1 //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 // This pass removes unnecessary copies/moves in BBs based on a dominating
9 // condition.
10 //
11 // We handle three cases:
12 // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
13 //    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
14 //    instance, the copy instruction in the code below can be removed because
15 //    the CBZW jumps to %bb.2 when w0 is zero.
16 //
17 //  %bb.1:
18 //    cbz w0, .LBB0_2
19 //  .LBB0_2:
20 //    mov w0, wzr  ; <-- redundant
21 //
22 // 2. If the flag setting instruction defines a register other than WZR/XZR, we
23 //    can remove a zero copy in some cases.
24 //
25 //  %bb.0:
26 //    subs w0, w1, w2
27 //    str w0, [x1]
28 //    b.ne .LBB0_2
29 //  %bb.1:
30 //    mov w0, wzr  ; <-- redundant
31 //    str w0, [x2]
32 //  .LBB0_2
33 //
34 // 3. Finally, if the flag setting instruction is a comparison against a
35 //    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
36 //    in some cases.
37 //
38 //  %bb.0:
39 //    subs xzr, x0, #1
40 //    b.eq .LBB0_1
41 //  .LBB0_1:
42 //    orr x0, xzr, #0x1  ; <-- redundant
43 //
44 // This pass should be run after register allocation.
45 //
46 // FIXME: This could also be extended to check the whole dominance subtree below
47 // the comparison if the compile time regression is acceptable.
48 //
49 // FIXME: Add support for handling CCMP instructions.
50 // FIXME: If the known register value is zero, we should be able to rewrite uses
51 //        to use WZR/XZR directly in some cases.
52 //===----------------------------------------------------------------------===//
53 #include "AArch64.h"
54 #include "llvm/ADT/Optional.h"
55 #include "llvm/ADT/SetVector.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/ADT/iterator_range.h"
58 #include "llvm/CodeGen/LiveRegUnits.h"
59 #include "llvm/CodeGen/MachineFunctionPass.h"
60 #include "llvm/CodeGen/MachineRegisterInfo.h"
61 #include "llvm/Support/Debug.h"
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "aarch64-copyelim"
66 
67 STATISTIC(NumCopiesRemoved, "Number of copies removed.");
68 
69 namespace {
70 class AArch64RedundantCopyElimination : public MachineFunctionPass {
71   const MachineRegisterInfo *MRI;
72   const TargetRegisterInfo *TRI;
73 
74   // DomBBClobberedRegs is used when computing known values in the dominating
75   // BB.
76   LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;
77 
78   // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
79   LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;
80 
81 public:
82   static char ID;
AArch64RedundantCopyElimination()83   AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
84     initializeAArch64RedundantCopyEliminationPass(
85         *PassRegistry::getPassRegistry());
86   }
87 
88   struct RegImm {
89     MCPhysReg Reg;
90     int32_t Imm;
RegImm__anon1dc97ae40111::AArch64RedundantCopyElimination::RegImm91     RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
92   };
93 
94   bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
95                           SmallVectorImpl<RegImm> &KnownRegs,
96                           MachineBasicBlock::iterator &FirstUse);
97   bool optimizeBlock(MachineBasicBlock *MBB);
98   bool runOnMachineFunction(MachineFunction &MF) override;
getRequiredProperties() const99   MachineFunctionProperties getRequiredProperties() const override {
100     return MachineFunctionProperties().set(
101         MachineFunctionProperties::Property::NoVRegs);
102   }
getPassName() const103   StringRef getPassName() const override {
104     return "AArch64 Redundant Copy Elimination";
105   }
106 };
107 char AArch64RedundantCopyElimination::ID = 0;
108 }
109 
110 INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
111                 "AArch64 redundant copy elimination pass", false, false)
112 
113 /// It's possible to determine the value of a register based on a dominating
114 /// condition.  To do so, this function checks to see if the basic block \p MBB
115 /// is the target of a conditional branch \p CondBr with an equality comparison.
116 /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
117 /// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
118 /// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
119 /// other than WZR/XZR, we know the value of the destination register is zero in
120 /// \p MMB for some cases.  In addition, if the NZCV setting instruction is
121 /// comparing against a constant we know the other source register is equal to
122 /// the constant in \p MBB for some cases.  If we find any constant values, push
123 /// a physical register and constant value pair onto the KnownRegs vector and
124 /// return true.  Otherwise, return false if no known values were found.
knownRegValInBlock(MachineInstr & CondBr,MachineBasicBlock * MBB,SmallVectorImpl<RegImm> & KnownRegs,MachineBasicBlock::iterator & FirstUse)125 bool AArch64RedundantCopyElimination::knownRegValInBlock(
126     MachineInstr &CondBr, MachineBasicBlock *MBB,
127     SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
128   unsigned Opc = CondBr.getOpcode();
129 
130   // Check if the current basic block is the target block to which the
131   // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
132   if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
133        MBB == CondBr.getOperand(1).getMBB()) ||
134       ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
135        MBB != CondBr.getOperand(1).getMBB())) {
136     FirstUse = CondBr;
137     KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
138     return true;
139   }
140 
141   // Otherwise, must be a conditional branch.
142   if (Opc != AArch64::Bcc)
143     return false;
144 
145   // Must be an equality check (i.e., == or !=).
146   AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
147   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
148     return false;
149 
150   MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
151   if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
152       (CC == AArch64CC::NE && BrTarget == MBB))
153     return false;
154 
155   // Stop if we get to the beginning of PredMBB.
156   MachineBasicBlock *PredMBB = *MBB->pred_begin();
157   assert(PredMBB == CondBr.getParent() &&
158          "Conditional branch not in predecessor block!");
159   if (CondBr == PredMBB->begin())
160     return false;
161 
162   // Registers clobbered in PredMBB between CondBr instruction and current
163   // instruction being checked in loop.
164   DomBBClobberedRegs.clear();
165   DomBBUsedRegs.clear();
166 
167   // Find compare instruction that sets NZCV used by CondBr.
168   MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
169   for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {
170 
171     bool IsCMN = false;
172     switch (PredI.getOpcode()) {
173     default:
174       break;
175 
176     // CMN is an alias for ADDS with a dead destination register.
177     case AArch64::ADDSWri:
178     case AArch64::ADDSXri:
179       IsCMN = true;
180       LLVM_FALLTHROUGH;
181     // CMP is an alias for SUBS with a dead destination register.
182     case AArch64::SUBSWri:
183     case AArch64::SUBSXri: {
184       // Sometimes the first operand is a FrameIndex. Bail if tht happens.
185       if (!PredI.getOperand(1).isReg())
186         return false;
187       MCPhysReg DstReg = PredI.getOperand(0).getReg();
188       MCPhysReg SrcReg = PredI.getOperand(1).getReg();
189 
190       bool Res = false;
191       // If we're comparing against a non-symbolic immediate and the source
192       // register of the compare is not modified (including a self-clobbering
193       // compare) between the compare and conditional branch we known the value
194       // of the 1st source operand.
195       if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
196           SrcReg != DstReg) {
197         // We've found the instruction that sets NZCV.
198         int32_t KnownImm = PredI.getOperand(2).getImm();
199         int32_t Shift = PredI.getOperand(3).getImm();
200         KnownImm <<= Shift;
201         if (IsCMN)
202           KnownImm = -KnownImm;
203         FirstUse = PredI;
204         KnownRegs.push_back(RegImm(SrcReg, KnownImm));
205         Res = true;
206       }
207 
208       // If this instructions defines something other than WZR/XZR, we know it's
209       // result is zero in some cases.
210       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
211         return Res;
212 
213       // The destination register must not be modified between the NZCV setting
214       // instruction and the conditional branch.
215       if (!DomBBClobberedRegs.available(DstReg))
216         return Res;
217 
218       FirstUse = PredI;
219       KnownRegs.push_back(RegImm(DstReg, 0));
220       return true;
221     }
222 
223     // Look for NZCV setting instructions that define something other than
224     // WZR/XZR.
225     case AArch64::ADCSWr:
226     case AArch64::ADCSXr:
227     case AArch64::ADDSWrr:
228     case AArch64::ADDSWrs:
229     case AArch64::ADDSWrx:
230     case AArch64::ADDSXrr:
231     case AArch64::ADDSXrs:
232     case AArch64::ADDSXrx:
233     case AArch64::ADDSXrx64:
234     case AArch64::ANDSWri:
235     case AArch64::ANDSWrr:
236     case AArch64::ANDSWrs:
237     case AArch64::ANDSXri:
238     case AArch64::ANDSXrr:
239     case AArch64::ANDSXrs:
240     case AArch64::BICSWrr:
241     case AArch64::BICSWrs:
242     case AArch64::BICSXrs:
243     case AArch64::BICSXrr:
244     case AArch64::SBCSWr:
245     case AArch64::SBCSXr:
246     case AArch64::SUBSWrr:
247     case AArch64::SUBSWrs:
248     case AArch64::SUBSWrx:
249     case AArch64::SUBSXrr:
250     case AArch64::SUBSXrs:
251     case AArch64::SUBSXrx:
252     case AArch64::SUBSXrx64: {
253       MCPhysReg DstReg = PredI.getOperand(0).getReg();
254       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
255         return false;
256 
257       // The destination register of the NZCV setting instruction must not be
258       // modified before the conditional branch.
259       if (!DomBBClobberedRegs.available(DstReg))
260         return false;
261 
262       // We've found the instruction that sets NZCV whose DstReg == 0.
263       FirstUse = PredI;
264       KnownRegs.push_back(RegImm(DstReg, 0));
265       return true;
266     }
267     }
268 
269     // Bail if we see an instruction that defines NZCV that we don't handle.
270     if (PredI.definesRegister(AArch64::NZCV))
271       return false;
272 
273     // Track clobbered and used registers.
274     LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
275                                       TRI);
276   }
277   return false;
278 }
279 
optimizeBlock(MachineBasicBlock * MBB)280 bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
281   // Check if the current basic block has a single predecessor.
282   if (MBB->pred_size() != 1)
283     return false;
284 
285   // Check if the predecessor has two successors, implying the block ends in a
286   // conditional branch.
287   MachineBasicBlock *PredMBB = *MBB->pred_begin();
288   if (PredMBB->succ_size() != 2)
289     return false;
290 
291   MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
292   if (CondBr == PredMBB->end())
293     return false;
294 
295   // Keep track of the earliest point in the PredMBB block where kill markers
296   // need to be removed if a COPY is removed.
297   MachineBasicBlock::iterator FirstUse;
298   // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
299   // or a compare (i.e., SUBS).  In the latter case, we must take care when
300   // updating FirstUse when scanning for COPY instructions.  In particular, if
301   // there's a COPY in between the compare and branch the COPY should not
302   // update FirstUse.
303   bool SeenFirstUse = false;
304   // Registers that contain a known value at the start of MBB.
305   SmallVector<RegImm, 4> KnownRegs;
306 
307   MachineBasicBlock::iterator Itr = std::next(CondBr);
308   do {
309     --Itr;
310 
311     if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
312       continue;
313 
314     // Reset the clobbered and used register units.
315     OptBBClobberedRegs.clear();
316     OptBBUsedRegs.clear();
317 
318     // Look backward in PredMBB for COPYs from the known reg to find other
319     // registers that are known to be a constant value.
320     for (auto PredI = Itr;; --PredI) {
321       if (FirstUse == PredI)
322         SeenFirstUse = true;
323 
324       if (PredI->isCopy()) {
325         MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
326         MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
327         for (auto &KnownReg : KnownRegs) {
328           if (!OptBBClobberedRegs.available(KnownReg.Reg))
329             continue;
330           // If we have X = COPY Y, and Y is known to be zero, then now X is
331           // known to be zero.
332           if (CopySrcReg == KnownReg.Reg &&
333               OptBBClobberedRegs.available(CopyDstReg)) {
334             KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
335             if (SeenFirstUse)
336               FirstUse = PredI;
337             break;
338           }
339           // If we have X = COPY Y, and X is known to be zero, then now Y is
340           // known to be zero.
341           if (CopyDstReg == KnownReg.Reg &&
342               OptBBClobberedRegs.available(CopySrcReg)) {
343             KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
344             if (SeenFirstUse)
345               FirstUse = PredI;
346             break;
347           }
348         }
349       }
350 
351       // Stop if we get to the beginning of PredMBB.
352       if (PredI == PredMBB->begin())
353         break;
354 
355       LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
356                                         OptBBUsedRegs, TRI);
357       // Stop if all of the known-zero regs have been clobbered.
358       if (all_of(KnownRegs, [&](RegImm KnownReg) {
359             return !OptBBClobberedRegs.available(KnownReg.Reg);
360           }))
361         break;
362     }
363     break;
364 
365   } while (Itr != PredMBB->begin() && Itr->isTerminator());
366 
367   // We've not found a registers with a known value, time to bail out.
368   if (KnownRegs.empty())
369     return false;
370 
371   bool Changed = false;
372   // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
373   SmallSetVector<unsigned, 4> UsedKnownRegs;
374   MachineBasicBlock::iterator LastChange = MBB->begin();
375   // Remove redundant copy/move instructions unless KnownReg is modified.
376   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
377     MachineInstr *MI = &*I;
378     ++I;
379     bool RemovedMI = false;
380     bool IsCopy = MI->isCopy();
381     bool IsMoveImm = MI->isMoveImmediate();
382     if (IsCopy || IsMoveImm) {
383       MCPhysReg DefReg = MI->getOperand(0).getReg();
384       MCPhysReg SrcReg = IsCopy ? MI->getOperand(1).getReg() : 0;
385       int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
386       if (!MRI->isReserved(DefReg) &&
387           ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
388            IsMoveImm)) {
389         for (RegImm &KnownReg : KnownRegs) {
390           if (KnownReg.Reg != DefReg &&
391               !TRI->isSuperRegister(DefReg, KnownReg.Reg))
392             continue;
393 
394           // For a copy, the known value must be a zero.
395           if (IsCopy && KnownReg.Imm != 0)
396             continue;
397 
398           if (IsMoveImm) {
399             // For a move immediate, the known immediate must match the source
400             // immediate.
401             if (KnownReg.Imm != SrcImm)
402               continue;
403 
404             // Don't remove a move immediate that implicitly defines the upper
405             // bits when only the lower 32 bits are known.
406             MCPhysReg CmpReg = KnownReg.Reg;
407             if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
408                   return !O.isDead() && O.isReg() && O.isDef() &&
409                          O.getReg() != CmpReg;
410                 }))
411               continue;
412           }
413 
414           if (IsCopy)
415             LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
416           else
417             LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);
418 
419           MI->eraseFromParent();
420           Changed = true;
421           LastChange = I;
422           NumCopiesRemoved++;
423           UsedKnownRegs.insert(KnownReg.Reg);
424           RemovedMI = true;
425           break;
426         }
427       }
428     }
429 
430     // Skip to the next instruction if we removed the COPY/MovImm.
431     if (RemovedMI)
432       continue;
433 
434     // Remove any regs the MI clobbers from the KnownConstRegs set.
435     for (unsigned RI = 0; RI < KnownRegs.size();)
436       if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
437         std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
438         KnownRegs.pop_back();
439         // Don't increment RI since we need to now check the swapped-in
440         // KnownRegs[RI].
441       } else {
442         ++RI;
443       }
444 
445     // Continue until the KnownRegs set is empty.
446     if (KnownRegs.empty())
447       break;
448   }
449 
450   if (!Changed)
451     return false;
452 
453   // Add newly used regs to the block's live-in list if they aren't there
454   // already.
455   for (MCPhysReg KnownReg : UsedKnownRegs)
456     if (!MBB->isLiveIn(KnownReg))
457       MBB->addLiveIn(KnownReg);
458 
459   // Clear kills in the range where changes were made.  This is conservative,
460   // but should be okay since kill markers are being phased out.
461   LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
462                     << "\tLastChange: " << *LastChange);
463   for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
464     MMI.clearKillInfo();
465   for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
466     MMI.clearKillInfo();
467 
468   return true;
469 }
470 
runOnMachineFunction(MachineFunction & MF)471 bool AArch64RedundantCopyElimination::runOnMachineFunction(
472     MachineFunction &MF) {
473   if (skipFunction(MF.getFunction()))
474     return false;
475   TRI = MF.getSubtarget().getRegisterInfo();
476   MRI = &MF.getRegInfo();
477 
478   // Resize the clobbered and used register unit trackers.  We do this once per
479   // function.
480   DomBBClobberedRegs.init(*TRI);
481   DomBBUsedRegs.init(*TRI);
482   OptBBClobberedRegs.init(*TRI);
483   OptBBUsedRegs.init(*TRI);
484 
485   bool Changed = false;
486   for (MachineBasicBlock &MBB : MF)
487     Changed |= optimizeBlock(&MBB);
488   return Changed;
489 }
490 
createAArch64RedundantCopyEliminationPass()491 FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
492   return new AArch64RedundantCopyElimination();
493 }
494