.isNonNegative()) {
8949     // (mul x, 2^N + 1) => (add (shl x, N), x)
8950     // (mul x, 2^N - 1) => (sub (shl x, N), x)
8951     // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
8952     APInt SCVMinus1 = ShiftedConstValue - 1;
8953     APInt CVPlus1 = ConstValue + 1;
8954     if (SCVMinus1.isPowerOf2()) {
8955       ShiftAmt = SCVMinus1.logBase2();
8956       AddSubOpc = ISD::ADD;
8957     } else if (CVPlus1.isPowerOf2()) {
8958       ShiftAmt = CVPlus1.logBase2();
8959       AddSubOpc = ISD::SUB;
8960     } else
8961       return SDValue();
8962   } else {
8963     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8964     // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8965     APInt CVNegPlus1 = -ConstValue + 1;
8966     APInt CVNegMinus1 = -ConstValue - 1;
8967     if (CVNegPlus1.isPowerOf2()) {
8968       ShiftAmt = CVNegPlus1.logBase2();
8969       AddSubOpc = ISD::SUB;
8970       ShiftValUseIsN0 = false;
8971     } else if (CVNegMinus1.isPowerOf2()) {
8972       ShiftAmt = CVNegMinus1.logBase2();
8973       AddSubOpc = ISD::ADD;
8974       NegateResult = true;
8975     } else
8976       return SDValue();
8977   }
8978 
8979   SDLoc DL(N);
8980   EVT VT = N->getValueType(0);
8981   SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
8982                                    DAG.getConstant(ShiftAmt, DL, MVT::i64));
8983 
8984   SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
8985   SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
8986   SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
8987   assert(!(NegateResult && TrailingZeroes) &&
8988          "NegateResult and TrailingZeroes cannot both be true for now.");
8989   // Negate the result.
8990   if (NegateResult)
8991     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
8992   // Shift the result.
8993   if (TrailingZeroes)
8994     return DAG.getNode(ISD::SHL, DL, VT, Res,
8995                        DAG.getConstant(TrailingZeroes, DL, MVT::i64));
8996   return Res;
8997 }
8998 
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)8999 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
9000                                                          SelectionDAG &DAG) {
9001   // Take advantage of vector comparisons producing 0 or -1 in each lane to
9002   // optimize away operation when it's from a constant.
9003   //
9004   // The general transformation is:
9005   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9006   //       AND(VECTOR_CMP(x,y), constant2)
9007   //    constant2 = UNARYOP(constant)
9008 
9009   // Early exit if this isn't a vector operation, the operand of the
9010   // unary operation isn't a bitwise AND, or if the sizes of the operations
9011   // aren't the same.
9012   EVT VT = N->getValueType(0);
9013   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
9014       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
9015       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
9016     return SDValue();
9017 
9018   // Now check that the other operand of the AND is a constant. We could
9019   // make the transformation for non-constant splats as well, but it's unclear
9020   // that would be a benefit as it would not eliminate any operations, just
9021   // perform one more step in scalar code before moving to the vector unit.
9022   if (BuildVectorSDNode *BV =
9023           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
9024     // Bail out if the vector isn't a constant.
9025     if (!BV->isConstant())
9026       return SDValue();
9027 
9028     // Everything checks out. Build up the new and improved node.
9029     SDLoc DL(N);
9030     EVT IntVT = BV->getValueType(0);
9031     // Create a new constant of the appropriate type for the transformed
9032     // DAG.
9033     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
9034     // The AND node needs bitcasts to/from an integer vector type around it.
9035     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
9036     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
9037                                  N->getOperand(0)->getOperand(0), MaskConst);
9038     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
9039     return Res;
9040   }
9041 
9042   return SDValue();
9043 }
9044 
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)9045 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
9046                                      const AArch64Subtarget *Subtarget) {
9047   // First try to optimize away the conversion when it's conditionally from
9048   // a constant. Vectors only.
9049   if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
9050     return Res;
9051 
9052   EVT VT = N->getValueType(0);
9053   if (VT != MVT::f32 && VT != MVT::f64)
9054     return SDValue();
9055 
9056   // Only optimize when the source and destination types have the same width.
9057   if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
9058     return SDValue();
9059 
9060   // If the result of an integer load is only used by an integer-to-float
9061   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9062   // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9063   SDValue N0 = N->getOperand(0);
9064   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9065       // Do not change the width of a volatile load.
9066       !cast<LoadSDNode>(N0)->isVolatile()) {
9067     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9068     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
9069                                LN0->getPointerInfo(), LN0->getAlignment(),
9070                                LN0->getMemOperand()->getFlags());
9071 
9072     // Make sure successors of the original load stay after it by updating them
9073     // to use the new Chain.
9074     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
9075 
9076     unsigned Opcode =
9077         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
9078     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
9079   }
9080 
9081   return SDValue();
9082 }
9083 
9084 /// Fold a floating-point multiply by power of two into floating-point to
9085 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9086 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
9087                                      TargetLowering::DAGCombinerInfo &DCI,
9088                                      const AArch64Subtarget *Subtarget) {
9089   if (!Subtarget->hasNEON())
9090     return SDValue();
9091 
9092   SDValue Op = N->getOperand(0);
9093   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9094       Op.getOpcode() != ISD::FMUL)
9095     return SDValue();
9096 
9097   SDValue ConstVec = Op->getOperand(1);
9098   if (!isa<BuildVectorSDNode>(ConstVec))
9099     return SDValue();
9100 
9101   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9102   uint32_t FloatBits = FloatTy.getSizeInBits();
9103   if (FloatBits != 32 && FloatBits != 64)
9104     return SDValue();
9105 
9106   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9107   uint32_t IntBits = IntTy.getSizeInBits();
9108   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9109     return SDValue();
9110 
9111   // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9112   if (IntBits > FloatBits)
9113     return SDValue();
9114 
9115   BitVector UndefElements;
9116   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9117   int32_t Bits = IntBits == 64 ? 64 : 32;
9118   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
9119   if (C == -1 || C == 0 || C > Bits)
9120     return SDValue();
9121 
9122   MVT ResTy;
9123   unsigned NumLanes = Op.getValueType().getVectorNumElements();
9124   switch (NumLanes) {
9125   default:
9126     return SDValue();
9127   case 2:
9128     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9129     break;
9130   case 4:
9131     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9132     break;
9133   }
9134 
9135   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9136     return SDValue();
9137 
9138   assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
9139          "Illegal vector type after legalization");
9140 
9141   SDLoc DL(N);
9142   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
9143   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
9144                                       : Intrinsic::aarch64_neon_vcvtfp2fxu;
9145   SDValue FixConv =
9146       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
9147                   DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
9148                   Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
9149   // We can handle smaller integers by generating an extra trunc.
9150   if (IntBits < FloatBits)
9151     FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
9152 
9153   return FixConv;
9154 }
9155 
9156 /// Fold a floating-point divide by power of two into fixed-point to
9157 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9158 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
9159                                   TargetLowering::DAGCombinerInfo &DCI,
9160                                   const AArch64Subtarget *Subtarget) {
9161   if (!Subtarget->hasNEON())
9162     return SDValue();
9163 
9164   SDValue Op = N->getOperand(0);
9165   unsigned Opc = Op->getOpcode();
9166   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9167       !Op.getOperand(0).getValueType().isSimple() ||
9168       (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
9169     return SDValue();
9170 
9171   SDValue ConstVec = N->getOperand(1);
9172   if (!isa<BuildVectorSDNode>(ConstVec))
9173     return SDValue();
9174 
9175   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9176   int32_t IntBits = IntTy.getSizeInBits();
9177   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9178     return SDValue();
9179 
9180   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9181   int32_t FloatBits = FloatTy.getSizeInBits();
9182   if (FloatBits != 32 && FloatBits != 64)
9183     return SDValue();
9184 
9185   // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
9186   if (IntBits > FloatBits)
9187     return SDValue();
9188 
9189   BitVector UndefElements;
9190   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9191   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
9192   if (C == -1 || C == 0 || C > FloatBits)
9193     return SDValue();
9194 
9195   MVT ResTy;
9196   unsigned NumLanes = Op.getValueType().getVectorNumElements();
9197   switch (NumLanes) {
9198   default:
9199     return SDValue();
9200   case 2:
9201     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9202     break;
9203   case 4:
9204     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9205     break;
9206   }
9207 
9208   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9209     return SDValue();
9210 
9211   SDLoc DL(N);
9212   SDValue ConvInput = Op.getOperand(0);
9213   bool IsSigned = Opc == ISD::SINT_TO_FP;
9214   if (IntBits < FloatBits)
9215     ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
9216                             ResTy, ConvInput);
9217 
9218   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
9219                                       : Intrinsic::aarch64_neon_vcvtfxu2fp;
9220   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
9221                      DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
9222                      DAG.getConstant(C, DL, MVT::i32));
9223 }
9224 
9225 /// An EXTR instruction is made up of two shifts, ORed together. This helper
9226 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)9227 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
9228                          bool &FromHi) {
9229   if (N.getOpcode() == ISD::SHL)
9230     FromHi = false;
9231   else if (N.getOpcode() == ISD::SRL)
9232     FromHi = true;
9233   else
9234     return false;
9235 
9236   if (!isa<ConstantSDNode>(N.getOperand(1)))
9237     return false;
9238 
9239   ShiftAmount = N->getConstantOperandVal(1);
9240   Src = N->getOperand(0);
9241   return true;
9242 }
9243 
9244 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9245 /// registers viewed as a high/low pair. This function looks for the pattern:
9246 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9247 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9248 /// aren't independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9249 static SDValue tryCombineToEXTR(SDNode *N,
9250                                 TargetLowering::DAGCombinerInfo &DCI) {
9251   SelectionDAG &DAG = DCI.DAG;
9252   SDLoc DL(N);
9253   EVT VT = N->getValueType(0);
9254 
9255   assert(N->getOpcode() == ISD::OR && "Unexpected root");
9256 
9257   if (VT != MVT::i32 && VT != MVT::i64)
9258     return SDValue();
9259 
9260   SDValue LHS;
9261   uint32_t ShiftLHS = 0;
9262   bool LHSFromHi = false;
9263   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
9264     return SDValue();
9265 
9266   SDValue RHS;
9267   uint32_t ShiftRHS = 0;
9268   bool RHSFromHi = false;
9269   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
9270     return SDValue();
9271 
9272   // If they're both trying to come from the high part of the register, they're
9273   // not really an EXTR.
9274   if (LHSFromHi == RHSFromHi)
9275     return SDValue();
9276 
9277   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
9278     return SDValue();
9279 
9280   if (LHSFromHi) {
9281     std::swap(LHS, RHS);
9282     std::swap(ShiftLHS, ShiftRHS);
9283   }
9284 
9285   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
9286                      DAG.getConstant(ShiftRHS, DL, MVT::i64));
9287 }
9288 
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9289 static SDValue tryCombineToBSL(SDNode *N,
9290                                 TargetLowering::DAGCombinerInfo &DCI) {
9291   EVT VT = N->getValueType(0);
9292   SelectionDAG &DAG = DCI.DAG;
9293   SDLoc DL(N);
9294 
9295   if (!VT.isVector())
9296     return SDValue();
9297 
9298   SDValue N0 = N->getOperand(0);
9299   if (N0.getOpcode() != ISD::AND)
9300     return SDValue();
9301 
9302   SDValue N1 = N->getOperand(1);
9303   if (N1.getOpcode() != ISD::AND)
9304     return SDValue();
9305 
9306   // We only have to look for constant vectors here since the general, variable
9307   // case can be handled in TableGen.
9308   unsigned Bits = VT.getScalarSizeInBits();
9309   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
9310   for (int i = 1; i >= 0; --i)
9311     for (int j = 1; j >= 0; --j) {
9312       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
9313       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
9314       if (!BVN0 || !BVN1)
9315         continue;
9316 
9317       bool FoundMatch = true;
9318       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
9319         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
9320         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
9321         if (!CN0 || !CN1 ||
9322             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
9323           FoundMatch = false;
9324           break;
9325         }
9326       }
9327 
9328       if (FoundMatch)
9329         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
9330                            N0->getOperand(1 - i), N1->getOperand(1 - j));
9331     }
9332 
9333   return SDValue();
9334 }
9335 
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9336 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9337                                 const AArch64Subtarget *Subtarget) {
9338   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9339   SelectionDAG &DAG = DCI.DAG;
9340   EVT VT = N->getValueType(0);
9341 
9342   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9343     return SDValue();
9344 
9345   if (SDValue Res = tryCombineToEXTR(N, DCI))
9346     return Res;
9347 
9348   if (SDValue Res = tryCombineToBSL(N, DCI))
9349     return Res;
9350 
9351   return SDValue();
9352 }
9353 
performSRLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9354 static SDValue performSRLCombine(SDNode *N,
9355                                  TargetLowering::DAGCombinerInfo &DCI) {
9356   SelectionDAG &DAG = DCI.DAG;
9357   EVT VT = N->getValueType(0);
9358   if (VT != MVT::i32 && VT != MVT::i64)
9359     return SDValue();
9360 
9361   // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9362   // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9363   // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9364   SDValue N0 = N->getOperand(0);
9365   if (N0.getOpcode() == ISD::BSWAP) {
9366     SDLoc DL(N);
9367     SDValue N1 = N->getOperand(1);
9368     SDValue N00 = N0.getOperand(0);
9369     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9370       uint64_t ShiftAmt = C->getZExtValue();
9371       if (VT == MVT::i32 && ShiftAmt == 16 &&
9372           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
9373         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9374       if (VT == MVT::i64 && ShiftAmt == 32 &&
9375           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
9376         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9377     }
9378   }
9379   return SDValue();
9380 }
9381 
performBitcastCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9382 static SDValue performBitcastCombine(SDNode *N,
9383                                      TargetLowering::DAGCombinerInfo &DCI,
9384                                      SelectionDAG &DAG) {
9385   // Wait 'til after everything is legalized to try this. That way we have
9386   // legal vector types and such.
9387   if (DCI.isBeforeLegalizeOps())
9388     return SDValue();
9389 
9390   // Remove extraneous bitcasts around an extract_subvector.
9391   // For example,
9392   //    (v4i16 (bitconvert
9393   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9394   //  becomes
9395   //    (extract_subvector ((v8i16 ...), (i64 4)))
9396 
9397   // Only interested in 64-bit vectors as the ultimate result.
9398   EVT VT = N->getValueType(0);
9399   if (!VT.isVector())
9400     return SDValue();
9401   if (VT.getSimpleVT().getSizeInBits() != 64)
9402     return SDValue();
9403   // Is the operand an extract_subvector starting at the beginning or halfway
9404   // point of the vector? A low half may also come through as an
9405   // EXTRACT_SUBREG, so look for that, too.
9406   SDValue Op0 = N->getOperand(0);
9407   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
9408       !(Op0->isMachineOpcode() &&
9409         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
9410     return SDValue();
9411   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
9412   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
9413     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
9414       return SDValue();
9415   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
9416     if (idx != AArch64::dsub)
9417       return SDValue();
9418     // The dsub reference is equivalent to a lane zero subvector reference.
9419     idx = 0;
9420   }
9421   // Look through the bitcast of the input to the extract.
9422   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
9423     return SDValue();
9424   SDValue Source = Op0->getOperand(0)->getOperand(0);
9425   // If the source type has twice the number of elements as our destination
9426   // type, we know this is an extract of the high or low half of the vector.
9427   EVT SVT = Source->getValueType(0);
9428   if (!SVT.isVector() ||
9429       SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
9430     return SDValue();
9431 
9432   LLVM_DEBUG(
9433       dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9434 
9435   // Create the simplified form to just extract the low or high half of the
9436   // vector directly rather than bothering with the bitcasts.
9437   SDLoc dl(N);
9438   unsigned NumElements = VT.getVectorNumElements();
9439   if (idx) {
9440     SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
9441     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
9442   } else {
9443     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
9444     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
9445                                       Source, SubReg),
9446                    0);
9447   }
9448 }
9449 
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9450 static SDValue performConcatVectorsCombine(SDNode *N,
9451                                            TargetLowering::DAGCombinerInfo &DCI,
9452                                            SelectionDAG &DAG) {
9453   SDLoc dl(N);
9454   EVT VT = N->getValueType(0);
9455   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
9456 
9457   // Optimize concat_vectors of truncated vectors, where the intermediate
9458   // type is illegal, to avoid said illegality,  e.g.,
9459   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9460   //                          (v2i16 (truncate (v2i64)))))
9461   // ->
9462   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9463   //                                    (v4i32 (bitcast (v2i64))),
9464   //                                    <0, 2, 4, 6>)))
9465   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9466   // on both input and result type, so we might generate worse code.
9467   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9468   if (N->getNumOperands() == 2 &&
9469       N0->getOpcode() == ISD::TRUNCATE &&
9470       N1->getOpcode() == ISD::TRUNCATE) {
9471     SDValue N00 = N0->getOperand(0);
9472     SDValue N10 = N1->getOperand(0);
9473     EVT N00VT = N00.getValueType();
9474 
9475     if (N00VT == N10.getValueType() &&
9476         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
9477         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
9478       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
9479       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
9480       for (size_t i = 0; i < Mask.size(); ++i)
9481         Mask[i] = i * 2;
9482       return DAG.getNode(ISD::TRUNCATE, dl, VT,
9483                          DAG.getVectorShuffle(
9484                              MidVT, dl,
9485                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
9486                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
9487     }
9488   }
9489 
9490   // Wait 'til after everything is legalized to try this. That way we have
9491   // legal vector types and such.
9492   if (DCI.isBeforeLegalizeOps())
9493     return SDValue();
9494 
9495   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
9496   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
9497   // canonicalise to that.
9498   if (N0 == N1 && VT.getVectorNumElements() == 2) {
9499     assert(VT.getScalarSizeInBits() == 64);
9500     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
9501                        DAG.getConstant(0, dl, MVT::i64));
9502   }
9503 
9504   // Canonicalise concat_vectors so that the right-hand vector has as few
9505   // bit-casts as possible before its real operation. The primary matching
9506   // destination for these operations will be the narrowing "2" instructions,
9507   // which depend on the operation being performed on this right-hand vector.
9508   // For example,
9509   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
9510   // becomes
9511   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
9512 
9513   if (N1->getOpcode() != ISD::BITCAST)
9514     return SDValue();
9515   SDValue RHS = N1->getOperand(0);
9516   MVT RHSTy = RHS.getValueType().getSimpleVT();
9517   // If the RHS is not a vector, this is not the pattern we're looking for.
9518   if (!RHSTy.isVector())
9519     return SDValue();
9520 
9521   LLVM_DEBUG(
9522       dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
9523 
9524   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
9525                                   RHSTy.getVectorNumElements() * 2);
9526   return DAG.getNode(ISD::BITCAST, dl, VT,
9527                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
9528                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
9529                                  RHS));
9530 }
9531 
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9532 static SDValue tryCombineFixedPointConvert(SDNode *N,
9533                                            TargetLowering::DAGCombinerInfo &DCI,
9534                                            SelectionDAG &DAG) {
9535   // Wait until after everything is legalized to try this. That way we have
9536   // legal vector types and such.
9537   if (DCI.isBeforeLegalizeOps())
9538     return SDValue();
9539   // Transform a scalar conversion of a value from a lane extract into a
9540   // lane extract of a vector conversion. E.g., from foo1 to foo2:
9541   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
9542   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
9543   //
9544   // The second form interacts better with instruction selection and the
9545   // register allocator to avoid cross-class register copies that aren't
9546   // coalescable due to a lane reference.
9547 
9548   // Check the operand and see if it originates from a lane extract.
9549   SDValue Op1 = N->getOperand(1);
9550   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9551     // Yep, no additional predication needed. Perform the transform.
9552     SDValue IID = N->getOperand(0);
9553     SDValue Shift = N->getOperand(2);
9554     SDValue Vec = Op1.getOperand(0);
9555     SDValue Lane = Op1.getOperand(1);
9556     EVT ResTy = N->getValueType(0);
9557     EVT VecResTy;
9558     SDLoc DL(N);
9559 
9560     // The vector width should be 128 bits by the time we get here, even
9561     // if it started as 64 bits (the extract_vector handling will have
9562     // done so).
9563     assert(Vec.getValueSizeInBits() == 128 &&
9564            "unexpected vector size on extract_vector_elt!");
9565     if (Vec.getValueType() == MVT::v4i32)
9566       VecResTy = MVT::v4f32;
9567     else if (Vec.getValueType() == MVT::v2i64)
9568       VecResTy = MVT::v2f64;
9569     else
9570       llvm_unreachable("unexpected vector type!");
9571 
9572     SDValue Convert =
9573         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
9574     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
9575   }
9576   return SDValue();
9577 }
9578 
9579 // AArch64 high-vector "long" operations are formed by performing the non-high
9580 // version on an extract_subvector of each operand which gets the high half:
9581 //
9582 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
9583 //
9584 // However, there are cases which don't have an extract_high explicitly, but
9585 // have another operation that can be made compatible with one for free. For
9586 // example:
9587 //
9588 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
9589 //
9590 // This routine does the actual conversion of such DUPs, once outer routines
9591 // have determined that everything else is in order.
9592 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
9593 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)9594 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
9595   switch (N.getOpcode()) {
9596   case AArch64ISD::DUP:
9597   case AArch64ISD::DUPLANE8:
9598   case AArch64ISD::DUPLANE16:
9599   case AArch64ISD::DUPLANE32:
9600   case AArch64ISD::DUPLANE64:
9601   case AArch64ISD::MOVI:
9602   case AArch64ISD::MOVIshift:
9603   case AArch64ISD::MOVIedit:
9604   case AArch64ISD::MOVImsl:
9605   case AArch64ISD::MVNIshift:
9606   case AArch64ISD::MVNImsl:
9607     break;
9608   default:
9609     // FMOV could be supported, but isn't very useful, as it would only occur
9610     // if you passed a bitcast' floating point immediate to an eligible long
9611     // integer op (addl, smull, ...).
9612     return SDValue();
9613   }
9614 
9615   MVT NarrowTy = N.getSimpleValueType();
9616   if (!NarrowTy.is64BitVector())
9617     return SDValue();
9618 
9619   MVT ElementTy = NarrowTy.getVectorElementType();
9620   unsigned NumElems = NarrowTy.getVectorNumElements();
9621   MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
9622 
9623   SDLoc dl(N);
9624   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
9625                      DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
9626                      DAG.getConstant(NumElems, dl, MVT::i64));
9627 }
9628 
isEssentiallyExtractSubvector(SDValue N)9629 static bool isEssentiallyExtractSubvector(SDValue N) {
9630   if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9631     return true;
9632 
9633   return N.getOpcode() == ISD::BITCAST &&
9634          N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
9635 }
9636 
9637 /// Helper structure to keep track of ISD::SET_CC operands.
9638 struct GenericSetCCInfo {
9639   const SDValue *Opnd0;
9640   const SDValue *Opnd1;
9641   ISD::CondCode CC;
9642 };
9643 
9644 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
9645 struct AArch64SetCCInfo {
9646   const SDValue *Cmp;
9647   AArch64CC::CondCode CC;
9648 };
9649 
9650 /// Helper structure to keep track of SetCC information.
9651 union SetCCInfo {
9652   GenericSetCCInfo Generic;
9653   AArch64SetCCInfo AArch64;
9654 };
9655 
9656 /// Helper structure to be able to read SetCC information.  If set to
9657 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
9658 /// GenericSetCCInfo.
9659 struct SetCCInfoAndKind {
9660   SetCCInfo Info;
9661   bool IsAArch64;
9662 };
9663 
9664 /// Check whether or not \p Op is a SET_CC operation, either a generic or
9665 /// an
9666 /// AArch64 lowered one.
9667 /// \p SetCCInfo is filled accordingly.
9668 /// \post SetCCInfo is meanginfull only when this function returns true.
9669 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)9670 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
9671   // If this is a setcc, this is straight forward.
9672   if (Op.getOpcode() == ISD::SETCC) {
9673     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
9674     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
9675     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9676     SetCCInfo.IsAArch64 = false;
9677     return true;
9678   }
9679   // Otherwise, check if this is a matching csel instruction.
9680   // In other words:
9681   // - csel 1, 0, cc
9682   // - csel 0, 1, !cc
9683   if (Op.getOpcode() != AArch64ISD::CSEL)
9684     return false;
9685   // Set the information about the operands.
9686   // TODO: we want the operands of the Cmp not the csel
9687   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
9688   SetCCInfo.IsAArch64 = true;
9689   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
9690       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9691 
9692   // Check that the operands matches the constraints:
9693   // (1) Both operands must be constants.
9694   // (2) One must be 1 and the other must be 0.
9695   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
9696   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9697 
9698   // Check (1).
9699   if (!TValue || !FValue)
9700     return false;
9701 
9702   // Check (2).
9703   if (!TValue->isOne()) {
9704     // Update the comparison when we are interested in !cc.
9705     std::swap(TValue, FValue);
9706     SetCCInfo.Info.AArch64.CC =
9707         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
9708   }
9709   return TValue->isOne() && FValue->isNullValue();
9710 }
9711 
9712 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)9713 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
9714   if (isSetCC(Op, Info))
9715     return true;
9716   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
9717     isSetCC(Op->getOperand(0), Info));
9718 }
9719 
9720 // The folding we want to perform is:
9721 // (add x, [zext] (setcc cc ...) )
9722 //   -->
9723 // (csel x, (add x, 1), !cc ...)
9724 //
9725 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)9726 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
9727   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
9728   SDValue LHS = Op->getOperand(0);
9729   SDValue RHS = Op->getOperand(1);
9730   SetCCInfoAndKind InfoAndKind;
9731 
9732   // If neither operand is a SET_CC, give up.
9733   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
9734     std::swap(LHS, RHS);
9735     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
9736       return SDValue();
9737   }
9738 
9739   // FIXME: This could be generatized to work for FP comparisons.
9740   EVT CmpVT = InfoAndKind.IsAArch64
9741                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
9742                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
9743   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
9744     return SDValue();
9745 
9746   SDValue CCVal;
9747   SDValue Cmp;
9748   SDLoc dl(Op);
9749   if (InfoAndKind.IsAArch64) {
9750     CCVal = DAG.getConstant(
9751         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
9752         MVT::i32);
9753     Cmp = *InfoAndKind.Info.AArch64.Cmp;
9754   } else
9755     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
9756                       *InfoAndKind.Info.Generic.Opnd1,
9757                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
9758                       CCVal, DAG, dl);
9759 
9760   EVT VT = Op->getValueType(0);
9761   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
9762   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
9763 }
9764 
9765 // The basic add/sub long vector instructions have variants with "2" on the end
9766 // which act on the high-half of their inputs. They are normally matched by
9767 // patterns like:
9768 //
9769 // (add (zeroext (extract_high LHS)),
9770 //      (zeroext (extract_high RHS)))
9771 // -> uaddl2 vD, vN, vM
9772 //
9773 // However, if one of the extracts is something like a duplicate, this
9774 // instruction can still be used profitably. This function puts the DAG into a
9775 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9776 static SDValue performAddSubLongCombine(SDNode *N,
9777                                         TargetLowering::DAGCombinerInfo &DCI,
9778                                         SelectionDAG &DAG) {
9779   if (DCI.isBeforeLegalizeOps())
9780     return SDValue();
9781 
9782   MVT VT = N->getSimpleValueType(0);
9783   if (!VT.is128BitVector()) {
9784     if (N->getOpcode() == ISD::ADD)
9785       return performSetccAddFolding(N, DAG);
9786     return SDValue();
9787   }
9788 
9789   // Make sure both branches are extended in the same way.
9790   SDValue LHS = N->getOperand(0);
9791   SDValue RHS = N->getOperand(1);
9792   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
9793        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
9794       LHS.getOpcode() != RHS.getOpcode())
9795     return SDValue();
9796 
9797   unsigned ExtType = LHS.getOpcode();
9798 
9799   // It's not worth doing if at least one of the inputs isn't already an
9800   // extract, but we don't know which it'll be so we have to try both.
9801   if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
9802     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
9803     if (!RHS.getNode())
9804       return SDValue();
9805 
9806     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
9807   } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
9808     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
9809     if (!LHS.getNode())
9810       return SDValue();
9811 
9812     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
9813   }
9814 
9815   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
9816 }
9817 
9818 // Massage DAGs which we can use the high-half "long" operations on into
9819 // something isel will recognize better. E.g.
9820 //
9821 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
9822 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
9823 //                     (extract_high (v2i64 (dup128 scalar)))))
9824 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9825 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
9826                                        TargetLowering::DAGCombinerInfo &DCI,
9827                                        SelectionDAG &DAG) {
9828   if (DCI.isBeforeLegalizeOps())
9829     return SDValue();
9830 
9831   SDValue LHS = N->getOperand(1);
9832   SDValue RHS = N->getOperand(2);
9833   assert(LHS.getValueType().is64BitVector() &&
9834          RHS.getValueType().is64BitVector() &&
9835          "unexpected shape for long operation");
9836 
9837   // Either node could be a DUP, but it's not worth doing both of them (you'd
9838   // just as well use the non-high version) so look for a corresponding extract
9839   // operation on the other "wing".
9840   if (isEssentiallyExtractSubvector(LHS)) {
9841     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
9842     if (!RHS.getNode())
9843       return SDValue();
9844   } else if (isEssentiallyExtractSubvector(RHS)) {
9845     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
9846     if (!LHS.getNode())
9847       return SDValue();
9848   }
9849 
9850   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
9851                      N->getOperand(0), LHS, RHS);
9852 }
9853 
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)9854 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
9855   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
9856   unsigned ElemBits = ElemTy.getSizeInBits();
9857 
9858   int64_t ShiftAmount;
9859   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
9860     APInt SplatValue, SplatUndef;
9861     unsigned SplatBitSize;
9862     bool HasAnyUndefs;
9863     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
9864                               HasAnyUndefs, ElemBits) ||
9865         SplatBitSize != ElemBits)
9866       return SDValue();
9867 
9868     ShiftAmount = SplatValue.getSExtValue();
9869   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
9870     ShiftAmount = CVN->getSExtValue();
9871   } else
9872     return SDValue();
9873 
9874   unsigned Opcode;
9875   bool IsRightShift;
9876   switch (IID) {
9877   default:
9878     llvm_unreachable("Unknown shift intrinsic");
9879   case Intrinsic::aarch64_neon_sqshl:
9880     Opcode = AArch64ISD::SQSHL_I;
9881     IsRightShift = false;
9882     break;
9883   case Intrinsic::aarch64_neon_uqshl:
9884     Opcode = AArch64ISD::UQSHL_I;
9885     IsRightShift = false;
9886     break;
9887   case Intrinsic::aarch64_neon_srshl:
9888     Opcode = AArch64ISD::SRSHR_I;
9889     IsRightShift = true;
9890     break;
9891   case Intrinsic::aarch64_neon_urshl:
9892     Opcode = AArch64ISD::URSHR_I;
9893     IsRightShift = true;
9894     break;
9895   case Intrinsic::aarch64_neon_sqshlu:
9896     Opcode = AArch64ISD::SQSHLU_I;
9897     IsRightShift = false;
9898     break;
9899   }
9900 
9901   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
9902     SDLoc dl(N);
9903     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
9904                        DAG.getConstant(-ShiftAmount, dl, MVT::i32));
9905   } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
9906     SDLoc dl(N);
9907     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
9908                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
9909   }
9910 
9911   return SDValue();
9912 }
9913 
9914 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
9915 // the intrinsics must be legal and take an i32, this means there's almost
9916 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)9917 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
9918   SDValue AndN = N->getOperand(2);
9919   if (AndN.getOpcode() != ISD::AND)
9920     return SDValue();
9921 
9922   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
9923   if (!CMask || CMask->getZExtValue() != Mask)
9924     return SDValue();
9925 
9926   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
9927                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
9928 }
9929 
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)9930 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
9931                                            SelectionDAG &DAG) {
9932   SDLoc dl(N);
9933   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
9934                      DAG.getNode(Opc, dl,
9935                                  N->getOperand(1).getSimpleValueType(),
9936                                  N->getOperand(1)),
9937                      DAG.getConstant(0, dl, MVT::i64));
9938 }
9939 
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9940 static SDValue performIntrinsicCombine(SDNode *N,
9941                                        TargetLowering::DAGCombinerInfo &DCI,
9942                                        const AArch64Subtarget *Subtarget) {
9943   SelectionDAG &DAG = DCI.DAG;
9944   unsigned IID = getIntrinsicID(N);
9945   switch (IID) {
9946   default:
9947     break;
9948   case Intrinsic::aarch64_neon_vcvtfxs2fp:
9949   case Intrinsic::aarch64_neon_vcvtfxu2fp:
9950     return tryCombineFixedPointConvert(N, DCI, DAG);
9951   case Intrinsic::aarch64_neon_saddv:
9952     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
9953   case Intrinsic::aarch64_neon_uaddv:
9954     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
9955   case Intrinsic::aarch64_neon_sminv:
9956     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
9957   case Intrinsic::aarch64_neon_uminv:
9958     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
9959   case Intrinsic::aarch64_neon_smaxv:
9960     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
9961   case Intrinsic::aarch64_neon_umaxv:
9962     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
9963   case Intrinsic::aarch64_neon_fmax:
9964     return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
9965                        N->getOperand(1), N->getOperand(2));
9966   case Intrinsic::aarch64_neon_fmin:
9967     return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
9968                        N->getOperand(1), N->getOperand(2));
9969   case Intrinsic::aarch64_neon_fmaxnm:
9970     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
9971                        N->getOperand(1), N->getOperand(2));
9972   case Intrinsic::aarch64_neon_fminnm:
9973     return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
9974                        N->getOperand(1), N->getOperand(2));
9975   case Intrinsic::aarch64_neon_smull:
9976   case Intrinsic::aarch64_neon_umull:
9977   case Intrinsic::aarch64_neon_pmull:
9978   case Intrinsic::aarch64_neon_sqdmull:
9979     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
9980   case Intrinsic::aarch64_neon_sqshl:
9981   case Intrinsic::aarch64_neon_uqshl:
9982   case Intrinsic::aarch64_neon_sqshlu:
9983   case Intrinsic::aarch64_neon_srshl:
9984   case Intrinsic::aarch64_neon_urshl:
9985     return tryCombineShiftImm(IID, N, DAG);
9986   case Intrinsic::aarch64_crc32b:
9987   case Intrinsic::aarch64_crc32cb:
9988     return tryCombineCRC32(0xff, N, DAG);
9989   case Intrinsic::aarch64_crc32h:
9990   case Intrinsic::aarch64_crc32ch:
9991     return tryCombineCRC32(0xffff, N, DAG);
9992   }
9993   return SDValue();
9994 }
9995 
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9996 static SDValue performExtendCombine(SDNode *N,
9997                                     TargetLowering::DAGCombinerInfo &DCI,
9998                                     SelectionDAG &DAG) {
9999   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
10000   // we can convert that DUP into another extract_high (of a bigger DUP), which
10001   // helps the backend to decide that an sabdl2 would be useful, saving a real
10002   // extract_high operation.
10003   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
10004       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
10005     SDNode *ABDNode = N->getOperand(0).getNode();
10006     unsigned IID = getIntrinsicID(ABDNode);
10007     if (IID == Intrinsic::aarch64_neon_sabd ||
10008         IID == Intrinsic::aarch64_neon_uabd) {
10009       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
10010       if (!NewABD.getNode())
10011         return SDValue();
10012 
10013       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
10014                          NewABD);
10015     }
10016   }
10017 
10018   // This is effectively a custom type legalization for AArch64.
10019   //
10020   // Type legalization will split an extend of a small, legal, type to a larger
10021   // illegal type by first splitting the destination type, often creating
10022   // illegal source types, which then get legalized in isel-confusing ways,
10023   // leading to really terrible codegen. E.g.,
10024   //   %result = v8i32 sext v8i8 %value
10025   // becomes
10026   //   %losrc = extract_subreg %value, ...
10027   //   %hisrc = extract_subreg %value, ...
10028   //   %lo = v4i32 sext v4i8 %losrc
10029   //   %hi = v4i32 sext v4i8 %hisrc
10030   // Things go rapidly downhill from there.
10031   //
10032   // For AArch64, the [sz]ext vector instructions can only go up one element
10033   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
10034   // take two instructions.
10035   //
10036   // This implies that the most efficient way to do the extend from v8i8
10037   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
10038   // the normal splitting to happen for the v8i16->v8i32.
10039 
10040   // This is pre-legalization to catch some cases where the default
10041   // type legalization will create ill-tempered code.
10042   if (!DCI.isBeforeLegalizeOps())
10043     return SDValue();
10044 
10045   // We're only interested in cleaning things up for non-legal vector types
10046   // here. If both the source and destination are legal, things will just
10047   // work naturally without any fiddling.
10048   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10049   EVT ResVT = N->getValueType(0);
10050   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
10051     return SDValue();
10052   // If the vector type isn't a simple VT, it's beyond the scope of what
10053   // we're  worried about here. Let legalization do its thing and hope for
10054   // the best.
10055   SDValue Src = N->getOperand(0);
10056   EVT SrcVT = Src->getValueType(0);
10057   if (!ResVT.isSimple() || !SrcVT.isSimple())
10058     return SDValue();
10059 
10060   // If the source VT is a 64-bit vector, we can play games and get the
10061   // better results we want.
10062   if (SrcVT.getSizeInBits() != 64)
10063     return SDValue();
10064 
10065   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
10066   unsigned ElementCount = SrcVT.getVectorNumElements();
10067   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
10068   SDLoc DL(N);
10069   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
10070 
10071   // Now split the rest of the operation into two halves, each with a 64
10072   // bit source.
10073   EVT LoVT, HiVT;
10074   SDValue Lo, Hi;
10075   unsigned NumElements = ResVT.getVectorNumElements();
10076   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
10077   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
10078                                  ResVT.getVectorElementType(), NumElements / 2);
10079 
10080   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
10081                                LoVT.getVectorNumElements());
10082   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10083                    DAG.getConstant(0, DL, MVT::i64));
10084   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10085                    DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
10086   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
10087   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
10088 
10089   // Now combine the parts back together so we still have a single result
10090   // like the combiner expects.
10091   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
10092 }
10093 
splitStoreSplat(SelectionDAG & DAG,StoreSDNode & St,SDValue SplatVal,unsigned NumVecElts)10094 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
10095                                SDValue SplatVal, unsigned NumVecElts) {
10096   assert(!St.isTruncatingStore() && "cannot split truncating vector store");
10097   unsigned OrigAlignment = St.getAlignment();
10098   unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
10099 
10100   // Create scalar stores. This is at least as good as the code sequence for a
10101   // split unaligned store which is a dup.s, ext.b, and two stores.
10102   // Most of the time the three stores should be replaced by store pair
10103   // instructions (stp).
10104   SDLoc DL(&St);
10105   SDValue BasePtr = St.getBasePtr();
10106   uint64_t BaseOffset = 0;
10107 
10108   const MachinePointerInfo &PtrInfo = St.getPointerInfo();
10109   SDValue NewST1 =
10110       DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
10111                    OrigAlignment, St.getMemOperand()->getFlags());
10112 
10113   // As this in ISel, we will not merge this add which may degrade results.
10114   if (BasePtr->getOpcode() == ISD::ADD &&
10115       isa<ConstantSDNode>(BasePtr->getOperand(1))) {
10116     BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
10117     BasePtr = BasePtr->getOperand(0);
10118   }
10119 
10120   unsigned Offset = EltOffset;
10121   while (--NumVecElts) {
10122     unsigned Alignment = MinAlign(OrigAlignment, Offset);
10123     SDValue OffsetPtr =
10124         DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10125                     DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
10126     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
10127                           PtrInfo.getWithOffset(Offset), Alignment,
10128                           St.getMemOperand()->getFlags());
10129     Offset += EltOffset;
10130   }
10131   return NewST1;
10132 }
10133 
10134 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
10135 /// load store optimizer pass will merge them to store pair stores.  This should
10136 /// be better than a movi to create the vector zero followed by a vector store
10137 /// if the zero constant is not re-used, since one instructions and one register
10138 /// live range will be removed.
10139 ///
10140 /// For example, the final generated code should be:
10141 ///
10142 ///   stp xzr, xzr, [x0]
10143 ///
10144 /// instead of:
10145 ///
10146 ///   movi v0.2d, #0
10147 ///   str q0, [x0]
10148 ///
replaceZeroVectorStore(SelectionDAG & DAG,StoreSDNode & St)10149 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10150   SDValue StVal = St.getValue();
10151   EVT VT = StVal.getValueType();
10152 
10153   // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
10154   // 2, 3 or 4 i32 elements.
10155   int NumVecElts = VT.getVectorNumElements();
10156   if (!(((NumVecElts == 2 || NumVecElts == 3) &&
10157          VT.getVectorElementType().getSizeInBits() == 64) ||
10158         ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
10159          VT.getVectorElementType().getSizeInBits() == 32)))
10160     return SDValue();
10161 
10162   if (StVal.getOpcode() != ISD::BUILD_VECTOR)
10163     return SDValue();
10164 
10165   // If the zero constant has more than one use then the vector store could be
10166   // better since the constant mov will be amortized and stp q instructions
10167   // should be able to be formed.
10168   if (!StVal.hasOneUse())
10169     return SDValue();
10170 
10171   // If the store is truncating then it's going down to i16 or smaller, which
10172   // means it can be implemented in a single store anyway.
10173   if (St.isTruncatingStore())
10174     return SDValue();
10175 
10176   // If the immediate offset of the address operand is too large for the stp
10177   // instruction, then bail out.
10178   if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
10179     int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
10180     if (Offset < -512 || Offset > 504)
10181       return SDValue();
10182   }
10183 
10184   for (int I = 0; I < NumVecElts; ++I) {
10185     SDValue EltVal = StVal.getOperand(I);
10186     if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
10187       return SDValue();
10188   }
10189 
10190   // Use a CopyFromReg WZR/XZR here to prevent
10191   // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
10192   SDLoc DL(&St);
10193   unsigned ZeroReg;
10194   EVT ZeroVT;
10195   if (VT.getVectorElementType().getSizeInBits() == 32) {
10196     ZeroReg = AArch64::WZR;
10197     ZeroVT = MVT::i32;
10198   } else {
10199     ZeroReg = AArch64::XZR;
10200     ZeroVT = MVT::i64;
10201   }
10202   SDValue SplatVal =
10203       DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
10204   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10205 }
10206 
10207 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
10208 /// value. The load store optimizer pass will merge them to store pair stores.
10209 /// This has better performance than a splat of the scalar followed by a split
10210 /// vector store. Even if the stores are not merged it is four stores vs a dup,
10211 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode & St)10212 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10213   SDValue StVal = St.getValue();
10214   EVT VT = StVal.getValueType();
10215 
10216   // Don't replace floating point stores, they possibly won't be transformed to
10217   // stp because of the store pair suppress pass.
10218   if (VT.isFloatingPoint())
10219     return SDValue();
10220 
10221   // We can express a splat as store pair(s) for 2 or 4 elements.
10222   unsigned NumVecElts = VT.getVectorNumElements();
10223   if (NumVecElts != 4 && NumVecElts != 2)
10224     return SDValue();
10225 
10226   // If the store is truncating then it's going down to i16 or smaller, which
10227   // means it can be implemented in a single store anyway.
10228   if (St.isTruncatingStore())
10229     return SDValue();
10230 
10231   // Check that this is a splat.
10232   // Make sure that each of the relevant vector element locations are inserted
10233   // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
10234   std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
10235   SDValue SplatVal;
10236   for (unsigned I = 0; I < NumVecElts; ++I) {
10237     // Check for insert vector elements.
10238     if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
10239       return SDValue();
10240 
10241     // Check that same value is inserted at each vector element.
10242     if (I == 0)
10243       SplatVal = StVal.getOperand(1);
10244     else if (StVal.getOperand(1) != SplatVal)
10245       return SDValue();
10246 
10247     // Check insert element index.
10248     ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
10249     if (!CIndex)
10250       return SDValue();
10251     uint64_t IndexVal = CIndex->getZExtValue();
10252     if (IndexVal >= NumVecElts)
10253       return SDValue();
10254     IndexNotInserted.reset(IndexVal);
10255 
10256     StVal = StVal.getOperand(0);
10257   }
10258   // Check that all vector element locations were inserted to.
10259   if (IndexNotInserted.any())
10260       return SDValue();
10261 
10262   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10263 }
10264 
splitStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)10265 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10266                            SelectionDAG &DAG,
10267                            const AArch64Subtarget *Subtarget) {
10268 
10269   StoreSDNode *S = cast<StoreSDNode>(N);
10270   if (S->isVolatile() || S->isIndexed())
10271     return SDValue();
10272 
10273   SDValue StVal = S->getValue();
10274   EVT VT = StVal.getValueType();
10275   if (!VT.isVector())
10276     return SDValue();
10277 
10278   // If we get a splat of zeros, convert this vector store to a store of
10279   // scalars. They will be merged into store pairs of xzr thereby removing one
10280   // instruction and one register.
10281   if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
10282     return ReplacedZeroSplat;
10283 
10284   // FIXME: The logic for deciding if an unaligned store should be split should
10285   // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10286   // a call to that function here.
10287 
10288   if (!Subtarget->isMisaligned128StoreSlow())
10289     return SDValue();
10290 
10291   // Don't split at -Oz.
10292   if (DAG.getMachineFunction().getFunction().optForMinSize())
10293     return SDValue();
10294 
10295   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10296   // those up regresses performance on micro-benchmarks and olden/bh.
10297   if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
10298     return SDValue();
10299 
10300   // Split unaligned 16B stores. They are terrible for performance.
10301   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10302   // extensions can use this to mark that it does not want splitting to happen
10303   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10304   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10305   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
10306       S->getAlignment() <= 2)
10307     return SDValue();
10308 
10309   // If we get a splat of a scalar convert this vector store to a store of
10310   // scalars. They will be merged into store pairs thereby removing two
10311   // instructions.
10312   if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
10313     return ReplacedSplat;
10314 
10315   SDLoc DL(S);
10316   unsigned NumElts = VT.getVectorNumElements() / 2;
10317   // Split VT into two.
10318   EVT HalfVT =
10319       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
10320   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10321                                    DAG.getConstant(0, DL, MVT::i64));
10322   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10323                                    DAG.getConstant(NumElts, DL, MVT::i64));
10324   SDValue BasePtr = S->getBasePtr();
10325   SDValue NewST1 =
10326       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
10327                    S->getAlignment(), S->getMemOperand()->getFlags());
10328   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10329                                   DAG.getConstant(8, DL, MVT::i64));
10330   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
10331                       S->getPointerInfo(), S->getAlignment(),
10332                       S->getMemOperand()->getFlags());
10333 }
10334 
10335 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10336 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)10337 static SDValue performPostLD1Combine(SDNode *N,
10338                                      TargetLowering::DAGCombinerInfo &DCI,
10339                                      bool IsLaneOp) {
10340   if (DCI.isBeforeLegalizeOps())
10341     return SDValue();
10342 
10343   SelectionDAG &DAG = DCI.DAG;
10344   EVT VT = N->getValueType(0);
10345 
10346   unsigned LoadIdx = IsLaneOp ? 1 : 0;
10347   SDNode *LD = N->getOperand(LoadIdx).getNode();
10348   // If it is not LOAD, can not do such combine.
10349   if (LD->getOpcode() != ISD::LOAD)
10350     return SDValue();
10351 
10352   // The vector lane must be a constant in the LD1LANE opcode.
10353   SDValue Lane;
10354   if (IsLaneOp) {
10355     Lane = N->getOperand(2);
10356     auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
10357     if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
10358       return SDValue();
10359   }
10360 
10361   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
10362   EVT MemVT = LoadSDN->getMemoryVT();
10363   // Check if memory operand is the same type as the vector element.
10364   if (MemVT != VT.getVectorElementType())
10365     return SDValue();
10366 
10367   // Check if there are other uses. If so, do not combine as it will introduce
10368   // an extra load.
10369   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
10370        ++UI) {
10371     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
10372       continue;
10373     if (*UI != N)
10374       return SDValue();
10375   }
10376 
10377   SDValue Addr = LD->getOperand(1);
10378   SDValue Vector = N->getOperand(0);
10379   // Search for a use of the address operand that is an increment.
10380   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
10381        Addr.getNode()->use_end(); UI != UE; ++UI) {
10382     SDNode *User = *UI;
10383     if (User->getOpcode() != ISD::ADD
10384         || UI.getUse().getResNo() != Addr.getResNo())
10385       continue;
10386 
10387     // If the increment is a constant, it must match the memory ref size.
10388     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10389     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10390       uint32_t IncVal = CInc->getZExtValue();
10391       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
10392       if (IncVal != NumBytes)
10393         continue;
10394       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10395     }
10396 
10397     // To avoid cycle construction make sure that neither the load nor the add
10398     // are predecessors to each other or the Vector.
10399     SmallPtrSet<const SDNode *, 32> Visited;
10400     SmallVector<const SDNode *, 16> Worklist;
10401     Visited.insert(N);
10402     Worklist.push_back(User);
10403     Worklist.push_back(LD);
10404     Worklist.push_back(Vector.getNode());
10405     if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
10406         SDNode::hasPredecessorHelper(User, Visited, Worklist))
10407       continue;
10408 
10409     SmallVector<SDValue, 8> Ops;
10410     Ops.push_back(LD->getOperand(0));  // Chain
10411     if (IsLaneOp) {
10412       Ops.push_back(Vector);           // The vector to be inserted
10413       Ops.push_back(Lane);             // The lane to be inserted in the vector
10414     }
10415     Ops.push_back(Addr);
10416     Ops.push_back(Inc);
10417 
10418     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
10419     SDVTList SDTys = DAG.getVTList(Tys);
10420     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
10421     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
10422                                            MemVT,
10423                                            LoadSDN->getMemOperand());
10424 
10425     // Update the uses.
10426     SDValue NewResults[] = {
10427         SDValue(LD, 0),            // The result of load
10428         SDValue(UpdN.getNode(), 2) // Chain
10429     };
10430     DCI.CombineTo(LD, NewResults);
10431     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
10432     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
10433 
10434     break;
10435   }
10436   return SDValue();
10437 }
10438 
10439 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10440 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10441 static bool performTBISimplification(SDValue Addr,
10442                                      TargetLowering::DAGCombinerInfo &DCI,
10443                                      SelectionDAG &DAG) {
10444   APInt DemandedMask = APInt::getLowBitsSet(64, 56);
10445   KnownBits Known;
10446   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10447                                         !DCI.isBeforeLegalizeOps());
10448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10449   if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
10450     DCI.CommitTargetLoweringOpt(TLO);
10451     return true;
10452   }
10453   return false;
10454 }
10455 
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)10456 static SDValue performSTORECombine(SDNode *N,
10457                                    TargetLowering::DAGCombinerInfo &DCI,
10458                                    SelectionDAG &DAG,
10459                                    const AArch64Subtarget *Subtarget) {
10460   if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
10461     return Split;
10462 
10463   if (Subtarget->supportsAddressTopByteIgnored() &&
10464       performTBISimplification(N->getOperand(2), DCI, DAG))
10465     return SDValue(N, 0);
10466 
10467   return SDValue();
10468 }
10469 
10470 
10471 /// Target-specific DAG combine function for NEON load/store intrinsics
10472 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10473 static SDValue performNEONPostLDSTCombine(SDNode *N,
10474                                           TargetLowering::DAGCombinerInfo &DCI,
10475                                           SelectionDAG &DAG) {
10476   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10477     return SDValue();
10478 
10479   unsigned AddrOpIdx = N->getNumOperands() - 1;
10480   SDValue Addr = N->getOperand(AddrOpIdx);
10481 
10482   // Search for a use of the address operand that is an increment.
10483   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10484        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10485     SDNode *User = *UI;
10486     if (User->getOpcode() != ISD::ADD ||
10487         UI.getUse().getResNo() != Addr.getResNo())
10488       continue;
10489 
10490     // Check that the add is independent of the load/store.  Otherwise, folding
10491     // it would create a cycle.
10492     SmallPtrSet<const SDNode *, 32> Visited;
10493     SmallVector<const SDNode *, 16> Worklist;
10494     Visited.insert(Addr.getNode());
10495     Worklist.push_back(N);
10496     Worklist.push_back(User);
10497     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
10498         SDNode::hasPredecessorHelper(User, Visited, Worklist))
10499       continue;
10500 
10501     // Find the new opcode for the updating load/store.
10502     bool IsStore = false;
10503     bool IsLaneOp = false;
10504     bool IsDupOp = false;
10505     unsigned NewOpc = 0;
10506     unsigned NumVecs = 0;
10507     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10508     switch (IntNo) {
10509     default: llvm_unreachable("unexpected intrinsic for Neon base update");
10510     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
10511       NumVecs = 2; break;
10512     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
10513       NumVecs = 3; break;
10514     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
10515       NumVecs = 4; break;
10516     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
10517       NumVecs = 2; IsStore = true; break;
10518     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
10519       NumVecs = 3; IsStore = true; break;
10520     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
10521       NumVecs = 4; IsStore = true; break;
10522     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
10523       NumVecs = 2; break;
10524     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
10525       NumVecs = 3; break;
10526     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
10527       NumVecs = 4; break;
10528     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
10529       NumVecs = 2; IsStore = true; break;
10530     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
10531       NumVecs = 3; IsStore = true; break;
10532     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
10533       NumVecs = 4; IsStore = true; break;
10534     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
10535       NumVecs = 2; IsDupOp = true; break;
10536     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
10537       NumVecs = 3; IsDupOp = true; break;
10538     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
10539       NumVecs = 4; IsDupOp = true; break;
10540     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
10541       NumVecs = 2; IsLaneOp = true; break;
10542     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
10543       NumVecs = 3; IsLaneOp = true; break;
10544     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
10545       NumVecs = 4; IsLaneOp = true; break;
10546     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
10547       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
10548     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
10549       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
10550     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
10551       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
10552     }
10553 
10554     EVT VecTy;
10555     if (IsStore)
10556       VecTy = N->getOperand(2).getValueType();
10557     else
10558       VecTy = N->getValueType(0);
10559 
10560     // If the increment is a constant, it must match the memory ref size.
10561     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10562     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10563       uint32_t IncVal = CInc->getZExtValue();
10564       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10565       if (IsLaneOp || IsDupOp)
10566         NumBytes /= VecTy.getVectorNumElements();
10567       if (IncVal != NumBytes)
10568         continue;
10569       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10570     }
10571     SmallVector<SDValue, 8> Ops;
10572     Ops.push_back(N->getOperand(0)); // Incoming chain
10573     // Load lane and store have vector list as input.
10574     if (IsLaneOp || IsStore)
10575       for (unsigned i = 2; i < AddrOpIdx; ++i)
10576         Ops.push_back(N->getOperand(i));
10577     Ops.push_back(Addr); // Base register
10578     Ops.push_back(Inc);
10579 
10580     // Return Types.
10581     EVT Tys[6];
10582     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
10583     unsigned n;
10584     for (n = 0; n < NumResultVecs; ++n)
10585       Tys[n] = VecTy;
10586     Tys[n++] = MVT::i64;  // Type of write back register
10587     Tys[n] = MVT::Other;  // Type of the chain
10588     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
10589 
10590     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
10591     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
10592                                            MemInt->getMemoryVT(),
10593                                            MemInt->getMemOperand());
10594 
10595     // Update the uses.
10596     std::vector<SDValue> NewResults;
10597     for (unsigned i = 0; i < NumResultVecs; ++i) {
10598       NewResults.push_back(SDValue(UpdN.getNode(), i));
10599     }
10600     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
10601     DCI.CombineTo(N, NewResults);
10602     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10603 
10604     break;
10605   }
10606   return SDValue();
10607 }
10608 
10609 // Checks to see if the value is the prescribed width and returns information
10610 // about its extension mode.
10611 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)10612 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
10613   ExtType = ISD::NON_EXTLOAD;
10614   switch(V.getNode()->getOpcode()) {
10615   default:
10616     return false;
10617   case ISD::LOAD: {
10618     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
10619     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
10620        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
10621       ExtType = LoadNode->getExtensionType();
10622       return true;
10623     }
10624     return false;
10625   }
10626   case ISD::AssertSext: {
10627     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10628     if ((TypeNode->getVT() == MVT::i8 && width == 8)
10629        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10630       ExtType = ISD::SEXTLOAD;
10631       return true;
10632     }
10633     return false;
10634   }
10635   case ISD::AssertZext: {
10636     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10637     if ((TypeNode->getVT() == MVT::i8 && width == 8)
10638        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10639       ExtType = ISD::ZEXTLOAD;
10640       return true;
10641     }
10642     return false;
10643   }
10644   case ISD::Constant:
10645   case ISD::TargetConstant: {
10646     return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
10647            1LL << (width - 1);
10648   }
10649   }
10650 
10651   return true;
10652 }
10653 
10654 // This function does a whole lot of voodoo to determine if the tests are
10655 // equivalent without and with a mask. Essentially what happens is that given a
10656 // DAG resembling:
10657 //
10658 //  +-------------+ +-------------+ +-------------+ +-------------+
10659 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
10660 //  +-------------+ +-------------+ +-------------+ +-------------+
10661 //           |           |           |               |
10662 //           V           V           |    +----------+
10663 //          +-------------+  +----+  |    |
10664 //          |     ADD     |  |0xff|  |    |
10665 //          +-------------+  +----+  |    |
10666 //                  |           |    |    |
10667 //                  V           V    |    |
10668 //                 +-------------+   |    |
10669 //                 |     AND     |   |    |
10670 //                 +-------------+   |    |
10671 //                      |            |    |
10672 //                      +-----+      |    |
10673 //                            |      |    |
10674 //                            V      V    V
10675 //                           +-------------+
10676 //                           |     CMP     |
10677 //                           +-------------+
10678 //
10679 // The AND node may be safely removed for some combinations of inputs. In
10680 // particular we need to take into account the extension type of the Input,
10681 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
10682 // width of the input (this can work for any width inputs, the above graph is
10683 // specific to 8 bits.
10684 //
10685 // The specific equations were worked out by generating output tables for each
10686 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
10687 // problem was simplified by working with 4 bit inputs, which means we only
10688 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
10689 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
10690 // patterns present in both extensions (0,7). For every distinct set of
10691 // AddConstant and CompConstants bit patterns we can consider the masked and
10692 // unmasked versions to be equivalent if the result of this function is true for
10693 // all 16 distinct bit patterns of for the current extension type of Input (w0).
10694 //
10695 //   sub      w8, w0, w1
10696 //   and      w10, w8, #0x0f
10697 //   cmp      w8, w2
10698 //   cset     w9, AArch64CC
10699 //   cmp      w10, w2
10700 //   cset     w11, AArch64CC
10701 //   cmp      w9, w11
10702 //   cset     w0, eq
10703 //   ret
10704 //
10705 // Since the above function shows when the outputs are equivalent it defines
10706 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
10707 // would be expensive to run during compiles. The equations below were written
10708 // in a test harness that confirmed they gave equivalent outputs to the above
10709 // for all inputs function, so they can be used determine if the removal is
10710 // legal instead.
10711 //
10712 // isEquivalentMaskless() is the code for testing if the AND can be removed
10713 // factored out of the DAG recognition as the DAG can take several forms.
10714 
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,int AddConstant,int CompConstant)10715 static bool isEquivalentMaskless(unsigned CC, unsigned width,
10716                                  ISD::LoadExtType ExtType, int AddConstant,
10717                                  int CompConstant) {
10718   // By being careful about our equations and only writing the in term
10719   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
10720   // make them generally applicable to all bit widths.
10721   int MaxUInt = (1 << width);
10722 
10723   // For the purposes of these comparisons sign extending the type is
10724   // equivalent to zero extending the add and displacing it by half the integer
10725   // width. Provided we are careful and make sure our equations are valid over
10726   // the whole range we can just adjust the input and avoid writing equations
10727   // for sign extended inputs.
10728   if (ExtType == ISD::SEXTLOAD)
10729     AddConstant -= (1 << (width-1));
10730 
10731   switch(CC) {
10732   case AArch64CC::LE:
10733   case AArch64CC::GT:
10734     if ((AddConstant == 0) ||
10735         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
10736         (AddConstant >= 0 && CompConstant < 0) ||
10737         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
10738       return true;
10739     break;
10740   case AArch64CC::LT:
10741   case AArch64CC::GE:
10742     if ((AddConstant == 0) ||
10743         (AddConstant >= 0 && CompConstant <= 0) ||
10744         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
10745       return true;
10746     break;
10747   case AArch64CC::HI:
10748   case AArch64CC::LS:
10749     if ((AddConstant >= 0 && CompConstant < 0) ||
10750        (AddConstant <= 0 && CompConstant >= -1 &&
10751         CompConstant < AddConstant + MaxUInt))
10752       return true;
10753    break;
10754   case AArch64CC::PL:
10755   case AArch64CC::MI:
10756     if ((AddConstant == 0) ||
10757         (AddConstant > 0 && CompConstant <= 0) ||
10758         (AddConstant < 0 && CompConstant <= AddConstant))
10759       return true;
10760     break;
10761   case AArch64CC::LO:
10762   case AArch64CC::HS:
10763     if ((AddConstant >= 0 && CompConstant <= 0) ||
10764         (AddConstant <= 0 && CompConstant >= 0 &&
10765          CompConstant <= AddConstant + MaxUInt))
10766       return true;
10767     break;
10768   case AArch64CC::EQ:
10769   case AArch64CC::NE:
10770     if ((AddConstant > 0 && CompConstant < 0) ||
10771         (AddConstant < 0 && CompConstant >= 0 &&
10772          CompConstant < AddConstant + MaxUInt) ||
10773         (AddConstant >= 0 && CompConstant >= 0 &&
10774          CompConstant >= AddConstant) ||
10775         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
10776       return true;
10777     break;
10778   case AArch64CC::VS:
10779   case AArch64CC::VC:
10780   case AArch64CC::AL:
10781   case AArch64CC::NV:
10782     return true;
10783   case AArch64CC::Invalid:
10784     break;
10785   }
10786 
10787   return false;
10788 }
10789 
10790 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)10791 SDValue performCONDCombine(SDNode *N,
10792                            TargetLowering::DAGCombinerInfo &DCI,
10793                            SelectionDAG &DAG, unsigned CCIndex,
10794                            unsigned CmpIndex) {
10795   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
10796   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
10797   unsigned CondOpcode = SubsNode->getOpcode();
10798 
10799   if (CondOpcode != AArch64ISD::SUBS)
10800     return SDValue();
10801 
10802   // There is a SUBS feeding this condition. Is it fed by a mask we can
10803   // use?
10804 
10805   SDNode *AndNode = SubsNode->getOperand(0).getNode();
10806   unsigned MaskBits = 0;
10807 
10808   if (AndNode->getOpcode() != ISD::AND)
10809     return SDValue();
10810 
10811   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
10812     uint32_t CNV = CN->getZExtValue();
10813     if (CNV == 255)
10814       MaskBits = 8;
10815     else if (CNV == 65535)
10816       MaskBits = 16;
10817   }
10818 
10819   if (!MaskBits)
10820     return SDValue();
10821 
10822   SDValue AddValue = AndNode->getOperand(0);
10823 
10824   if (AddValue.getOpcode() != ISD::ADD)
10825     return SDValue();
10826 
10827   // The basic dag structure is correct, grab the inputs and validate them.
10828 
10829   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
10830   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
10831   SDValue SubsInputValue = SubsNode->getOperand(1);
10832 
10833   // The mask is present and the provenance of all the values is a smaller type,
10834   // lets see if the mask is superfluous.
10835 
10836   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
10837       !isa<ConstantSDNode>(SubsInputValue.getNode()))
10838     return SDValue();
10839 
10840   ISD::LoadExtType ExtType;
10841 
10842   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
10843       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
10844       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
10845     return SDValue();
10846 
10847   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
10848                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
10849                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
10850     return SDValue();
10851 
10852   // The AND is not necessary, remove it.
10853 
10854   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
10855                                SubsNode->getValueType(1));
10856   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
10857 
10858   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
10859   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
10860 
10861   return SDValue(N, 0);
10862 }
10863 
10864 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10865 static SDValue performBRCONDCombine(SDNode *N,
10866                                     TargetLowering::DAGCombinerInfo &DCI,
10867                                     SelectionDAG &DAG) {
10868   MachineFunction &MF = DAG.getMachineFunction();
10869   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
10870   // will not be produced, as they are conditional branch instructions that do
10871   // not set flags.
10872   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
10873     return SDValue();
10874 
10875   if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
10876     N = NV.getNode();
10877   SDValue Chain = N->getOperand(0);
10878   SDValue Dest = N->getOperand(1);
10879   SDValue CCVal = N->getOperand(2);
10880   SDValue Cmp = N->getOperand(3);
10881 
10882   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
10883   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
10884   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
10885     return SDValue();
10886 
10887   unsigned CmpOpc = Cmp.getOpcode();
10888   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
10889     return SDValue();
10890 
10891   // Only attempt folding if there is only one use of the flag and no use of the
10892   // value.
10893   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
10894     return SDValue();
10895 
10896   SDValue LHS = Cmp.getOperand(0);
10897   SDValue RHS = Cmp.getOperand(1);
10898 
10899   assert(LHS.getValueType() == RHS.getValueType() &&
10900          "Expected the value type to be the same for both operands!");
10901   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
10902     return SDValue();
10903 
10904   if (isNullConstant(LHS))
10905     std::swap(LHS, RHS);
10906 
10907   if (!isNullConstant(RHS))
10908     return SDValue();
10909 
10910   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
10911       LHS.getOpcode() == ISD::SRL)
10912     return SDValue();
10913 
10914   // Fold the compare into the branch instruction.
10915   SDValue BR;
10916   if (CC == AArch64CC::EQ)
10917     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10918   else
10919     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10920 
10921   // Do not add new nodes to DAG combiner worklist.
10922   DCI.CombineTo(N, BR, false);
10923 
10924   return SDValue();
10925 }
10926 
10927 // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
10928 // as well as whether the test should be inverted.  This code is required to
10929 // catch these cases (as opposed to standard dag combines) because
10930 // AArch64ISD::TBZ is matched during legalization.
getTestBitOperand(SDValue Op,unsigned & Bit,bool & Invert,SelectionDAG & DAG)10931 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
10932                                  SelectionDAG &DAG) {
10933 
10934   if (!Op->hasOneUse())
10935     return Op;
10936 
10937   // We don't handle undef/constant-fold cases below, as they should have
10938   // already been taken care of (e.g. and of 0, test of undefined shifted bits,
10939   // etc.)
10940 
10941   // (tbz (trunc x), b) -> (tbz x, b)
10942   // This case is just here to enable more of the below cases to be caught.
10943   if (Op->getOpcode() == ISD::TRUNCATE &&
10944       Bit < Op->getValueType(0).getSizeInBits()) {
10945     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10946   }
10947 
10948   if (Op->getNumOperands() != 2)
10949     return Op;
10950 
10951   auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10952   if (!C)
10953     return Op;
10954 
10955   switch (Op->getOpcode()) {
10956   default:
10957     return Op;
10958 
10959   // (tbz (and x, m), b) -> (tbz x, b)
10960   case ISD::AND:
10961     if ((C->getZExtValue() >> Bit) & 1)
10962       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10963     return Op;
10964 
10965   // (tbz (shl x, c), b) -> (tbz x, b-c)
10966   case ISD::SHL:
10967     if (C->getZExtValue() <= Bit &&
10968         (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10969       Bit = Bit - C->getZExtValue();
10970       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10971     }
10972     return Op;
10973 
10974   // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
10975   case ISD::SRA:
10976     Bit = Bit + C->getZExtValue();
10977     if (Bit >= Op->getValueType(0).getSizeInBits())
10978       Bit = Op->getValueType(0).getSizeInBits() - 1;
10979     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10980 
10981   // (tbz (srl x, c), b) -> (tbz x, b+c)
10982   case ISD::SRL:
10983     if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10984       Bit = Bit + C->getZExtValue();
10985       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10986     }
10987     return Op;
10988 
10989   // (tbz (xor x, -1), b) -> (tbnz x, b)
10990   case ISD::XOR:
10991     if ((C->getZExtValue() >> Bit) & 1)
10992       Invert = !Invert;
10993     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10994   }
10995 }
10996 
10997 // Optimize test single bit zero/non-zero and branch.
performTBZCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10998 static SDValue performTBZCombine(SDNode *N,
10999                                  TargetLowering::DAGCombinerInfo &DCI,
11000                                  SelectionDAG &DAG) {
11001   unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11002   bool Invert = false;
11003   SDValue TestSrc = N->getOperand(1);
11004   SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
11005 
11006   if (TestSrc == NewTestSrc)
11007     return SDValue();
11008 
11009   unsigned NewOpc = N->getOpcode();
11010   if (Invert) {
11011     if (NewOpc == AArch64ISD::TBZ)
11012       NewOpc = AArch64ISD::TBNZ;
11013     else {
11014       assert(NewOpc == AArch64ISD::TBNZ);
11015       NewOpc = AArch64ISD::TBZ;
11016     }
11017   }
11018 
11019   SDLoc DL(N);
11020   return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
11021                      DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
11022 }
11023 
11024 // vselect (v1i1 setcc) ->
11025 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
11026 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
11027 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
11028 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)11029 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
11030   SDValue N0 = N->getOperand(0);
11031   EVT CCVT = N0.getValueType();
11032 
11033   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
11034       CCVT.getVectorElementType() != MVT::i1)
11035     return SDValue();
11036 
11037   EVT ResVT = N->getValueType(0);
11038   EVT CmpVT = N0.getOperand(0).getValueType();
11039   // Only combine when the result type is of the same size as the compared
11040   // operands.
11041   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
11042     return SDValue();
11043 
11044   SDValue IfTrue = N->getOperand(1);
11045   SDValue IfFalse = N->getOperand(2);
11046   SDValue SetCC =
11047       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
11048                    N0.getOperand(0), N0.getOperand(1),
11049                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
11050   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
11051                      IfTrue, IfFalse);
11052 }
11053 
11054 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
11055 /// the compare-mask instructions rather than going via NZCV, even if LHS and
11056 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
11057 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11058 static SDValue performSelectCombine(SDNode *N,
11059                                     TargetLowering::DAGCombinerInfo &DCI) {
11060   SelectionDAG &DAG = DCI.DAG;
11061   SDValue N0 = N->getOperand(0);
11062   EVT ResVT = N->getValueType(0);
11063 
11064   if (N0.getOpcode() != ISD::SETCC)
11065     return SDValue();
11066 
11067   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
11068   // scalar SetCCResultType. We also don't expect vectors, because we assume
11069   // that selects fed by vector SETCCs are canonicalized to VSELECT.
11070   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
11071          "Scalar-SETCC feeding SELECT has unexpected result type!");
11072 
11073   // If NumMaskElts == 0, the comparison is larger than select result. The
11074   // largest real NEON comparison is 64-bits per lane, which means the result is
11075   // at most 32-bits and an illegal vector. Just bail out for now.
11076   EVT SrcVT = N0.getOperand(0).getValueType();
11077 
11078   // Don't try to do this optimization when the setcc itself has i1 operands.
11079   // There are no legal vectors of i1, so this would be pointless.
11080   if (SrcVT == MVT::i1)
11081     return SDValue();
11082 
11083   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
11084   if (!ResVT.isVector() || NumMaskElts == 0)
11085     return SDValue();
11086 
11087   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
11088   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
11089 
11090   // Also bail out if the vector CCVT isn't the same size as ResVT.
11091   // This can happen if the SETCC operand size doesn't divide the ResVT size
11092   // (e.g., f64 vs v3f32).
11093   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
11094     return SDValue();
11095 
11096   // Make sure we didn't create illegal types, if we're not supposed to.
11097   assert(DCI.isBeforeLegalize() ||
11098          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
11099 
11100   // First perform a vector comparison, where lane 0 is the one we're interested
11101   // in.
11102   SDLoc DL(N0);
11103   SDValue LHS =
11104       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
11105   SDValue RHS =
11106       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
11107   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
11108 
11109   // Now duplicate the comparison mask we want across all other lanes.
11110   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
11111   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
11112   Mask = DAG.getNode(ISD::BITCAST, DL,
11113                      ResVT.changeVectorElementTypeToInteger(), Mask);
11114 
11115   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
11116 }
11117 
11118 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)11119 static SDValue performNVCASTCombine(SDNode *N) {
11120   if (N->getValueType(0) == N->getOperand(0).getValueType())
11121     return N->getOperand(0);
11122 
11123   return SDValue();
11124 }
11125 
11126 // If all users of the globaladdr are of the form (globaladdr + constant), find
11127 // the smallest constant, fold it into the globaladdr's offset and rewrite the
11128 // globaladdr as (globaladdr + constant) - constant.
performGlobalAddressCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget,const TargetMachine & TM)11129 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
11130                                            const AArch64Subtarget *Subtarget,
11131                                            const TargetMachine &TM) {
11132   auto *GN = cast<GlobalAddressSDNode>(N);
11133   if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
11134       AArch64II::MO_NO_FLAG)
11135     return SDValue();
11136 
11137   uint64_t MinOffset = -1ull;
11138   for (SDNode *N : GN->uses()) {
11139     if (N->getOpcode() != ISD::ADD)
11140       return SDValue();
11141     auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
11142     if (!C)
11143       C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11144     if (!C)
11145       return SDValue();
11146     MinOffset = std::min(MinOffset, C->getZExtValue());
11147   }
11148   uint64_t Offset = MinOffset + GN->getOffset();
11149 
11150   // Require that the new offset is larger than the existing one. Otherwise, we
11151   // can end up oscillating between two possible DAGs, for example,
11152   // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
11153   if (Offset <= uint64_t(GN->getOffset()))
11154     return SDValue();
11155 
11156   // Check whether folding this offset is legal. It must not go out of bounds of
11157   // the referenced object to avoid violating the code model, and must be
11158   // smaller than 2^21 because this is the largest offset expressible in all
11159   // object formats.
11160   //
11161   // This check also prevents us from folding negative offsets, which will end
11162   // up being treated in the same way as large positive ones. They could also
11163   // cause code model violations, and aren't really common enough to matter.
11164   if (Offset >= (1 << 21))
11165     return SDValue();
11166 
11167   const GlobalValue *GV = GN->getGlobal();
11168   Type *T = GV->getValueType();
11169   if (!T->isSized() ||
11170       Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
11171     return SDValue();
11172 
11173   SDLoc DL(GN);
11174   SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
11175   return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
11176                      DAG.getConstant(MinOffset, DL, MVT::i64));
11177 }
11178 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const11179 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
11180                                                  DAGCombinerInfo &DCI) const {
11181   SelectionDAG &DAG = DCI.DAG;
11182   switch (N->getOpcode()) {
11183   default:
11184     LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
11185     break;
11186   case ISD::ADD:
11187   case ISD::SUB:
11188     return performAddSubLongCombine(N, DCI, DAG);
11189   case ISD::XOR:
11190     return performXorCombine(N, DAG, DCI, Subtarget);
11191   case ISD::MUL:
11192     return performMulCombine(N, DAG, DCI, Subtarget);
11193   case ISD::SINT_TO_FP:
11194   case ISD::UINT_TO_FP:
11195     return performIntToFpCombine(N, DAG, Subtarget);
11196   case ISD::FP_TO_SINT:
11197   case ISD::FP_TO_UINT:
11198     return performFpToIntCombine(N, DAG, DCI, Subtarget);
11199   case ISD::FDIV:
11200     return performFDivCombine(N, DAG, DCI, Subtarget);
11201   case ISD::OR:
11202     return performORCombine(N, DCI, Subtarget);
11203   case ISD::SRL:
11204     return performSRLCombine(N, DCI);
11205   case ISD::INTRINSIC_WO_CHAIN:
11206     return performIntrinsicCombine(N, DCI, Subtarget);
11207   case ISD::ANY_EXTEND:
11208   case ISD::ZERO_EXTEND:
11209   case ISD::SIGN_EXTEND:
11210     return performExtendCombine(N, DCI, DAG);
11211   case ISD::BITCAST:
11212     return performBitcastCombine(N, DCI, DAG);
11213   case ISD::CONCAT_VECTORS:
11214     return performConcatVectorsCombine(N, DCI, DAG);
11215   case ISD::SELECT:
11216     return performSelectCombine(N, DCI);
11217   case ISD::VSELECT:
11218     return performVSelectCombine(N, DCI.DAG);
11219   case ISD::LOAD:
11220     if (performTBISimplification(N->getOperand(1), DCI, DAG))
11221       return SDValue(N, 0);
11222     break;
11223   case ISD::STORE:
11224     return performSTORECombine(N, DCI, DAG, Subtarget);
11225   case AArch64ISD::BRCOND:
11226     return performBRCONDCombine(N, DCI, DAG);
11227   case AArch64ISD::TBNZ:
11228   case AArch64ISD::TBZ:
11229     return performTBZCombine(N, DCI, DAG);
11230   case AArch64ISD::CSEL:
11231     return performCONDCombine(N, DCI, DAG, 2, 3);
11232   case AArch64ISD::DUP:
11233     return performPostLD1Combine(N, DCI, false);
11234   case AArch64ISD::NVCAST:
11235     return performNVCASTCombine(N);
11236   case ISD::INSERT_VECTOR_ELT:
11237     return performPostLD1Combine(N, DCI, true);
11238   case ISD::INTRINSIC_VOID:
11239   case ISD::INTRINSIC_W_CHAIN:
11240     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11241     case Intrinsic::aarch64_neon_ld2:
11242     case Intrinsic::aarch64_neon_ld3:
11243     case Intrinsic::aarch64_neon_ld4:
11244     case Intrinsic::aarch64_neon_ld1x2:
11245     case Intrinsic::aarch64_neon_ld1x3:
11246     case Intrinsic::aarch64_neon_ld1x4:
11247     case Intrinsic::aarch64_neon_ld2lane:
11248     case Intrinsic::aarch64_neon_ld3lane:
11249     case Intrinsic::aarch64_neon_ld4lane:
11250     case Intrinsic::aarch64_neon_ld2r:
11251     case Intrinsic::aarch64_neon_ld3r:
11252     case Intrinsic::aarch64_neon_ld4r:
11253     case Intrinsic::aarch64_neon_st2:
11254     case Intrinsic::aarch64_neon_st3:
11255     case Intrinsic::aarch64_neon_st4:
11256     case Intrinsic::aarch64_neon_st1x2:
11257     case Intrinsic::aarch64_neon_st1x3:
11258     case Intrinsic::aarch64_neon_st1x4:
11259     case Intrinsic::aarch64_neon_st2lane:
11260     case Intrinsic::aarch64_neon_st3lane:
11261     case Intrinsic::aarch64_neon_st4lane:
11262       return performNEONPostLDSTCombine(N, DCI, DAG);
11263     default:
11264       break;
11265     }
11266     break;
11267   case ISD::GlobalAddress:
11268     return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
11269   }
11270   return SDValue();
11271 }
11272 
11273 // Check if the return value is used as only a return value, as otherwise
11274 // we can't perform a tail-call. In particular, we need to check for
11275 // target ISD nodes that are returns and any other "odd" constructs
11276 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const11277 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
11278                                                SDValue &Chain) const {
11279   if (N->getNumValues() != 1)
11280     return false;
11281   if (!N->hasNUsesOfValue(1, 0))
11282     return false;
11283 
11284   SDValue TCChain = Chain;
11285   SDNode *Copy = *N->use_begin();
11286   if (Copy->getOpcode() == ISD::CopyToReg) {
11287     // If the copy has a glue operand, we conservatively assume it isn't safe to
11288     // perform a tail call.
11289     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
11290         MVT::Glue)
11291       return false;
11292     TCChain = Copy->getOperand(0);
11293   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
11294     return false;
11295 
11296   bool HasRet = false;
11297   for (SDNode *Node : Copy->uses()) {
11298     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
11299       return false;
11300     HasRet = true;
11301   }
11302 
11303   if (!HasRet)
11304     return false;
11305 
11306   Chain = TCChain;
11307   return true;
11308 }
11309 
11310 // Return whether the an instruction can potentially be optimized to a tail
11311 // call. This will cause the optimizers to attempt to move, or duplicate,
11312 // return instructions to help enable tail call optimizations for this
11313 // instruction.
mayBeEmittedAsTailCall(const CallInst * CI) const11314 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11315   return CI->isTailCall();
11316 }
11317 
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const11318 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
11319                                                    SDValue &Offset,
11320                                                    ISD::MemIndexedMode &AM,
11321                                                    bool &IsInc,
11322                                                    SelectionDAG &DAG) const {
11323   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
11324     return false;
11325 
11326   Base = Op->getOperand(0);
11327   // All of the indexed addressing mode instructions take a signed
11328   // 9 bit immediate offset.
11329   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
11330     int64_t RHSC = RHS->getSExtValue();
11331     if (Op->getOpcode() == ISD::SUB)
11332       RHSC = -(uint64_t)RHSC;
11333     if (!isInt<9>(RHSC))
11334       return false;
11335     IsInc = (Op->getOpcode() == ISD::ADD);
11336     Offset = Op->getOperand(1);
11337     return true;
11338   }
11339   return false;
11340 }
11341 
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11342 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11343                                                       SDValue &Offset,
11344                                                       ISD::MemIndexedMode &AM,
11345                                                       SelectionDAG &DAG) const {
11346   EVT VT;
11347   SDValue Ptr;
11348   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11349     VT = LD->getMemoryVT();
11350     Ptr = LD->getBasePtr();
11351   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11352     VT = ST->getMemoryVT();
11353     Ptr = ST->getBasePtr();
11354   } else
11355     return false;
11356 
11357   bool IsInc;
11358   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
11359     return false;
11360   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
11361   return true;
11362 }
11363 
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11364 bool AArch64TargetLowering::getPostIndexedAddressParts(
11365     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
11366     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
11367   EVT VT;
11368   SDValue Ptr;
11369   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11370     VT = LD->getMemoryVT();
11371     Ptr = LD->getBasePtr();
11372   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11373     VT = ST->getMemoryVT();
11374     Ptr = ST->getBasePtr();
11375   } else
11376     return false;
11377 
11378   bool IsInc;
11379   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
11380     return false;
11381   // Post-indexing updates the base, so it's not a valid transform
11382   // if that's not the same as the load's pointer.
11383   if (Ptr != Base)
11384     return false;
11385   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
11386   return true;
11387 }
11388 
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)11389 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
11390                                   SelectionDAG &DAG) {
11391   SDLoc DL(N);
11392   SDValue Op = N->getOperand(0);
11393 
11394   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
11395     return;
11396 
11397   Op = SDValue(
11398       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
11399                          DAG.getUNDEF(MVT::i32), Op,
11400                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
11401       0);
11402   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
11403   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
11404 }
11405 
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)11406 static void ReplaceReductionResults(SDNode *N,
11407                                     SmallVectorImpl<SDValue> &Results,
11408                                     SelectionDAG &DAG, unsigned InterOp,
11409                                     unsigned AcrossOp) {
11410   EVT LoVT, HiVT;
11411   SDValue Lo, Hi;
11412   SDLoc dl(N);
11413   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
11414   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
11415   SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
11416   SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
11417   Results.push_back(SplitVal);
11418 }
11419 
splitInt128(SDValue N,SelectionDAG & DAG)11420 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
11421   SDLoc DL(N);
11422   SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
11423   SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
11424                            DAG.getNode(ISD::SRL, DL, MVT::i128, N,
11425                                        DAG.getConstant(64, DL, MVT::i64)));
11426   return std::make_pair(Lo, Hi);
11427 }
11428 
11429 // Create an even/odd pair of X registers holding integer value V.
createGPRPairNode(SelectionDAG & DAG,SDValue V)11430 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
11431   SDLoc dl(V.getNode());
11432   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
11433   SDValue VHi = DAG.getAnyExtOrTrunc(
11434       DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
11435       dl, MVT::i64);
11436   if (DAG.getDataLayout().isBigEndian())
11437     std::swap (VLo, VHi);
11438   SDValue RegClass =
11439       DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
11440   SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
11441   SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
11442   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
11443   return SDValue(
11444       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
11445 }
11446 
ReplaceCMP_SWAP_128Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)11447 static void ReplaceCMP_SWAP_128Results(SDNode *N,
11448                                        SmallVectorImpl<SDValue> &Results,
11449                                        SelectionDAG &DAG,
11450                                        const AArch64Subtarget *Subtarget) {
11451   assert(N->getValueType(0) == MVT::i128 &&
11452          "AtomicCmpSwap on types less than 128 should be legal");
11453 
11454   if (Subtarget->hasLSE()) {
11455     // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11456     // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11457     SDValue Ops[] = {
11458         createGPRPairNode(DAG, N->getOperand(2)), // Compare value
11459         createGPRPairNode(DAG, N->getOperand(3)), // Store value
11460         N->getOperand(1), // Ptr
11461         N->getOperand(0), // Chain in
11462     };
11463 
11464     MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11465 
11466     unsigned Opcode;
11467     switch (MemOp->getOrdering()) {
11468     case AtomicOrdering::Monotonic:
11469       Opcode = AArch64::CASPX;
11470       break;
11471     case AtomicOrdering::Acquire:
11472       Opcode = AArch64::CASPAX;
11473       break;
11474     case AtomicOrdering::Release:
11475       Opcode = AArch64::CASPLX;
11476       break;
11477     case AtomicOrdering::AcquireRelease:
11478     case AtomicOrdering::SequentiallyConsistent:
11479       Opcode = AArch64::CASPALX;
11480       break;
11481     default:
11482       llvm_unreachable("Unexpected ordering!");
11483     }
11484 
11485     MachineSDNode *CmpSwap = DAG.getMachineNode(
11486         Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
11487     DAG.setNodeMemRefs(CmpSwap, {MemOp});
11488 
11489     unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
11490     if (DAG.getDataLayout().isBigEndian())
11491       std::swap(SubReg1, SubReg2);
11492     Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
11493                                                  SDValue(CmpSwap, 0)));
11494     Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
11495                                                  SDValue(CmpSwap, 0)));
11496     Results.push_back(SDValue(CmpSwap, 1)); // Chain out
11497     return;
11498   }
11499 
11500   auto Desired = splitInt128(N->getOperand(2), DAG);
11501   auto New = splitInt128(N->getOperand(3), DAG);
11502   SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
11503                    New.first,        New.second,    N->getOperand(0)};
11504   SDNode *CmpSwap = DAG.getMachineNode(
11505       AArch64::CMP_SWAP_128, SDLoc(N),
11506       DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
11507 
11508   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11509   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
11510 
11511   Results.push_back(SDValue(CmpSwap, 0));
11512   Results.push_back(SDValue(CmpSwap, 1));
11513   Results.push_back(SDValue(CmpSwap, 3));
11514 }
11515 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const11516 void AArch64TargetLowering::ReplaceNodeResults(
11517     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
11518   switch (N->getOpcode()) {
11519   default:
11520     llvm_unreachable("Don't know how to custom expand this");
11521   case ISD::BITCAST:
11522     ReplaceBITCASTResults(N, Results, DAG);
11523     return;
11524   case ISD::VECREDUCE_ADD:
11525   case ISD::VECREDUCE_SMAX:
11526   case ISD::VECREDUCE_SMIN:
11527   case ISD::VECREDUCE_UMAX:
11528   case ISD::VECREDUCE_UMIN:
11529     Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
11530     return;
11531 
11532   case AArch64ISD::SADDV:
11533     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
11534     return;
11535   case AArch64ISD::UADDV:
11536     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
11537     return;
11538   case AArch64ISD::SMINV:
11539     ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
11540     return;
11541   case AArch64ISD::UMINV:
11542     ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
11543     return;
11544   case AArch64ISD::SMAXV:
11545     ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
11546     return;
11547   case AArch64ISD::UMAXV:
11548     ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
11549     return;
11550   case ISD::FP_TO_UINT:
11551   case ISD::FP_TO_SINT:
11552     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
11553     // Let normal code take care of it by not adding anything to Results.
11554     return;
11555   case ISD::ATOMIC_CMP_SWAP:
11556     ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
11557     return;
11558   }
11559 }
11560 
useLoadStackGuardNode() const11561 bool AArch64TargetLowering::useLoadStackGuardNode() const {
11562   if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
11563     return TargetLowering::useLoadStackGuardNode();
11564   return true;
11565 }
11566 
combineRepeatedFPDivisors() const11567 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
11568   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11569   // reciprocal if there are three or more FDIVs.
11570   return 3;
11571 }
11572 
11573 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const11574 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
11575   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
11576   // v4i16, v2i32 instead of to promote.
11577   if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
11578       VT == MVT::v1f32)
11579     return TypeWidenVector;
11580 
11581   return TargetLoweringBase::getPreferredVectorAction(VT);
11582 }
11583 
11584 // Loads and stores less than 128-bits are already atomic; ones above that
11585 // are doomed anyway, so defer to the default libcall and blame the OS when
11586 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const11587 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11588   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11589   return Size == 128;
11590 }
11591 
11592 // Loads and stores less than 128-bits are already atomic; ones above that
11593 // are doomed anyway, so defer to the default libcall and blame the OS when
11594 // things go wrong.
11595 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const11596 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11597   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11598   return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
11599 }
11600 
11601 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
11602 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const11603 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11604   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11605   if (Size > 128) return AtomicExpansionKind::None;
11606   // Nand not supported in LSE.
11607   if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
11608   // Leave 128 bits to LLSC.
11609   return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
11610 }
11611 
11612 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const11613 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
11614     AtomicCmpXchgInst *AI) const {
11615   // If subtarget has LSE, leave cmpxchg intact for codegen.
11616   if (Subtarget->hasLSE())
11617     return AtomicExpansionKind::None;
11618   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
11619   // implement cmpxchg without spilling. If the address being exchanged is also
11620   // on the stack and close enough to the spill slot, this can lead to a
11621   // situation where the monitor always gets cleared and the atomic operation
11622   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
11623   if (getTargetMachine().getOptLevel() == 0)
11624     return AtomicExpansionKind::None;
11625   return AtomicExpansionKind::LLSC;
11626 }
11627 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const11628 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11629                                              AtomicOrdering Ord) const {
11630   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11631   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11632   bool IsAcquire = isAcquireOrStronger(Ord);
11633 
11634   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
11635   // intrinsic must return {i64, i64} and we have to recombine them into a
11636   // single i128 here.
11637   if (ValTy->getPrimitiveSizeInBits() == 128) {
11638     Intrinsic::ID Int =
11639         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
11640     Function *Ldxr = Intrinsic::getDeclaration(M, Int);
11641 
11642     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11643     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
11644 
11645     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11646     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11647     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11648     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11649     return Builder.CreateOr(
11650         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
11651   }
11652 
11653   Type *Tys[] = { Addr->getType() };
11654   Intrinsic::ID Int =
11655       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
11656   Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
11657 
11658   return Builder.CreateTruncOrBitCast(
11659       Builder.CreateCall(Ldxr, Addr),
11660       cast<PointerType>(Addr->getType())->getElementType());
11661 }
11662 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const11663 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
11664     IRBuilder<> &Builder) const {
11665   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11666   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
11667 }
11668 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const11669 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
11670                                                    Value *Val, Value *Addr,
11671                                                    AtomicOrdering Ord) const {
11672   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11673   bool IsRelease = isReleaseOrStronger(Ord);
11674 
11675   // Since the intrinsics must have legal type, the i128 intrinsics take two
11676   // parameters: "i64, i64". We must marshal Val into the appropriate form
11677   // before the call.
11678   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
11679     Intrinsic::ID Int =
11680         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
11681     Function *Stxr = Intrinsic::getDeclaration(M, Int);
11682     Type *Int64Ty = Type::getInt64Ty(M->getContext());
11683 
11684     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
11685     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
11686     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11687     return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
11688   }
11689 
11690   Intrinsic::ID Int =
11691       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
11692   Type *Tys[] = { Addr->getType() };
11693   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
11694 
11695   return Builder.CreateCall(Stxr,
11696                             {Builder.CreateZExtOrBitCast(
11697                                  Val, Stxr->getFunctionType()->getParamType(0)),
11698                              Addr});
11699 }
11700 
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const11701 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
11702     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
11703   return Ty->isArrayTy();
11704 }
11705 
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const11706 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
11707                                                             EVT) const {
11708   return false;
11709 }
11710 
UseTlsOffset(IRBuilder<> & IRB,unsigned Offset)11711 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
11712   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
11713   Function *ThreadPointerFunc =
11714       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
11715   return IRB.CreatePointerCast(
11716       IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
11717       Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
11718 }
11719 
getIRStackGuard(IRBuilder<> & IRB) const11720 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
11721   // Android provides a fixed TLS slot for the stack cookie. See the definition
11722   // of TLS_SLOT_STACK_GUARD in
11723   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11724   if (Subtarget->isTargetAndroid())
11725     return UseTlsOffset(IRB, 0x28);
11726 
11727   // Fuchsia is similar.
11728   // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
11729   if (Subtarget->isTargetFuchsia())
11730     return UseTlsOffset(IRB, -0x10);
11731 
11732   return TargetLowering::getIRStackGuard(IRB);
11733 }
11734 
insertSSPDeclarations(Module & M) const11735 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
11736   // MSVC CRT provides functionalities for stack protection.
11737   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
11738     // MSVC CRT has a global variable holding security cookie.
11739     M.getOrInsertGlobal("__security_cookie",
11740                         Type::getInt8PtrTy(M.getContext()));
11741 
11742     // MSVC CRT has a function to validate security cookie.
11743     auto *SecurityCheckCookie = cast<Function>(
11744         M.getOrInsertFunction("__security_check_cookie",
11745                               Type::getVoidTy(M.getContext()),
11746                               Type::getInt8PtrTy(M.getContext())));
11747     SecurityCheckCookie->setCallingConv(CallingConv::Win64);
11748     SecurityCheckCookie->addAttribute(1, Attribute::AttrKind::InReg);
11749     return;
11750   }
11751   TargetLowering::insertSSPDeclarations(M);
11752 }
11753 
getSDagStackGuard(const Module & M) const11754 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
11755   // MSVC CRT has a global variable holding security cookie.
11756   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
11757     return M.getGlobalVariable("__security_cookie");
11758   return TargetLowering::getSDagStackGuard(M);
11759 }
11760 
getSSPStackGuardCheck(const Module & M) const11761 Value *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
11762   // MSVC CRT has a function to validate security cookie.
11763   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
11764     return M.getFunction("__security_check_cookie");
11765   return TargetLowering::getSSPStackGuardCheck(M);
11766 }
11767 
getSafeStackPointerLocation(IRBuilder<> & IRB) const11768 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
11769   // Android provides a fixed TLS slot for the SafeStack pointer. See the
11770   // definition of TLS_SLOT_SAFESTACK in
11771   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11772   if (Subtarget->isTargetAndroid())
11773     return UseTlsOffset(IRB, 0x48);
11774 
11775   // Fuchsia is similar.
11776   // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
11777   if (Subtarget->isTargetFuchsia())
11778     return UseTlsOffset(IRB, -0x8);
11779 
11780   return TargetLowering::getSafeStackPointerLocation(IRB);
11781 }
11782 
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const11783 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
11784     const Instruction &AndI) const {
11785   // Only sink 'and' mask to cmp use block if it is masking a single bit, since
11786   // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
11787   // may be beneficial to sink in other cases, but we would have to check that
11788   // the cmp would not get folded into the br to form a cbz for these to be
11789   // beneficial.
11790   ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
11791   if (!Mask)
11792     return false;
11793   return Mask->getValue().isPowerOf2();
11794 }
11795 
initializeSplitCSR(MachineBasicBlock * Entry) const11796 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
11797   // Update IsSplitCSR in AArch64unctionInfo.
11798   AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
11799   AFI->setIsSplitCSR(true);
11800 }
11801 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const11802 void AArch64TargetLowering::insertCopiesSplitCSR(
11803     MachineBasicBlock *Entry,
11804     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
11805   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
11806   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
11807   if (!IStart)
11808     return;
11809 
11810   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11811   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
11812   MachineBasicBlock::iterator MBBI = Entry->begin();
11813   for (const MCPhysReg *I = IStart; *I; ++I) {
11814     const TargetRegisterClass *RC = nullptr;
11815     if (AArch64::GPR64RegClass.contains(*I))
11816       RC = &AArch64::GPR64RegClass;
11817     else if (AArch64::FPR64RegClass.contains(*I))
11818       RC = &AArch64::FPR64RegClass;
11819     else
11820       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
11821 
11822     unsigned NewVR = MRI->createVirtualRegister(RC);
11823     // Create copy from CSR to a virtual register.
11824     // FIXME: this currently does not emit CFI pseudo-instructions, it works
11825     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
11826     // nounwind. If we want to generalize this later, we may need to emit
11827     // CFI pseudo-instructions.
11828     assert(Entry->getParent()->getFunction().hasFnAttribute(
11829                Attribute::NoUnwind) &&
11830            "Function should be nounwind in insertCopiesSplitCSR!");
11831     Entry->addLiveIn(*I);
11832     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
11833         .addReg(*I);
11834 
11835     // Insert the copy-back instructions right before the terminator.
11836     for (auto *Exit : Exits)
11837       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
11838               TII->get(TargetOpcode::COPY), *I)
11839           .addReg(NewVR);
11840   }
11841 }
11842 
isIntDivCheap(EVT VT,AttributeList Attr) const11843 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
11844   // Integer division on AArch64 is expensive. However, when aggressively
11845   // optimizing for code size, we prefer to use a div instruction, as it is
11846   // usually smaller than the alternative sequence.
11847   // The exception to this is vector division. Since AArch64 doesn't have vector
11848   // integer division, leaving the division as-is is a loss even in terms of
11849   // size, because it will have to be scalarized, while the alternative code
11850   // sequence can be performed in vector form.
11851   bool OptSize =
11852       Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
11853   return OptSize && !VT.isVector();
11854 }
11855 
enableAggressiveFMAFusion(EVT VT) const11856 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
11857   return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
11858 }
11859 
11860 unsigned
getVaListSizeInBits(const DataLayout & DL) const11861 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
11862   if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
11863     return getPointerTy(DL).getSizeInBits();
11864 
11865   return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
11866 }
11867 
finalizeLowering(MachineFunction & MF) const11868 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
11869   MF.getFrameInfo().computeMaxCallFrameSize(MF);
11870   TargetLoweringBase::finalizeLowering(MF);
11871 }
11872 
11873 // Unlike X86, we let frame lowering assign offsets to all catch objects.
needsFixedCatchObjects() const11874 bool AArch64TargetLowering::needsFixedCatchObjects() const {
11875   return false;
11876 }
11877