1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that BPF uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "BPFISelLowering.h"
16 #include "BPF.h"
17 #include "BPFSubtarget.h"
18 #include "BPFTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
34 #define DEBUG_TYPE "bpf-lower"
35
36 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
37 cl::Hidden, cl::init(false),
38 cl::desc("Expand memcpy into load/store pairs in order"));
39
fail(const SDLoc & DL,SelectionDAG & DAG,const Twine & Msg)40 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
41 MachineFunction &MF = DAG.getMachineFunction();
42 DAG.getContext()->diagnose(
43 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
44 }
45
fail(const SDLoc & DL,SelectionDAG & DAG,const char * Msg,SDValue Val)46 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
47 SDValue Val) {
48 MachineFunction &MF = DAG.getMachineFunction();
49 std::string Str;
50 raw_string_ostream OS(Str);
51 OS << Msg;
52 Val->print(OS);
53 OS.flush();
54 DAG.getContext()->diagnose(
55 DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
56 }
57
BPFTargetLowering(const TargetMachine & TM,const BPFSubtarget & STI)58 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
59 const BPFSubtarget &STI)
60 : TargetLowering(TM) {
61
62 // Set up the register classes.
63 addRegisterClass(MVT::i64, &BPF::GPRRegClass);
64 if (STI.getHasAlu32())
65 addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
66
67 // Compute derived properties from the register classes
68 computeRegisterProperties(STI.getRegisterInfo());
69
70 setStackPointerRegisterToSaveRestore(BPF::R11);
71
72 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
73 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
74 setOperationAction(ISD::BRIND, MVT::Other, Expand);
75 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
76
77 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
78
79 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
80 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
81 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
82
83 for (auto VT : { MVT::i32, MVT::i64 }) {
84 if (VT == MVT::i32 && !STI.getHasAlu32())
85 continue;
86
87 setOperationAction(ISD::SDIVREM, VT, Expand);
88 setOperationAction(ISD::UDIVREM, VT, Expand);
89 setOperationAction(ISD::SREM, VT, Expand);
90 setOperationAction(ISD::UREM, VT, Expand);
91 setOperationAction(ISD::MULHU, VT, Expand);
92 setOperationAction(ISD::MULHS, VT, Expand);
93 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
94 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
95 setOperationAction(ISD::ROTR, VT, Expand);
96 setOperationAction(ISD::ROTL, VT, Expand);
97 setOperationAction(ISD::SHL_PARTS, VT, Expand);
98 setOperationAction(ISD::SRL_PARTS, VT, Expand);
99 setOperationAction(ISD::SRA_PARTS, VT, Expand);
100 setOperationAction(ISD::CTPOP, VT, Expand);
101
102 setOperationAction(ISD::SETCC, VT, Expand);
103 setOperationAction(ISD::SELECT, VT, Expand);
104 setOperationAction(ISD::SELECT_CC, VT, Custom);
105 }
106
107 if (STI.getHasAlu32()) {
108 setOperationAction(ISD::BSWAP, MVT::i32, Promote);
109 setOperationAction(ISD::BR_CC, MVT::i32, Promote);
110 }
111
112 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
113 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
114 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
115 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
116
117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
121
122 // Extended load operations for i1 types must be promoted
123 for (MVT VT : MVT::integer_valuetypes()) {
124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127
128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
131 }
132
133 setBooleanContents(ZeroOrOneBooleanContent);
134
135 // Function alignments (log2)
136 setMinFunctionAlignment(3);
137 setPrefFunctionAlignment(3);
138
139 if (BPFExpandMemcpyInOrder) {
140 // LLVM generic code will try to expand memcpy into load/store pairs at this
141 // stage which is before quite a few IR optimization passes, therefore the
142 // loads and stores could potentially be moved apart from each other which
143 // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
144 // compilers.
145 //
146 // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
147 // of memcpy to later stage in IR optimization pipeline so those load/store
148 // pairs won't be touched and could be kept in order. Hence, we set
149 // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
150 // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
151 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
152 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
153 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
154 } else {
155 // inline memcpy() for kernel to see explicit copy
156 unsigned CommonMaxStores =
157 STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
158
159 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
160 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
161 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
162 }
163
164 // CPU/Feature control
165 HasAlu32 = STI.getHasAlu32();
166 HasJmpExt = STI.getHasJmpExt();
167 }
168
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const169 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
170 return false;
171 }
172
173 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const174 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
175 StringRef Constraint,
176 MVT VT) const {
177 if (Constraint.size() == 1)
178 // GCC Constraint Letters
179 switch (Constraint[0]) {
180 case 'r': // GENERAL_REGS
181 return std::make_pair(0U, &BPF::GPRRegClass);
182 default:
183 break;
184 }
185
186 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
187 }
188
LowerOperation(SDValue Op,SelectionDAG & DAG) const189 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
190 switch (Op.getOpcode()) {
191 case ISD::BR_CC:
192 return LowerBR_CC(Op, DAG);
193 case ISD::GlobalAddress:
194 return LowerGlobalAddress(Op, DAG);
195 case ISD::SELECT_CC:
196 return LowerSELECT_CC(Op, DAG);
197 default:
198 llvm_unreachable("unimplemented operand");
199 }
200 }
201
202 // Calling Convention Implementation
203 #include "BPFGenCallingConv.inc"
204
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const205 SDValue BPFTargetLowering::LowerFormalArguments(
206 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
207 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
208 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
209 switch (CallConv) {
210 default:
211 report_fatal_error("Unsupported calling convention");
212 case CallingConv::C:
213 case CallingConv::Fast:
214 break;
215 }
216
217 MachineFunction &MF = DAG.getMachineFunction();
218 MachineRegisterInfo &RegInfo = MF.getRegInfo();
219
220 // Assign locations to all of the incoming arguments.
221 SmallVector<CCValAssign, 16> ArgLocs;
222 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
223 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
224
225 for (auto &VA : ArgLocs) {
226 if (VA.isRegLoc()) {
227 // Arguments passed in registers
228 EVT RegVT = VA.getLocVT();
229 MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
230 switch (SimpleTy) {
231 default: {
232 errs() << "LowerFormalArguments Unhandled argument type: "
233 << RegVT.getEVTString() << '\n';
234 llvm_unreachable(0);
235 }
236 case MVT::i32:
237 case MVT::i64:
238 unsigned VReg = RegInfo.createVirtualRegister(SimpleTy == MVT::i64 ?
239 &BPF::GPRRegClass :
240 &BPF::GPR32RegClass);
241 RegInfo.addLiveIn(VA.getLocReg(), VReg);
242 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
243
244 // If this is an value that has been promoted to wider types, insert an
245 // assert[sz]ext to capture this, then truncate to the right size.
246 if (VA.getLocInfo() == CCValAssign::SExt)
247 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
248 DAG.getValueType(VA.getValVT()));
249 else if (VA.getLocInfo() == CCValAssign::ZExt)
250 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
251 DAG.getValueType(VA.getValVT()));
252
253 if (VA.getLocInfo() != CCValAssign::Full)
254 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
255
256 InVals.push_back(ArgValue);
257
258 break;
259 }
260 } else {
261 fail(DL, DAG, "defined with too many args");
262 InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
263 }
264 }
265
266 if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
267 fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
268 }
269
270 return Chain;
271 }
272
273 const unsigned BPFTargetLowering::MaxArgs = 5;
274
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const275 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
276 SmallVectorImpl<SDValue> &InVals) const {
277 SelectionDAG &DAG = CLI.DAG;
278 auto &Outs = CLI.Outs;
279 auto &OutVals = CLI.OutVals;
280 auto &Ins = CLI.Ins;
281 SDValue Chain = CLI.Chain;
282 SDValue Callee = CLI.Callee;
283 bool &IsTailCall = CLI.IsTailCall;
284 CallingConv::ID CallConv = CLI.CallConv;
285 bool IsVarArg = CLI.IsVarArg;
286 MachineFunction &MF = DAG.getMachineFunction();
287
288 // BPF target does not support tail call optimization.
289 IsTailCall = false;
290
291 switch (CallConv) {
292 default:
293 report_fatal_error("Unsupported calling convention");
294 case CallingConv::Fast:
295 case CallingConv::C:
296 break;
297 }
298
299 // Analyze operands of the call, assigning locations to each operand.
300 SmallVector<CCValAssign, 16> ArgLocs;
301 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
302
303 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
304
305 unsigned NumBytes = CCInfo.getNextStackOffset();
306
307 if (Outs.size() > MaxArgs)
308 fail(CLI.DL, DAG, "too many args to ", Callee);
309
310 for (auto &Arg : Outs) {
311 ISD::ArgFlagsTy Flags = Arg.Flags;
312 if (!Flags.isByVal())
313 continue;
314
315 fail(CLI.DL, DAG, "pass by value not supported ", Callee);
316 }
317
318 auto PtrVT = getPointerTy(MF.getDataLayout());
319 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
320
321 SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
322
323 // Walk arg assignments
324 for (unsigned i = 0,
325 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
326 i != e; ++i) {
327 CCValAssign &VA = ArgLocs[i];
328 SDValue Arg = OutVals[i];
329
330 // Promote the value if needed.
331 switch (VA.getLocInfo()) {
332 default:
333 llvm_unreachable("Unknown loc info");
334 case CCValAssign::Full:
335 break;
336 case CCValAssign::SExt:
337 Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
338 break;
339 case CCValAssign::ZExt:
340 Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
341 break;
342 case CCValAssign::AExt:
343 Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
344 break;
345 }
346
347 // Push arguments into RegsToPass vector
348 if (VA.isRegLoc())
349 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
350 else
351 llvm_unreachable("call arg pass bug");
352 }
353
354 SDValue InFlag;
355
356 // Build a sequence of copy-to-reg nodes chained together with token chain and
357 // flag operands which copy the outgoing args into registers. The InFlag in
358 // necessary since all emitted instructions must be stuck together.
359 for (auto &Reg : RegsToPass) {
360 Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
361 InFlag = Chain.getValue(1);
362 }
363
364 // If the callee is a GlobalAddress node (quite common, every direct call is)
365 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
366 // Likewise ExternalSymbol -> TargetExternalSymbol.
367 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
368 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
369 G->getOffset(), 0);
370 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
371 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
372 fail(CLI.DL, DAG, Twine("A call to built-in function '"
373 + StringRef(E->getSymbol())
374 + "' is not supported."));
375 }
376
377 // Returns a chain & a flag for retval copy to use.
378 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
379 SmallVector<SDValue, 8> Ops;
380 Ops.push_back(Chain);
381 Ops.push_back(Callee);
382
383 // Add argument registers to the end of the list so that they are
384 // known live into the call.
385 for (auto &Reg : RegsToPass)
386 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
387
388 if (InFlag.getNode())
389 Ops.push_back(InFlag);
390
391 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
392 InFlag = Chain.getValue(1);
393
394 // Create the CALLSEQ_END node.
395 Chain = DAG.getCALLSEQ_END(
396 Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
397 DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
398 InFlag = Chain.getValue(1);
399
400 // Handle result values, copying them out of physregs into vregs that we
401 // return.
402 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
403 InVals);
404 }
405
406 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const407 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
408 bool IsVarArg,
409 const SmallVectorImpl<ISD::OutputArg> &Outs,
410 const SmallVectorImpl<SDValue> &OutVals,
411 const SDLoc &DL, SelectionDAG &DAG) const {
412 unsigned Opc = BPFISD::RET_FLAG;
413
414 // CCValAssign - represent the assignment of the return value to a location
415 SmallVector<CCValAssign, 16> RVLocs;
416 MachineFunction &MF = DAG.getMachineFunction();
417
418 // CCState - Info about the registers and stack slot.
419 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
420
421 if (MF.getFunction().getReturnType()->isAggregateType()) {
422 fail(DL, DAG, "only integer returns supported");
423 return DAG.getNode(Opc, DL, MVT::Other, Chain);
424 }
425
426 // Analize return values.
427 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
428
429 SDValue Flag;
430 SmallVector<SDValue, 4> RetOps(1, Chain);
431
432 // Copy the result values into the output registers.
433 for (unsigned i = 0; i != RVLocs.size(); ++i) {
434 CCValAssign &VA = RVLocs[i];
435 assert(VA.isRegLoc() && "Can only return in registers!");
436
437 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
438
439 // Guarantee that all emitted copies are stuck together,
440 // avoiding something bad.
441 Flag = Chain.getValue(1);
442 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
443 }
444
445 RetOps[0] = Chain; // Update chain.
446
447 // Add the flag if we have it.
448 if (Flag.getNode())
449 RetOps.push_back(Flag);
450
451 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
452 }
453
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const454 SDValue BPFTargetLowering::LowerCallResult(
455 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
456 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
457 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
458
459 MachineFunction &MF = DAG.getMachineFunction();
460 // Assign locations to each value returned by this call.
461 SmallVector<CCValAssign, 16> RVLocs;
462 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
463
464 if (Ins.size() >= 2) {
465 fail(DL, DAG, "only small returns supported");
466 for (unsigned i = 0, e = Ins.size(); i != e; ++i)
467 InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
468 return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
469 }
470
471 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
472
473 // Copy all of the result registers out of their specified physreg.
474 for (auto &Val : RVLocs) {
475 Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
476 Val.getValVT(), InFlag).getValue(1);
477 InFlag = Chain.getValue(2);
478 InVals.push_back(Chain.getValue(0));
479 }
480
481 return Chain;
482 }
483
NegateCC(SDValue & LHS,SDValue & RHS,ISD::CondCode & CC)484 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
485 switch (CC) {
486 default:
487 break;
488 case ISD::SETULT:
489 case ISD::SETULE:
490 case ISD::SETLT:
491 case ISD::SETLE:
492 CC = ISD::getSetCCSwappedOperands(CC);
493 std::swap(LHS, RHS);
494 break;
495 }
496 }
497
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const498 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
499 SDValue Chain = Op.getOperand(0);
500 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
501 SDValue LHS = Op.getOperand(2);
502 SDValue RHS = Op.getOperand(3);
503 SDValue Dest = Op.getOperand(4);
504 SDLoc DL(Op);
505
506 if (!getHasJmpExt())
507 NegateCC(LHS, RHS, CC);
508
509 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
510 DAG.getConstant(CC, DL, MVT::i64), Dest);
511 }
512
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const513 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
514 SDValue LHS = Op.getOperand(0);
515 SDValue RHS = Op.getOperand(1);
516 SDValue TrueV = Op.getOperand(2);
517 SDValue FalseV = Op.getOperand(3);
518 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
519 SDLoc DL(Op);
520
521 if (!getHasJmpExt())
522 NegateCC(LHS, RHS, CC);
523
524 SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
525 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
526 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
527
528 return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
529 }
530
getTargetNodeName(unsigned Opcode) const531 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
532 switch ((BPFISD::NodeType)Opcode) {
533 case BPFISD::FIRST_NUMBER:
534 break;
535 case BPFISD::RET_FLAG:
536 return "BPFISD::RET_FLAG";
537 case BPFISD::CALL:
538 return "BPFISD::CALL";
539 case BPFISD::SELECT_CC:
540 return "BPFISD::SELECT_CC";
541 case BPFISD::BR_CC:
542 return "BPFISD::BR_CC";
543 case BPFISD::Wrapper:
544 return "BPFISD::Wrapper";
545 case BPFISD::MEMCPY:
546 return "BPFISD::MEMCPY";
547 }
548 return nullptr;
549 }
550
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const551 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
552 SelectionDAG &DAG) const {
553 auto N = cast<GlobalAddressSDNode>(Op);
554 assert(N->getOffset() == 0 && "Invalid offset for global address");
555
556 SDLoc DL(Op);
557 const GlobalValue *GV = N->getGlobal();
558 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
559
560 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
561 }
562
563 unsigned
EmitSubregExt(MachineInstr & MI,MachineBasicBlock * BB,unsigned Reg,bool isSigned) const564 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
565 unsigned Reg, bool isSigned) const {
566 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
567 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
568 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
569 MachineFunction *F = BB->getParent();
570 DebugLoc DL = MI.getDebugLoc();
571
572 MachineRegisterInfo &RegInfo = F->getRegInfo();
573 unsigned PromotedReg0 = RegInfo.createVirtualRegister(RC);
574 unsigned PromotedReg1 = RegInfo.createVirtualRegister(RC);
575 unsigned PromotedReg2 = RegInfo.createVirtualRegister(RC);
576 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
577 BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
578 .addReg(PromotedReg0).addImm(32);
579 BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
580 .addReg(PromotedReg1).addImm(32);
581
582 return PromotedReg2;
583 }
584
585 MachineBasicBlock *
EmitInstrWithCustomInserterMemcpy(MachineInstr & MI,MachineBasicBlock * BB) const586 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
587 MachineBasicBlock *BB)
588 const {
589 MachineFunction *MF = MI.getParent()->getParent();
590 MachineRegisterInfo &MRI = MF->getRegInfo();
591 MachineInstrBuilder MIB(*MF, MI);
592 unsigned ScratchReg;
593
594 // This function does custom insertion during lowering BPFISD::MEMCPY which
595 // only has two register operands from memcpy semantics, the copy source
596 // address and the copy destination address.
597 //
598 // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
599 // a third scratch register to serve as the destination register of load and
600 // source register of store.
601 //
602 // The scratch register here is with the Define | Dead | EarlyClobber flags.
603 // The EarlyClobber flag has the semantic property that the operand it is
604 // attached to is clobbered before the rest of the inputs are read. Hence it
605 // must be unique among the operands to the instruction. The Define flag is
606 // needed to coerce the machine verifier that an Undef value isn't a problem
607 // as we anyway is loading memory into it. The Dead flag is needed as the
608 // value in scratch isn't supposed to be used by any other instruction.
609 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
610 MIB.addReg(ScratchReg,
611 RegState::Define | RegState::Dead | RegState::EarlyClobber);
612
613 return BB;
614 }
615
616 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const617 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
618 MachineBasicBlock *BB) const {
619 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
620 DebugLoc DL = MI.getDebugLoc();
621 unsigned Opc = MI.getOpcode();
622 bool isSelectRROp = (Opc == BPF::Select ||
623 Opc == BPF::Select_64_32 ||
624 Opc == BPF::Select_32 ||
625 Opc == BPF::Select_32_64);
626
627 bool isMemcpyOp = Opc == BPF::MEMCPY;
628
629 #ifndef NDEBUG
630 bool isSelectRIOp = (Opc == BPF::Select_Ri ||
631 Opc == BPF::Select_Ri_64_32 ||
632 Opc == BPF::Select_Ri_32 ||
633 Opc == BPF::Select_Ri_32_64);
634
635
636 assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
637 "Unexpected instr type to insert");
638 #endif
639
640 if (isMemcpyOp)
641 return EmitInstrWithCustomInserterMemcpy(MI, BB);
642
643 bool is32BitCmp = (Opc == BPF::Select_32 ||
644 Opc == BPF::Select_32_64 ||
645 Opc == BPF::Select_Ri_32 ||
646 Opc == BPF::Select_Ri_32_64);
647
648 // To "insert" a SELECT instruction, we actually have to insert the diamond
649 // control-flow pattern. The incoming instruction knows the destination vreg
650 // to set, the condition code register to branch on, the true/false values to
651 // select between, and a branch opcode to use.
652 const BasicBlock *LLVM_BB = BB->getBasicBlock();
653 MachineFunction::iterator I = ++BB->getIterator();
654
655 // ThisMBB:
656 // ...
657 // TrueVal = ...
658 // jmp_XX r1, r2 goto Copy1MBB
659 // fallthrough --> Copy0MBB
660 MachineBasicBlock *ThisMBB = BB;
661 MachineFunction *F = BB->getParent();
662 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
663 MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
664
665 F->insert(I, Copy0MBB);
666 F->insert(I, Copy1MBB);
667 // Update machine-CFG edges by transferring all successors of the current
668 // block to the new block which will contain the Phi node for the select.
669 Copy1MBB->splice(Copy1MBB->begin(), BB,
670 std::next(MachineBasicBlock::iterator(MI)), BB->end());
671 Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
672 // Next, add the true and fallthrough blocks as its successors.
673 BB->addSuccessor(Copy0MBB);
674 BB->addSuccessor(Copy1MBB);
675
676 // Insert Branch if Flag
677 int CC = MI.getOperand(3).getImm();
678 int NewCC;
679 switch (CC) {
680 case ISD::SETGT:
681 NewCC = isSelectRROp ? BPF::JSGT_rr : BPF::JSGT_ri;
682 break;
683 case ISD::SETUGT:
684 NewCC = isSelectRROp ? BPF::JUGT_rr : BPF::JUGT_ri;
685 break;
686 case ISD::SETGE:
687 NewCC = isSelectRROp ? BPF::JSGE_rr : BPF::JSGE_ri;
688 break;
689 case ISD::SETUGE:
690 NewCC = isSelectRROp ? BPF::JUGE_rr : BPF::JUGE_ri;
691 break;
692 case ISD::SETEQ:
693 NewCC = isSelectRROp ? BPF::JEQ_rr : BPF::JEQ_ri;
694 break;
695 case ISD::SETNE:
696 NewCC = isSelectRROp ? BPF::JNE_rr : BPF::JNE_ri;
697 break;
698 case ISD::SETLT:
699 NewCC = isSelectRROp ? BPF::JSLT_rr : BPF::JSLT_ri;
700 break;
701 case ISD::SETULT:
702 NewCC = isSelectRROp ? BPF::JULT_rr : BPF::JULT_ri;
703 break;
704 case ISD::SETLE:
705 NewCC = isSelectRROp ? BPF::JSLE_rr : BPF::JSLE_ri;
706 break;
707 case ISD::SETULE:
708 NewCC = isSelectRROp ? BPF::JULE_rr : BPF::JULE_ri;
709 break;
710 default:
711 report_fatal_error("unimplemented select CondCode " + Twine(CC));
712 }
713
714 unsigned LHS = MI.getOperand(1).getReg();
715 bool isSignedCmp = (CC == ISD::SETGT ||
716 CC == ISD::SETGE ||
717 CC == ISD::SETLT ||
718 CC == ISD::SETLE);
719
720 // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
721 // to be promoted, however if the 32-bit comparison operands are destination
722 // registers then they are implicitly zero-extended already, there is no
723 // need of explicit zero-extend sequence for them.
724 //
725 // We simply do extension for all situations in this method, but we will
726 // try to remove those unnecessary in BPFMIPeephole pass.
727 if (is32BitCmp)
728 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
729
730 if (isSelectRROp) {
731 unsigned RHS = MI.getOperand(2).getReg();
732
733 if (is32BitCmp)
734 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
735
736 BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
737 } else {
738 int64_t imm32 = MI.getOperand(2).getImm();
739 // sanity check before we build J*_ri instruction.
740 assert (isInt<32>(imm32));
741 BuildMI(BB, DL, TII.get(NewCC))
742 .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
743 }
744
745 // Copy0MBB:
746 // %FalseValue = ...
747 // # fallthrough to Copy1MBB
748 BB = Copy0MBB;
749
750 // Update machine-CFG edges
751 BB->addSuccessor(Copy1MBB);
752
753 // Copy1MBB:
754 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
755 // ...
756 BB = Copy1MBB;
757 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
758 .addReg(MI.getOperand(5).getReg())
759 .addMBB(Copy0MBB)
760 .addReg(MI.getOperand(4).getReg())
761 .addMBB(ThisMBB);
762
763 MI.eraseFromParent(); // The pseudo instruction is gone now.
764 return BB;
765 }
766
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const767 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
768 EVT VT) const {
769 return getHasAlu32() ? MVT::i32 : MVT::i64;
770 }
771
getScalarShiftAmountTy(const DataLayout & DL,EVT VT) const772 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
773 EVT VT) const {
774 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
775 }
776