1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMFeatures.h"
18 #include "ARMHazardRecognizer.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMSubtarget.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "MCTargetDesc/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSchedule.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/MC/MCAsmInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCInstrItineraries.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <new>
64 #include <utility>
65 #include <vector>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "arm-instrinfo"
70 
71 #define GET_INSTRINFO_CTOR_DTOR
72 #include "ARMGenInstrInfo.inc"
73 
74 static cl::opt<bool>
75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
76                cl::desc("Enable ARM 2-addr to 3-addr conv"));
77 
78 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
79 struct ARM_MLxEntry {
80   uint16_t MLxOpc;     // MLA / MLS opcode
81   uint16_t MulOpc;     // Expanded multiplication opcode
82   uint16_t AddSubOpc;  // Expanded add / sub opcode
83   bool NegAcc;         // True if the acc is negated before the add / sub.
84   bool HasLane;        // True if instruction has an extra "lane" operand.
85 };
86 
87 static const ARM_MLxEntry ARM_MLxTable[] = {
88   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
89   // fp scalar ops
90   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
91   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
92   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
93   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
94   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
95   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
96   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
97   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
98 
99   // fp SIMD ops
100   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
101   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
102   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
103   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
104   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
105   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
106   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
107   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
108 };
109 
ARMBaseInstrInfo(const ARMSubtarget & STI)110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
111   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
112     Subtarget(STI) {
113   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
114     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
115       llvm_unreachable("Duplicated entries?");
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
117     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
118   }
119 }
120 
121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
122 // currently defaults to no prepass hazard recognizer.
123 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
125                                                const ScheduleDAG *DAG) const {
126   if (usePreRAHazardRecognizer()) {
127     const InstrItineraryData *II =
128         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
129     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
130   }
131   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
132 }
133 
134 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
136                                    const ScheduleDAG *DAG) const {
137   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
138     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
139   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
140 }
141 
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
143     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
144   // FIXME: Thumb2 support.
145 
146   if (!EnableARM3Addr)
147     return nullptr;
148 
149   MachineFunction &MF = *MI.getParent()->getParent();
150   uint64_t TSFlags = MI.getDesc().TSFlags;
151   bool isPre = false;
152   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
153   default: return nullptr;
154   case ARMII::IndexModePre:
155     isPre = true;
156     break;
157   case ARMII::IndexModePost:
158     break;
159   }
160 
161   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
162   // operation.
163   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
164   if (MemOpc == 0)
165     return nullptr;
166 
167   MachineInstr *UpdateMI = nullptr;
168   MachineInstr *MemMI = nullptr;
169   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
170   const MCInstrDesc &MCID = MI.getDesc();
171   unsigned NumOps = MCID.getNumOperands();
172   bool isLoad = !MI.mayStore();
173   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
174   const MachineOperand &Base = MI.getOperand(2);
175   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
176   unsigned WBReg = WB.getReg();
177   unsigned BaseReg = Base.getReg();
178   unsigned OffReg = Offset.getReg();
179   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
180   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
181   switch (AddrMode) {
182   default: llvm_unreachable("Unknown indexed op!");
183   case ARMII::AddrMode2: {
184     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
185     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
186     if (OffReg == 0) {
187       if (ARM_AM::getSOImmVal(Amt) == -1)
188         // Can't encode it in a so_imm operand. This transformation will
189         // add more than 1 instruction. Abandon!
190         return nullptr;
191       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
192                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193                      .addReg(BaseReg)
194                      .addImm(Amt)
195                      .add(predOps(Pred))
196                      .add(condCodeOp());
197     } else if (Amt != 0) {
198       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
199       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
200       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
201                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
202                      .addReg(BaseReg)
203                      .addReg(OffReg)
204                      .addReg(0)
205                      .addImm(SOOpc)
206                      .add(predOps(Pred))
207                      .add(condCodeOp());
208     } else
209       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
211                      .addReg(BaseReg)
212                      .addReg(OffReg)
213                      .add(predOps(Pred))
214                      .add(condCodeOp());
215     break;
216   }
217   case ARMII::AddrMode3 : {
218     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
219     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
220     if (OffReg == 0)
221       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
222       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
223                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
224                      .addReg(BaseReg)
225                      .addImm(Amt)
226                      .add(predOps(Pred))
227                      .add(condCodeOp());
228     else
229       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
230                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
231                      .addReg(BaseReg)
232                      .addReg(OffReg)
233                      .add(predOps(Pred))
234                      .add(condCodeOp());
235     break;
236   }
237   }
238 
239   std::vector<MachineInstr*> NewMIs;
240   if (isPre) {
241     if (isLoad)
242       MemMI =
243           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
244               .addReg(WBReg)
245               .addImm(0)
246               .addImm(Pred);
247     else
248       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
249                   .addReg(MI.getOperand(1).getReg())
250                   .addReg(WBReg)
251                   .addReg(0)
252                   .addImm(0)
253                   .addImm(Pred);
254     NewMIs.push_back(MemMI);
255     NewMIs.push_back(UpdateMI);
256   } else {
257     if (isLoad)
258       MemMI =
259           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
260               .addReg(BaseReg)
261               .addImm(0)
262               .addImm(Pred);
263     else
264       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
265                   .addReg(MI.getOperand(1).getReg())
266                   .addReg(BaseReg)
267                   .addReg(0)
268                   .addImm(0)
269                   .addImm(Pred);
270     if (WB.isDead())
271       UpdateMI->getOperand(0).setIsDead();
272     NewMIs.push_back(UpdateMI);
273     NewMIs.push_back(MemMI);
274   }
275 
276   // Transfer LiveVariables states, kill / dead info.
277   if (LV) {
278     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
279       MachineOperand &MO = MI.getOperand(i);
280       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
281         unsigned Reg = MO.getReg();
282 
283         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
284         if (MO.isDef()) {
285           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
286           if (MO.isDead())
287             LV->addVirtualRegisterDead(Reg, *NewMI);
288         }
289         if (MO.isUse() && MO.isKill()) {
290           for (unsigned j = 0; j < 2; ++j) {
291             // Look at the two new MI's in reverse order.
292             MachineInstr *NewMI = NewMIs[j];
293             if (!NewMI->readsRegister(Reg))
294               continue;
295             LV->addVirtualRegisterKilled(Reg, *NewMI);
296             if (VI.removeKill(MI))
297               VI.Kills.push_back(NewMI);
298             break;
299           }
300         }
301       }
302     }
303   }
304 
305   MachineBasicBlock::iterator MBBI = MI.getIterator();
306   MFI->insert(MBBI, NewMIs[1]);
307   MFI->insert(MBBI, NewMIs[0]);
308   return NewMIs[0];
309 }
310 
311 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
313                                      MachineBasicBlock *&TBB,
314                                      MachineBasicBlock *&FBB,
315                                      SmallVectorImpl<MachineOperand> &Cond,
316                                      bool AllowModify) const {
317   TBB = nullptr;
318   FBB = nullptr;
319 
320   MachineBasicBlock::iterator I = MBB.end();
321   if (I == MBB.begin())
322     return false; // Empty blocks are easy.
323   --I;
324 
325   // Walk backwards from the end of the basic block until the branch is
326   // analyzed or we give up.
327   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
328     // Flag to be raised on unanalyzeable instructions. This is useful in cases
329     // where we want to clean up on the end of the basic block before we bail
330     // out.
331     bool CantAnalyze = false;
332 
333     // Skip over DEBUG values and predicated nonterminators.
334     while (I->isDebugInstr() || !I->isTerminator()) {
335       if (I == MBB.begin())
336         return false;
337       --I;
338     }
339 
340     if (isIndirectBranchOpcode(I->getOpcode()) ||
341         isJumpTableBranchOpcode(I->getOpcode())) {
342       // Indirect branches and jump tables can't be analyzed, but we still want
343       // to clean up any instructions at the tail of the basic block.
344       CantAnalyze = true;
345     } else if (isUncondBranchOpcode(I->getOpcode())) {
346       TBB = I->getOperand(0).getMBB();
347     } else if (isCondBranchOpcode(I->getOpcode())) {
348       // Bail out if we encounter multiple conditional branches.
349       if (!Cond.empty())
350         return true;
351 
352       assert(!FBB && "FBB should have been null.");
353       FBB = TBB;
354       TBB = I->getOperand(0).getMBB();
355       Cond.push_back(I->getOperand(1));
356       Cond.push_back(I->getOperand(2));
357     } else if (I->isReturn()) {
358       // Returns can't be analyzed, but we should run cleanup.
359       CantAnalyze = !isPredicated(*I);
360     } else {
361       // We encountered other unrecognized terminator. Bail out immediately.
362       return true;
363     }
364 
365     // Cleanup code - to be run for unpredicated unconditional branches and
366     //                returns.
367     if (!isPredicated(*I) &&
368           (isUncondBranchOpcode(I->getOpcode()) ||
369            isIndirectBranchOpcode(I->getOpcode()) ||
370            isJumpTableBranchOpcode(I->getOpcode()) ||
371            I->isReturn())) {
372       // Forget any previous condition branch information - it no longer applies.
373       Cond.clear();
374       FBB = nullptr;
375 
376       // If we can modify the function, delete everything below this
377       // unconditional branch.
378       if (AllowModify) {
379         MachineBasicBlock::iterator DI = std::next(I);
380         while (DI != MBB.end()) {
381           MachineInstr &InstToDelete = *DI;
382           ++DI;
383           InstToDelete.eraseFromParent();
384         }
385       }
386     }
387 
388     if (CantAnalyze)
389       return true;
390 
391     if (I == MBB.begin())
392       return false;
393 
394     --I;
395   }
396 
397   // We made it past the terminators without bailing out - we must have
398   // analyzed this branch successfully.
399   return false;
400 }
401 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const402 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
403                                         int *BytesRemoved) const {
404   assert(!BytesRemoved && "code size not handled");
405 
406   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
407   if (I == MBB.end())
408     return 0;
409 
410   if (!isUncondBranchOpcode(I->getOpcode()) &&
411       !isCondBranchOpcode(I->getOpcode()))
412     return 0;
413 
414   // Remove the branch.
415   I->eraseFromParent();
416 
417   I = MBB.end();
418 
419   if (I == MBB.begin()) return 1;
420   --I;
421   if (!isCondBranchOpcode(I->getOpcode()))
422     return 1;
423 
424   // Remove the branch.
425   I->eraseFromParent();
426   return 2;
427 }
428 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const429 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
430                                         MachineBasicBlock *TBB,
431                                         MachineBasicBlock *FBB,
432                                         ArrayRef<MachineOperand> Cond,
433                                         const DebugLoc &DL,
434                                         int *BytesAdded) const {
435   assert(!BytesAdded && "code size not handled");
436   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
437   int BOpc   = !AFI->isThumbFunction()
438     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
439   int BccOpc = !AFI->isThumbFunction()
440     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
441   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
442 
443   // Shouldn't be a fall through.
444   assert(TBB && "insertBranch must not be told to insert a fallthrough");
445   assert((Cond.size() == 2 || Cond.size() == 0) &&
446          "ARM branch conditions have two components!");
447 
448   // For conditional branches, we use addOperand to preserve CPSR flags.
449 
450   if (!FBB) {
451     if (Cond.empty()) { // Unconditional branch?
452       if (isThumb)
453         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
454       else
455         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
456     } else
457       BuildMI(&MBB, DL, get(BccOpc))
458           .addMBB(TBB)
459           .addImm(Cond[0].getImm())
460           .add(Cond[1]);
461     return 1;
462   }
463 
464   // Two-way conditional branch.
465   BuildMI(&MBB, DL, get(BccOpc))
466       .addMBB(TBB)
467       .addImm(Cond[0].getImm())
468       .add(Cond[1]);
469   if (isThumb)
470     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
471   else
472     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
473   return 2;
474 }
475 
476 bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const477 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
478   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
479   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
480   return false;
481 }
482 
isPredicated(const MachineInstr & MI) const483 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
484   if (MI.isBundle()) {
485     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
486     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
487     while (++I != E && I->isInsideBundle()) {
488       int PIdx = I->findFirstPredOperandIdx();
489       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
490         return true;
491     }
492     return false;
493   }
494 
495   int PIdx = MI.findFirstPredOperandIdx();
496   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
497 }
498 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const499 bool ARMBaseInstrInfo::PredicateInstruction(
500     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
501   unsigned Opc = MI.getOpcode();
502   if (isUncondBranchOpcode(Opc)) {
503     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
504     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
505       .addImm(Pred[0].getImm())
506       .addReg(Pred[1].getReg());
507     return true;
508   }
509 
510   int PIdx = MI.findFirstPredOperandIdx();
511   if (PIdx != -1) {
512     MachineOperand &PMO = MI.getOperand(PIdx);
513     PMO.setImm(Pred[0].getImm());
514     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
515     return true;
516   }
517   return false;
518 }
519 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const520 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
521                                          ArrayRef<MachineOperand> Pred2) const {
522   if (Pred1.size() > 2 || Pred2.size() > 2)
523     return false;
524 
525   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
526   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
527   if (CC1 == CC2)
528     return true;
529 
530   switch (CC1) {
531   default:
532     return false;
533   case ARMCC::AL:
534     return true;
535   case ARMCC::HS:
536     return CC2 == ARMCC::HI;
537   case ARMCC::LS:
538     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
539   case ARMCC::GE:
540     return CC2 == ARMCC::GT;
541   case ARMCC::LE:
542     return CC2 == ARMCC::LT;
543   }
544 }
545 
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const546 bool ARMBaseInstrInfo::DefinesPredicate(
547     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
548   bool Found = false;
549   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
550     const MachineOperand &MO = MI.getOperand(i);
551     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
552         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
553       Pred.push_back(MO);
554       Found = true;
555     }
556   }
557 
558   return Found;
559 }
560 
isCPSRDefined(const MachineInstr & MI)561 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
562   for (const auto &MO : MI.operands())
563     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
564       return true;
565   return false;
566 }
567 
isAddrMode3OpImm(const MachineInstr & MI,unsigned Op) const568 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
569                                         unsigned Op) const {
570   const MachineOperand &Offset = MI.getOperand(Op + 1);
571   return Offset.getReg() != 0;
572 }
573 
574 // Load with negative register offset requires additional 1cyc and +I unit
575 // for Cortex A57
isAddrMode3OpMinusReg(const MachineInstr & MI,unsigned Op) const576 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
577                                              unsigned Op) const {
578   const MachineOperand &Offset = MI.getOperand(Op + 1);
579   const MachineOperand &Opc = MI.getOperand(Op + 2);
580   assert(Opc.isImm());
581   assert(Offset.isReg());
582   int64_t OpcImm = Opc.getImm();
583 
584   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
585   return (isSub && Offset.getReg() != 0);
586 }
587 
isLdstScaledReg(const MachineInstr & MI,unsigned Op) const588 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
589                                        unsigned Op) const {
590   const MachineOperand &Opc = MI.getOperand(Op + 2);
591   unsigned OffImm = Opc.getImm();
592   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
593 }
594 
595 // Load, scaled register offset, not plus LSL2
isLdstScaledRegNotPlusLsl2(const MachineInstr & MI,unsigned Op) const596 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
597                                                   unsigned Op) const {
598   const MachineOperand &Opc = MI.getOperand(Op + 2);
599   unsigned OffImm = Opc.getImm();
600 
601   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
602   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
603   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
604   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
605   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
606   return !SimpleScaled;
607 }
608 
609 // Minus reg for ldstso addr mode
isLdstSoMinusReg(const MachineInstr & MI,unsigned Op) const610 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
611                                         unsigned Op) const {
612   unsigned OffImm = MI.getOperand(Op + 2).getImm();
613   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
614 }
615 
616 // Load, scaled register offset
isAm2ScaledReg(const MachineInstr & MI,unsigned Op) const617 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
618                                       unsigned Op) const {
619   unsigned OffImm = MI.getOperand(Op + 2).getImm();
620   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
621 }
622 
isEligibleForITBlock(const MachineInstr * MI)623 static bool isEligibleForITBlock(const MachineInstr *MI) {
624   switch (MI->getOpcode()) {
625   default: return true;
626   case ARM::tADC:   // ADC (register) T1
627   case ARM::tADDi3: // ADD (immediate) T1
628   case ARM::tADDi8: // ADD (immediate) T2
629   case ARM::tADDrr: // ADD (register) T1
630   case ARM::tAND:   // AND (register) T1
631   case ARM::tASRri: // ASR (immediate) T1
632   case ARM::tASRrr: // ASR (register) T1
633   case ARM::tBIC:   // BIC (register) T1
634   case ARM::tEOR:   // EOR (register) T1
635   case ARM::tLSLri: // LSL (immediate) T1
636   case ARM::tLSLrr: // LSL (register) T1
637   case ARM::tLSRri: // LSR (immediate) T1
638   case ARM::tLSRrr: // LSR (register) T1
639   case ARM::tMUL:   // MUL T1
640   case ARM::tMVN:   // MVN (register) T1
641   case ARM::tORR:   // ORR (register) T1
642   case ARM::tROR:   // ROR (register) T1
643   case ARM::tRSB:   // RSB (immediate) T1
644   case ARM::tSBC:   // SBC (register) T1
645   case ARM::tSUBi3: // SUB (immediate) T1
646   case ARM::tSUBi8: // SUB (immediate) T2
647   case ARM::tSUBrr: // SUB (register) T1
648     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
649   }
650 }
651 
652 /// isPredicable - Return true if the specified instruction can be predicated.
653 /// By default, this returns true for every instruction with a
654 /// PredicateOperand.
isPredicable(const MachineInstr & MI) const655 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
656   if (!MI.isPredicable())
657     return false;
658 
659   if (MI.isBundle())
660     return false;
661 
662   if (!isEligibleForITBlock(&MI))
663     return false;
664 
665   const ARMFunctionInfo *AFI =
666       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
667 
668   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
669   // In their ARM encoding, they can't be encoded in a conditional form.
670   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
671     return false;
672 
673   if (AFI->isThumb2Function()) {
674     if (getSubtarget().restrictIT())
675       return isV8EligibleForIT(&MI);
676   }
677 
678   return true;
679 }
680 
681 namespace llvm {
682 
IsCPSRDead(const MachineInstr * MI)683 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
684   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
685     const MachineOperand &MO = MI->getOperand(i);
686     if (!MO.isReg() || MO.isUndef() || MO.isUse())
687       continue;
688     if (MO.getReg() != ARM::CPSR)
689       continue;
690     if (!MO.isDead())
691       return false;
692   }
693   // all definitions of CPSR are dead
694   return true;
695 }
696 
697 } // end namespace llvm
698 
699 /// GetInstSize - Return the size of the specified MachineInstr.
700 ///
getInstSizeInBytes(const MachineInstr & MI) const701 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
702   const MachineBasicBlock &MBB = *MI.getParent();
703   const MachineFunction *MF = MBB.getParent();
704   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
705 
706   const MCInstrDesc &MCID = MI.getDesc();
707   if (MCID.getSize())
708     return MCID.getSize();
709 
710   // If this machine instr is an inline asm, measure it.
711   if (MI.getOpcode() == ARM::INLINEASM) {
712     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
713     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
714       Size = alignTo(Size, 4);
715     return Size;
716   }
717   unsigned Opc = MI.getOpcode();
718   switch (Opc) {
719   default:
720     // pseudo-instruction sizes are zero.
721     return 0;
722   case TargetOpcode::BUNDLE:
723     return getInstBundleLength(MI);
724   case ARM::MOVi16_ga_pcrel:
725   case ARM::MOVTi16_ga_pcrel:
726   case ARM::t2MOVi16_ga_pcrel:
727   case ARM::t2MOVTi16_ga_pcrel:
728     return 4;
729   case ARM::MOVi32imm:
730   case ARM::t2MOVi32imm:
731     return 8;
732   case ARM::CONSTPOOL_ENTRY:
733   case ARM::JUMPTABLE_INSTS:
734   case ARM::JUMPTABLE_ADDRS:
735   case ARM::JUMPTABLE_TBB:
736   case ARM::JUMPTABLE_TBH:
737     // If this machine instr is a constant pool entry, its size is recorded as
738     // operand #2.
739     return MI.getOperand(2).getImm();
740   case ARM::Int_eh_sjlj_longjmp:
741     return 16;
742   case ARM::tInt_eh_sjlj_longjmp:
743     return 10;
744   case ARM::tInt_WIN_eh_sjlj_longjmp:
745     return 12;
746   case ARM::Int_eh_sjlj_setjmp:
747   case ARM::Int_eh_sjlj_setjmp_nofp:
748     return 20;
749   case ARM::tInt_eh_sjlj_setjmp:
750   case ARM::t2Int_eh_sjlj_setjmp:
751   case ARM::t2Int_eh_sjlj_setjmp_nofp:
752     return 12;
753   case ARM::SPACE:
754     return MI.getOperand(1).getImm();
755   }
756 }
757 
getInstBundleLength(const MachineInstr & MI) const758 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
759   unsigned Size = 0;
760   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
761   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
762   while (++I != E && I->isInsideBundle()) {
763     assert(!I->isBundle() && "No nested bundle!");
764     Size += getInstSizeInBytes(*I);
765   }
766   return Size;
767 }
768 
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const769 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
770                                     MachineBasicBlock::iterator I,
771                                     unsigned DestReg, bool KillSrc,
772                                     const ARMSubtarget &Subtarget) const {
773   unsigned Opc = Subtarget.isThumb()
774                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
775                      : ARM::MRS;
776 
777   MachineInstrBuilder MIB =
778       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
779 
780   // There is only 1 A/R class MRS instruction, and it always refers to
781   // APSR. However, there are lots of other possibilities on M-class cores.
782   if (Subtarget.isMClass())
783     MIB.addImm(0x800);
784 
785   MIB.add(predOps(ARMCC::AL))
786      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
787 }
788 
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const789 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
790                                   MachineBasicBlock::iterator I,
791                                   unsigned SrcReg, bool KillSrc,
792                                   const ARMSubtarget &Subtarget) const {
793   unsigned Opc = Subtarget.isThumb()
794                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
795                      : ARM::MSR;
796 
797   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
798 
799   if (Subtarget.isMClass())
800     MIB.addImm(0x800);
801   else
802     MIB.addImm(8);
803 
804   MIB.addReg(SrcReg, getKillRegState(KillSrc))
805      .add(predOps(ARMCC::AL))
806      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
807 }
808 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const809 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
810                                    MachineBasicBlock::iterator I,
811                                    const DebugLoc &DL, unsigned DestReg,
812                                    unsigned SrcReg, bool KillSrc) const {
813   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
814   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
815 
816   if (GPRDest && GPRSrc) {
817     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
818         .addReg(SrcReg, getKillRegState(KillSrc))
819         .add(predOps(ARMCC::AL))
820         .add(condCodeOp());
821     return;
822   }
823 
824   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
825   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
826 
827   unsigned Opc = 0;
828   if (SPRDest && SPRSrc)
829     Opc = ARM::VMOVS;
830   else if (GPRDest && SPRSrc)
831     Opc = ARM::VMOVRS;
832   else if (SPRDest && GPRSrc)
833     Opc = ARM::VMOVSR;
834   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
835     Opc = ARM::VMOVD;
836   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
837     Opc = ARM::VORRq;
838 
839   if (Opc) {
840     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
841     MIB.addReg(SrcReg, getKillRegState(KillSrc));
842     if (Opc == ARM::VORRq)
843       MIB.addReg(SrcReg, getKillRegState(KillSrc));
844     MIB.add(predOps(ARMCC::AL));
845     return;
846   }
847 
848   // Handle register classes that require multiple instructions.
849   unsigned BeginIdx = 0;
850   unsigned SubRegs = 0;
851   int Spacing = 1;
852 
853   // Use VORRq when possible.
854   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
855     Opc = ARM::VORRq;
856     BeginIdx = ARM::qsub_0;
857     SubRegs = 2;
858   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
859     Opc = ARM::VORRq;
860     BeginIdx = ARM::qsub_0;
861     SubRegs = 4;
862   // Fall back to VMOVD.
863   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
864     Opc = ARM::VMOVD;
865     BeginIdx = ARM::dsub_0;
866     SubRegs = 2;
867   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
868     Opc = ARM::VMOVD;
869     BeginIdx = ARM::dsub_0;
870     SubRegs = 3;
871   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
872     Opc = ARM::VMOVD;
873     BeginIdx = ARM::dsub_0;
874     SubRegs = 4;
875   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
876     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
877     BeginIdx = ARM::gsub_0;
878     SubRegs = 2;
879   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
880     Opc = ARM::VMOVD;
881     BeginIdx = ARM::dsub_0;
882     SubRegs = 2;
883     Spacing = 2;
884   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
885     Opc = ARM::VMOVD;
886     BeginIdx = ARM::dsub_0;
887     SubRegs = 3;
888     Spacing = 2;
889   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
890     Opc = ARM::VMOVD;
891     BeginIdx = ARM::dsub_0;
892     SubRegs = 4;
893     Spacing = 2;
894   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
895     Opc = ARM::VMOVS;
896     BeginIdx = ARM::ssub_0;
897     SubRegs = 2;
898   } else if (SrcReg == ARM::CPSR) {
899     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
900     return;
901   } else if (DestReg == ARM::CPSR) {
902     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
903     return;
904   }
905 
906   assert(Opc && "Impossible reg-to-reg copy");
907 
908   const TargetRegisterInfo *TRI = &getRegisterInfo();
909   MachineInstrBuilder Mov;
910 
911   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
912   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
913     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
914     Spacing = -Spacing;
915   }
916 #ifndef NDEBUG
917   SmallSet<unsigned, 4> DstRegs;
918 #endif
919   for (unsigned i = 0; i != SubRegs; ++i) {
920     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
921     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
922     assert(Dst && Src && "Bad sub-register");
923 #ifndef NDEBUG
924     assert(!DstRegs.count(Src) && "destructive vector copy");
925     DstRegs.insert(Dst);
926 #endif
927     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
928     // VORR takes two source operands.
929     if (Opc == ARM::VORRq)
930       Mov.addReg(Src);
931     Mov = Mov.add(predOps(ARMCC::AL));
932     // MOVr can set CC.
933     if (Opc == ARM::MOVr)
934       Mov = Mov.add(condCodeOp());
935   }
936   // Add implicit super-register defs and kills to the last instruction.
937   Mov->addRegisterDefined(DestReg, TRI);
938   if (KillSrc)
939     Mov->addRegisterKilled(SrcReg, TRI);
940 }
941 
isCopyInstrImpl(const MachineInstr & MI,const MachineOperand * & Src,const MachineOperand * & Dest) const942 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI,
943                                        const MachineOperand *&Src,
944                                        const MachineOperand *&Dest) const {
945   // VMOVRRD is also a copy instruction but it requires
946   // special way of handling. It is more complex copy version
947   // and since that we are not considering it. For recognition
948   // of such instruction isExtractSubregLike MI interface fuction
949   // could be used.
950   // VORRq is considered as a move only if two inputs are
951   // the same register.
952   if (!MI.isMoveReg() ||
953       (MI.getOpcode() == ARM::VORRq &&
954        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
955     return false;
956   Dest = &MI.getOperand(0);
957   Src = &MI.getOperand(1);
958   return true;
959 }
960 
961 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const962 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
963                           unsigned SubIdx, unsigned State,
964                           const TargetRegisterInfo *TRI) const {
965   if (!SubIdx)
966     return MIB.addReg(Reg, State);
967 
968   if (TargetRegisterInfo::isPhysicalRegister(Reg))
969     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
970   return MIB.addReg(Reg, State, SubIdx);
971 }
972 
973 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const974 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
975                     unsigned SrcReg, bool isKill, int FI,
976                     const TargetRegisterClass *RC,
977                     const TargetRegisterInfo *TRI) const {
978   MachineFunction &MF = *MBB.getParent();
979   MachineFrameInfo &MFI = MF.getFrameInfo();
980   unsigned Align = MFI.getObjectAlignment(FI);
981 
982   MachineMemOperand *MMO = MF.getMachineMemOperand(
983       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
984       MFI.getObjectSize(FI), Align);
985 
986   switch (TRI->getSpillSize(*RC)) {
987     case 2:
988       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
989         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
990             .addReg(SrcReg, getKillRegState(isKill))
991             .addFrameIndex(FI)
992             .addImm(0)
993             .addMemOperand(MMO)
994             .add(predOps(ARMCC::AL));
995       } else
996         llvm_unreachable("Unknown reg class!");
997       break;
998     case 4:
999       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1000         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1001             .addReg(SrcReg, getKillRegState(isKill))
1002             .addFrameIndex(FI)
1003             .addImm(0)
1004             .addMemOperand(MMO)
1005             .add(predOps(ARMCC::AL));
1006       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1007         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1008             .addReg(SrcReg, getKillRegState(isKill))
1009             .addFrameIndex(FI)
1010             .addImm(0)
1011             .addMemOperand(MMO)
1012             .add(predOps(ARMCC::AL));
1013       } else
1014         llvm_unreachable("Unknown reg class!");
1015       break;
1016     case 8:
1017       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1018         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1019             .addReg(SrcReg, getKillRegState(isKill))
1020             .addFrameIndex(FI)
1021             .addImm(0)
1022             .addMemOperand(MMO)
1023             .add(predOps(ARMCC::AL));
1024       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1025         if (Subtarget.hasV5TEOps()) {
1026           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1027           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1028           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1029           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1030              .add(predOps(ARMCC::AL));
1031         } else {
1032           // Fallback to STM instruction, which has existed since the dawn of
1033           // time.
1034           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1035                                         .addFrameIndex(FI)
1036                                         .addMemOperand(MMO)
1037                                         .add(predOps(ARMCC::AL));
1038           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1039           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1040         }
1041       } else
1042         llvm_unreachable("Unknown reg class!");
1043       break;
1044     case 16:
1045       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1046         // Use aligned spills if the stack can be realigned.
1047         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1048           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1049               .addFrameIndex(FI)
1050               .addImm(16)
1051               .addReg(SrcReg, getKillRegState(isKill))
1052               .addMemOperand(MMO)
1053               .add(predOps(ARMCC::AL));
1054         } else {
1055           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1056               .addReg(SrcReg, getKillRegState(isKill))
1057               .addFrameIndex(FI)
1058               .addMemOperand(MMO)
1059               .add(predOps(ARMCC::AL));
1060         }
1061       } else
1062         llvm_unreachable("Unknown reg class!");
1063       break;
1064     case 24:
1065       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1066         // Use aligned spills if the stack can be realigned.
1067         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1068           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1069               .addFrameIndex(FI)
1070               .addImm(16)
1071               .addReg(SrcReg, getKillRegState(isKill))
1072               .addMemOperand(MMO)
1073               .add(predOps(ARMCC::AL));
1074         } else {
1075           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1076                                             get(ARM::VSTMDIA))
1077                                         .addFrameIndex(FI)
1078                                         .add(predOps(ARMCC::AL))
1079                                         .addMemOperand(MMO);
1080           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1081           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1082           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1083         }
1084       } else
1085         llvm_unreachable("Unknown reg class!");
1086       break;
1087     case 32:
1088       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1089         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1090           // FIXME: It's possible to only store part of the QQ register if the
1091           // spilled def has a sub-register index.
1092           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1093               .addFrameIndex(FI)
1094               .addImm(16)
1095               .addReg(SrcReg, getKillRegState(isKill))
1096               .addMemOperand(MMO)
1097               .add(predOps(ARMCC::AL));
1098         } else {
1099           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1100                                             get(ARM::VSTMDIA))
1101                                         .addFrameIndex(FI)
1102                                         .add(predOps(ARMCC::AL))
1103                                         .addMemOperand(MMO);
1104           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1105           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1106           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1107                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1108         }
1109       } else
1110         llvm_unreachable("Unknown reg class!");
1111       break;
1112     case 64:
1113       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1114         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1115                                       .addFrameIndex(FI)
1116                                       .add(predOps(ARMCC::AL))
1117                                       .addMemOperand(MMO);
1118         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1119         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1120         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1121         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1122         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1123         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1124         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1125               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1126       } else
1127         llvm_unreachable("Unknown reg class!");
1128       break;
1129     default:
1130       llvm_unreachable("Unknown reg class!");
1131   }
1132 }
1133 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1134 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1135                                               int &FrameIndex) const {
1136   switch (MI.getOpcode()) {
1137   default: break;
1138   case ARM::STRrs:
1139   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1140     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1141         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1142         MI.getOperand(3).getImm() == 0) {
1143       FrameIndex = MI.getOperand(1).getIndex();
1144       return MI.getOperand(0).getReg();
1145     }
1146     break;
1147   case ARM::STRi12:
1148   case ARM::t2STRi12:
1149   case ARM::tSTRspi:
1150   case ARM::VSTRD:
1151   case ARM::VSTRS:
1152     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1153         MI.getOperand(2).getImm() == 0) {
1154       FrameIndex = MI.getOperand(1).getIndex();
1155       return MI.getOperand(0).getReg();
1156     }
1157     break;
1158   case ARM::VST1q64:
1159   case ARM::VST1d64TPseudo:
1160   case ARM::VST1d64QPseudo:
1161     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1162       FrameIndex = MI.getOperand(0).getIndex();
1163       return MI.getOperand(2).getReg();
1164     }
1165     break;
1166   case ARM::VSTMQIA:
1167     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1168       FrameIndex = MI.getOperand(1).getIndex();
1169       return MI.getOperand(0).getReg();
1170     }
1171     break;
1172   }
1173 
1174   return 0;
1175 }
1176 
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1177 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1178                                                     int &FrameIndex) const {
1179   SmallVector<const MachineMemOperand *, 1> Accesses;
1180   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses)) {
1181     FrameIndex =
1182         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1183             ->getFrameIndex();
1184     return true;
1185   }
1186   return false;
1187 }
1188 
1189 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1190 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1191                      unsigned DestReg, int FI,
1192                      const TargetRegisterClass *RC,
1193                      const TargetRegisterInfo *TRI) const {
1194   DebugLoc DL;
1195   if (I != MBB.end()) DL = I->getDebugLoc();
1196   MachineFunction &MF = *MBB.getParent();
1197   MachineFrameInfo &MFI = MF.getFrameInfo();
1198   unsigned Align = MFI.getObjectAlignment(FI);
1199   MachineMemOperand *MMO = MF.getMachineMemOperand(
1200       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1201       MFI.getObjectSize(FI), Align);
1202 
1203   switch (TRI->getSpillSize(*RC)) {
1204   case 2:
1205     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1206       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1207           .addFrameIndex(FI)
1208           .addImm(0)
1209           .addMemOperand(MMO)
1210           .add(predOps(ARMCC::AL));
1211     } else
1212       llvm_unreachable("Unknown reg class!");
1213     break;
1214   case 4:
1215     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1216       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1217           .addFrameIndex(FI)
1218           .addImm(0)
1219           .addMemOperand(MMO)
1220           .add(predOps(ARMCC::AL));
1221     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1222       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1223           .addFrameIndex(FI)
1224           .addImm(0)
1225           .addMemOperand(MMO)
1226           .add(predOps(ARMCC::AL));
1227     } else
1228       llvm_unreachable("Unknown reg class!");
1229     break;
1230   case 8:
1231     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1232       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1233           .addFrameIndex(FI)
1234           .addImm(0)
1235           .addMemOperand(MMO)
1236           .add(predOps(ARMCC::AL));
1237     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1238       MachineInstrBuilder MIB;
1239 
1240       if (Subtarget.hasV5TEOps()) {
1241         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1242         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1243         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1244         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1245            .add(predOps(ARMCC::AL));
1246       } else {
1247         // Fallback to LDM instruction, which has existed since the dawn of
1248         // time.
1249         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1250                   .addFrameIndex(FI)
1251                   .addMemOperand(MMO)
1252                   .add(predOps(ARMCC::AL));
1253         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1254         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1255       }
1256 
1257       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1258         MIB.addReg(DestReg, RegState::ImplicitDefine);
1259     } else
1260       llvm_unreachable("Unknown reg class!");
1261     break;
1262   case 16:
1263     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1264       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1265         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1266             .addFrameIndex(FI)
1267             .addImm(16)
1268             .addMemOperand(MMO)
1269             .add(predOps(ARMCC::AL));
1270       } else {
1271         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1272             .addFrameIndex(FI)
1273             .addMemOperand(MMO)
1274             .add(predOps(ARMCC::AL));
1275       }
1276     } else
1277       llvm_unreachable("Unknown reg class!");
1278     break;
1279   case 24:
1280     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1281       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1282         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1283             .addFrameIndex(FI)
1284             .addImm(16)
1285             .addMemOperand(MMO)
1286             .add(predOps(ARMCC::AL));
1287       } else {
1288         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1289                                       .addFrameIndex(FI)
1290                                       .addMemOperand(MMO)
1291                                       .add(predOps(ARMCC::AL));
1292         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1293         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1294         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1295         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1296           MIB.addReg(DestReg, RegState::ImplicitDefine);
1297       }
1298     } else
1299       llvm_unreachable("Unknown reg class!");
1300     break;
1301    case 32:
1302     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1303       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1304         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1305             .addFrameIndex(FI)
1306             .addImm(16)
1307             .addMemOperand(MMO)
1308             .add(predOps(ARMCC::AL));
1309       } else {
1310         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1311                                       .addFrameIndex(FI)
1312                                       .add(predOps(ARMCC::AL))
1313                                       .addMemOperand(MMO);
1314         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1315         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1316         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1317         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1318         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1319           MIB.addReg(DestReg, RegState::ImplicitDefine);
1320       }
1321     } else
1322       llvm_unreachable("Unknown reg class!");
1323     break;
1324   case 64:
1325     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1326       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1327                                     .addFrameIndex(FI)
1328                                     .add(predOps(ARMCC::AL))
1329                                     .addMemOperand(MMO);
1330       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1331       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1332       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1333       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1334       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1335       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1336       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1337       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1338       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1339         MIB.addReg(DestReg, RegState::ImplicitDefine);
1340     } else
1341       llvm_unreachable("Unknown reg class!");
1342     break;
1343   default:
1344     llvm_unreachable("Unknown regclass!");
1345   }
1346 }
1347 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1348 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1349                                                int &FrameIndex) const {
1350   switch (MI.getOpcode()) {
1351   default: break;
1352   case ARM::LDRrs:
1353   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1354     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1355         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1356         MI.getOperand(3).getImm() == 0) {
1357       FrameIndex = MI.getOperand(1).getIndex();
1358       return MI.getOperand(0).getReg();
1359     }
1360     break;
1361   case ARM::LDRi12:
1362   case ARM::t2LDRi12:
1363   case ARM::tLDRspi:
1364   case ARM::VLDRD:
1365   case ARM::VLDRS:
1366     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1367         MI.getOperand(2).getImm() == 0) {
1368       FrameIndex = MI.getOperand(1).getIndex();
1369       return MI.getOperand(0).getReg();
1370     }
1371     break;
1372   case ARM::VLD1q64:
1373   case ARM::VLD1d8TPseudo:
1374   case ARM::VLD1d16TPseudo:
1375   case ARM::VLD1d32TPseudo:
1376   case ARM::VLD1d64TPseudo:
1377   case ARM::VLD1d8QPseudo:
1378   case ARM::VLD1d16QPseudo:
1379   case ARM::VLD1d32QPseudo:
1380   case ARM::VLD1d64QPseudo:
1381     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1382       FrameIndex = MI.getOperand(1).getIndex();
1383       return MI.getOperand(0).getReg();
1384     }
1385     break;
1386   case ARM::VLDMQIA:
1387     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1388       FrameIndex = MI.getOperand(1).getIndex();
1389       return MI.getOperand(0).getReg();
1390     }
1391     break;
1392   }
1393 
1394   return 0;
1395 }
1396 
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1397 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1398                                                      int &FrameIndex) const {
1399   SmallVector<const MachineMemOperand *, 1> Accesses;
1400   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses)) {
1401     FrameIndex =
1402         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1403             ->getFrameIndex();
1404     return true;
1405   }
1406   return false;
1407 }
1408 
1409 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1410 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1411 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1412   bool isThumb1 = Subtarget.isThumb1Only();
1413   bool isThumb2 = Subtarget.isThumb2();
1414   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1415 
1416   DebugLoc dl = MI->getDebugLoc();
1417   MachineBasicBlock *BB = MI->getParent();
1418 
1419   MachineInstrBuilder LDM, STM;
1420   if (isThumb1 || !MI->getOperand(1).isDead()) {
1421     MachineOperand LDWb(MI->getOperand(1));
1422     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1423                                                  : isThumb1 ? ARM::tLDMIA_UPD
1424                                                             : ARM::LDMIA_UPD))
1425               .add(LDWb);
1426   } else {
1427     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1428   }
1429 
1430   if (isThumb1 || !MI->getOperand(0).isDead()) {
1431     MachineOperand STWb(MI->getOperand(0));
1432     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1433                                                  : isThumb1 ? ARM::tSTMIA_UPD
1434                                                             : ARM::STMIA_UPD))
1435               .add(STWb);
1436   } else {
1437     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1438   }
1439 
1440   MachineOperand LDBase(MI->getOperand(3));
1441   LDM.add(LDBase).add(predOps(ARMCC::AL));
1442 
1443   MachineOperand STBase(MI->getOperand(2));
1444   STM.add(STBase).add(predOps(ARMCC::AL));
1445 
1446   // Sort the scratch registers into ascending order.
1447   const TargetRegisterInfo &TRI = getRegisterInfo();
1448   SmallVector<unsigned, 6> ScratchRegs;
1449   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1450     ScratchRegs.push_back(MI->getOperand(I).getReg());
1451   llvm::sort(ScratchRegs,
1452              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1453                return TRI.getEncodingValue(Reg1) <
1454                       TRI.getEncodingValue(Reg2);
1455              });
1456 
1457   for (const auto &Reg : ScratchRegs) {
1458     LDM.addReg(Reg, RegState::Define);
1459     STM.addReg(Reg, RegState::Kill);
1460   }
1461 
1462   BB->erase(MI);
1463 }
1464 
expandPostRAPseudo(MachineInstr & MI) const1465 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1466   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1467     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1468            "LOAD_STACK_GUARD currently supported only for MachO.");
1469     expandLoadStackGuard(MI);
1470     MI.getParent()->erase(MI);
1471     return true;
1472   }
1473 
1474   if (MI.getOpcode() == ARM::MEMCPY) {
1475     expandMEMCPY(MI);
1476     return true;
1477   }
1478 
1479   // This hook gets to expand COPY instructions before they become
1480   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1481   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1482   // changed into a VORR that can go down the NEON pipeline.
1483   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1484     return false;
1485 
1486   // Look for a copy between even S-registers.  That is where we keep floats
1487   // when using NEON v2f32 instructions for f32 arithmetic.
1488   unsigned DstRegS = MI.getOperand(0).getReg();
1489   unsigned SrcRegS = MI.getOperand(1).getReg();
1490   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1491     return false;
1492 
1493   const TargetRegisterInfo *TRI = &getRegisterInfo();
1494   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1495                                               &ARM::DPRRegClass);
1496   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1497                                               &ARM::DPRRegClass);
1498   if (!DstRegD || !SrcRegD)
1499     return false;
1500 
1501   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1502   // legal if the COPY already defines the full DstRegD, and it isn't a
1503   // sub-register insertion.
1504   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1505     return false;
1506 
1507   // A dead copy shouldn't show up here, but reject it just in case.
1508   if (MI.getOperand(0).isDead())
1509     return false;
1510 
1511   // All clear, widen the COPY.
1512   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1513   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1514 
1515   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1516   // or some other super-register.
1517   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1518   if (ImpDefIdx != -1)
1519     MI.RemoveOperand(ImpDefIdx);
1520 
1521   // Change the opcode and operands.
1522   MI.setDesc(get(ARM::VMOVD));
1523   MI.getOperand(0).setReg(DstRegD);
1524   MI.getOperand(1).setReg(SrcRegD);
1525   MIB.add(predOps(ARMCC::AL));
1526 
1527   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1528   // register scavenger and machine verifier, so we need to indicate that we
1529   // are reading an undefined value from SrcRegD, but a proper value from
1530   // SrcRegS.
1531   MI.getOperand(1).setIsUndef();
1532   MIB.addReg(SrcRegS, RegState::Implicit);
1533 
1534   // SrcRegD may actually contain an unrelated value in the ssub_1
1535   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1536   if (MI.getOperand(1).isKill()) {
1537     MI.getOperand(1).setIsKill(false);
1538     MI.addRegisterKilled(SrcRegS, TRI, true);
1539   }
1540 
1541   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1542   return true;
1543 }
1544 
1545 /// Create a copy of a const pool value. Update CPI to the new index and return
1546 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1547 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1548   MachineConstantPool *MCP = MF.getConstantPool();
1549   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1550 
1551   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1552   assert(MCPE.isMachineConstantPoolEntry() &&
1553          "Expecting a machine constantpool entry!");
1554   ARMConstantPoolValue *ACPV =
1555     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1556 
1557   unsigned PCLabelId = AFI->createPICLabelUId();
1558   ARMConstantPoolValue *NewCPV = nullptr;
1559 
1560   // FIXME: The below assumes PIC relocation model and that the function
1561   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1562   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1563   // instructions, so that's probably OK, but is PIC always correct when
1564   // we get here?
1565   if (ACPV->isGlobalValue())
1566     NewCPV = ARMConstantPoolConstant::Create(
1567         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1568         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1569   else if (ACPV->isExtSymbol())
1570     NewCPV = ARMConstantPoolSymbol::
1571       Create(MF.getFunction().getContext(),
1572              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1573   else if (ACPV->isBlockAddress())
1574     NewCPV = ARMConstantPoolConstant::
1575       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1576              ARMCP::CPBlockAddress, 4);
1577   else if (ACPV->isLSDA())
1578     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1579                                              ARMCP::CPLSDA, 4);
1580   else if (ACPV->isMachineBasicBlock())
1581     NewCPV = ARMConstantPoolMBB::
1582       Create(MF.getFunction().getContext(),
1583              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1584   else
1585     llvm_unreachable("Unexpected ARM constantpool value type!!");
1586   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1587   return PCLabelId;
1588 }
1589 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1590 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1591                                      MachineBasicBlock::iterator I,
1592                                      unsigned DestReg, unsigned SubIdx,
1593                                      const MachineInstr &Orig,
1594                                      const TargetRegisterInfo &TRI) const {
1595   unsigned Opcode = Orig.getOpcode();
1596   switch (Opcode) {
1597   default: {
1598     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1599     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1600     MBB.insert(I, MI);
1601     break;
1602   }
1603   case ARM::tLDRpci_pic:
1604   case ARM::t2LDRpci_pic: {
1605     MachineFunction &MF = *MBB.getParent();
1606     unsigned CPI = Orig.getOperand(1).getIndex();
1607     unsigned PCLabelId = duplicateCPV(MF, CPI);
1608     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1609         .addConstantPoolIndex(CPI)
1610         .addImm(PCLabelId)
1611         .cloneMemRefs(Orig);
1612     break;
1613   }
1614   }
1615 }
1616 
1617 MachineInstr &
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const1618 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1619     MachineBasicBlock::iterator InsertBefore,
1620     const MachineInstr &Orig) const {
1621   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1622   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1623   for (;;) {
1624     switch (I->getOpcode()) {
1625     case ARM::tLDRpci_pic:
1626     case ARM::t2LDRpci_pic: {
1627       MachineFunction &MF = *MBB.getParent();
1628       unsigned CPI = I->getOperand(1).getIndex();
1629       unsigned PCLabelId = duplicateCPV(MF, CPI);
1630       I->getOperand(1).setIndex(CPI);
1631       I->getOperand(2).setImm(PCLabelId);
1632       break;
1633     }
1634     }
1635     if (!I->isBundledWithSucc())
1636       break;
1637     ++I;
1638   }
1639   return Cloned;
1640 }
1641 
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1642 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1643                                         const MachineInstr &MI1,
1644                                         const MachineRegisterInfo *MRI) const {
1645   unsigned Opcode = MI0.getOpcode();
1646   if (Opcode == ARM::t2LDRpci ||
1647       Opcode == ARM::t2LDRpci_pic ||
1648       Opcode == ARM::tLDRpci ||
1649       Opcode == ARM::tLDRpci_pic ||
1650       Opcode == ARM::LDRLIT_ga_pcrel ||
1651       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1652       Opcode == ARM::tLDRLIT_ga_pcrel ||
1653       Opcode == ARM::MOV_ga_pcrel ||
1654       Opcode == ARM::MOV_ga_pcrel_ldr ||
1655       Opcode == ARM::t2MOV_ga_pcrel) {
1656     if (MI1.getOpcode() != Opcode)
1657       return false;
1658     if (MI0.getNumOperands() != MI1.getNumOperands())
1659       return false;
1660 
1661     const MachineOperand &MO0 = MI0.getOperand(1);
1662     const MachineOperand &MO1 = MI1.getOperand(1);
1663     if (MO0.getOffset() != MO1.getOffset())
1664       return false;
1665 
1666     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1667         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1668         Opcode == ARM::tLDRLIT_ga_pcrel ||
1669         Opcode == ARM::MOV_ga_pcrel ||
1670         Opcode == ARM::MOV_ga_pcrel_ldr ||
1671         Opcode == ARM::t2MOV_ga_pcrel)
1672       // Ignore the PC labels.
1673       return MO0.getGlobal() == MO1.getGlobal();
1674 
1675     const MachineFunction *MF = MI0.getParent()->getParent();
1676     const MachineConstantPool *MCP = MF->getConstantPool();
1677     int CPI0 = MO0.getIndex();
1678     int CPI1 = MO1.getIndex();
1679     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1680     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1681     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1682     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1683     if (isARMCP0 && isARMCP1) {
1684       ARMConstantPoolValue *ACPV0 =
1685         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1686       ARMConstantPoolValue *ACPV1 =
1687         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1688       return ACPV0->hasSameValue(ACPV1);
1689     } else if (!isARMCP0 && !isARMCP1) {
1690       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1691     }
1692     return false;
1693   } else if (Opcode == ARM::PICLDR) {
1694     if (MI1.getOpcode() != Opcode)
1695       return false;
1696     if (MI0.getNumOperands() != MI1.getNumOperands())
1697       return false;
1698 
1699     unsigned Addr0 = MI0.getOperand(1).getReg();
1700     unsigned Addr1 = MI1.getOperand(1).getReg();
1701     if (Addr0 != Addr1) {
1702       if (!MRI ||
1703           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1704           !TargetRegisterInfo::isVirtualRegister(Addr1))
1705         return false;
1706 
1707       // This assumes SSA form.
1708       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1709       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1710       // Check if the loaded value, e.g. a constantpool of a global address, are
1711       // the same.
1712       if (!produceSameValue(*Def0, *Def1, MRI))
1713         return false;
1714     }
1715 
1716     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1717       // %12 = PICLDR %11, 0, 14, %noreg
1718       const MachineOperand &MO0 = MI0.getOperand(i);
1719       const MachineOperand &MO1 = MI1.getOperand(i);
1720       if (!MO0.isIdenticalTo(MO1))
1721         return false;
1722     }
1723     return true;
1724   }
1725 
1726   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1727 }
1728 
1729 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1730 /// determine if two loads are loading from the same base address. It should
1731 /// only return true if the base pointers are the same and the only differences
1732 /// between the two addresses is the offset. It also returns the offsets by
1733 /// reference.
1734 ///
1735 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1736 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1737 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1738                                                int64_t &Offset1,
1739                                                int64_t &Offset2) const {
1740   // Don't worry about Thumb: just ARM and Thumb2.
1741   if (Subtarget.isThumb1Only()) return false;
1742 
1743   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1744     return false;
1745 
1746   switch (Load1->getMachineOpcode()) {
1747   default:
1748     return false;
1749   case ARM::LDRi12:
1750   case ARM::LDRBi12:
1751   case ARM::LDRD:
1752   case ARM::LDRH:
1753   case ARM::LDRSB:
1754   case ARM::LDRSH:
1755   case ARM::VLDRD:
1756   case ARM::VLDRS:
1757   case ARM::t2LDRi8:
1758   case ARM::t2LDRBi8:
1759   case ARM::t2LDRDi8:
1760   case ARM::t2LDRSHi8:
1761   case ARM::t2LDRi12:
1762   case ARM::t2LDRBi12:
1763   case ARM::t2LDRSHi12:
1764     break;
1765   }
1766 
1767   switch (Load2->getMachineOpcode()) {
1768   default:
1769     return false;
1770   case ARM::LDRi12:
1771   case ARM::LDRBi12:
1772   case ARM::LDRD:
1773   case ARM::LDRH:
1774   case ARM::LDRSB:
1775   case ARM::LDRSH:
1776   case ARM::VLDRD:
1777   case ARM::VLDRS:
1778   case ARM::t2LDRi8:
1779   case ARM::t2LDRBi8:
1780   case ARM::t2LDRSHi8:
1781   case ARM::t2LDRi12:
1782   case ARM::t2LDRBi12:
1783   case ARM::t2LDRSHi12:
1784     break;
1785   }
1786 
1787   // Check if base addresses and chain operands match.
1788   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1789       Load1->getOperand(4) != Load2->getOperand(4))
1790     return false;
1791 
1792   // Index should be Reg0.
1793   if (Load1->getOperand(3) != Load2->getOperand(3))
1794     return false;
1795 
1796   // Determine the offsets.
1797   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1798       isa<ConstantSDNode>(Load2->getOperand(1))) {
1799     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1800     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1801     return true;
1802   }
1803 
1804   return false;
1805 }
1806 
1807 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1808 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1809 /// be scheduled togther. On some targets if two loads are loading from
1810 /// addresses in the same cache line, it's better if they are scheduled
1811 /// together. This function takes two integers that represent the load offsets
1812 /// from the common base address. It returns true if it decides it's desirable
1813 /// to schedule the two loads together. "NumLoads" is the number of loads that
1814 /// have already been scheduled after Load1.
1815 ///
1816 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1817 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1818 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1819                                                int64_t Offset1, int64_t Offset2,
1820                                                unsigned NumLoads) const {
1821   // Don't worry about Thumb: just ARM and Thumb2.
1822   if (Subtarget.isThumb1Only()) return false;
1823 
1824   assert(Offset2 > Offset1);
1825 
1826   if ((Offset2 - Offset1) / 8 > 64)
1827     return false;
1828 
1829   // Check if the machine opcodes are different. If they are different
1830   // then we consider them to not be of the same base address,
1831   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1832   // In this case, they are considered to be the same because they are different
1833   // encoding forms of the same basic instruction.
1834   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1835       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1836          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1837         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1838          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1839     return false;  // FIXME: overly conservative?
1840 
1841   // Four loads in a row should be sufficient.
1842   if (NumLoads >= 3)
1843     return false;
1844 
1845   return true;
1846 }
1847 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1848 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1849                                             const MachineBasicBlock *MBB,
1850                                             const MachineFunction &MF) const {
1851   // Debug info is never a scheduling boundary. It's necessary to be explicit
1852   // due to the special treatment of IT instructions below, otherwise a
1853   // dbg_value followed by an IT will result in the IT instruction being
1854   // considered a scheduling hazard, which is wrong. It should be the actual
1855   // instruction preceding the dbg_value instruction(s), just like it is
1856   // when debug info is not present.
1857   if (MI.isDebugInstr())
1858     return false;
1859 
1860   // Terminators and labels can't be scheduled around.
1861   if (MI.isTerminator() || MI.isPosition())
1862     return true;
1863 
1864   // Treat the start of the IT block as a scheduling boundary, but schedule
1865   // t2IT along with all instructions following it.
1866   // FIXME: This is a big hammer. But the alternative is to add all potential
1867   // true and anti dependencies to IT block instructions as implicit operands
1868   // to the t2IT instruction. The added compile time and complexity does not
1869   // seem worth it.
1870   MachineBasicBlock::const_iterator I = MI;
1871   // Make sure to skip any debug instructions
1872   while (++I != MBB->end() && I->isDebugInstr())
1873     ;
1874   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1875     return true;
1876 
1877   // Don't attempt to schedule around any instruction that defines
1878   // a stack-oriented pointer, as it's unlikely to be profitable. This
1879   // saves compile time, because it doesn't require every single
1880   // stack slot reference to depend on the instruction that does the
1881   // modification.
1882   // Calls don't actually change the stack pointer, even if they have imp-defs.
1883   // No ARM calling conventions change the stack pointer. (X86 calling
1884   // conventions sometimes do).
1885   if (!MI.isCall() && MI.definesRegister(ARM::SP))
1886     return true;
1887 
1888   return false;
1889 }
1890 
1891 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const1892 isProfitableToIfCvt(MachineBasicBlock &MBB,
1893                     unsigned NumCycles, unsigned ExtraPredCycles,
1894                     BranchProbability Probability) const {
1895   if (!NumCycles)
1896     return false;
1897 
1898   // If we are optimizing for size, see if the branch in the predecessor can be
1899   // lowered to cbn?z by the constant island lowering pass, and return false if
1900   // so. This results in a shorter instruction sequence.
1901   if (MBB.getParent()->getFunction().optForSize()) {
1902     MachineBasicBlock *Pred = *MBB.pred_begin();
1903     if (!Pred->empty()) {
1904       MachineInstr *LastMI = &*Pred->rbegin();
1905       if (LastMI->getOpcode() == ARM::t2Bcc) {
1906         MachineBasicBlock::iterator CmpMI = LastMI;
1907         if (CmpMI != Pred->begin()) {
1908           --CmpMI;
1909           if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1910               CmpMI->getOpcode() == ARM::t2CMPri) {
1911             unsigned Reg = CmpMI->getOperand(0).getReg();
1912             unsigned PredReg = 0;
1913             ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1914             if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1915                 isARMLowRegister(Reg))
1916               return false;
1917           }
1918         }
1919       }
1920     }
1921   }
1922   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
1923                              MBB, 0, 0, Probability);
1924 }
1925 
1926 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const1927 isProfitableToIfCvt(MachineBasicBlock &TBB,
1928                     unsigned TCycles, unsigned TExtra,
1929                     MachineBasicBlock &FBB,
1930                     unsigned FCycles, unsigned FExtra,
1931                     BranchProbability Probability) const {
1932   if (!TCycles)
1933     return false;
1934 
1935   // Attempt to estimate the relative costs of predication versus branching.
1936   // Here we scale up each component of UnpredCost to avoid precision issue when
1937   // scaling TCycles/FCycles by Probability.
1938   const unsigned ScalingUpFactor = 1024;
1939 
1940   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
1941   unsigned UnpredCost;
1942   if (!Subtarget.hasBranchPredictor()) {
1943     // When we don't have a branch predictor it's always cheaper to not take a
1944     // branch than take it, so we have to take that into account.
1945     unsigned NotTakenBranchCost = 1;
1946     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
1947     unsigned TUnpredCycles, FUnpredCycles;
1948     if (!FCycles) {
1949       // Triangle: TBB is the fallthrough
1950       TUnpredCycles = TCycles + NotTakenBranchCost;
1951       FUnpredCycles = TakenBranchCost;
1952     } else {
1953       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
1954       TUnpredCycles = TCycles + TakenBranchCost;
1955       FUnpredCycles = FCycles + NotTakenBranchCost;
1956       // The branch at the end of FBB will disappear when it's predicated, so
1957       // discount it from PredCost.
1958       PredCost -= 1 * ScalingUpFactor;
1959     }
1960     // The total cost is the cost of each path scaled by their probabilites
1961     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
1962     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
1963     UnpredCost = TUnpredCost + FUnpredCost;
1964     // When predicating assume that the first IT can be folded away but later
1965     // ones cost one cycle each
1966     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
1967       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
1968     }
1969   } else {
1970     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1971     unsigned FUnpredCost =
1972       Probability.getCompl().scale(FCycles * ScalingUpFactor);
1973     UnpredCost = TUnpredCost + FUnpredCost;
1974     UnpredCost += 1 * ScalingUpFactor; // The branch itself
1975     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1976   }
1977 
1978   return PredCost <= UnpredCost;
1979 }
1980 
1981 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const1982 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1983                                             MachineBasicBlock &FMBB) const {
1984   // Reduce false anti-dependencies to let the target's out-of-order execution
1985   // engine do its thing.
1986   return Subtarget.isProfitableToUnpredicate();
1987 }
1988 
1989 /// getInstrPredicate - If instruction is predicated, returns its predicate
1990 /// condition, otherwise returns AL. It also returns the condition code
1991 /// register by reference.
getInstrPredicate(const MachineInstr & MI,unsigned & PredReg)1992 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1993                                          unsigned &PredReg) {
1994   int PIdx = MI.findFirstPredOperandIdx();
1995   if (PIdx == -1) {
1996     PredReg = 0;
1997     return ARMCC::AL;
1998   }
1999 
2000   PredReg = MI.getOperand(PIdx+1).getReg();
2001   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2002 }
2003 
getMatchingCondBranchOpcode(unsigned Opc)2004 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2005   if (Opc == ARM::B)
2006     return ARM::Bcc;
2007   if (Opc == ARM::tB)
2008     return ARM::tBcc;
2009   if (Opc == ARM::t2B)
2010     return ARM::t2Bcc;
2011 
2012   llvm_unreachable("Unknown unconditional branch opcode!");
2013 }
2014 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2015 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2016                                                        bool NewMI,
2017                                                        unsigned OpIdx1,
2018                                                        unsigned OpIdx2) const {
2019   switch (MI.getOpcode()) {
2020   case ARM::MOVCCr:
2021   case ARM::t2MOVCCr: {
2022     // MOVCC can be commuted by inverting the condition.
2023     unsigned PredReg = 0;
2024     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2025     // MOVCC AL can't be inverted. Shouldn't happen.
2026     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2027       return nullptr;
2028     MachineInstr *CommutedMI =
2029         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2030     if (!CommutedMI)
2031       return nullptr;
2032     // After swapping the MOVCC operands, also invert the condition.
2033     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2034         .setImm(ARMCC::getOppositeCondition(CC));
2035     return CommutedMI;
2036   }
2037   }
2038   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2039 }
2040 
2041 /// Identify instructions that can be folded into a MOVCC instruction, and
2042 /// return the defining instruction.
canFoldIntoMOVCC(unsigned Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII)2043 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
2044                                       const MachineRegisterInfo &MRI,
2045                                       const TargetInstrInfo *TII) {
2046   if (!TargetRegisterInfo::isVirtualRegister(Reg))
2047     return nullptr;
2048   if (!MRI.hasOneNonDBGUse(Reg))
2049     return nullptr;
2050   MachineInstr *MI = MRI.getVRegDef(Reg);
2051   if (!MI)
2052     return nullptr;
2053   // MI is folded into the MOVCC by predicating it.
2054   if (!MI->isPredicable())
2055     return nullptr;
2056   // Check if MI has any non-dead defs or physreg uses. This also detects
2057   // predicated instructions which will be reading CPSR.
2058   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2059     const MachineOperand &MO = MI->getOperand(i);
2060     // Reject frame index operands, PEI can't handle the predicated pseudos.
2061     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2062       return nullptr;
2063     if (!MO.isReg())
2064       continue;
2065     // MI can't have any tied operands, that would conflict with predication.
2066     if (MO.isTied())
2067       return nullptr;
2068     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2069       return nullptr;
2070     if (MO.isDef() && !MO.isDead())
2071       return nullptr;
2072   }
2073   bool DontMoveAcrossStores = true;
2074   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2075     return nullptr;
2076   return MI;
2077 }
2078 
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const2079 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2080                                      SmallVectorImpl<MachineOperand> &Cond,
2081                                      unsigned &TrueOp, unsigned &FalseOp,
2082                                      bool &Optimizable) const {
2083   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2084          "Unknown select instruction");
2085   // MOVCC operands:
2086   // 0: Def.
2087   // 1: True use.
2088   // 2: False use.
2089   // 3: Condition code.
2090   // 4: CPSR use.
2091   TrueOp = 1;
2092   FalseOp = 2;
2093   Cond.push_back(MI.getOperand(3));
2094   Cond.push_back(MI.getOperand(4));
2095   // We can always fold a def.
2096   Optimizable = true;
2097   return false;
2098 }
2099 
2100 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const2101 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2102                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2103                                  bool PreferFalse) const {
2104   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2105          "Unknown select instruction");
2106   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2107   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2108   bool Invert = !DefMI;
2109   if (!DefMI)
2110     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2111   if (!DefMI)
2112     return nullptr;
2113 
2114   // Find new register class to use.
2115   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2116   unsigned DestReg = MI.getOperand(0).getReg();
2117   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2118   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2119     return nullptr;
2120 
2121   // Create a new predicated version of DefMI.
2122   // Rfalse is the first use.
2123   MachineInstrBuilder NewMI =
2124       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2125 
2126   // Copy all the DefMI operands, excluding its (null) predicate.
2127   const MCInstrDesc &DefDesc = DefMI->getDesc();
2128   for (unsigned i = 1, e = DefDesc.getNumOperands();
2129        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2130     NewMI.add(DefMI->getOperand(i));
2131 
2132   unsigned CondCode = MI.getOperand(3).getImm();
2133   if (Invert)
2134     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2135   else
2136     NewMI.addImm(CondCode);
2137   NewMI.add(MI.getOperand(4));
2138 
2139   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2140   if (NewMI->hasOptionalDef())
2141     NewMI.add(condCodeOp());
2142 
2143   // The output register value when the predicate is false is an implicit
2144   // register operand tied to the first def.
2145   // The tie makes the register allocator ensure the FalseReg is allocated the
2146   // same register as operand 0.
2147   FalseReg.setImplicit();
2148   NewMI.add(FalseReg);
2149   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2150 
2151   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2152   SeenMIs.insert(NewMI);
2153   SeenMIs.erase(DefMI);
2154 
2155   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2156   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2157   // loop is expensive, but at least remove kill flags if they are in different
2158   // BBs.
2159   if (DefMI->getParent() != MI.getParent())
2160     NewMI->clearKillInfo();
2161 
2162   // The caller will erase MI, but not DefMI.
2163   DefMI->eraseFromParent();
2164   return NewMI;
2165 }
2166 
2167 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2168 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2169 /// def operand.
2170 ///
2171 /// This will go away once we can teach tblgen how to set the optional CPSR def
2172 /// operand itself.
2173 struct AddSubFlagsOpcodePair {
2174   uint16_t PseudoOpc;
2175   uint16_t MachineOpc;
2176 };
2177 
2178 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2179   {ARM::ADDSri, ARM::ADDri},
2180   {ARM::ADDSrr, ARM::ADDrr},
2181   {ARM::ADDSrsi, ARM::ADDrsi},
2182   {ARM::ADDSrsr, ARM::ADDrsr},
2183 
2184   {ARM::SUBSri, ARM::SUBri},
2185   {ARM::SUBSrr, ARM::SUBrr},
2186   {ARM::SUBSrsi, ARM::SUBrsi},
2187   {ARM::SUBSrsr, ARM::SUBrsr},
2188 
2189   {ARM::RSBSri, ARM::RSBri},
2190   {ARM::RSBSrsi, ARM::RSBrsi},
2191   {ARM::RSBSrsr, ARM::RSBrsr},
2192 
2193   {ARM::tADDSi3, ARM::tADDi3},
2194   {ARM::tADDSi8, ARM::tADDi8},
2195   {ARM::tADDSrr, ARM::tADDrr},
2196   {ARM::tADCS, ARM::tADC},
2197 
2198   {ARM::tSUBSi3, ARM::tSUBi3},
2199   {ARM::tSUBSi8, ARM::tSUBi8},
2200   {ARM::tSUBSrr, ARM::tSUBrr},
2201   {ARM::tSBCS, ARM::tSBC},
2202   {ARM::tRSBS, ARM::tRSB},
2203 
2204   {ARM::t2ADDSri, ARM::t2ADDri},
2205   {ARM::t2ADDSrr, ARM::t2ADDrr},
2206   {ARM::t2ADDSrs, ARM::t2ADDrs},
2207 
2208   {ARM::t2SUBSri, ARM::t2SUBri},
2209   {ARM::t2SUBSrr, ARM::t2SUBrr},
2210   {ARM::t2SUBSrs, ARM::t2SUBrs},
2211 
2212   {ARM::t2RSBSri, ARM::t2RSBri},
2213   {ARM::t2RSBSrs, ARM::t2RSBrs},
2214 };
2215 
convertAddSubFlagsOpcode(unsigned OldOpc)2216 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2217   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2218     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2219       return AddSubFlagsOpcodeMap[i].MachineOpc;
2220   return 0;
2221 }
2222 
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,unsigned DestReg,unsigned BaseReg,int NumBytes,ARMCC::CondCodes Pred,unsigned PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)2223 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2224                                    MachineBasicBlock::iterator &MBBI,
2225                                    const DebugLoc &dl, unsigned DestReg,
2226                                    unsigned BaseReg, int NumBytes,
2227                                    ARMCC::CondCodes Pred, unsigned PredReg,
2228                                    const ARMBaseInstrInfo &TII,
2229                                    unsigned MIFlags) {
2230   if (NumBytes == 0 && DestReg != BaseReg) {
2231     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2232         .addReg(BaseReg, RegState::Kill)
2233         .add(predOps(Pred, PredReg))
2234         .add(condCodeOp())
2235         .setMIFlags(MIFlags);
2236     return;
2237   }
2238 
2239   bool isSub = NumBytes < 0;
2240   if (isSub) NumBytes = -NumBytes;
2241 
2242   while (NumBytes) {
2243     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2244     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2245     assert(ThisVal && "Didn't extract field correctly");
2246 
2247     // We will handle these bits from offset, clear them.
2248     NumBytes &= ~ThisVal;
2249 
2250     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2251 
2252     // Build the new ADD / SUB.
2253     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2254     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2255         .addReg(BaseReg, RegState::Kill)
2256         .addImm(ThisVal)
2257         .add(predOps(Pred, PredReg))
2258         .add(condCodeOp())
2259         .setMIFlags(MIFlags);
2260     BaseReg = DestReg;
2261   }
2262 }
2263 
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2264 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2265                                       MachineFunction &MF, MachineInstr *MI,
2266                                       unsigned NumBytes) {
2267   // This optimisation potentially adds lots of load and store
2268   // micro-operations, it's only really a great benefit to code-size.
2269   if (!MF.getFunction().optForMinSize())
2270     return false;
2271 
2272   // If only one register is pushed/popped, LLVM can use an LDR/STR
2273   // instead. We can't modify those so make sure we're dealing with an
2274   // instruction we understand.
2275   bool IsPop = isPopOpcode(MI->getOpcode());
2276   bool IsPush = isPushOpcode(MI->getOpcode());
2277   if (!IsPush && !IsPop)
2278     return false;
2279 
2280   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2281                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2282   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2283                      MI->getOpcode() == ARM::tPOP ||
2284                      MI->getOpcode() == ARM::tPOP_RET;
2285 
2286   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2287                           MI->getOperand(1).getReg() == ARM::SP)) &&
2288          "trying to fold sp update into non-sp-updating push/pop");
2289 
2290   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2291   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2292   // if this is violated.
2293   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2294     return false;
2295 
2296   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2297   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2298   int RegListIdx = IsT1PushPop ? 2 : 4;
2299 
2300   // Calculate the space we'll need in terms of registers.
2301   unsigned RegsNeeded;
2302   const TargetRegisterClass *RegClass;
2303   if (IsVFPPushPop) {
2304     RegsNeeded = NumBytes / 8;
2305     RegClass = &ARM::DPRRegClass;
2306   } else {
2307     RegsNeeded = NumBytes / 4;
2308     RegClass = &ARM::GPRRegClass;
2309   }
2310 
2311   // We're going to have to strip all list operands off before
2312   // re-adding them since the order matters, so save the existing ones
2313   // for later.
2314   SmallVector<MachineOperand, 4> RegList;
2315 
2316   // We're also going to need the first register transferred by this
2317   // instruction, which won't necessarily be the first register in the list.
2318   unsigned FirstRegEnc = -1;
2319 
2320   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2321   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2322     MachineOperand &MO = MI->getOperand(i);
2323     RegList.push_back(MO);
2324 
2325     if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2326       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2327   }
2328 
2329   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2330 
2331   // Now try to find enough space in the reglist to allocate NumBytes.
2332   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2333        --CurRegEnc) {
2334     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2335     if (!IsPop) {
2336       // Pushing any register is completely harmless, mark the register involved
2337       // as undef since we don't care about its value and must not restore it
2338       // during stack unwinding.
2339       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2340                                                   false, false, true));
2341       --RegsNeeded;
2342       continue;
2343     }
2344 
2345     // However, we can only pop an extra register if it's not live. For
2346     // registers live within the function we might clobber a return value
2347     // register; the other way a register can be live here is if it's
2348     // callee-saved.
2349     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2350         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2351         MachineBasicBlock::LQR_Dead) {
2352       // VFP pops don't allow holes in the register list, so any skip is fatal
2353       // for our transformation. GPR pops do, so we should just keep looking.
2354       if (IsVFPPushPop)
2355         return false;
2356       else
2357         continue;
2358     }
2359 
2360     // Mark the unimportant registers as <def,dead> in the POP.
2361     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2362                                                 true));
2363     --RegsNeeded;
2364   }
2365 
2366   if (RegsNeeded > 0)
2367     return false;
2368 
2369   // Finally we know we can profitably perform the optimisation so go
2370   // ahead: strip all existing registers off and add them back again
2371   // in the right order.
2372   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2373     MI->RemoveOperand(i);
2374 
2375   // Add the complete list back in.
2376   MachineInstrBuilder MIB(MF, &*MI);
2377   for (int i = RegList.size() - 1; i >= 0; --i)
2378     MIB.add(RegList[i]);
2379 
2380   return true;
2381 }
2382 
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2383 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2384                                 unsigned FrameReg, int &Offset,
2385                                 const ARMBaseInstrInfo &TII) {
2386   unsigned Opcode = MI.getOpcode();
2387   const MCInstrDesc &Desc = MI.getDesc();
2388   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2389   bool isSub = false;
2390 
2391   // Memory operands in inline assembly always use AddrMode2.
2392   if (Opcode == ARM::INLINEASM)
2393     AddrMode = ARMII::AddrMode2;
2394 
2395   if (Opcode == ARM::ADDri) {
2396     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2397     if (Offset == 0) {
2398       // Turn it into a move.
2399       MI.setDesc(TII.get(ARM::MOVr));
2400       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2401       MI.RemoveOperand(FrameRegIdx+1);
2402       Offset = 0;
2403       return true;
2404     } else if (Offset < 0) {
2405       Offset = -Offset;
2406       isSub = true;
2407       MI.setDesc(TII.get(ARM::SUBri));
2408     }
2409 
2410     // Common case: small offset, fits into instruction.
2411     if (ARM_AM::getSOImmVal(Offset) != -1) {
2412       // Replace the FrameIndex with sp / fp
2413       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2414       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2415       Offset = 0;
2416       return true;
2417     }
2418 
2419     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2420     // as possible.
2421     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2422     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2423 
2424     // We will handle these bits from offset, clear them.
2425     Offset &= ~ThisImmVal;
2426 
2427     // Get the properly encoded SOImmVal field.
2428     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2429            "Bit extraction didn't work?");
2430     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2431  } else {
2432     unsigned ImmIdx = 0;
2433     int InstrOffs = 0;
2434     unsigned NumBits = 0;
2435     unsigned Scale = 1;
2436     switch (AddrMode) {
2437     case ARMII::AddrMode_i12:
2438       ImmIdx = FrameRegIdx + 1;
2439       InstrOffs = MI.getOperand(ImmIdx).getImm();
2440       NumBits = 12;
2441       break;
2442     case ARMII::AddrMode2:
2443       ImmIdx = FrameRegIdx+2;
2444       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2445       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2446         InstrOffs *= -1;
2447       NumBits = 12;
2448       break;
2449     case ARMII::AddrMode3:
2450       ImmIdx = FrameRegIdx+2;
2451       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2452       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2453         InstrOffs *= -1;
2454       NumBits = 8;
2455       break;
2456     case ARMII::AddrMode4:
2457     case ARMII::AddrMode6:
2458       // Can't fold any offset even if it's zero.
2459       return false;
2460     case ARMII::AddrMode5:
2461       ImmIdx = FrameRegIdx+1;
2462       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2463       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2464         InstrOffs *= -1;
2465       NumBits = 8;
2466       Scale = 4;
2467       break;
2468     case ARMII::AddrMode5FP16:
2469       ImmIdx = FrameRegIdx+1;
2470       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2471       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2472         InstrOffs *= -1;
2473       NumBits = 8;
2474       Scale = 2;
2475       break;
2476     default:
2477       llvm_unreachable("Unsupported addressing mode!");
2478     }
2479 
2480     Offset += InstrOffs * Scale;
2481     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2482     if (Offset < 0) {
2483       Offset = -Offset;
2484       isSub = true;
2485     }
2486 
2487     // Attempt to fold address comp. if opcode has offset bits
2488     if (NumBits > 0) {
2489       // Common case: small offset, fits into instruction.
2490       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2491       int ImmedOffset = Offset / Scale;
2492       unsigned Mask = (1 << NumBits) - 1;
2493       if ((unsigned)Offset <= Mask * Scale) {
2494         // Replace the FrameIndex with sp
2495         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2496         // FIXME: When addrmode2 goes away, this will simplify (like the
2497         // T2 version), as the LDR.i12 versions don't need the encoding
2498         // tricks for the offset value.
2499         if (isSub) {
2500           if (AddrMode == ARMII::AddrMode_i12)
2501             ImmedOffset = -ImmedOffset;
2502           else
2503             ImmedOffset |= 1 << NumBits;
2504         }
2505         ImmOp.ChangeToImmediate(ImmedOffset);
2506         Offset = 0;
2507         return true;
2508       }
2509 
2510       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2511       ImmedOffset = ImmedOffset & Mask;
2512       if (isSub) {
2513         if (AddrMode == ARMII::AddrMode_i12)
2514           ImmedOffset = -ImmedOffset;
2515         else
2516           ImmedOffset |= 1 << NumBits;
2517       }
2518       ImmOp.ChangeToImmediate(ImmedOffset);
2519       Offset &= ~(Mask*Scale);
2520     }
2521   }
2522 
2523   Offset = (isSub) ? -Offset : Offset;
2524   return Offset == 0;
2525 }
2526 
2527 /// analyzeCompare - For a comparison instruction, return the source registers
2528 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2529 /// compares against in CmpValue. Return true if the comparison instruction
2530 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const2531 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2532                                       unsigned &SrcReg2, int &CmpMask,
2533                                       int &CmpValue) const {
2534   switch (MI.getOpcode()) {
2535   default: break;
2536   case ARM::CMPri:
2537   case ARM::t2CMPri:
2538   case ARM::tCMPi8:
2539     SrcReg = MI.getOperand(0).getReg();
2540     SrcReg2 = 0;
2541     CmpMask = ~0;
2542     CmpValue = MI.getOperand(1).getImm();
2543     return true;
2544   case ARM::CMPrr:
2545   case ARM::t2CMPrr:
2546     SrcReg = MI.getOperand(0).getReg();
2547     SrcReg2 = MI.getOperand(1).getReg();
2548     CmpMask = ~0;
2549     CmpValue = 0;
2550     return true;
2551   case ARM::TSTri:
2552   case ARM::t2TSTri:
2553     SrcReg = MI.getOperand(0).getReg();
2554     SrcReg2 = 0;
2555     CmpMask = MI.getOperand(1).getImm();
2556     CmpValue = 0;
2557     return true;
2558   }
2559 
2560   return false;
2561 }
2562 
2563 /// isSuitableForMask - Identify a suitable 'and' instruction that
2564 /// operates on the given source register and applies the same mask
2565 /// as a 'tst' instruction. Provide a limited look-through for copies.
2566 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,unsigned SrcReg,int CmpMask,bool CommonUse)2567 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2568                               int CmpMask, bool CommonUse) {
2569   switch (MI->getOpcode()) {
2570     case ARM::ANDri:
2571     case ARM::t2ANDri:
2572       if (CmpMask != MI->getOperand(2).getImm())
2573         return false;
2574       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2575         return true;
2576       break;
2577   }
2578 
2579   return false;
2580 }
2581 
2582 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2583 /// the condition code if we modify the instructions such that flags are
2584 /// set by MI(b,a).
getSwappedCondition(ARMCC::CondCodes CC)2585 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2586   switch (CC) {
2587   default: return ARMCC::AL;
2588   case ARMCC::EQ: return ARMCC::EQ;
2589   case ARMCC::NE: return ARMCC::NE;
2590   case ARMCC::HS: return ARMCC::LS;
2591   case ARMCC::LO: return ARMCC::HI;
2592   case ARMCC::HI: return ARMCC::LO;
2593   case ARMCC::LS: return ARMCC::HS;
2594   case ARMCC::GE: return ARMCC::LE;
2595   case ARMCC::LT: return ARMCC::GT;
2596   case ARMCC::GT: return ARMCC::LT;
2597   case ARMCC::LE: return ARMCC::GE;
2598   }
2599 }
2600 
2601 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2602 /// the condition code if we modify the instructions such that flags are
2603 /// set by ADD(a,b,X).
getCmpToAddCondition(ARMCC::CondCodes CC)2604 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2605   switch (CC) {
2606   default: return ARMCC::AL;
2607   case ARMCC::HS: return ARMCC::LO;
2608   case ARMCC::LO: return ARMCC::HS;
2609   case ARMCC::VS: return ARMCC::VS;
2610   case ARMCC::VC: return ARMCC::VC;
2611   }
2612 }
2613 
2614 /// isRedundantFlagInstr - check whether the first instruction, whose only
2615 /// purpose is to update flags, can be made redundant.
2616 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2617 /// CMPri can be made redundant by SUBri if the operands are the same.
2618 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2619 /// This function can be extended later on.
isRedundantFlagInstr(const MachineInstr * CmpI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,const MachineInstr * OI)2620 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2621                                         unsigned SrcReg, unsigned SrcReg2,
2622                                         int ImmValue, const MachineInstr *OI) {
2623   if ((CmpI->getOpcode() == ARM::CMPrr ||
2624        CmpI->getOpcode() == ARM::t2CMPrr) &&
2625       (OI->getOpcode() == ARM::SUBrr ||
2626        OI->getOpcode() == ARM::t2SUBrr) &&
2627       ((OI->getOperand(1).getReg() == SrcReg &&
2628         OI->getOperand(2).getReg() == SrcReg2) ||
2629        (OI->getOperand(1).getReg() == SrcReg2 &&
2630         OI->getOperand(2).getReg() == SrcReg)))
2631     return true;
2632 
2633   if ((CmpI->getOpcode() == ARM::CMPri ||
2634        CmpI->getOpcode() == ARM::t2CMPri) &&
2635       (OI->getOpcode() == ARM::SUBri ||
2636        OI->getOpcode() == ARM::t2SUBri) &&
2637       OI->getOperand(1).getReg() == SrcReg &&
2638       OI->getOperand(2).getImm() == ImmValue)
2639     return true;
2640 
2641   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2642       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2643        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2644       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2645       OI->getOperand(0).getReg() == SrcReg &&
2646       OI->getOperand(1).getReg() == SrcReg2)
2647     return true;
2648   return false;
2649 }
2650 
isOptimizeCompareCandidate(MachineInstr * MI,bool & IsThumb1)2651 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2652   switch (MI->getOpcode()) {
2653   default: return false;
2654   case ARM::tLSLri:
2655   case ARM::tLSRri:
2656   case ARM::tLSLrr:
2657   case ARM::tLSRrr:
2658   case ARM::tSUBrr:
2659   case ARM::tADDrr:
2660   case ARM::tADDi3:
2661   case ARM::tADDi8:
2662   case ARM::tSUBi3:
2663   case ARM::tSUBi8:
2664   case ARM::tMUL:
2665     IsThumb1 = true;
2666     LLVM_FALLTHROUGH;
2667   case ARM::RSBrr:
2668   case ARM::RSBri:
2669   case ARM::RSCrr:
2670   case ARM::RSCri:
2671   case ARM::ADDrr:
2672   case ARM::ADDri:
2673   case ARM::ADCrr:
2674   case ARM::ADCri:
2675   case ARM::SUBrr:
2676   case ARM::SUBri:
2677   case ARM::SBCrr:
2678   case ARM::SBCri:
2679   case ARM::t2RSBri:
2680   case ARM::t2ADDrr:
2681   case ARM::t2ADDri:
2682   case ARM::t2ADCrr:
2683   case ARM::t2ADCri:
2684   case ARM::t2SUBrr:
2685   case ARM::t2SUBri:
2686   case ARM::t2SBCrr:
2687   case ARM::t2SBCri:
2688   case ARM::ANDrr:
2689   case ARM::ANDri:
2690   case ARM::t2ANDrr:
2691   case ARM::t2ANDri:
2692   case ARM::ORRrr:
2693   case ARM::ORRri:
2694   case ARM::t2ORRrr:
2695   case ARM::t2ORRri:
2696   case ARM::EORrr:
2697   case ARM::EORri:
2698   case ARM::t2EORrr:
2699   case ARM::t2EORri:
2700   case ARM::t2LSRri:
2701   case ARM::t2LSRrr:
2702   case ARM::t2LSLri:
2703   case ARM::t2LSLrr:
2704     return true;
2705   }
2706 }
2707 
2708 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2709 /// comparison into one that sets the zero bit in the flags register;
2710 /// Remove a redundant Compare instruction if an earlier instruction can set the
2711 /// flags in the same way as Compare.
2712 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2713 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2714 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2715 bool ARMBaseInstrInfo::optimizeCompareInstr(
2716     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2717     int CmpValue, const MachineRegisterInfo *MRI) const {
2718   // Get the unique definition of SrcReg.
2719   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2720   if (!MI) return false;
2721 
2722   // Masked compares sometimes use the same register as the corresponding 'and'.
2723   if (CmpMask != ~0) {
2724     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2725       MI = nullptr;
2726       for (MachineRegisterInfo::use_instr_iterator
2727            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2728            UI != UE; ++UI) {
2729         if (UI->getParent() != CmpInstr.getParent())
2730           continue;
2731         MachineInstr *PotentialAND = &*UI;
2732         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2733             isPredicated(*PotentialAND))
2734           continue;
2735         MI = PotentialAND;
2736         break;
2737       }
2738       if (!MI) return false;
2739     }
2740   }
2741 
2742   // Get ready to iterate backward from CmpInstr.
2743   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2744                               B = CmpInstr.getParent()->begin();
2745 
2746   // Early exit if CmpInstr is at the beginning of the BB.
2747   if (I == B) return false;
2748 
2749   // There are two possible candidates which can be changed to set CPSR:
2750   // One is MI, the other is a SUB or ADD instruction.
2751   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2752   // ADDr[ri](r1, r2, X).
2753   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2754   MachineInstr *SubAdd = nullptr;
2755   if (SrcReg2 != 0)
2756     // MI is not a candidate for CMPrr.
2757     MI = nullptr;
2758   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2759     // Conservatively refuse to convert an instruction which isn't in the same
2760     // BB as the comparison.
2761     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2762     // Thus we cannot return here.
2763     if (CmpInstr.getOpcode() == ARM::CMPri ||
2764         CmpInstr.getOpcode() == ARM::t2CMPri)
2765       MI = nullptr;
2766     else
2767       return false;
2768   }
2769 
2770   bool IsThumb1 = false;
2771   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2772     return false;
2773 
2774   // We also want to do this peephole for cases like this: if (a*b == 0),
2775   // and optimise away the CMP instruction from the generated code sequence:
2776   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2777   // resulting from the select instruction, but these MOVS instructions for
2778   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2779   // However, if we only have MOVS instructions in between the CMP and the
2780   // other instruction (the MULS in this example), then the CPSR is dead so we
2781   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2782   // reordering and then continue the analysis hoping we can eliminate the
2783   // CMP. This peephole works on the vregs, so is still in SSA form. As a
2784   // consequence, the movs won't redefine/kill the MUL operands which would
2785   // make this reordering illegal.
2786   if (MI && IsThumb1) {
2787     --I;
2788     bool CanReorder = true;
2789     const bool HasStmts = I != E;
2790     for (; I != E; --I) {
2791       if (I->getOpcode() != ARM::tMOVi8) {
2792         CanReorder = false;
2793         break;
2794       }
2795     }
2796     if (HasStmts && CanReorder) {
2797       MI = MI->removeFromParent();
2798       E = CmpInstr;
2799       CmpInstr.getParent()->insert(E, MI);
2800     }
2801     I = CmpInstr;
2802     E = MI;
2803   }
2804 
2805   // Check that CPSR isn't set between the comparison instruction and the one we
2806   // want to change. At the same time, search for SubAdd.
2807   const TargetRegisterInfo *TRI = &getRegisterInfo();
2808   do {
2809     const MachineInstr &Instr = *--I;
2810 
2811     // Check whether CmpInstr can be made redundant by the current instruction.
2812     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr)) {
2813       SubAdd = &*I;
2814       break;
2815     }
2816 
2817     // Allow E (which was initially MI) to be SubAdd but do not search before E.
2818     if (I == E)
2819       break;
2820 
2821     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2822         Instr.readsRegister(ARM::CPSR, TRI))
2823       // This instruction modifies or uses CPSR after the one we want to
2824       // change. We can't do this transformation.
2825       return false;
2826 
2827   } while (I != B);
2828 
2829   // Return false if no candidates exist.
2830   if (!MI && !SubAdd)
2831     return false;
2832 
2833   // The single candidate is called MI.
2834   if (!MI) MI = SubAdd;
2835 
2836   // We can't use a predicated instruction - it doesn't always write the flags.
2837   if (isPredicated(*MI))
2838     return false;
2839 
2840   // Scan forward for the use of CPSR
2841   // When checking against MI: if it's a conditional code that requires
2842   // checking of the V bit or C bit, then this is not safe to do.
2843   // It is safe to remove CmpInstr if CPSR is redefined or killed.
2844   // If we are done with the basic block, we need to check whether CPSR is
2845   // live-out.
2846   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2847       OperandsToUpdate;
2848   bool isSafe = false;
2849   I = CmpInstr;
2850   E = CmpInstr.getParent()->end();
2851   while (!isSafe && ++I != E) {
2852     const MachineInstr &Instr = *I;
2853     for (unsigned IO = 0, EO = Instr.getNumOperands();
2854          !isSafe && IO != EO; ++IO) {
2855       const MachineOperand &MO = Instr.getOperand(IO);
2856       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2857         isSafe = true;
2858         break;
2859       }
2860       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2861         continue;
2862       if (MO.isDef()) {
2863         isSafe = true;
2864         break;
2865       }
2866       // Condition code is after the operand before CPSR except for VSELs.
2867       ARMCC::CondCodes CC;
2868       bool IsInstrVSel = true;
2869       switch (Instr.getOpcode()) {
2870       default:
2871         IsInstrVSel = false;
2872         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2873         break;
2874       case ARM::VSELEQD:
2875       case ARM::VSELEQS:
2876         CC = ARMCC::EQ;
2877         break;
2878       case ARM::VSELGTD:
2879       case ARM::VSELGTS:
2880         CC = ARMCC::GT;
2881         break;
2882       case ARM::VSELGED:
2883       case ARM::VSELGES:
2884         CC = ARMCC::GE;
2885         break;
2886       case ARM::VSELVSS:
2887       case ARM::VSELVSD:
2888         CC = ARMCC::VS;
2889         break;
2890       }
2891 
2892       if (SubAdd) {
2893         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2894         // on CMP needs to be updated to be based on SUB.
2895         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
2896         // needs to be modified.
2897         // Push the condition code operands to OperandsToUpdate.
2898         // If it is safe to remove CmpInstr, the condition code of these
2899         // operands will be modified.
2900         unsigned Opc = SubAdd->getOpcode();
2901         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
2902                      Opc == ARM::SUBri || Opc == ARM::t2SUBri;
2903         if (!IsSub || (SrcReg2 != 0 && SubAdd->getOperand(1).getReg() == SrcReg2 &&
2904                        SubAdd->getOperand(2).getReg() == SrcReg)) {
2905           // VSel doesn't support condition code update.
2906           if (IsInstrVSel)
2907             return false;
2908           // Ensure we can swap the condition.
2909           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
2910           if (NewCC == ARMCC::AL)
2911             return false;
2912           OperandsToUpdate.push_back(
2913               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2914         }
2915       } else {
2916         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
2917         switch (CC) {
2918         case ARMCC::EQ: // Z
2919         case ARMCC::NE: // Z
2920         case ARMCC::MI: // N
2921         case ARMCC::PL: // N
2922         case ARMCC::AL: // none
2923           // CPSR can be used multiple times, we should continue.
2924           break;
2925         case ARMCC::HS: // C
2926         case ARMCC::LO: // C
2927         case ARMCC::VS: // V
2928         case ARMCC::VC: // V
2929         case ARMCC::HI: // C Z
2930         case ARMCC::LS: // C Z
2931         case ARMCC::GE: // N V
2932         case ARMCC::LT: // N V
2933         case ARMCC::GT: // Z N V
2934         case ARMCC::LE: // Z N V
2935           // The instruction uses the V bit or C bit which is not safe.
2936           return false;
2937         }
2938       }
2939     }
2940   }
2941 
2942   // If CPSR is not killed nor re-defined, we should check whether it is
2943   // live-out. If it is live-out, do not optimize.
2944   if (!isSafe) {
2945     MachineBasicBlock *MBB = CmpInstr.getParent();
2946     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2947              SE = MBB->succ_end(); SI != SE; ++SI)
2948       if ((*SI)->isLiveIn(ARM::CPSR))
2949         return false;
2950   }
2951 
2952   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
2953   // set CPSR so this is represented as an explicit output)
2954   if (!IsThumb1) {
2955     MI->getOperand(5).setReg(ARM::CPSR);
2956     MI->getOperand(5).setIsDef(true);
2957   }
2958   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
2959   CmpInstr.eraseFromParent();
2960 
2961   // Modify the condition code of operands in OperandsToUpdate.
2962   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2963   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2964   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2965     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2966 
2967   MI->clearRegisterDeads(ARM::CPSR);
2968 
2969   return true;
2970 }
2971 
shouldSink(const MachineInstr & MI) const2972 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
2973   // Do not sink MI if it might be used to optimize a redundant compare.
2974   // We heuristically only look at the instruction immediately following MI to
2975   // avoid potentially searching the entire basic block.
2976   if (isPredicated(MI))
2977     return true;
2978   MachineBasicBlock::const_iterator Next = &MI;
2979   ++Next;
2980   unsigned SrcReg, SrcReg2;
2981   int CmpMask, CmpValue;
2982   if (Next != MI.getParent()->end() &&
2983       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
2984       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI))
2985     return false;
2986   return true;
2987 }
2988 
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const2989 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2990                                      unsigned Reg,
2991                                      MachineRegisterInfo *MRI) const {
2992   // Fold large immediates into add, sub, or, xor.
2993   unsigned DefOpc = DefMI.getOpcode();
2994   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2995     return false;
2996   if (!DefMI.getOperand(1).isImm())
2997     // Could be t2MOVi32imm @xx
2998     return false;
2999 
3000   if (!MRI->hasOneNonDBGUse(Reg))
3001     return false;
3002 
3003   const MCInstrDesc &DefMCID = DefMI.getDesc();
3004   if (DefMCID.hasOptionalDef()) {
3005     unsigned NumOps = DefMCID.getNumOperands();
3006     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3007     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3008       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3009       // to delete DefMI.
3010       return false;
3011   }
3012 
3013   const MCInstrDesc &UseMCID = UseMI.getDesc();
3014   if (UseMCID.hasOptionalDef()) {
3015     unsigned NumOps = UseMCID.getNumOperands();
3016     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3017       // If the instruction sets the flag, do not attempt this optimization
3018       // since it may change the semantics of the code.
3019       return false;
3020   }
3021 
3022   unsigned UseOpc = UseMI.getOpcode();
3023   unsigned NewUseOpc = 0;
3024   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3025   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3026   bool Commute = false;
3027   switch (UseOpc) {
3028   default: return false;
3029   case ARM::SUBrr:
3030   case ARM::ADDrr:
3031   case ARM::ORRrr:
3032   case ARM::EORrr:
3033   case ARM::t2SUBrr:
3034   case ARM::t2ADDrr:
3035   case ARM::t2ORRrr:
3036   case ARM::t2EORrr: {
3037     Commute = UseMI.getOperand(2).getReg() != Reg;
3038     switch (UseOpc) {
3039     default: break;
3040     case ARM::ADDrr:
3041     case ARM::SUBrr:
3042       if (UseOpc == ARM::SUBrr && Commute)
3043         return false;
3044 
3045       // ADD/SUB are special because they're essentially the same operation, so
3046       // we can handle a larger range of immediates.
3047       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3048         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3049       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3050         ImmVal = -ImmVal;
3051         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3052       } else
3053         return false;
3054       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3055       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3056       break;
3057     case ARM::ORRrr:
3058     case ARM::EORrr:
3059       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3060         return false;
3061       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3062       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3063       switch (UseOpc) {
3064       default: break;
3065       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3066       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3067       }
3068       break;
3069     case ARM::t2ADDrr:
3070     case ARM::t2SUBrr:
3071       if (UseOpc == ARM::t2SUBrr && Commute)
3072         return false;
3073 
3074       // ADD/SUB are special because they're essentially the same operation, so
3075       // we can handle a larger range of immediates.
3076       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3077         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3078       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3079         ImmVal = -ImmVal;
3080         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3081       } else
3082         return false;
3083       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3084       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3085       break;
3086     case ARM::t2ORRrr:
3087     case ARM::t2EORrr:
3088       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3089         return false;
3090       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3091       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3092       switch (UseOpc) {
3093       default: break;
3094       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3095       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3096       }
3097       break;
3098     }
3099   }
3100   }
3101 
3102   unsigned OpIdx = Commute ? 2 : 1;
3103   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3104   bool isKill = UseMI.getOperand(OpIdx).isKill();
3105   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3106   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3107           NewReg)
3108       .addReg(Reg1, getKillRegState(isKill))
3109       .addImm(SOImmValV1)
3110       .add(predOps(ARMCC::AL))
3111       .add(condCodeOp());
3112   UseMI.setDesc(get(NewUseOpc));
3113   UseMI.getOperand(1).setReg(NewReg);
3114   UseMI.getOperand(1).setIsKill();
3115   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3116   DefMI.eraseFromParent();
3117   return true;
3118 }
3119 
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)3120 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3121                                         const MachineInstr &MI) {
3122   switch (MI.getOpcode()) {
3123   default: {
3124     const MCInstrDesc &Desc = MI.getDesc();
3125     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3126     assert(UOps >= 0 && "bad # UOps");
3127     return UOps;
3128   }
3129 
3130   case ARM::LDRrs:
3131   case ARM::LDRBrs:
3132   case ARM::STRrs:
3133   case ARM::STRBrs: {
3134     unsigned ShOpVal = MI.getOperand(3).getImm();
3135     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3136     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3137     if (!isSub &&
3138         (ShImm == 0 ||
3139          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3140           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3141       return 1;
3142     return 2;
3143   }
3144 
3145   case ARM::LDRH:
3146   case ARM::STRH: {
3147     if (!MI.getOperand(2).getReg())
3148       return 1;
3149 
3150     unsigned ShOpVal = MI.getOperand(3).getImm();
3151     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3152     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3153     if (!isSub &&
3154         (ShImm == 0 ||
3155          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3156           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3157       return 1;
3158     return 2;
3159   }
3160 
3161   case ARM::LDRSB:
3162   case ARM::LDRSH:
3163     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3164 
3165   case ARM::LDRSB_POST:
3166   case ARM::LDRSH_POST: {
3167     unsigned Rt = MI.getOperand(0).getReg();
3168     unsigned Rm = MI.getOperand(3).getReg();
3169     return (Rt == Rm) ? 4 : 3;
3170   }
3171 
3172   case ARM::LDR_PRE_REG:
3173   case ARM::LDRB_PRE_REG: {
3174     unsigned Rt = MI.getOperand(0).getReg();
3175     unsigned Rm = MI.getOperand(3).getReg();
3176     if (Rt == Rm)
3177       return 3;
3178     unsigned ShOpVal = MI.getOperand(4).getImm();
3179     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3180     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3181     if (!isSub &&
3182         (ShImm == 0 ||
3183          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3184           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3185       return 2;
3186     return 3;
3187   }
3188 
3189   case ARM::STR_PRE_REG:
3190   case ARM::STRB_PRE_REG: {
3191     unsigned ShOpVal = MI.getOperand(4).getImm();
3192     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3193     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3194     if (!isSub &&
3195         (ShImm == 0 ||
3196          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3197           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3198       return 2;
3199     return 3;
3200   }
3201 
3202   case ARM::LDRH_PRE:
3203   case ARM::STRH_PRE: {
3204     unsigned Rt = MI.getOperand(0).getReg();
3205     unsigned Rm = MI.getOperand(3).getReg();
3206     if (!Rm)
3207       return 2;
3208     if (Rt == Rm)
3209       return 3;
3210     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3211   }
3212 
3213   case ARM::LDR_POST_REG:
3214   case ARM::LDRB_POST_REG:
3215   case ARM::LDRH_POST: {
3216     unsigned Rt = MI.getOperand(0).getReg();
3217     unsigned Rm = MI.getOperand(3).getReg();
3218     return (Rt == Rm) ? 3 : 2;
3219   }
3220 
3221   case ARM::LDR_PRE_IMM:
3222   case ARM::LDRB_PRE_IMM:
3223   case ARM::LDR_POST_IMM:
3224   case ARM::LDRB_POST_IMM:
3225   case ARM::STRB_POST_IMM:
3226   case ARM::STRB_POST_REG:
3227   case ARM::STRB_PRE_IMM:
3228   case ARM::STRH_POST:
3229   case ARM::STR_POST_IMM:
3230   case ARM::STR_POST_REG:
3231   case ARM::STR_PRE_IMM:
3232     return 2;
3233 
3234   case ARM::LDRSB_PRE:
3235   case ARM::LDRSH_PRE: {
3236     unsigned Rm = MI.getOperand(3).getReg();
3237     if (Rm == 0)
3238       return 3;
3239     unsigned Rt = MI.getOperand(0).getReg();
3240     if (Rt == Rm)
3241       return 4;
3242     unsigned ShOpVal = MI.getOperand(4).getImm();
3243     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3244     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3245     if (!isSub &&
3246         (ShImm == 0 ||
3247          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3248           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3249       return 3;
3250     return 4;
3251   }
3252 
3253   case ARM::LDRD: {
3254     unsigned Rt = MI.getOperand(0).getReg();
3255     unsigned Rn = MI.getOperand(2).getReg();
3256     unsigned Rm = MI.getOperand(3).getReg();
3257     if (Rm)
3258       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3259                                                                           : 3;
3260     return (Rt == Rn) ? 3 : 2;
3261   }
3262 
3263   case ARM::STRD: {
3264     unsigned Rm = MI.getOperand(3).getReg();
3265     if (Rm)
3266       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3267                                                                           : 3;
3268     return 2;
3269   }
3270 
3271   case ARM::LDRD_POST:
3272   case ARM::t2LDRD_POST:
3273     return 3;
3274 
3275   case ARM::STRD_POST:
3276   case ARM::t2STRD_POST:
3277     return 4;
3278 
3279   case ARM::LDRD_PRE: {
3280     unsigned Rt = MI.getOperand(0).getReg();
3281     unsigned Rn = MI.getOperand(3).getReg();
3282     unsigned Rm = MI.getOperand(4).getReg();
3283     if (Rm)
3284       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3285                                                                           : 4;
3286     return (Rt == Rn) ? 4 : 3;
3287   }
3288 
3289   case ARM::t2LDRD_PRE: {
3290     unsigned Rt = MI.getOperand(0).getReg();
3291     unsigned Rn = MI.getOperand(3).getReg();
3292     return (Rt == Rn) ? 4 : 3;
3293   }
3294 
3295   case ARM::STRD_PRE: {
3296     unsigned Rm = MI.getOperand(4).getReg();
3297     if (Rm)
3298       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3299                                                                           : 4;
3300     return 3;
3301   }
3302 
3303   case ARM::t2STRD_PRE:
3304     return 3;
3305 
3306   case ARM::t2LDR_POST:
3307   case ARM::t2LDRB_POST:
3308   case ARM::t2LDRB_PRE:
3309   case ARM::t2LDRSBi12:
3310   case ARM::t2LDRSBi8:
3311   case ARM::t2LDRSBpci:
3312   case ARM::t2LDRSBs:
3313   case ARM::t2LDRH_POST:
3314   case ARM::t2LDRH_PRE:
3315   case ARM::t2LDRSBT:
3316   case ARM::t2LDRSB_POST:
3317   case ARM::t2LDRSB_PRE:
3318   case ARM::t2LDRSH_POST:
3319   case ARM::t2LDRSH_PRE:
3320   case ARM::t2LDRSHi12:
3321   case ARM::t2LDRSHi8:
3322   case ARM::t2LDRSHpci:
3323   case ARM::t2LDRSHs:
3324     return 2;
3325 
3326   case ARM::t2LDRDi8: {
3327     unsigned Rt = MI.getOperand(0).getReg();
3328     unsigned Rn = MI.getOperand(2).getReg();
3329     return (Rt == Rn) ? 3 : 2;
3330   }
3331 
3332   case ARM::t2STRB_POST:
3333   case ARM::t2STRB_PRE:
3334   case ARM::t2STRBs:
3335   case ARM::t2STRDi8:
3336   case ARM::t2STRH_POST:
3337   case ARM::t2STRH_PRE:
3338   case ARM::t2STRHs:
3339   case ARM::t2STR_POST:
3340   case ARM::t2STR_PRE:
3341   case ARM::t2STRs:
3342     return 2;
3343   }
3344 }
3345 
3346 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3347 // can't be easily determined return 0 (missing MachineMemOperand).
3348 //
3349 // FIXME: The current MachineInstr design does not support relying on machine
3350 // mem operands to determine the width of a memory access. Instead, we expect
3351 // the target to provide this information based on the instruction opcode and
3352 // operands. However, using MachineMemOperand is the best solution now for
3353 // two reasons:
3354 //
3355 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3356 // operands. This is much more dangerous than using the MachineMemOperand
3357 // sizes because CodeGen passes can insert/remove optional machine operands. In
3358 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3359 // postRA passes as well.
3360 //
3361 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3362 // machine model that calls this should handle the unknown (zero size) case.
3363 //
3364 // Long term, we should require a target hook that verifies MachineMemOperand
3365 // sizes during MC lowering. That target hook should be local to MC lowering
3366 // because we can't ensure that it is aware of other MI forms. Doing this will
3367 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3368 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3369   unsigned Size = 0;
3370   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3371                                   E = MI.memoperands_end();
3372        I != E; ++I) {
3373     Size += (*I)->getSize();
3374   }
3375   return Size / 4;
3376 }
3377 
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3378 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3379                                                     unsigned NumRegs) {
3380   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3381   switch (Opc) {
3382   default:
3383     break;
3384   case ARM::VLDMDIA_UPD:
3385   case ARM::VLDMDDB_UPD:
3386   case ARM::VLDMSIA_UPD:
3387   case ARM::VLDMSDB_UPD:
3388   case ARM::VSTMDIA_UPD:
3389   case ARM::VSTMDDB_UPD:
3390   case ARM::VSTMSIA_UPD:
3391   case ARM::VSTMSDB_UPD:
3392   case ARM::LDMIA_UPD:
3393   case ARM::LDMDA_UPD:
3394   case ARM::LDMDB_UPD:
3395   case ARM::LDMIB_UPD:
3396   case ARM::STMIA_UPD:
3397   case ARM::STMDA_UPD:
3398   case ARM::STMDB_UPD:
3399   case ARM::STMIB_UPD:
3400   case ARM::tLDMIA_UPD:
3401   case ARM::tSTMIA_UPD:
3402   case ARM::t2LDMIA_UPD:
3403   case ARM::t2LDMDB_UPD:
3404   case ARM::t2STMIA_UPD:
3405   case ARM::t2STMDB_UPD:
3406     ++UOps; // One for base register writeback.
3407     break;
3408   case ARM::LDMIA_RET:
3409   case ARM::tPOP_RET:
3410   case ARM::t2LDMIA_RET:
3411     UOps += 2; // One for base reg wb, one for write to pc.
3412     break;
3413   }
3414   return UOps;
3415 }
3416 
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3417 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3418                                           const MachineInstr &MI) const {
3419   if (!ItinData || ItinData->isEmpty())
3420     return 1;
3421 
3422   const MCInstrDesc &Desc = MI.getDesc();
3423   unsigned Class = Desc.getSchedClass();
3424   int ItinUOps = ItinData->getNumMicroOps(Class);
3425   if (ItinUOps >= 0) {
3426     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3427       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3428 
3429     return ItinUOps;
3430   }
3431 
3432   unsigned Opc = MI.getOpcode();
3433   switch (Opc) {
3434   default:
3435     llvm_unreachable("Unexpected multi-uops instruction!");
3436   case ARM::VLDMQIA:
3437   case ARM::VSTMQIA:
3438     return 2;
3439 
3440   // The number of uOps for load / store multiple are determined by the number
3441   // registers.
3442   //
3443   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3444   // same cycle. The scheduling for the first load / store must be done
3445   // separately by assuming the address is not 64-bit aligned.
3446   //
3447   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3448   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3449   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3450   case ARM::VLDMDIA:
3451   case ARM::VLDMDIA_UPD:
3452   case ARM::VLDMDDB_UPD:
3453   case ARM::VLDMSIA:
3454   case ARM::VLDMSIA_UPD:
3455   case ARM::VLDMSDB_UPD:
3456   case ARM::VSTMDIA:
3457   case ARM::VSTMDIA_UPD:
3458   case ARM::VSTMDDB_UPD:
3459   case ARM::VSTMSIA:
3460   case ARM::VSTMSIA_UPD:
3461   case ARM::VSTMSDB_UPD: {
3462     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3463     return (NumRegs / 2) + (NumRegs % 2) + 1;
3464   }
3465 
3466   case ARM::LDMIA_RET:
3467   case ARM::LDMIA:
3468   case ARM::LDMDA:
3469   case ARM::LDMDB:
3470   case ARM::LDMIB:
3471   case ARM::LDMIA_UPD:
3472   case ARM::LDMDA_UPD:
3473   case ARM::LDMDB_UPD:
3474   case ARM::LDMIB_UPD:
3475   case ARM::STMIA:
3476   case ARM::STMDA:
3477   case ARM::STMDB:
3478   case ARM::STMIB:
3479   case ARM::STMIA_UPD:
3480   case ARM::STMDA_UPD:
3481   case ARM::STMDB_UPD:
3482   case ARM::STMIB_UPD:
3483   case ARM::tLDMIA:
3484   case ARM::tLDMIA_UPD:
3485   case ARM::tSTMIA_UPD:
3486   case ARM::tPOP_RET:
3487   case ARM::tPOP:
3488   case ARM::tPUSH:
3489   case ARM::t2LDMIA_RET:
3490   case ARM::t2LDMIA:
3491   case ARM::t2LDMDB:
3492   case ARM::t2LDMIA_UPD:
3493   case ARM::t2LDMDB_UPD:
3494   case ARM::t2STMIA:
3495   case ARM::t2STMDB:
3496   case ARM::t2STMIA_UPD:
3497   case ARM::t2STMDB_UPD: {
3498     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3499     switch (Subtarget.getLdStMultipleTiming()) {
3500     case ARMSubtarget::SingleIssuePlusExtras:
3501       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3502     case ARMSubtarget::SingleIssue:
3503       // Assume the worst.
3504       return NumRegs;
3505     case ARMSubtarget::DoubleIssue: {
3506       if (NumRegs < 4)
3507         return 2;
3508       // 4 registers would be issued: 2, 2.
3509       // 5 registers would be issued: 2, 2, 1.
3510       unsigned UOps = (NumRegs / 2);
3511       if (NumRegs % 2)
3512         ++UOps;
3513       return UOps;
3514     }
3515     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3516       unsigned UOps = (NumRegs / 2);
3517       // If there are odd number of registers or if it's not 64-bit aligned,
3518       // then it takes an extra AGU (Address Generation Unit) cycle.
3519       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3520           (*MI.memoperands_begin())->getAlignment() < 8)
3521         ++UOps;
3522       return UOps;
3523       }
3524     }
3525   }
3526   }
3527   llvm_unreachable("Didn't find the number of microops");
3528 }
3529 
3530 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3531 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3532                                   const MCInstrDesc &DefMCID,
3533                                   unsigned DefClass,
3534                                   unsigned DefIdx, unsigned DefAlign) const {
3535   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3536   if (RegNo <= 0)
3537     // Def is the address writeback.
3538     return ItinData->getOperandCycle(DefClass, DefIdx);
3539 
3540   int DefCycle;
3541   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3542     // (regno / 2) + (regno % 2) + 1
3543     DefCycle = RegNo / 2 + 1;
3544     if (RegNo % 2)
3545       ++DefCycle;
3546   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3547     DefCycle = RegNo;
3548     bool isSLoad = false;
3549 
3550     switch (DefMCID.getOpcode()) {
3551     default: break;
3552     case ARM::VLDMSIA:
3553     case ARM::VLDMSIA_UPD:
3554     case ARM::VLDMSDB_UPD:
3555       isSLoad = true;
3556       break;
3557     }
3558 
3559     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3560     // then it takes an extra cycle.
3561     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3562       ++DefCycle;
3563   } else {
3564     // Assume the worst.
3565     DefCycle = RegNo + 2;
3566   }
3567 
3568   return DefCycle;
3569 }
3570 
isLDMBaseRegInList(const MachineInstr & MI) const3571 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3572   unsigned BaseReg = MI.getOperand(0).getReg();
3573   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3574     const auto &Op = MI.getOperand(i);
3575     if (Op.isReg() && Op.getReg() == BaseReg)
3576       return true;
3577   }
3578   return false;
3579 }
3580 unsigned
getLDMVariableDefsSize(const MachineInstr & MI) const3581 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3582   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3583   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3584   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3585 }
3586 
3587 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3588 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3589                                  const MCInstrDesc &DefMCID,
3590                                  unsigned DefClass,
3591                                  unsigned DefIdx, unsigned DefAlign) const {
3592   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3593   if (RegNo <= 0)
3594     // Def is the address writeback.
3595     return ItinData->getOperandCycle(DefClass, DefIdx);
3596 
3597   int DefCycle;
3598   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3599     // 4 registers would be issued: 1, 2, 1.
3600     // 5 registers would be issued: 1, 2, 2.
3601     DefCycle = RegNo / 2;
3602     if (DefCycle < 1)
3603       DefCycle = 1;
3604     // Result latency is issue cycle + 2: E2.
3605     DefCycle += 2;
3606   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3607     DefCycle = (RegNo / 2);
3608     // If there are odd number of registers or if it's not 64-bit aligned,
3609     // then it takes an extra AGU (Address Generation Unit) cycle.
3610     if ((RegNo % 2) || DefAlign < 8)
3611       ++DefCycle;
3612     // Result latency is AGU cycles + 2.
3613     DefCycle += 2;
3614   } else {
3615     // Assume the worst.
3616     DefCycle = RegNo + 2;
3617   }
3618 
3619   return DefCycle;
3620 }
3621 
3622 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3623 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3624                                   const MCInstrDesc &UseMCID,
3625                                   unsigned UseClass,
3626                                   unsigned UseIdx, unsigned UseAlign) const {
3627   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3628   if (RegNo <= 0)
3629     return ItinData->getOperandCycle(UseClass, UseIdx);
3630 
3631   int UseCycle;
3632   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3633     // (regno / 2) + (regno % 2) + 1
3634     UseCycle = RegNo / 2 + 1;
3635     if (RegNo % 2)
3636       ++UseCycle;
3637   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3638     UseCycle = RegNo;
3639     bool isSStore = false;
3640 
3641     switch (UseMCID.getOpcode()) {
3642     default: break;
3643     case ARM::VSTMSIA:
3644     case ARM::VSTMSIA_UPD:
3645     case ARM::VSTMSDB_UPD:
3646       isSStore = true;
3647       break;
3648     }
3649 
3650     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3651     // then it takes an extra cycle.
3652     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3653       ++UseCycle;
3654   } else {
3655     // Assume the worst.
3656     UseCycle = RegNo + 2;
3657   }
3658 
3659   return UseCycle;
3660 }
3661 
3662 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3663 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3664                                  const MCInstrDesc &UseMCID,
3665                                  unsigned UseClass,
3666                                  unsigned UseIdx, unsigned UseAlign) const {
3667   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3668   if (RegNo <= 0)
3669     return ItinData->getOperandCycle(UseClass, UseIdx);
3670 
3671   int UseCycle;
3672   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3673     UseCycle = RegNo / 2;
3674     if (UseCycle < 2)
3675       UseCycle = 2;
3676     // Read in E3.
3677     UseCycle += 2;
3678   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3679     UseCycle = (RegNo / 2);
3680     // If there are odd number of registers or if it's not 64-bit aligned,
3681     // then it takes an extra AGU (Address Generation Unit) cycle.
3682     if ((RegNo % 2) || UseAlign < 8)
3683       ++UseCycle;
3684   } else {
3685     // Assume the worst.
3686     UseCycle = 1;
3687   }
3688   return UseCycle;
3689 }
3690 
3691 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3692 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3693                                     const MCInstrDesc &DefMCID,
3694                                     unsigned DefIdx, unsigned DefAlign,
3695                                     const MCInstrDesc &UseMCID,
3696                                     unsigned UseIdx, unsigned UseAlign) const {
3697   unsigned DefClass = DefMCID.getSchedClass();
3698   unsigned UseClass = UseMCID.getSchedClass();
3699 
3700   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3701     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3702 
3703   // This may be a def / use of a variable_ops instruction, the operand
3704   // latency might be determinable dynamically. Let the target try to
3705   // figure it out.
3706   int DefCycle = -1;
3707   bool LdmBypass = false;
3708   switch (DefMCID.getOpcode()) {
3709   default:
3710     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3711     break;
3712 
3713   case ARM::VLDMDIA:
3714   case ARM::VLDMDIA_UPD:
3715   case ARM::VLDMDDB_UPD:
3716   case ARM::VLDMSIA:
3717   case ARM::VLDMSIA_UPD:
3718   case ARM::VLDMSDB_UPD:
3719     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3720     break;
3721 
3722   case ARM::LDMIA_RET:
3723   case ARM::LDMIA:
3724   case ARM::LDMDA:
3725   case ARM::LDMDB:
3726   case ARM::LDMIB:
3727   case ARM::LDMIA_UPD:
3728   case ARM::LDMDA_UPD:
3729   case ARM::LDMDB_UPD:
3730   case ARM::LDMIB_UPD:
3731   case ARM::tLDMIA:
3732   case ARM::tLDMIA_UPD:
3733   case ARM::tPUSH:
3734   case ARM::t2LDMIA_RET:
3735   case ARM::t2LDMIA:
3736   case ARM::t2LDMDB:
3737   case ARM::t2LDMIA_UPD:
3738   case ARM::t2LDMDB_UPD:
3739     LdmBypass = true;
3740     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3741     break;
3742   }
3743 
3744   if (DefCycle == -1)
3745     // We can't seem to determine the result latency of the def, assume it's 2.
3746     DefCycle = 2;
3747 
3748   int UseCycle = -1;
3749   switch (UseMCID.getOpcode()) {
3750   default:
3751     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3752     break;
3753 
3754   case ARM::VSTMDIA:
3755   case ARM::VSTMDIA_UPD:
3756   case ARM::VSTMDDB_UPD:
3757   case ARM::VSTMSIA:
3758   case ARM::VSTMSIA_UPD:
3759   case ARM::VSTMSDB_UPD:
3760     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3761     break;
3762 
3763   case ARM::STMIA:
3764   case ARM::STMDA:
3765   case ARM::STMDB:
3766   case ARM::STMIB:
3767   case ARM::STMIA_UPD:
3768   case ARM::STMDA_UPD:
3769   case ARM::STMDB_UPD:
3770   case ARM::STMIB_UPD:
3771   case ARM::tSTMIA_UPD:
3772   case ARM::tPOP_RET:
3773   case ARM::tPOP:
3774   case ARM::t2STMIA:
3775   case ARM::t2STMDB:
3776   case ARM::t2STMIA_UPD:
3777   case ARM::t2STMDB_UPD:
3778     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3779     break;
3780   }
3781 
3782   if (UseCycle == -1)
3783     // Assume it's read in the first stage.
3784     UseCycle = 1;
3785 
3786   UseCycle = DefCycle - UseCycle + 1;
3787   if (UseCycle > 0) {
3788     if (LdmBypass) {
3789       // It's a variable_ops instruction so we can't use DefIdx here. Just use
3790       // first def operand.
3791       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3792                                           UseClass, UseIdx))
3793         --UseCycle;
3794     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3795                                                UseClass, UseIdx)) {
3796       --UseCycle;
3797     }
3798   }
3799 
3800   return UseCycle;
3801 }
3802 
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)3803 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3804                                            const MachineInstr *MI, unsigned Reg,
3805                                            unsigned &DefIdx, unsigned &Dist) {
3806   Dist = 0;
3807 
3808   MachineBasicBlock::const_iterator I = MI; ++I;
3809   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3810   assert(II->isInsideBundle() && "Empty bundle?");
3811 
3812   int Idx = -1;
3813   while (II->isInsideBundle()) {
3814     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3815     if (Idx != -1)
3816       break;
3817     --II;
3818     ++Dist;
3819   }
3820 
3821   assert(Idx != -1 && "Cannot find bundled definition!");
3822   DefIdx = Idx;
3823   return &*II;
3824 }
3825 
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)3826 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3827                                            const MachineInstr &MI, unsigned Reg,
3828                                            unsigned &UseIdx, unsigned &Dist) {
3829   Dist = 0;
3830 
3831   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3832   assert(II->isInsideBundle() && "Empty bundle?");
3833   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3834 
3835   // FIXME: This doesn't properly handle multiple uses.
3836   int Idx = -1;
3837   while (II != E && II->isInsideBundle()) {
3838     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3839     if (Idx != -1)
3840       break;
3841     if (II->getOpcode() != ARM::t2IT)
3842       ++Dist;
3843     ++II;
3844   }
3845 
3846   if (Idx == -1) {
3847     Dist = 0;
3848     return nullptr;
3849   }
3850 
3851   UseIdx = Idx;
3852   return &*II;
3853 }
3854 
3855 /// Return the number of cycles to add to (or subtract from) the static
3856 /// itinerary based on the def opcode and alignment. The caller will ensure that
3857 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)3858 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3859                             const MachineInstr &DefMI,
3860                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
3861   int Adjust = 0;
3862   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3863     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3864     // variants are one cycle cheaper.
3865     switch (DefMCID.getOpcode()) {
3866     default: break;
3867     case ARM::LDRrs:
3868     case ARM::LDRBrs: {
3869       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3870       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3871       if (ShImm == 0 ||
3872           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3873         --Adjust;
3874       break;
3875     }
3876     case ARM::t2LDRs:
3877     case ARM::t2LDRBs:
3878     case ARM::t2LDRHs:
3879     case ARM::t2LDRSHs: {
3880       // Thumb2 mode: lsl only.
3881       unsigned ShAmt = DefMI.getOperand(3).getImm();
3882       if (ShAmt == 0 || ShAmt == 2)
3883         --Adjust;
3884       break;
3885     }
3886     }
3887   } else if (Subtarget.isSwift()) {
3888     // FIXME: Properly handle all of the latency adjustments for address
3889     // writeback.
3890     switch (DefMCID.getOpcode()) {
3891     default: break;
3892     case ARM::LDRrs:
3893     case ARM::LDRBrs: {
3894       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3895       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3896       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3897       if (!isSub &&
3898           (ShImm == 0 ||
3899            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3900             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3901         Adjust -= 2;
3902       else if (!isSub &&
3903                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3904         --Adjust;
3905       break;
3906     }
3907     case ARM::t2LDRs:
3908     case ARM::t2LDRBs:
3909     case ARM::t2LDRHs:
3910     case ARM::t2LDRSHs: {
3911       // Thumb2 mode: lsl only.
3912       unsigned ShAmt = DefMI.getOperand(3).getImm();
3913       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3914         Adjust -= 2;
3915       break;
3916     }
3917     }
3918   }
3919 
3920   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3921     switch (DefMCID.getOpcode()) {
3922     default: break;
3923     case ARM::VLD1q8:
3924     case ARM::VLD1q16:
3925     case ARM::VLD1q32:
3926     case ARM::VLD1q64:
3927     case ARM::VLD1q8wb_fixed:
3928     case ARM::VLD1q16wb_fixed:
3929     case ARM::VLD1q32wb_fixed:
3930     case ARM::VLD1q64wb_fixed:
3931     case ARM::VLD1q8wb_register:
3932     case ARM::VLD1q16wb_register:
3933     case ARM::VLD1q32wb_register:
3934     case ARM::VLD1q64wb_register:
3935     case ARM::VLD2d8:
3936     case ARM::VLD2d16:
3937     case ARM::VLD2d32:
3938     case ARM::VLD2q8:
3939     case ARM::VLD2q16:
3940     case ARM::VLD2q32:
3941     case ARM::VLD2d8wb_fixed:
3942     case ARM::VLD2d16wb_fixed:
3943     case ARM::VLD2d32wb_fixed:
3944     case ARM::VLD2q8wb_fixed:
3945     case ARM::VLD2q16wb_fixed:
3946     case ARM::VLD2q32wb_fixed:
3947     case ARM::VLD2d8wb_register:
3948     case ARM::VLD2d16wb_register:
3949     case ARM::VLD2d32wb_register:
3950     case ARM::VLD2q8wb_register:
3951     case ARM::VLD2q16wb_register:
3952     case ARM::VLD2q32wb_register:
3953     case ARM::VLD3d8:
3954     case ARM::VLD3d16:
3955     case ARM::VLD3d32:
3956     case ARM::VLD1d64T:
3957     case ARM::VLD3d8_UPD:
3958     case ARM::VLD3d16_UPD:
3959     case ARM::VLD3d32_UPD:
3960     case ARM::VLD1d64Twb_fixed:
3961     case ARM::VLD1d64Twb_register:
3962     case ARM::VLD3q8_UPD:
3963     case ARM::VLD3q16_UPD:
3964     case ARM::VLD3q32_UPD:
3965     case ARM::VLD4d8:
3966     case ARM::VLD4d16:
3967     case ARM::VLD4d32:
3968     case ARM::VLD1d64Q:
3969     case ARM::VLD4d8_UPD:
3970     case ARM::VLD4d16_UPD:
3971     case ARM::VLD4d32_UPD:
3972     case ARM::VLD1d64Qwb_fixed:
3973     case ARM::VLD1d64Qwb_register:
3974     case ARM::VLD4q8_UPD:
3975     case ARM::VLD4q16_UPD:
3976     case ARM::VLD4q32_UPD:
3977     case ARM::VLD1DUPq8:
3978     case ARM::VLD1DUPq16:
3979     case ARM::VLD1DUPq32:
3980     case ARM::VLD1DUPq8wb_fixed:
3981     case ARM::VLD1DUPq16wb_fixed:
3982     case ARM::VLD1DUPq32wb_fixed:
3983     case ARM::VLD1DUPq8wb_register:
3984     case ARM::VLD1DUPq16wb_register:
3985     case ARM::VLD1DUPq32wb_register:
3986     case ARM::VLD2DUPd8:
3987     case ARM::VLD2DUPd16:
3988     case ARM::VLD2DUPd32:
3989     case ARM::VLD2DUPd8wb_fixed:
3990     case ARM::VLD2DUPd16wb_fixed:
3991     case ARM::VLD2DUPd32wb_fixed:
3992     case ARM::VLD2DUPd8wb_register:
3993     case ARM::VLD2DUPd16wb_register:
3994     case ARM::VLD2DUPd32wb_register:
3995     case ARM::VLD4DUPd8:
3996     case ARM::VLD4DUPd16:
3997     case ARM::VLD4DUPd32:
3998     case ARM::VLD4DUPd8_UPD:
3999     case ARM::VLD4DUPd16_UPD:
4000     case ARM::VLD4DUPd32_UPD:
4001     case ARM::VLD1LNd8:
4002     case ARM::VLD1LNd16:
4003     case ARM::VLD1LNd32:
4004     case ARM::VLD1LNd8_UPD:
4005     case ARM::VLD1LNd16_UPD:
4006     case ARM::VLD1LNd32_UPD:
4007     case ARM::VLD2LNd8:
4008     case ARM::VLD2LNd16:
4009     case ARM::VLD2LNd32:
4010     case ARM::VLD2LNq16:
4011     case ARM::VLD2LNq32:
4012     case ARM::VLD2LNd8_UPD:
4013     case ARM::VLD2LNd16_UPD:
4014     case ARM::VLD2LNd32_UPD:
4015     case ARM::VLD2LNq16_UPD:
4016     case ARM::VLD2LNq32_UPD:
4017     case ARM::VLD4LNd8:
4018     case ARM::VLD4LNd16:
4019     case ARM::VLD4LNd32:
4020     case ARM::VLD4LNq16:
4021     case ARM::VLD4LNq32:
4022     case ARM::VLD4LNd8_UPD:
4023     case ARM::VLD4LNd16_UPD:
4024     case ARM::VLD4LNd32_UPD:
4025     case ARM::VLD4LNq16_UPD:
4026     case ARM::VLD4LNq32_UPD:
4027       // If the address is not 64-bit aligned, the latencies of these
4028       // instructions increases by one.
4029       ++Adjust;
4030       break;
4031     }
4032   }
4033   return Adjust;
4034 }
4035 
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4036 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4037                                         const MachineInstr &DefMI,
4038                                         unsigned DefIdx,
4039                                         const MachineInstr &UseMI,
4040                                         unsigned UseIdx) const {
4041   // No operand latency. The caller may fall back to getInstrLatency.
4042   if (!ItinData || ItinData->isEmpty())
4043     return -1;
4044 
4045   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4046   unsigned Reg = DefMO.getReg();
4047 
4048   const MachineInstr *ResolvedDefMI = &DefMI;
4049   unsigned DefAdj = 0;
4050   if (DefMI.isBundle())
4051     ResolvedDefMI =
4052         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4053   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4054       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4055     return 1;
4056   }
4057 
4058   const MachineInstr *ResolvedUseMI = &UseMI;
4059   unsigned UseAdj = 0;
4060   if (UseMI.isBundle()) {
4061     ResolvedUseMI =
4062         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4063     if (!ResolvedUseMI)
4064       return -1;
4065   }
4066 
4067   return getOperandLatencyImpl(
4068       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4069       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4070 }
4071 
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const4072 int ARMBaseInstrInfo::getOperandLatencyImpl(
4073     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4074     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4075     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4076     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4077   if (Reg == ARM::CPSR) {
4078     if (DefMI.getOpcode() == ARM::FMSTAT) {
4079       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4080       return Subtarget.isLikeA9() ? 1 : 20;
4081     }
4082 
4083     // CPSR set and branch can be paired in the same cycle.
4084     if (UseMI.isBranch())
4085       return 0;
4086 
4087     // Otherwise it takes the instruction latency (generally one).
4088     unsigned Latency = getInstrLatency(ItinData, DefMI);
4089 
4090     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4091     // its uses. Instructions which are otherwise scheduled between them may
4092     // incur a code size penalty (not able to use the CPSR setting 16-bit
4093     // instructions).
4094     if (Latency > 0 && Subtarget.isThumb2()) {
4095       const MachineFunction *MF = DefMI.getParent()->getParent();
4096       // FIXME: Use Function::optForSize().
4097       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4098         --Latency;
4099     }
4100     return Latency;
4101   }
4102 
4103   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4104     return -1;
4105 
4106   unsigned DefAlign = DefMI.hasOneMemOperand()
4107                           ? (*DefMI.memoperands_begin())->getAlignment()
4108                           : 0;
4109   unsigned UseAlign = UseMI.hasOneMemOperand()
4110                           ? (*UseMI.memoperands_begin())->getAlignment()
4111                           : 0;
4112 
4113   // Get the itinerary's latency if possible, and handle variable_ops.
4114   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4115                                   UseIdx, UseAlign);
4116   // Unable to find operand latency. The caller may resort to getInstrLatency.
4117   if (Latency < 0)
4118     return Latency;
4119 
4120   // Adjust for IT block position.
4121   int Adj = DefAdj + UseAdj;
4122 
4123   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4124   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4125   if (Adj >= 0 || (int)Latency > -Adj) {
4126     return Latency + Adj;
4127   }
4128   // Return the itinerary latency, which may be zero but not less than zero.
4129   return Latency;
4130 }
4131 
4132 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const4133 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4134                                     SDNode *DefNode, unsigned DefIdx,
4135                                     SDNode *UseNode, unsigned UseIdx) const {
4136   if (!DefNode->isMachineOpcode())
4137     return 1;
4138 
4139   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4140 
4141   if (isZeroCost(DefMCID.Opcode))
4142     return 0;
4143 
4144   if (!ItinData || ItinData->isEmpty())
4145     return DefMCID.mayLoad() ? 3 : 1;
4146 
4147   if (!UseNode->isMachineOpcode()) {
4148     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4149     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4150     int Threshold = 1 + Adj;
4151     return Latency <= Threshold ? 1 : Latency - Adj;
4152   }
4153 
4154   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4155   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4156   unsigned DefAlign = !DefMN->memoperands_empty()
4157     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4158   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4159   unsigned UseAlign = !UseMN->memoperands_empty()
4160     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4161   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4162                                   UseMCID, UseIdx, UseAlign);
4163 
4164   if (Latency > 1 &&
4165       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4166        Subtarget.isCortexA7())) {
4167     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4168     // variants are one cycle cheaper.
4169     switch (DefMCID.getOpcode()) {
4170     default: break;
4171     case ARM::LDRrs:
4172     case ARM::LDRBrs: {
4173       unsigned ShOpVal =
4174         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4175       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4176       if (ShImm == 0 ||
4177           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4178         --Latency;
4179       break;
4180     }
4181     case ARM::t2LDRs:
4182     case ARM::t2LDRBs:
4183     case ARM::t2LDRHs:
4184     case ARM::t2LDRSHs: {
4185       // Thumb2 mode: lsl only.
4186       unsigned ShAmt =
4187         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4188       if (ShAmt == 0 || ShAmt == 2)
4189         --Latency;
4190       break;
4191     }
4192     }
4193   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4194     // FIXME: Properly handle all of the latency adjustments for address
4195     // writeback.
4196     switch (DefMCID.getOpcode()) {
4197     default: break;
4198     case ARM::LDRrs:
4199     case ARM::LDRBrs: {
4200       unsigned ShOpVal =
4201         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4202       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4203       if (ShImm == 0 ||
4204           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4205            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4206         Latency -= 2;
4207       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4208         --Latency;
4209       break;
4210     }
4211     case ARM::t2LDRs:
4212     case ARM::t2LDRBs:
4213     case ARM::t2LDRHs:
4214     case ARM::t2LDRSHs:
4215       // Thumb2 mode: lsl 0-3 only.
4216       Latency -= 2;
4217       break;
4218     }
4219   }
4220 
4221   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4222     switch (DefMCID.getOpcode()) {
4223     default: break;
4224     case ARM::VLD1q8:
4225     case ARM::VLD1q16:
4226     case ARM::VLD1q32:
4227     case ARM::VLD1q64:
4228     case ARM::VLD1q8wb_register:
4229     case ARM::VLD1q16wb_register:
4230     case ARM::VLD1q32wb_register:
4231     case ARM::VLD1q64wb_register:
4232     case ARM::VLD1q8wb_fixed:
4233     case ARM::VLD1q16wb_fixed:
4234     case ARM::VLD1q32wb_fixed:
4235     case ARM::VLD1q64wb_fixed:
4236     case ARM::VLD2d8:
4237     case ARM::VLD2d16:
4238     case ARM::VLD2d32:
4239     case ARM::VLD2q8Pseudo:
4240     case ARM::VLD2q16Pseudo:
4241     case ARM::VLD2q32Pseudo:
4242     case ARM::VLD2d8wb_fixed:
4243     case ARM::VLD2d16wb_fixed:
4244     case ARM::VLD2d32wb_fixed:
4245     case ARM::VLD2q8PseudoWB_fixed:
4246     case ARM::VLD2q16PseudoWB_fixed:
4247     case ARM::VLD2q32PseudoWB_fixed:
4248     case ARM::VLD2d8wb_register:
4249     case ARM::VLD2d16wb_register:
4250     case ARM::VLD2d32wb_register:
4251     case ARM::VLD2q8PseudoWB_register:
4252     case ARM::VLD2q16PseudoWB_register:
4253     case ARM::VLD2q32PseudoWB_register:
4254     case ARM::VLD3d8Pseudo:
4255     case ARM::VLD3d16Pseudo:
4256     case ARM::VLD3d32Pseudo:
4257     case ARM::VLD1d8TPseudo:
4258     case ARM::VLD1d16TPseudo:
4259     case ARM::VLD1d32TPseudo:
4260     case ARM::VLD1d64TPseudo:
4261     case ARM::VLD1d64TPseudoWB_fixed:
4262     case ARM::VLD1d64TPseudoWB_register:
4263     case ARM::VLD3d8Pseudo_UPD:
4264     case ARM::VLD3d16Pseudo_UPD:
4265     case ARM::VLD3d32Pseudo_UPD:
4266     case ARM::VLD3q8Pseudo_UPD:
4267     case ARM::VLD3q16Pseudo_UPD:
4268     case ARM::VLD3q32Pseudo_UPD:
4269     case ARM::VLD3q8oddPseudo:
4270     case ARM::VLD3q16oddPseudo:
4271     case ARM::VLD3q32oddPseudo:
4272     case ARM::VLD3q8oddPseudo_UPD:
4273     case ARM::VLD3q16oddPseudo_UPD:
4274     case ARM::VLD3q32oddPseudo_UPD:
4275     case ARM::VLD4d8Pseudo:
4276     case ARM::VLD4d16Pseudo:
4277     case ARM::VLD4d32Pseudo:
4278     case ARM::VLD1d8QPseudo:
4279     case ARM::VLD1d16QPseudo:
4280     case ARM::VLD1d32QPseudo:
4281     case ARM::VLD1d64QPseudo:
4282     case ARM::VLD1d64QPseudoWB_fixed:
4283     case ARM::VLD1d64QPseudoWB_register:
4284     case ARM::VLD1q8HighQPseudo:
4285     case ARM::VLD1q8LowQPseudo_UPD:
4286     case ARM::VLD1q8HighTPseudo:
4287     case ARM::VLD1q8LowTPseudo_UPD:
4288     case ARM::VLD1q16HighQPseudo:
4289     case ARM::VLD1q16LowQPseudo_UPD:
4290     case ARM::VLD1q16HighTPseudo:
4291     case ARM::VLD1q16LowTPseudo_UPD:
4292     case ARM::VLD1q32HighQPseudo:
4293     case ARM::VLD1q32LowQPseudo_UPD:
4294     case ARM::VLD1q32HighTPseudo:
4295     case ARM::VLD1q32LowTPseudo_UPD:
4296     case ARM::VLD1q64HighQPseudo:
4297     case ARM::VLD1q64LowQPseudo_UPD:
4298     case ARM::VLD1q64HighTPseudo:
4299     case ARM::VLD1q64LowTPseudo_UPD:
4300     case ARM::VLD4d8Pseudo_UPD:
4301     case ARM::VLD4d16Pseudo_UPD:
4302     case ARM::VLD4d32Pseudo_UPD:
4303     case ARM::VLD4q8Pseudo_UPD:
4304     case ARM::VLD4q16Pseudo_UPD:
4305     case ARM::VLD4q32Pseudo_UPD:
4306     case ARM::VLD4q8oddPseudo:
4307     case ARM::VLD4q16oddPseudo:
4308     case ARM::VLD4q32oddPseudo:
4309     case ARM::VLD4q8oddPseudo_UPD:
4310     case ARM::VLD4q16oddPseudo_UPD:
4311     case ARM::VLD4q32oddPseudo_UPD:
4312     case ARM::VLD1DUPq8:
4313     case ARM::VLD1DUPq16:
4314     case ARM::VLD1DUPq32:
4315     case ARM::VLD1DUPq8wb_fixed:
4316     case ARM::VLD1DUPq16wb_fixed:
4317     case ARM::VLD1DUPq32wb_fixed:
4318     case ARM::VLD1DUPq8wb_register:
4319     case ARM::VLD1DUPq16wb_register:
4320     case ARM::VLD1DUPq32wb_register:
4321     case ARM::VLD2DUPd8:
4322     case ARM::VLD2DUPd16:
4323     case ARM::VLD2DUPd32:
4324     case ARM::VLD2DUPd8wb_fixed:
4325     case ARM::VLD2DUPd16wb_fixed:
4326     case ARM::VLD2DUPd32wb_fixed:
4327     case ARM::VLD2DUPd8wb_register:
4328     case ARM::VLD2DUPd16wb_register:
4329     case ARM::VLD2DUPd32wb_register:
4330     case ARM::VLD2DUPq8EvenPseudo:
4331     case ARM::VLD2DUPq8OddPseudo:
4332     case ARM::VLD2DUPq16EvenPseudo:
4333     case ARM::VLD2DUPq16OddPseudo:
4334     case ARM::VLD2DUPq32EvenPseudo:
4335     case ARM::VLD2DUPq32OddPseudo:
4336     case ARM::VLD3DUPq8EvenPseudo:
4337     case ARM::VLD3DUPq8OddPseudo:
4338     case ARM::VLD3DUPq16EvenPseudo:
4339     case ARM::VLD3DUPq16OddPseudo:
4340     case ARM::VLD3DUPq32EvenPseudo:
4341     case ARM::VLD3DUPq32OddPseudo:
4342     case ARM::VLD4DUPd8Pseudo:
4343     case ARM::VLD4DUPd16Pseudo:
4344     case ARM::VLD4DUPd32Pseudo:
4345     case ARM::VLD4DUPd8Pseudo_UPD:
4346     case ARM::VLD4DUPd16Pseudo_UPD:
4347     case ARM::VLD4DUPd32Pseudo_UPD:
4348     case ARM::VLD4DUPq8EvenPseudo:
4349     case ARM::VLD4DUPq8OddPseudo:
4350     case ARM::VLD4DUPq16EvenPseudo:
4351     case ARM::VLD4DUPq16OddPseudo:
4352     case ARM::VLD4DUPq32EvenPseudo:
4353     case ARM::VLD4DUPq32OddPseudo:
4354     case ARM::VLD1LNq8Pseudo:
4355     case ARM::VLD1LNq16Pseudo:
4356     case ARM::VLD1LNq32Pseudo:
4357     case ARM::VLD1LNq8Pseudo_UPD:
4358     case ARM::VLD1LNq16Pseudo_UPD:
4359     case ARM::VLD1LNq32Pseudo_UPD:
4360     case ARM::VLD2LNd8Pseudo:
4361     case ARM::VLD2LNd16Pseudo:
4362     case ARM::VLD2LNd32Pseudo:
4363     case ARM::VLD2LNq16Pseudo:
4364     case ARM::VLD2LNq32Pseudo:
4365     case ARM::VLD2LNd8Pseudo_UPD:
4366     case ARM::VLD2LNd16Pseudo_UPD:
4367     case ARM::VLD2LNd32Pseudo_UPD:
4368     case ARM::VLD2LNq16Pseudo_UPD:
4369     case ARM::VLD2LNq32Pseudo_UPD:
4370     case ARM::VLD4LNd8Pseudo:
4371     case ARM::VLD4LNd16Pseudo:
4372     case ARM::VLD4LNd32Pseudo:
4373     case ARM::VLD4LNq16Pseudo:
4374     case ARM::VLD4LNq32Pseudo:
4375     case ARM::VLD4LNd8Pseudo_UPD:
4376     case ARM::VLD4LNd16Pseudo_UPD:
4377     case ARM::VLD4LNd32Pseudo_UPD:
4378     case ARM::VLD4LNq16Pseudo_UPD:
4379     case ARM::VLD4LNq32Pseudo_UPD:
4380       // If the address is not 64-bit aligned, the latencies of these
4381       // instructions increases by one.
4382       ++Latency;
4383       break;
4384     }
4385 
4386   return Latency;
4387 }
4388 
getPredicationCost(const MachineInstr & MI) const4389 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4390   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4391       MI.isImplicitDef())
4392     return 0;
4393 
4394   if (MI.isBundle())
4395     return 0;
4396 
4397   const MCInstrDesc &MCID = MI.getDesc();
4398 
4399   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4400                         !Subtarget.cheapPredicableCPSRDef())) {
4401     // When predicated, CPSR is an additional source operand for CPSR updating
4402     // instructions, this apparently increases their latencies.
4403     return 1;
4404   }
4405   return 0;
4406 }
4407 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4408 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4409                                            const MachineInstr &MI,
4410                                            unsigned *PredCost) const {
4411   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4412       MI.isImplicitDef())
4413     return 1;
4414 
4415   // An instruction scheduler typically runs on unbundled instructions, however
4416   // other passes may query the latency of a bundled instruction.
4417   if (MI.isBundle()) {
4418     unsigned Latency = 0;
4419     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4420     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4421     while (++I != E && I->isInsideBundle()) {
4422       if (I->getOpcode() != ARM::t2IT)
4423         Latency += getInstrLatency(ItinData, *I, PredCost);
4424     }
4425     return Latency;
4426   }
4427 
4428   const MCInstrDesc &MCID = MI.getDesc();
4429   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4430                                      !Subtarget.cheapPredicableCPSRDef()))) {
4431     // When predicated, CPSR is an additional source operand for CPSR updating
4432     // instructions, this apparently increases their latencies.
4433     *PredCost = 1;
4434   }
4435   // Be sure to call getStageLatency for an empty itinerary in case it has a
4436   // valid MinLatency property.
4437   if (!ItinData)
4438     return MI.mayLoad() ? 3 : 1;
4439 
4440   unsigned Class = MCID.getSchedClass();
4441 
4442   // For instructions with variable uops, use uops as latency.
4443   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4444     return getNumMicroOps(ItinData, MI);
4445 
4446   // For the common case, fall back on the itinerary's latency.
4447   unsigned Latency = ItinData->getStageLatency(Class);
4448 
4449   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4450   unsigned DefAlign =
4451       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4452   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4453   if (Adj >= 0 || (int)Latency > -Adj) {
4454     return Latency + Adj;
4455   }
4456   return Latency;
4457 }
4458 
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4459 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4460                                       SDNode *Node) const {
4461   if (!Node->isMachineOpcode())
4462     return 1;
4463 
4464   if (!ItinData || ItinData->isEmpty())
4465     return 1;
4466 
4467   unsigned Opcode = Node->getMachineOpcode();
4468   switch (Opcode) {
4469   default:
4470     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4471   case ARM::VLDMQIA:
4472   case ARM::VSTMQIA:
4473     return 2;
4474   }
4475 }
4476 
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4477 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4478                                              const MachineRegisterInfo *MRI,
4479                                              const MachineInstr &DefMI,
4480                                              unsigned DefIdx,
4481                                              const MachineInstr &UseMI,
4482                                              unsigned UseIdx) const {
4483   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4484   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4485   if (Subtarget.nonpipelinedVFP() &&
4486       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4487     return true;
4488 
4489   // Hoist VFP / NEON instructions with 4 or higher latency.
4490   unsigned Latency =
4491       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4492   if (Latency <= 3)
4493     return false;
4494   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4495          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4496 }
4497 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4498 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4499                                         const MachineInstr &DefMI,
4500                                         unsigned DefIdx) const {
4501   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4502   if (!ItinData || ItinData->isEmpty())
4503     return false;
4504 
4505   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4506   if (DDomain == ARMII::DomainGeneral) {
4507     unsigned DefClass = DefMI.getDesc().getSchedClass();
4508     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4509     return (DefCycle != -1 && DefCycle <= 2);
4510   }
4511   return false;
4512 }
4513 
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4514 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4515                                          StringRef &ErrInfo) const {
4516   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4517     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4518     return false;
4519   }
4520   return true;
4521 }
4522 
4523 // LoadStackGuard has so far only been implemented for MachO. Different code
4524 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4525 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4526                                                 unsigned LoadImmOpc,
4527                                                 unsigned LoadOpc) const {
4528   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4529          "ROPI/RWPI not currently supported with stack guard");
4530 
4531   MachineBasicBlock &MBB = *MI->getParent();
4532   DebugLoc DL = MI->getDebugLoc();
4533   unsigned Reg = MI->getOperand(0).getReg();
4534   const GlobalValue *GV =
4535       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4536   MachineInstrBuilder MIB;
4537 
4538   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4539       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4540 
4541   if (Subtarget.isGVIndirectSymbol(GV)) {
4542     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4543     MIB.addReg(Reg, RegState::Kill).addImm(0);
4544     auto Flags = MachineMemOperand::MOLoad |
4545                  MachineMemOperand::MODereferenceable |
4546                  MachineMemOperand::MOInvariant;
4547     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4548         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4549     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4550   }
4551 
4552   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4553   MIB.addReg(Reg, RegState::Kill)
4554       .addImm(0)
4555       .cloneMemRefs(*MI)
4556       .add(predOps(ARMCC::AL));
4557 }
4558 
4559 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4560 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4561                                      unsigned &AddSubOpc,
4562                                      bool &NegAcc, bool &HasLane) const {
4563   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4564   if (I == MLxEntryMap.end())
4565     return false;
4566 
4567   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4568   MulOpc = Entry.MulOpc;
4569   AddSubOpc = Entry.AddSubOpc;
4570   NegAcc = Entry.NegAcc;
4571   HasLane = Entry.HasLane;
4572   return true;
4573 }
4574 
4575 //===----------------------------------------------------------------------===//
4576 // Execution domains.
4577 //===----------------------------------------------------------------------===//
4578 //
4579 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4580 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4581 // but they can be changed to vorr equivalents that are executed by the NEON
4582 // pipeline.
4583 //
4584 // We use the following execution domain numbering:
4585 //
4586 enum ARMExeDomain {
4587   ExeGeneric = 0,
4588   ExeVFP = 1,
4589   ExeNEON = 2
4590 };
4591 
4592 //
4593 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4594 //
4595 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const4596 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4597   // If we don't have access to NEON instructions then we won't be able
4598   // to swizzle anything to the NEON domain. Check to make sure.
4599   if (Subtarget.hasNEON()) {
4600     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4601     // if they are not predicated.
4602     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4603       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4604 
4605     // CortexA9 is particularly picky about mixing the two and wants these
4606     // converted.
4607     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4608         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4609          MI.getOpcode() == ARM::VMOVS))
4610       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4611   }
4612   // No other instructions can be swizzled, so just determine their domain.
4613   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4614 
4615   if (Domain & ARMII::DomainNEON)
4616     return std::make_pair(ExeNEON, 0);
4617 
4618   // Certain instructions can go either way on Cortex-A8.
4619   // Treat them as NEON instructions.
4620   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4621     return std::make_pair(ExeNEON, 0);
4622 
4623   if (Domain & ARMII::DomainVFP)
4624     return std::make_pair(ExeVFP, 0);
4625 
4626   return std::make_pair(ExeGeneric, 0);
4627 }
4628 
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4629 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4630                                             unsigned SReg, unsigned &Lane) {
4631   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4632   Lane = 0;
4633 
4634   if (DReg != ARM::NoRegister)
4635    return DReg;
4636 
4637   Lane = 1;
4638   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4639 
4640   assert(DReg && "S-register with no D super-register?");
4641   return DReg;
4642 }
4643 
4644 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4645 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4646 /// zero if no register needs to be defined as implicit-use.
4647 ///
4648 /// If the function cannot determine if an SPR should be marked implicit use or
4649 /// not, it returns false.
4650 ///
4651 /// This function handles cases where an instruction is being modified from taking
4652 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4653 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4654 /// lane of the DPR).
4655 ///
4656 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4657 /// (including the case where the DPR itself is defined), it should not.
4658 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4659 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4660                                        MachineInstr &MI, unsigned DReg,
4661                                        unsigned Lane, unsigned &ImplicitSReg) {
4662   // If the DPR is defined or used already, the other SPR lane will be chained
4663   // correctly, so there is nothing to be done.
4664   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4665     ImplicitSReg = 0;
4666     return true;
4667   }
4668 
4669   // Otherwise we need to go searching to see if the SPR is set explicitly.
4670   ImplicitSReg = TRI->getSubReg(DReg,
4671                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4672   MachineBasicBlock::LivenessQueryResult LQR =
4673       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4674 
4675   if (LQR == MachineBasicBlock::LQR_Live)
4676     return true;
4677   else if (LQR == MachineBasicBlock::LQR_Unknown)
4678     return false;
4679 
4680   // If the register is known not to be live, there is no need to add an
4681   // implicit-use.
4682   ImplicitSReg = 0;
4683   return true;
4684 }
4685 
setExecutionDomain(MachineInstr & MI,unsigned Domain) const4686 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4687                                           unsigned Domain) const {
4688   unsigned DstReg, SrcReg, DReg;
4689   unsigned Lane;
4690   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4691   const TargetRegisterInfo *TRI = &getRegisterInfo();
4692   switch (MI.getOpcode()) {
4693   default:
4694     llvm_unreachable("cannot handle opcode!");
4695     break;
4696   case ARM::VMOVD:
4697     if (Domain != ExeNEON)
4698       break;
4699 
4700     // Zap the predicate operands.
4701     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4702 
4703     // Make sure we've got NEON instructions.
4704     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4705 
4706     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4707     DstReg = MI.getOperand(0).getReg();
4708     SrcReg = MI.getOperand(1).getReg();
4709 
4710     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4711       MI.RemoveOperand(i - 1);
4712 
4713     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4714     MI.setDesc(get(ARM::VORRd));
4715     MIB.addReg(DstReg, RegState::Define)
4716         .addReg(SrcReg)
4717         .addReg(SrcReg)
4718         .add(predOps(ARMCC::AL));
4719     break;
4720   case ARM::VMOVRS:
4721     if (Domain != ExeNEON)
4722       break;
4723     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4724 
4725     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4726     DstReg = MI.getOperand(0).getReg();
4727     SrcReg = MI.getOperand(1).getReg();
4728 
4729     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4730       MI.RemoveOperand(i - 1);
4731 
4732     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4733 
4734     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4735     // Note that DSrc has been widened and the other lane may be undef, which
4736     // contaminates the entire register.
4737     MI.setDesc(get(ARM::VGETLNi32));
4738     MIB.addReg(DstReg, RegState::Define)
4739         .addReg(DReg, RegState::Undef)
4740         .addImm(Lane)
4741         .add(predOps(ARMCC::AL));
4742 
4743     // The old source should be an implicit use, otherwise we might think it
4744     // was dead before here.
4745     MIB.addReg(SrcReg, RegState::Implicit);
4746     break;
4747   case ARM::VMOVSR: {
4748     if (Domain != ExeNEON)
4749       break;
4750     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4751 
4752     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4753     DstReg = MI.getOperand(0).getReg();
4754     SrcReg = MI.getOperand(1).getReg();
4755 
4756     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4757 
4758     unsigned ImplicitSReg;
4759     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4760       break;
4761 
4762     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4763       MI.RemoveOperand(i - 1);
4764 
4765     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4766     // Again DDst may be undefined at the beginning of this instruction.
4767     MI.setDesc(get(ARM::VSETLNi32));
4768     MIB.addReg(DReg, RegState::Define)
4769         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4770         .addReg(SrcReg)
4771         .addImm(Lane)
4772         .add(predOps(ARMCC::AL));
4773 
4774     // The narrower destination must be marked as set to keep previous chains
4775     // in place.
4776     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4777     if (ImplicitSReg != 0)
4778       MIB.addReg(ImplicitSReg, RegState::Implicit);
4779     break;
4780     }
4781     case ARM::VMOVS: {
4782       if (Domain != ExeNEON)
4783         break;
4784 
4785       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4786       DstReg = MI.getOperand(0).getReg();
4787       SrcReg = MI.getOperand(1).getReg();
4788 
4789       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4790       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4791       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4792 
4793       unsigned ImplicitSReg;
4794       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4795         break;
4796 
4797       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4798         MI.RemoveOperand(i - 1);
4799 
4800       if (DSrc == DDst) {
4801         // Destination can be:
4802         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4803         MI.setDesc(get(ARM::VDUPLN32d));
4804         MIB.addReg(DDst, RegState::Define)
4805             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4806             .addImm(SrcLane)
4807             .add(predOps(ARMCC::AL));
4808 
4809         // Neither the source or the destination are naturally represented any
4810         // more, so add them in manually.
4811         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4812         MIB.addReg(SrcReg, RegState::Implicit);
4813         if (ImplicitSReg != 0)
4814           MIB.addReg(ImplicitSReg, RegState::Implicit);
4815         break;
4816       }
4817 
4818       // In general there's no single instruction that can perform an S <-> S
4819       // move in NEON space, but a pair of VEXT instructions *can* do the
4820       // job. It turns out that the VEXTs needed will only use DSrc once, with
4821       // the position based purely on the combination of lane-0 and lane-1
4822       // involved. For example
4823       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4824       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4825       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4826       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4827       //
4828       // Pattern of the MachineInstrs is:
4829       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4830       MachineInstrBuilder NewMIB;
4831       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4832                        DDst);
4833 
4834       // On the first instruction, both DSrc and DDst may be undef if present.
4835       // Specifically when the original instruction didn't have them as an
4836       // <imp-use>.
4837       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4838       bool CurUndef = !MI.readsRegister(CurReg, TRI);
4839       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4840 
4841       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4842       CurUndef = !MI.readsRegister(CurReg, TRI);
4843       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
4844             .addImm(1)
4845             .add(predOps(ARMCC::AL));
4846 
4847       if (SrcLane == DstLane)
4848         NewMIB.addReg(SrcReg, RegState::Implicit);
4849 
4850       MI.setDesc(get(ARM::VEXTd32));
4851       MIB.addReg(DDst, RegState::Define);
4852 
4853       // On the second instruction, DDst has definitely been defined above, so
4854       // it is not undef. DSrc, if present, can be undef as above.
4855       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4856       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4857       MIB.addReg(CurReg, getUndefRegState(CurUndef));
4858 
4859       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4860       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4861       MIB.addReg(CurReg, getUndefRegState(CurUndef))
4862          .addImm(1)
4863          .add(predOps(ARMCC::AL));
4864 
4865       if (SrcLane != DstLane)
4866         MIB.addReg(SrcReg, RegState::Implicit);
4867 
4868       // As before, the original destination is no longer represented, add it
4869       // implicitly.
4870       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4871       if (ImplicitSReg != 0)
4872         MIB.addReg(ImplicitSReg, RegState::Implicit);
4873       break;
4874     }
4875   }
4876 }
4877 
4878 //===----------------------------------------------------------------------===//
4879 // Partial register updates
4880 //===----------------------------------------------------------------------===//
4881 //
4882 // Swift renames NEON registers with 64-bit granularity.  That means any
4883 // instruction writing an S-reg implicitly reads the containing D-reg.  The
4884 // problem is mostly avoided by translating f32 operations to v2f32 operations
4885 // on D-registers, but f32 loads are still a problem.
4886 //
4887 // These instructions can load an f32 into a NEON register:
4888 //
4889 // VLDRS - Only writes S, partial D update.
4890 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4891 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4892 //
4893 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4894 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4895     const MachineInstr &MI, unsigned OpNum,
4896     const TargetRegisterInfo *TRI) const {
4897   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4898   if (!PartialUpdateClearance)
4899     return 0;
4900 
4901   assert(TRI && "Need TRI instance");
4902 
4903   const MachineOperand &MO = MI.getOperand(OpNum);
4904   if (MO.readsReg())
4905     return 0;
4906   unsigned Reg = MO.getReg();
4907   int UseOp = -1;
4908 
4909   switch (MI.getOpcode()) {
4910   // Normal instructions writing only an S-register.
4911   case ARM::VLDRS:
4912   case ARM::FCONSTS:
4913   case ARM::VMOVSR:
4914   case ARM::VMOVv8i8:
4915   case ARM::VMOVv4i16:
4916   case ARM::VMOVv2i32:
4917   case ARM::VMOVv2f32:
4918   case ARM::VMOVv1i64:
4919     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4920     break;
4921 
4922     // Explicitly reads the dependency.
4923   case ARM::VLD1LNd32:
4924     UseOp = 3;
4925     break;
4926   default:
4927     return 0;
4928   }
4929 
4930   // If this instruction actually reads a value from Reg, there is no unwanted
4931   // dependency.
4932   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4933     return 0;
4934 
4935   // We must be able to clobber the whole D-reg.
4936   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4937     // Virtual register must be a def undef foo:ssub_0 operand.
4938     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4939       return 0;
4940   } else if (ARM::SPRRegClass.contains(Reg)) {
4941     // Physical register: MI must define the full D-reg.
4942     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4943                                              &ARM::DPRRegClass);
4944     if (!DReg || !MI.definesRegister(DReg, TRI))
4945       return 0;
4946   }
4947 
4948   // MI has an unwanted D-register dependency.
4949   // Avoid defs in the previous N instructrions.
4950   return PartialUpdateClearance;
4951 }
4952 
4953 // Break a partial register dependency after getPartialRegUpdateClearance
4954 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4955 void ARMBaseInstrInfo::breakPartialRegDependency(
4956     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4957   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
4958   assert(TRI && "Need TRI instance");
4959 
4960   const MachineOperand &MO = MI.getOperand(OpNum);
4961   unsigned Reg = MO.getReg();
4962   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4963          "Can't break virtual register dependencies.");
4964   unsigned DReg = Reg;
4965 
4966   // If MI defines an S-reg, find the corresponding D super-register.
4967   if (ARM::SPRRegClass.contains(Reg)) {
4968     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4969     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4970   }
4971 
4972   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4973   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4974 
4975   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4976   // the full D-register by loading the same value to both lanes.  The
4977   // instruction is micro-coded with 2 uops, so don't do this until we can
4978   // properly schedule micro-coded instructions.  The dispatcher stalls cause
4979   // too big regressions.
4980 
4981   // Insert the dependency-breaking FCONSTD before MI.
4982   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4983   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
4984       .addImm(96)
4985       .add(predOps(ARMCC::AL));
4986   MI.addRegisterKilled(DReg, TRI, true);
4987 }
4988 
hasNOP() const4989 bool ARMBaseInstrInfo::hasNOP() const {
4990   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4991 }
4992 
isSwiftFastImmShift(const MachineInstr * MI) const4993 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4994   if (MI->getNumOperands() < 4)
4995     return true;
4996   unsigned ShOpVal = MI->getOperand(3).getImm();
4997   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4998   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4999   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5000       ((ShImm == 1 || ShImm == 2) &&
5001        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5002     return true;
5003 
5004   return false;
5005 }
5006 
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const5007 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5008     const MachineInstr &MI, unsigned DefIdx,
5009     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5010   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5011   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5012 
5013   switch (MI.getOpcode()) {
5014   case ARM::VMOVDRR:
5015     // dX = VMOVDRR rY, rZ
5016     // is the same as:
5017     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5018     // Populate the InputRegs accordingly.
5019     // rY
5020     const MachineOperand *MOReg = &MI.getOperand(1);
5021     if (!MOReg->isUndef())
5022       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5023                                               MOReg->getSubReg(), ARM::ssub_0));
5024     // rZ
5025     MOReg = &MI.getOperand(2);
5026     if (!MOReg->isUndef())
5027       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5028                                               MOReg->getSubReg(), ARM::ssub_1));
5029     return true;
5030   }
5031   llvm_unreachable("Target dependent opcode missing");
5032 }
5033 
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const5034 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5035     const MachineInstr &MI, unsigned DefIdx,
5036     RegSubRegPairAndIdx &InputReg) const {
5037   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5038   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5039 
5040   switch (MI.getOpcode()) {
5041   case ARM::VMOVRRD:
5042     // rX, rY = VMOVRRD dZ
5043     // is the same as:
5044     // rX = EXTRACT_SUBREG dZ, ssub_0
5045     // rY = EXTRACT_SUBREG dZ, ssub_1
5046     const MachineOperand &MOReg = MI.getOperand(2);
5047     if (MOReg.isUndef())
5048       return false;
5049     InputReg.Reg = MOReg.getReg();
5050     InputReg.SubReg = MOReg.getSubReg();
5051     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5052     return true;
5053   }
5054   llvm_unreachable("Target dependent opcode missing");
5055 }
5056 
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const5057 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5058     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5059     RegSubRegPairAndIdx &InsertedReg) const {
5060   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5061   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5062 
5063   switch (MI.getOpcode()) {
5064   case ARM::VSETLNi32:
5065     // dX = VSETLNi32 dY, rZ, imm
5066     const MachineOperand &MOBaseReg = MI.getOperand(1);
5067     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5068     if (MOInsertedReg.isUndef())
5069       return false;
5070     const MachineOperand &MOIndex = MI.getOperand(3);
5071     BaseReg.Reg = MOBaseReg.getReg();
5072     BaseReg.SubReg = MOBaseReg.getSubReg();
5073 
5074     InsertedReg.Reg = MOInsertedReg.getReg();
5075     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5076     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5077     return true;
5078   }
5079   llvm_unreachable("Target dependent opcode missing");
5080 }
5081 
5082 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const5083 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5084   const unsigned Mask = ARMII::MO_OPTION_MASK;
5085   return std::make_pair(TF & Mask, TF & ~Mask);
5086 }
5087 
5088 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const5089 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5090   using namespace ARMII;
5091 
5092   static const std::pair<unsigned, const char *> TargetFlags[] = {
5093       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5094   return makeArrayRef(TargetFlags);
5095 }
5096 
5097 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const5098 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5099   using namespace ARMII;
5100 
5101   static const std::pair<unsigned, const char *> TargetFlags[] = {
5102       {MO_COFFSTUB, "arm-coffstub"},
5103       {MO_GOT, "arm-got"},
5104       {MO_SBREL, "arm-sbrel"},
5105       {MO_DLLIMPORT, "arm-dllimport"},
5106       {MO_SECREL, "arm-secrel"},
5107       {MO_NONLAZY, "arm-nonlazy"}};
5108   return makeArrayRef(TargetFlags);
5109 }
5110