1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonFrameLowering.h"
17 #include "HexagonHazardRecognizer.h"
18 #include "HexagonRegisterInfo.h"
19 #include "HexagonSubtarget.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/CodeGen/DFAPacketizer.h"
25 #include "llvm/CodeGen/LivePhysRegs.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineInstrBundle.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCAsmInfo.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCInstrItineraries.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cassert>
56 #include <cctype>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "hexagon-instrinfo"
66 
67 #define GET_INSTRINFO_CTOR_DTOR
68 #define GET_INSTRMAP_INFO
69 #include "HexagonDepTimingClasses.h"
70 #include "HexagonGenDFAPacketizer.inc"
71 #include "HexagonGenInstrInfo.inc"
72 
73 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
74   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
75                             "packetization boundary."));
76 
77 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
78   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
79 
80 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
81   cl::Hidden, cl::ZeroOrMore, cl::init(false),
82   cl::desc("Disable schedule adjustment for new value stores."));
83 
84 static cl::opt<bool> EnableTimingClassLatency(
85   "enable-timing-class-latency", cl::Hidden, cl::init(false),
86   cl::desc("Enable timing class latency"));
87 
88 static cl::opt<bool> EnableALUForwarding(
89   "enable-alu-forwarding", cl::Hidden, cl::init(true),
90   cl::desc("Enable vec alu forwarding"));
91 
92 static cl::opt<bool> EnableACCForwarding(
93   "enable-acc-forwarding", cl::Hidden, cl::init(true),
94   cl::desc("Enable vec acc forwarding"));
95 
96 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
97   cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
98 
99 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
100   cl::init(true), cl::Hidden, cl::ZeroOrMore,
101   cl::desc("Use the DFA based hazard recognizer."));
102 
103 /// Constants for Hexagon instructions.
104 const int Hexagon_MEMW_OFFSET_MAX = 4095;
105 const int Hexagon_MEMW_OFFSET_MIN = -4096;
106 const int Hexagon_MEMD_OFFSET_MAX = 8191;
107 const int Hexagon_MEMD_OFFSET_MIN = -8192;
108 const int Hexagon_MEMH_OFFSET_MAX = 2047;
109 const int Hexagon_MEMH_OFFSET_MIN = -2048;
110 const int Hexagon_MEMB_OFFSET_MAX = 1023;
111 const int Hexagon_MEMB_OFFSET_MIN = -1024;
112 const int Hexagon_ADDI_OFFSET_MAX = 32767;
113 const int Hexagon_ADDI_OFFSET_MIN = -32768;
114 
115 // Pin the vtable to this file.
anchor()116 void HexagonInstrInfo::anchor() {}
117 
HexagonInstrInfo(HexagonSubtarget & ST)118 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
119   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
120     Subtarget(ST) {}
121 
isIntRegForSubInst(unsigned Reg)122 static bool isIntRegForSubInst(unsigned Reg) {
123   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
124          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
125 }
126 
isDblRegForSubInst(unsigned Reg,const HexagonRegisterInfo & HRI)127 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
128   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
129          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
130 }
131 
132 /// Calculate number of instructions excluding the debug instructions.
nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,MachineBasicBlock::const_instr_iterator MIE)133 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
134                               MachineBasicBlock::const_instr_iterator MIE) {
135   unsigned Count = 0;
136   for (; MIB != MIE; ++MIB) {
137     if (!MIB->isDebugInstr())
138       ++Count;
139   }
140   return Count;
141 }
142 
143 /// Find the hardware loop instruction used to set-up the specified loop.
144 /// On Hexagon, we have two instructions used to set-up the hardware loop
145 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
146 /// to indicate the end of a loop.
findLoopInstr(MachineBasicBlock * BB,unsigned EndLoopOp,MachineBasicBlock * TargetBB,SmallPtrSet<MachineBasicBlock *,8> & Visited) const147 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
148       unsigned EndLoopOp, MachineBasicBlock *TargetBB,
149       SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
150   unsigned LOOPi;
151   unsigned LOOPr;
152   if (EndLoopOp == Hexagon::ENDLOOP0) {
153     LOOPi = Hexagon::J2_loop0i;
154     LOOPr = Hexagon::J2_loop0r;
155   } else { // EndLoopOp == Hexagon::EndLOOP1
156     LOOPi = Hexagon::J2_loop1i;
157     LOOPr = Hexagon::J2_loop1r;
158   }
159 
160   // The loop set-up instruction will be in a predecessor block
161   for (MachineBasicBlock *PB : BB->predecessors()) {
162     // If this has been visited, already skip it.
163     if (!Visited.insert(PB).second)
164       continue;
165     if (PB == BB)
166       continue;
167     for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
168       unsigned Opc = I->getOpcode();
169       if (Opc == LOOPi || Opc == LOOPr)
170         return &*I;
171       // We've reached a different loop, which means the loop01 has been
172       // removed.
173       if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
174         return nullptr;
175     }
176     // Check the predecessors for the LOOP instruction.
177     if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
178       return Loop;
179   }
180   return nullptr;
181 }
182 
183 /// Gather register def/uses from MI.
184 /// This treats possible (predicated) defs as actually happening ones
185 /// (conservatively).
parseOperands(const MachineInstr & MI,SmallVector<unsigned,4> & Defs,SmallVector<unsigned,8> & Uses)186 static inline void parseOperands(const MachineInstr &MI,
187       SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
188   Defs.clear();
189   Uses.clear();
190 
191   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
192     const MachineOperand &MO = MI.getOperand(i);
193 
194     if (!MO.isReg())
195       continue;
196 
197     unsigned Reg = MO.getReg();
198     if (!Reg)
199       continue;
200 
201     if (MO.isUse())
202       Uses.push_back(MO.getReg());
203 
204     if (MO.isDef())
205       Defs.push_back(MO.getReg());
206   }
207 }
208 
209 // Position dependent, so check twice for swap.
isDuplexPairMatch(unsigned Ga,unsigned Gb)210 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
211   switch (Ga) {
212   case HexagonII::HSIG_None:
213   default:
214     return false;
215   case HexagonII::HSIG_L1:
216     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
217   case HexagonII::HSIG_L2:
218     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
219             Gb == HexagonII::HSIG_A);
220   case HexagonII::HSIG_S1:
221     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
222             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
223   case HexagonII::HSIG_S2:
224     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
225             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
226             Gb == HexagonII::HSIG_A);
227   case HexagonII::HSIG_A:
228     return (Gb == HexagonII::HSIG_A);
229   case HexagonII::HSIG_Compound:
230     return (Gb == HexagonII::HSIG_Compound);
231   }
232   return false;
233 }
234 
235 /// isLoadFromStackSlot - If the specified machine instruction is a direct
236 /// load from a stack slot, return the virtual or physical register number of
237 /// the destination along with the FrameIndex of the loaded stack slot.  If
238 /// not, return 0.  This predicate must return 0 if the instruction has
239 /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const240 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
241                                                int &FrameIndex) const {
242   switch (MI.getOpcode()) {
243     default:
244       break;
245     case Hexagon::L2_loadri_io:
246     case Hexagon::L2_loadrd_io:
247     case Hexagon::V6_vL32b_ai:
248     case Hexagon::V6_vL32b_nt_ai:
249     case Hexagon::V6_vL32Ub_ai:
250     case Hexagon::LDriw_pred:
251     case Hexagon::LDriw_ctr:
252     case Hexagon::PS_vloadrq_ai:
253     case Hexagon::PS_vloadrw_ai:
254     case Hexagon::PS_vloadrw_nt_ai: {
255       const MachineOperand OpFI = MI.getOperand(1);
256       if (!OpFI.isFI())
257         return 0;
258       const MachineOperand OpOff = MI.getOperand(2);
259       if (!OpOff.isImm() || OpOff.getImm() != 0)
260         return 0;
261       FrameIndex = OpFI.getIndex();
262       return MI.getOperand(0).getReg();
263     }
264 
265     case Hexagon::L2_ploadrit_io:
266     case Hexagon::L2_ploadrif_io:
267     case Hexagon::L2_ploadrdt_io:
268     case Hexagon::L2_ploadrdf_io: {
269       const MachineOperand OpFI = MI.getOperand(2);
270       if (!OpFI.isFI())
271         return 0;
272       const MachineOperand OpOff = MI.getOperand(3);
273       if (!OpOff.isImm() || OpOff.getImm() != 0)
274         return 0;
275       FrameIndex = OpFI.getIndex();
276       return MI.getOperand(0).getReg();
277     }
278   }
279 
280   return 0;
281 }
282 
283 /// isStoreToStackSlot - If the specified machine instruction is a direct
284 /// store to a stack slot, return the virtual or physical register number of
285 /// the source reg along with the FrameIndex of the loaded stack slot.  If
286 /// not, return 0.  This predicate must return 0 if the instruction has
287 /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const288 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
289                                               int &FrameIndex) const {
290   switch (MI.getOpcode()) {
291     default:
292       break;
293     case Hexagon::S2_storerb_io:
294     case Hexagon::S2_storerh_io:
295     case Hexagon::S2_storeri_io:
296     case Hexagon::S2_storerd_io:
297     case Hexagon::V6_vS32b_ai:
298     case Hexagon::V6_vS32Ub_ai:
299     case Hexagon::STriw_pred:
300     case Hexagon::STriw_ctr:
301     case Hexagon::PS_vstorerq_ai:
302     case Hexagon::PS_vstorerw_ai: {
303       const MachineOperand &OpFI = MI.getOperand(0);
304       if (!OpFI.isFI())
305         return 0;
306       const MachineOperand &OpOff = MI.getOperand(1);
307       if (!OpOff.isImm() || OpOff.getImm() != 0)
308         return 0;
309       FrameIndex = OpFI.getIndex();
310       return MI.getOperand(2).getReg();
311     }
312 
313     case Hexagon::S2_pstorerbt_io:
314     case Hexagon::S2_pstorerbf_io:
315     case Hexagon::S2_pstorerht_io:
316     case Hexagon::S2_pstorerhf_io:
317     case Hexagon::S2_pstorerit_io:
318     case Hexagon::S2_pstorerif_io:
319     case Hexagon::S2_pstorerdt_io:
320     case Hexagon::S2_pstorerdf_io: {
321       const MachineOperand &OpFI = MI.getOperand(1);
322       if (!OpFI.isFI())
323         return 0;
324       const MachineOperand &OpOff = MI.getOperand(2);
325       if (!OpOff.isImm() || OpOff.getImm() != 0)
326         return 0;
327       FrameIndex = OpFI.getIndex();
328       return MI.getOperand(3).getReg();
329     }
330   }
331 
332   return 0;
333 }
334 
335 /// This function checks if the instruction or bundle of instructions
336 /// has load from stack slot and returns frameindex and machine memory
337 /// operand of that instruction if true.
hasLoadFromStackSlot(const MachineInstr & MI,SmallVectorImpl<const MachineMemOperand * > & Accesses) const338 bool HexagonInstrInfo::hasLoadFromStackSlot(
339     const MachineInstr &MI,
340     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
341   if (MI.isBundle()) {
342     const MachineBasicBlock *MBB = MI.getParent();
343     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
344     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
345       if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
346         return true;
347     return false;
348   }
349 
350   return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
351 }
352 
353 /// This function checks if the instruction or bundle of instructions
354 /// has store to stack slot and returns frameindex and machine memory
355 /// operand of that instruction if true.
hasStoreToStackSlot(const MachineInstr & MI,SmallVectorImpl<const MachineMemOperand * > & Accesses) const356 bool HexagonInstrInfo::hasStoreToStackSlot(
357     const MachineInstr &MI,
358     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
359   if (MI.isBundle()) {
360     const MachineBasicBlock *MBB = MI.getParent();
361     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
362     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
363       if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
364         return true;
365     return false;
366   }
367 
368   return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
369 }
370 
371 /// This function can analyze one/two way branching only and should (mostly) be
372 /// called by target independent side.
373 /// First entry is always the opcode of the branching instruction, except when
374 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
375 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
376 /// e.g. Jump_c p will have
377 /// Cond[0] = Jump_c
378 /// Cond[1] = p
379 /// HW-loop ENDLOOP:
380 /// Cond[0] = ENDLOOP
381 /// Cond[1] = MBB
382 /// New value jump:
383 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
384 /// Cond[1] = R
385 /// Cond[2] = Imm
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const386 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
387                                      MachineBasicBlock *&TBB,
388                                      MachineBasicBlock *&FBB,
389                                      SmallVectorImpl<MachineOperand> &Cond,
390                                      bool AllowModify) const {
391   TBB = nullptr;
392   FBB = nullptr;
393   Cond.clear();
394 
395   // If the block has no terminators, it just falls into the block after it.
396   MachineBasicBlock::instr_iterator I = MBB.instr_end();
397   if (I == MBB.instr_begin())
398     return false;
399 
400   // A basic block may looks like this:
401   //
402   //  [   insn
403   //     EH_LABEL
404   //      insn
405   //      insn
406   //      insn
407   //     EH_LABEL
408   //      insn     ]
409   //
410   // It has two succs but does not have a terminator
411   // Don't know how to handle it.
412   do {
413     --I;
414     if (I->isEHLabel())
415       // Don't analyze EH branches.
416       return true;
417   } while (I != MBB.instr_begin());
418 
419   I = MBB.instr_end();
420   --I;
421 
422   while (I->isDebugInstr()) {
423     if (I == MBB.instr_begin())
424       return false;
425     --I;
426   }
427 
428   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
429                      I->getOperand(0).isMBB();
430   // Delete the J2_jump if it's equivalent to a fall-through.
431   if (AllowModify && JumpToBlock &&
432       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
433     LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
434     I->eraseFromParent();
435     I = MBB.instr_end();
436     if (I == MBB.instr_begin())
437       return false;
438     --I;
439   }
440   if (!isUnpredicatedTerminator(*I))
441     return false;
442 
443   // Get the last instruction in the block.
444   MachineInstr *LastInst = &*I;
445   MachineInstr *SecondLastInst = nullptr;
446   // Find one more terminator if present.
447   while (true) {
448     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
449       if (!SecondLastInst)
450         SecondLastInst = &*I;
451       else
452         // This is a third branch.
453         return true;
454     }
455     if (I == MBB.instr_begin())
456       break;
457     --I;
458   }
459 
460   int LastOpcode = LastInst->getOpcode();
461   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
462   // If the branch target is not a basic block, it could be a tail call.
463   // (It is, if the target is a function.)
464   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
465     return true;
466   if (SecLastOpcode == Hexagon::J2_jump &&
467       !SecondLastInst->getOperand(0).isMBB())
468     return true;
469 
470   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
471   bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
472 
473   if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
474     return true;
475 
476   // If there is only one terminator instruction, process it.
477   if (LastInst && !SecondLastInst) {
478     if (LastOpcode == Hexagon::J2_jump) {
479       TBB = LastInst->getOperand(0).getMBB();
480       return false;
481     }
482     if (isEndLoopN(LastOpcode)) {
483       TBB = LastInst->getOperand(0).getMBB();
484       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
485       Cond.push_back(LastInst->getOperand(0));
486       return false;
487     }
488     if (LastOpcodeHasJMP_c) {
489       TBB = LastInst->getOperand(1).getMBB();
490       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
491       Cond.push_back(LastInst->getOperand(0));
492       return false;
493     }
494     // Only supporting rr/ri versions of new-value jumps.
495     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
496       TBB = LastInst->getOperand(2).getMBB();
497       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
498       Cond.push_back(LastInst->getOperand(0));
499       Cond.push_back(LastInst->getOperand(1));
500       return false;
501     }
502     LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
503                       << " with one jump\n";);
504     // Otherwise, don't know what this is.
505     return true;
506   }
507 
508   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
509   bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
510   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
511     if (!SecondLastInst->getOperand(1).isMBB())
512       return true;
513     TBB =  SecondLastInst->getOperand(1).getMBB();
514     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
515     Cond.push_back(SecondLastInst->getOperand(0));
516     FBB = LastInst->getOperand(0).getMBB();
517     return false;
518   }
519 
520   // Only supporting rr/ri versions of new-value jumps.
521   if (SecLastOpcodeHasNVJump &&
522       (SecondLastInst->getNumExplicitOperands() == 3) &&
523       (LastOpcode == Hexagon::J2_jump)) {
524     TBB = SecondLastInst->getOperand(2).getMBB();
525     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
526     Cond.push_back(SecondLastInst->getOperand(0));
527     Cond.push_back(SecondLastInst->getOperand(1));
528     FBB = LastInst->getOperand(0).getMBB();
529     return false;
530   }
531 
532   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
533   // executed, so remove it.
534   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
535     TBB = SecondLastInst->getOperand(0).getMBB();
536     I = LastInst->getIterator();
537     if (AllowModify)
538       I->eraseFromParent();
539     return false;
540   }
541 
542   // If the block ends with an ENDLOOP, and J2_jump, handle it.
543   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
544     TBB = SecondLastInst->getOperand(0).getMBB();
545     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
546     Cond.push_back(SecondLastInst->getOperand(0));
547     FBB = LastInst->getOperand(0).getMBB();
548     return false;
549   }
550   LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
551                     << " with two jumps";);
552   // Otherwise, can't handle this.
553   return true;
554 }
555 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const556 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
557                                         int *BytesRemoved) const {
558   assert(!BytesRemoved && "code size not handled");
559 
560   LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
561   MachineBasicBlock::iterator I = MBB.end();
562   unsigned Count = 0;
563   while (I != MBB.begin()) {
564     --I;
565     if (I->isDebugInstr())
566       continue;
567     // Only removing branches from end of MBB.
568     if (!I->isBranch())
569       return Count;
570     if (Count && (I->getOpcode() == Hexagon::J2_jump))
571       llvm_unreachable("Malformed basic block: unconditional branch not last");
572     MBB.erase(&MBB.back());
573     I = MBB.end();
574     ++Count;
575   }
576   return Count;
577 }
578 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const579 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
580                                         MachineBasicBlock *TBB,
581                                         MachineBasicBlock *FBB,
582                                         ArrayRef<MachineOperand> Cond,
583                                         const DebugLoc &DL,
584                                         int *BytesAdded) const {
585   unsigned BOpc   = Hexagon::J2_jump;
586   unsigned BccOpc = Hexagon::J2_jumpt;
587   assert(validateBranchCond(Cond) && "Invalid branching condition");
588   assert(TBB && "insertBranch must not be told to insert a fallthrough");
589   assert(!BytesAdded && "code size not handled");
590 
591   // Check if reverseBranchCondition has asked to reverse this branch
592   // If we want to reverse the branch an odd number of times, we want
593   // J2_jumpf.
594   if (!Cond.empty() && Cond[0].isImm())
595     BccOpc = Cond[0].getImm();
596 
597   if (!FBB) {
598     if (Cond.empty()) {
599       // Due to a bug in TailMerging/CFG Optimization, we need to add a
600       // special case handling of a predicated jump followed by an
601       // unconditional jump. If not, Tail Merging and CFG Optimization go
602       // into an infinite loop.
603       MachineBasicBlock *NewTBB, *NewFBB;
604       SmallVector<MachineOperand, 4> Cond;
605       auto Term = MBB.getFirstTerminator();
606       if (Term != MBB.end() && isPredicated(*Term) &&
607           !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
608           MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
609         reverseBranchCondition(Cond);
610         removeBranch(MBB);
611         return insertBranch(MBB, TBB, nullptr, Cond, DL);
612       }
613       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
614     } else if (isEndLoopN(Cond[0].getImm())) {
615       int EndLoopOp = Cond[0].getImm();
616       assert(Cond[1].isMBB());
617       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
618       // Check for it, and change the BB target if needed.
619       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
620       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
621                                          VisitedBBs);
622       assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
623       Loop->getOperand(0).setMBB(TBB);
624       // Add the ENDLOOP after the finding the LOOP0.
625       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
626     } else if (isNewValueJump(Cond[0].getImm())) {
627       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
628       // New value jump
629       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
630       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
631       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
632       LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
633                         << printMBBReference(MBB););
634       if (Cond[2].isReg()) {
635         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
636         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
637           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
638       } else if(Cond[2].isImm()) {
639         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
640           addImm(Cond[2].getImm()).addMBB(TBB);
641       } else
642         llvm_unreachable("Invalid condition for branching");
643     } else {
644       assert((Cond.size() == 2) && "Malformed cond vector");
645       const MachineOperand &RO = Cond[1];
646       unsigned Flags = getUndefRegState(RO.isUndef());
647       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
648     }
649     return 1;
650   }
651   assert((!Cond.empty()) &&
652          "Cond. cannot be empty when multiple branchings are required");
653   assert((!isNewValueJump(Cond[0].getImm())) &&
654          "NV-jump cannot be inserted with another branch");
655   // Special case for hardware loops.  The condition is a basic block.
656   if (isEndLoopN(Cond[0].getImm())) {
657     int EndLoopOp = Cond[0].getImm();
658     assert(Cond[1].isMBB());
659     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
660     // Check for it, and change the BB target if needed.
661     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
662     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
663                                        VisitedBBs);
664     assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
665     Loop->getOperand(0).setMBB(TBB);
666     // Add the ENDLOOP after the finding the LOOP0.
667     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
668   } else {
669     const MachineOperand &RO = Cond[1];
670     unsigned Flags = getUndefRegState(RO.isUndef());
671     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
672   }
673   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
674 
675   return 2;
676 }
677 
678 /// Analyze the loop code to find the loop induction variable and compare used
679 /// to compute the number of iterations. Currently, we analyze loop that are
680 /// controlled using hardware loops.  In this case, the induction variable
681 /// instruction is null.  For all other cases, this function returns true, which
682 /// means we're unable to analyze it.
analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst) const683 bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
684                                    MachineInstr *&IndVarInst,
685                                    MachineInstr *&CmpInst) const {
686 
687   MachineBasicBlock *LoopEnd = L.getBottomBlock();
688   MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
689   // We really "analyze" only hardware loops right now.
690   if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
691     IndVarInst = nullptr;
692     CmpInst = &*I;
693     return false;
694   }
695   return true;
696 }
697 
698 /// Generate code to reduce the loop iteration by one and check if the loop is
699 /// finished. Return the value/register of the new loop count. this function
700 /// assumes the nth iteration is peeled first.
reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter) const701 unsigned HexagonInstrInfo::reduceLoopCount(MachineBasicBlock &MBB,
702       MachineInstr *IndVar, MachineInstr &Cmp,
703       SmallVectorImpl<MachineOperand> &Cond,
704       SmallVectorImpl<MachineInstr *> &PrevInsts,
705       unsigned Iter, unsigned MaxIter) const {
706   // We expect a hardware loop currently. This means that IndVar is set
707   // to null, and the compare is the ENDLOOP instruction.
708   assert((!IndVar) && isEndLoopN(Cmp.getOpcode())
709                    && "Expecting a hardware loop");
710   MachineFunction *MF = MBB.getParent();
711   DebugLoc DL = Cmp.getDebugLoc();
712   SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
713   MachineInstr *Loop = findLoopInstr(&MBB, Cmp.getOpcode(),
714                                      Cmp.getOperand(0).getMBB(), VisitedBBs);
715   if (!Loop)
716     return 0;
717   // If the loop trip count is a compile-time value, then just change the
718   // value.
719   if (Loop->getOpcode() == Hexagon::J2_loop0i ||
720       Loop->getOpcode() == Hexagon::J2_loop1i) {
721     int64_t Offset = Loop->getOperand(1).getImm();
722     if (Offset <= 1)
723       Loop->eraseFromParent();
724     else
725       Loop->getOperand(1).setImm(Offset - 1);
726     return Offset - 1;
727   }
728   // The loop trip count is a run-time value. We generate code to subtract
729   // one from the trip count, and update the loop instruction.
730   assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
731   unsigned LoopCount = Loop->getOperand(1).getReg();
732   // Check if we're done with the loop.
733   unsigned LoopEnd = createVR(MF, MVT::i1);
734   MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
735     addReg(LoopCount).addImm(1);
736   unsigned NewLoopCount = createVR(MF, MVT::i32);
737   MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
738     addReg(LoopCount).addImm(-1);
739   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
740   // Update the previously generated instructions with the new loop counter.
741   for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
742          E = PrevInsts.end(); I != E; ++I)
743     (*I)->substituteRegister(LoopCount, NewLoopCount, 0, HRI);
744   PrevInsts.clear();
745   PrevInsts.push_back(NewCmp);
746   PrevInsts.push_back(NewAdd);
747   // Insert the new loop instruction if this is the last time the loop is
748   // decremented.
749   if (Iter == MaxIter)
750     BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
751       addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
752   // Delete the old loop instruction.
753   if (Iter == 0)
754     Loop->eraseFromParent();
755   Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
756   Cond.push_back(NewCmp->getOperand(0));
757   return NewLoopCount;
758 }
759 
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const760 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
761       unsigned NumCycles, unsigned ExtraPredCycles,
762       BranchProbability Probability) const {
763   return nonDbgBBSize(&MBB) <= 3;
764 }
765 
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability) const766 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
767       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
768       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
769       const {
770   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
771 }
772 
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumInstrs,BranchProbability Probability) const773 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
774       unsigned NumInstrs, BranchProbability Probability) const {
775   return NumInstrs <= 4;
776 }
777 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const778 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
779                                    MachineBasicBlock::iterator I,
780                                    const DebugLoc &DL, unsigned DestReg,
781                                    unsigned SrcReg, bool KillSrc) const {
782   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
783   unsigned KillFlag = getKillRegState(KillSrc);
784 
785   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
786     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
787       .addReg(SrcReg, KillFlag);
788     return;
789   }
790   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
791     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
792       .addReg(SrcReg, KillFlag);
793     return;
794   }
795   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
796     // Map Pd = Ps to Pd = or(Ps, Ps).
797     BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
798       .addReg(SrcReg).addReg(SrcReg, KillFlag);
799     return;
800   }
801   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
802       Hexagon::IntRegsRegClass.contains(SrcReg)) {
803     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
804       .addReg(SrcReg, KillFlag);
805     return;
806   }
807   if (Hexagon::IntRegsRegClass.contains(DestReg) &&
808       Hexagon::CtrRegsRegClass.contains(SrcReg)) {
809     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
810       .addReg(SrcReg, KillFlag);
811     return;
812   }
813   if (Hexagon::ModRegsRegClass.contains(DestReg) &&
814       Hexagon::IntRegsRegClass.contains(SrcReg)) {
815     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
816       .addReg(SrcReg, KillFlag);
817     return;
818   }
819   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
820       Hexagon::IntRegsRegClass.contains(DestReg)) {
821     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
822       .addReg(SrcReg, KillFlag);
823     return;
824   }
825   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
826       Hexagon::PredRegsRegClass.contains(DestReg)) {
827     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
828       .addReg(SrcReg, KillFlag);
829     return;
830   }
831   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
832       Hexagon::IntRegsRegClass.contains(DestReg)) {
833     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
834       .addReg(SrcReg, KillFlag);
835     return;
836   }
837   if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
838     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
839       addReg(SrcReg, KillFlag);
840     return;
841   }
842   if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
843     unsigned LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
844     unsigned HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
845     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
846       .addReg(HiSrc, KillFlag)
847       .addReg(LoSrc, KillFlag);
848     return;
849   }
850   if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
851     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
852       .addReg(SrcReg)
853       .addReg(SrcReg, KillFlag);
854     return;
855   }
856   if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
857       Hexagon::HvxVRRegClass.contains(DestReg)) {
858     llvm_unreachable("Unimplemented pred to vec");
859     return;
860   }
861   if (Hexagon::HvxQRRegClass.contains(DestReg) &&
862       Hexagon::HvxVRRegClass.contains(SrcReg)) {
863     llvm_unreachable("Unimplemented vec to pred");
864     return;
865   }
866 
867 #ifndef NDEBUG
868   // Show the invalid registers to ease debugging.
869   dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
870          << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
871 #endif
872   llvm_unreachable("Unimplemented");
873 }
874 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const875 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
876       MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
877       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
878   DebugLoc DL = MBB.findDebugLoc(I);
879   MachineFunction &MF = *MBB.getParent();
880   MachineFrameInfo &MFI = MF.getFrameInfo();
881   unsigned SlotAlign = MFI.getObjectAlignment(FI);
882   unsigned RegAlign = TRI->getSpillAlignment(*RC);
883   unsigned KillFlag = getKillRegState(isKill);
884   bool HasAlloca = MFI.hasVarSizedObjects();
885   const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
886 
887   MachineMemOperand *MMO = MF.getMachineMemOperand(
888       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
889       MFI.getObjectSize(FI), SlotAlign);
890 
891   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
892     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
893       .addFrameIndex(FI).addImm(0)
894       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
895   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
896     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
897       .addFrameIndex(FI).addImm(0)
898       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
899   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
900     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
901       .addFrameIndex(FI).addImm(0)
902       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
903   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
904     BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
905       .addFrameIndex(FI).addImm(0)
906       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
907   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
908     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
909       .addFrameIndex(FI).addImm(0)
910       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
911   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
912     // If there are variable-sized objects, spills will not be aligned.
913     if (HasAlloca)
914       SlotAlign = HFI.getStackAlignment();
915     unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai
916                                         : Hexagon::V6_vS32b_ai;
917     MachineMemOperand *MMOA = MF.getMachineMemOperand(
918         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
919         MFI.getObjectSize(FI), SlotAlign);
920     BuildMI(MBB, I, DL, get(Opc))
921       .addFrameIndex(FI).addImm(0)
922       .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
923   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
924     // If there are variable-sized objects, spills will not be aligned.
925     if (HasAlloca)
926       SlotAlign = HFI.getStackAlignment();
927     unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai
928                                         : Hexagon::PS_vstorerw_ai;
929     MachineMemOperand *MMOA = MF.getMachineMemOperand(
930         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
931         MFI.getObjectSize(FI), SlotAlign);
932     BuildMI(MBB, I, DL, get(Opc))
933       .addFrameIndex(FI).addImm(0)
934       .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
935   } else {
936     llvm_unreachable("Unimplemented");
937   }
938 }
939 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const940 void HexagonInstrInfo::loadRegFromStackSlot(
941     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
942     int FI, const TargetRegisterClass *RC,
943     const TargetRegisterInfo *TRI) const {
944   DebugLoc DL = MBB.findDebugLoc(I);
945   MachineFunction &MF = *MBB.getParent();
946   MachineFrameInfo &MFI = MF.getFrameInfo();
947   unsigned SlotAlign = MFI.getObjectAlignment(FI);
948   unsigned RegAlign = TRI->getSpillAlignment(*RC);
949   bool HasAlloca = MFI.hasVarSizedObjects();
950   const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
951 
952   MachineMemOperand *MMO = MF.getMachineMemOperand(
953       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
954       MFI.getObjectSize(FI), SlotAlign);
955 
956   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
957     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
958       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
959   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
960     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
961       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
962   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
963     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
964       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
965   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
966     BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
967       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
968   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
969     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
970       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
971   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
972     // If there are variable-sized objects, spills will not be aligned.
973     if (HasAlloca)
974       SlotAlign = HFI.getStackAlignment();
975     unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai
976                                         : Hexagon::V6_vL32b_ai;
977     MachineMemOperand *MMOA = MF.getMachineMemOperand(
978         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
979         MFI.getObjectSize(FI), SlotAlign);
980     BuildMI(MBB, I, DL, get(Opc), DestReg)
981       .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
982   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
983     // If there are variable-sized objects, spills will not be aligned.
984     if (HasAlloca)
985       SlotAlign = HFI.getStackAlignment();
986     unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai
987                                         : Hexagon::PS_vloadrw_ai;
988     MachineMemOperand *MMOA = MF.getMachineMemOperand(
989         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
990         MFI.getObjectSize(FI), SlotAlign);
991     BuildMI(MBB, I, DL, get(Opc), DestReg)
992       .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
993   } else {
994     llvm_unreachable("Can't store this register to stack slot");
995   }
996 }
997 
getLiveRegsAt(LivePhysRegs & Regs,const MachineInstr & MI)998 static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
999   const MachineBasicBlock &B = *MI.getParent();
1000   Regs.addLiveOuts(B);
1001   auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
1002   for (auto I = B.rbegin(); I != E; ++I)
1003     Regs.stepBackward(*I);
1004 }
1005 
1006 /// expandPostRAPseudo - This function is called for all pseudo instructions
1007 /// that remain after register allocation. Many pseudo instructions are
1008 /// created to help register allocation. This is the place to convert them
1009 /// into real instructions. The target can edit MI in place, or it can insert
1010 /// new instructions and erase MI. The function should return true if
1011 /// anything was changed.
expandPostRAPseudo(MachineInstr & MI) const1012 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1013   MachineBasicBlock &MBB = *MI.getParent();
1014   MachineFunction &MF = *MBB.getParent();
1015   MachineRegisterInfo &MRI = MF.getRegInfo();
1016   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1017   DebugLoc DL = MI.getDebugLoc();
1018   unsigned Opc = MI.getOpcode();
1019 
1020   auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1021     unsigned Mx = MI.getOperand(MxOp).getReg();
1022     unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1023     BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1024         .add(MI.getOperand((HasImm ? 5 : 4)));
1025     auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1026         .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1027     if (HasImm)
1028       MIB.add(MI.getOperand(4));
1029     MIB.addReg(CSx, RegState::Implicit);
1030     MBB.erase(MI);
1031     return true;
1032   };
1033 
1034   switch (Opc) {
1035     case TargetOpcode::COPY: {
1036       MachineOperand &MD = MI.getOperand(0);
1037       MachineOperand &MS = MI.getOperand(1);
1038       MachineBasicBlock::iterator MBBI = MI.getIterator();
1039       if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1040         copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1041         std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1042       }
1043       MBB.erase(MBBI);
1044       return true;
1045     }
1046     case Hexagon::PS_aligna:
1047       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1048           .addReg(HRI.getFrameRegister())
1049           .addImm(-MI.getOperand(1).getImm());
1050       MBB.erase(MI);
1051       return true;
1052     case Hexagon::V6_vassignp: {
1053       unsigned SrcReg = MI.getOperand(1).getReg();
1054       unsigned DstReg = MI.getOperand(0).getReg();
1055       unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1056       BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1057         .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
1058         .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
1059       MBB.erase(MI);
1060       return true;
1061     }
1062     case Hexagon::V6_lo: {
1063       unsigned SrcReg = MI.getOperand(1).getReg();
1064       unsigned DstReg = MI.getOperand(0).getReg();
1065       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1066       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1067       MBB.erase(MI);
1068       MRI.clearKillFlags(SrcSubLo);
1069       return true;
1070     }
1071     case Hexagon::V6_hi: {
1072       unsigned SrcReg = MI.getOperand(1).getReg();
1073       unsigned DstReg = MI.getOperand(0).getReg();
1074       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1075       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1076       MBB.erase(MI);
1077       MRI.clearKillFlags(SrcSubHi);
1078       return true;
1079     }
1080     case Hexagon::PS_vstorerw_ai:
1081     case Hexagon::PS_vstorerwu_ai: {
1082       bool Aligned = Opc == Hexagon::PS_vstorerw_ai;
1083       unsigned SrcReg = MI.getOperand(2).getReg();
1084       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1085       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1086       unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai;
1087       unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1088 
1089       MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc))
1090                                  .add(MI.getOperand(0))
1091                                  .addImm(MI.getOperand(1).getImm())
1092                                  .addReg(SrcSubLo)
1093                                  .cloneMemRefs(MI);
1094       MI1New->getOperand(0).setIsKill(false);
1095       BuildMI(MBB, MI, DL, get(NewOpc))
1096           .add(MI.getOperand(0))
1097           // The Vectors are indexed in multiples of vector size.
1098           .addImm(MI.getOperand(1).getImm() + Offset)
1099           .addReg(SrcSubHi)
1100           .cloneMemRefs(MI);
1101       MBB.erase(MI);
1102       return true;
1103     }
1104     case Hexagon::PS_vloadrw_ai:
1105     case Hexagon::PS_vloadrwu_ai: {
1106       bool Aligned = Opc == Hexagon::PS_vloadrw_ai;
1107       unsigned DstReg = MI.getOperand(0).getReg();
1108       unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
1109       unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1110 
1111       MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc),
1112                                      HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1113                                  .add(MI.getOperand(1))
1114                                  .addImm(MI.getOperand(2).getImm())
1115                                  .cloneMemRefs(MI);
1116       MI1New->getOperand(1).setIsKill(false);
1117       BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1118           .add(MI.getOperand(1))
1119           // The Vectors are indexed in multiples of vector size.
1120           .addImm(MI.getOperand(2).getImm() + Offset)
1121           .cloneMemRefs(MI);
1122       MBB.erase(MI);
1123       return true;
1124     }
1125     case Hexagon::PS_true: {
1126       unsigned Reg = MI.getOperand(0).getReg();
1127       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1128         .addReg(Reg, RegState::Undef)
1129         .addReg(Reg, RegState::Undef);
1130       MBB.erase(MI);
1131       return true;
1132     }
1133     case Hexagon::PS_false: {
1134       unsigned Reg = MI.getOperand(0).getReg();
1135       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1136         .addReg(Reg, RegState::Undef)
1137         .addReg(Reg, RegState::Undef);
1138       MBB.erase(MI);
1139       return true;
1140     }
1141     case Hexagon::PS_qtrue: {
1142       BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1143         .addReg(Hexagon::V0, RegState::Undef)
1144         .addReg(Hexagon::V0, RegState::Undef);
1145       MBB.erase(MI);
1146       return true;
1147     }
1148     case Hexagon::PS_qfalse: {
1149       BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1150         .addReg(Hexagon::V0, RegState::Undef)
1151         .addReg(Hexagon::V0, RegState::Undef);
1152       MBB.erase(MI);
1153       return true;
1154     }
1155     case Hexagon::PS_vdd0: {
1156       unsigned Vd = MI.getOperand(0).getReg();
1157       BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1158         .addReg(Vd, RegState::Undef)
1159         .addReg(Vd, RegState::Undef);
1160       MBB.erase(MI);
1161       return true;
1162     }
1163     case Hexagon::PS_vmulw: {
1164       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1165       unsigned DstReg = MI.getOperand(0).getReg();
1166       unsigned Src1Reg = MI.getOperand(1).getReg();
1167       unsigned Src2Reg = MI.getOperand(2).getReg();
1168       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1169       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1170       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1171       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1172       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1173               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1174           .addReg(Src1SubHi)
1175           .addReg(Src2SubHi);
1176       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1177               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1178           .addReg(Src1SubLo)
1179           .addReg(Src2SubLo);
1180       MBB.erase(MI);
1181       MRI.clearKillFlags(Src1SubHi);
1182       MRI.clearKillFlags(Src1SubLo);
1183       MRI.clearKillFlags(Src2SubHi);
1184       MRI.clearKillFlags(Src2SubLo);
1185       return true;
1186     }
1187     case Hexagon::PS_vmulw_acc: {
1188       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1189       unsigned DstReg = MI.getOperand(0).getReg();
1190       unsigned Src1Reg = MI.getOperand(1).getReg();
1191       unsigned Src2Reg = MI.getOperand(2).getReg();
1192       unsigned Src3Reg = MI.getOperand(3).getReg();
1193       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1194       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1195       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1196       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1197       unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1198       unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1199       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1200               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1201           .addReg(Src1SubHi)
1202           .addReg(Src2SubHi)
1203           .addReg(Src3SubHi);
1204       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1205               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1206           .addReg(Src1SubLo)
1207           .addReg(Src2SubLo)
1208           .addReg(Src3SubLo);
1209       MBB.erase(MI);
1210       MRI.clearKillFlags(Src1SubHi);
1211       MRI.clearKillFlags(Src1SubLo);
1212       MRI.clearKillFlags(Src2SubHi);
1213       MRI.clearKillFlags(Src2SubLo);
1214       MRI.clearKillFlags(Src3SubHi);
1215       MRI.clearKillFlags(Src3SubLo);
1216       return true;
1217     }
1218     case Hexagon::PS_pselect: {
1219       const MachineOperand &Op0 = MI.getOperand(0);
1220       const MachineOperand &Op1 = MI.getOperand(1);
1221       const MachineOperand &Op2 = MI.getOperand(2);
1222       const MachineOperand &Op3 = MI.getOperand(3);
1223       unsigned Rd = Op0.getReg();
1224       unsigned Pu = Op1.getReg();
1225       unsigned Rs = Op2.getReg();
1226       unsigned Rt = Op3.getReg();
1227       DebugLoc DL = MI.getDebugLoc();
1228       unsigned K1 = getKillRegState(Op1.isKill());
1229       unsigned K2 = getKillRegState(Op2.isKill());
1230       unsigned K3 = getKillRegState(Op3.isKill());
1231       if (Rd != Rs)
1232         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1233           .addReg(Pu, (Rd == Rt) ? K1 : 0)
1234           .addReg(Rs, K2);
1235       if (Rd != Rt)
1236         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1237           .addReg(Pu, K1)
1238           .addReg(Rt, K3);
1239       MBB.erase(MI);
1240       return true;
1241     }
1242     case Hexagon::PS_vselect: {
1243       const MachineOperand &Op0 = MI.getOperand(0);
1244       const MachineOperand &Op1 = MI.getOperand(1);
1245       const MachineOperand &Op2 = MI.getOperand(2);
1246       const MachineOperand &Op3 = MI.getOperand(3);
1247       LivePhysRegs LiveAtMI(HRI);
1248       getLiveRegsAt(LiveAtMI, MI);
1249       bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1250       unsigned PReg = Op1.getReg();
1251       assert(Op1.getSubReg() == 0);
1252       unsigned PState = getRegState(Op1);
1253 
1254       if (Op0.getReg() != Op2.getReg()) {
1255         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1256                                                   : PState;
1257         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1258                      .add(Op0)
1259                      .addReg(PReg, S)
1260                      .add(Op2);
1261         if (IsDestLive)
1262           T.addReg(Op0.getReg(), RegState::Implicit);
1263         IsDestLive = true;
1264       }
1265       if (Op0.getReg() != Op3.getReg()) {
1266         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1267                      .add(Op0)
1268                      .addReg(PReg, PState)
1269                      .add(Op3);
1270         if (IsDestLive)
1271           T.addReg(Op0.getReg(), RegState::Implicit);
1272       }
1273       MBB.erase(MI);
1274       return true;
1275     }
1276     case Hexagon::PS_wselect: {
1277       MachineOperand &Op0 = MI.getOperand(0);
1278       MachineOperand &Op1 = MI.getOperand(1);
1279       MachineOperand &Op2 = MI.getOperand(2);
1280       MachineOperand &Op3 = MI.getOperand(3);
1281       LivePhysRegs LiveAtMI(HRI);
1282       getLiveRegsAt(LiveAtMI, MI);
1283       bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1284       unsigned PReg = Op1.getReg();
1285       assert(Op1.getSubReg() == 0);
1286       unsigned PState = getRegState(Op1);
1287 
1288       if (Op0.getReg() != Op2.getReg()) {
1289         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1290                                                   : PState;
1291         unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1292         unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1293         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1294                      .add(Op0)
1295                      .addReg(PReg, S)
1296                      .addReg(SrcHi)
1297                      .addReg(SrcLo);
1298         if (IsDestLive)
1299           T.addReg(Op0.getReg(), RegState::Implicit);
1300         IsDestLive = true;
1301       }
1302       if (Op0.getReg() != Op3.getReg()) {
1303         unsigned SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1304         unsigned SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1305         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1306                      .add(Op0)
1307                      .addReg(PReg, PState)
1308                      .addReg(SrcHi)
1309                      .addReg(SrcLo);
1310         if (IsDestLive)
1311           T.addReg(Op0.getReg(), RegState::Implicit);
1312       }
1313       MBB.erase(MI);
1314       return true;
1315     }
1316 
1317     case Hexagon::PS_tailcall_i:
1318       MI.setDesc(get(Hexagon::J2_jump));
1319       return true;
1320     case Hexagon::PS_tailcall_r:
1321     case Hexagon::PS_jmpret:
1322       MI.setDesc(get(Hexagon::J2_jumpr));
1323       return true;
1324     case Hexagon::PS_jmprett:
1325       MI.setDesc(get(Hexagon::J2_jumprt));
1326       return true;
1327     case Hexagon::PS_jmpretf:
1328       MI.setDesc(get(Hexagon::J2_jumprf));
1329       return true;
1330     case Hexagon::PS_jmprettnewpt:
1331       MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1332       return true;
1333     case Hexagon::PS_jmpretfnewpt:
1334       MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1335       return true;
1336     case Hexagon::PS_jmprettnew:
1337       MI.setDesc(get(Hexagon::J2_jumprtnew));
1338       return true;
1339     case Hexagon::PS_jmpretfnew:
1340       MI.setDesc(get(Hexagon::J2_jumprfnew));
1341       return true;
1342 
1343     case Hexagon::PS_loadrub_pci:
1344       return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true,  /*MxOp*/4);
1345     case Hexagon::PS_loadrb_pci:
1346       return RealCirc(Hexagon::L2_loadrb_pci,  /*HasImm*/true,  /*MxOp*/4);
1347     case Hexagon::PS_loadruh_pci:
1348       return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true,  /*MxOp*/4);
1349     case Hexagon::PS_loadrh_pci:
1350       return RealCirc(Hexagon::L2_loadrh_pci,  /*HasImm*/true,  /*MxOp*/4);
1351     case Hexagon::PS_loadri_pci:
1352       return RealCirc(Hexagon::L2_loadri_pci,  /*HasImm*/true,  /*MxOp*/4);
1353     case Hexagon::PS_loadrd_pci:
1354       return RealCirc(Hexagon::L2_loadrd_pci,  /*HasImm*/true,  /*MxOp*/4);
1355     case Hexagon::PS_loadrub_pcr:
1356       return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1357     case Hexagon::PS_loadrb_pcr:
1358       return RealCirc(Hexagon::L2_loadrb_pcr,  /*HasImm*/false, /*MxOp*/3);
1359     case Hexagon::PS_loadruh_pcr:
1360       return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1361     case Hexagon::PS_loadrh_pcr:
1362       return RealCirc(Hexagon::L2_loadrh_pcr,  /*HasImm*/false, /*MxOp*/3);
1363     case Hexagon::PS_loadri_pcr:
1364       return RealCirc(Hexagon::L2_loadri_pcr,  /*HasImm*/false, /*MxOp*/3);
1365     case Hexagon::PS_loadrd_pcr:
1366       return RealCirc(Hexagon::L2_loadrd_pcr,  /*HasImm*/false, /*MxOp*/3);
1367     case Hexagon::PS_storerb_pci:
1368       return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true,  /*MxOp*/3);
1369     case Hexagon::PS_storerh_pci:
1370       return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true,  /*MxOp*/3);
1371     case Hexagon::PS_storerf_pci:
1372       return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true,  /*MxOp*/3);
1373     case Hexagon::PS_storeri_pci:
1374       return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true,  /*MxOp*/3);
1375     case Hexagon::PS_storerd_pci:
1376       return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true,  /*MxOp*/3);
1377     case Hexagon::PS_storerb_pcr:
1378       return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1379     case Hexagon::PS_storerh_pcr:
1380       return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1381     case Hexagon::PS_storerf_pcr:
1382       return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1383     case Hexagon::PS_storeri_pcr:
1384       return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1385     case Hexagon::PS_storerd_pcr:
1386       return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1387   }
1388 
1389   return false;
1390 }
1391 
1392 MachineBasicBlock::instr_iterator
expandVGatherPseudo(MachineInstr & MI) const1393 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1394   MachineBasicBlock &MBB = *MI.getParent();
1395   const DebugLoc &DL = MI.getDebugLoc();
1396   unsigned Opc = MI.getOpcode();
1397   MachineBasicBlock::iterator First;
1398 
1399   switch (Opc) {
1400     case Hexagon::V6_vgathermh_pseudo:
1401       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1402                   .add(MI.getOperand(1))
1403                   .add(MI.getOperand(2))
1404                   .add(MI.getOperand(3));
1405       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1406           .add(MI.getOperand(0))
1407           .addImm(0)
1408           .addReg(Hexagon::VTMP);
1409       MBB.erase(MI);
1410       return First.getInstrIterator();
1411 
1412     case Hexagon::V6_vgathermw_pseudo:
1413       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1414                   .add(MI.getOperand(1))
1415                   .add(MI.getOperand(2))
1416                   .add(MI.getOperand(3));
1417       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1418           .add(MI.getOperand(0))
1419           .addImm(0)
1420           .addReg(Hexagon::VTMP);
1421       MBB.erase(MI);
1422       return First.getInstrIterator();
1423 
1424     case Hexagon::V6_vgathermhw_pseudo:
1425       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1426                   .add(MI.getOperand(1))
1427                   .add(MI.getOperand(2))
1428                   .add(MI.getOperand(3));
1429       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1430           .add(MI.getOperand(0))
1431           .addImm(0)
1432           .addReg(Hexagon::VTMP);
1433       MBB.erase(MI);
1434       return First.getInstrIterator();
1435 
1436     case Hexagon::V6_vgathermhq_pseudo:
1437       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1438                   .add(MI.getOperand(1))
1439                   .add(MI.getOperand(2))
1440                   .add(MI.getOperand(3))
1441                   .add(MI.getOperand(4));
1442       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1443           .add(MI.getOperand(0))
1444           .addImm(0)
1445           .addReg(Hexagon::VTMP);
1446       MBB.erase(MI);
1447       return First.getInstrIterator();
1448 
1449     case Hexagon::V6_vgathermwq_pseudo:
1450       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1451                   .add(MI.getOperand(1))
1452                   .add(MI.getOperand(2))
1453                   .add(MI.getOperand(3))
1454                   .add(MI.getOperand(4));
1455       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1456           .add(MI.getOperand(0))
1457           .addImm(0)
1458           .addReg(Hexagon::VTMP);
1459       MBB.erase(MI);
1460       return First.getInstrIterator();
1461 
1462     case Hexagon::V6_vgathermhwq_pseudo:
1463       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1464                   .add(MI.getOperand(1))
1465                   .add(MI.getOperand(2))
1466                   .add(MI.getOperand(3))
1467                   .add(MI.getOperand(4));
1468       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1469           .add(MI.getOperand(0))
1470           .addImm(0)
1471           .addReg(Hexagon::VTMP);
1472       MBB.erase(MI);
1473       return First.getInstrIterator();
1474   }
1475 
1476   return MI.getIterator();
1477 }
1478 
1479 // We indicate that we want to reverse the branch by
1480 // inserting the reversed branching opcode.
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1481 bool HexagonInstrInfo::reverseBranchCondition(
1482       SmallVectorImpl<MachineOperand> &Cond) const {
1483   if (Cond.empty())
1484     return true;
1485   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1486   unsigned opcode = Cond[0].getImm();
1487   //unsigned temp;
1488   assert(get(opcode).isBranch() && "Should be a branching condition.");
1489   if (isEndLoopN(opcode))
1490     return true;
1491   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1492   Cond[0].setImm(NewOpcode);
1493   return false;
1494 }
1495 
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const1496 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1497       MachineBasicBlock::iterator MI) const {
1498   DebugLoc DL;
1499   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1500 }
1501 
isPostIncrement(const MachineInstr & MI) const1502 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1503   return getAddrMode(MI) == HexagonII::PostInc;
1504 }
1505 
1506 // Returns true if an instruction is predicated irrespective of the predicate
1507 // sense. For example, all of the following will return true.
1508 // if (p0) R1 = add(R2, R3)
1509 // if (!p0) R1 = add(R2, R3)
1510 // if (p0.new) R1 = add(R2, R3)
1511 // if (!p0.new) R1 = add(R2, R3)
1512 // Note: New-value stores are not included here as in the current
1513 // implementation, we don't need to check their predicate sense.
isPredicated(const MachineInstr & MI) const1514 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1515   const uint64_t F = MI.getDesc().TSFlags;
1516   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1517 }
1518 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Cond) const1519 bool HexagonInstrInfo::PredicateInstruction(
1520     MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1521   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1522       isEndLoopN(Cond[0].getImm())) {
1523     LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1524     return false;
1525   }
1526   int Opc = MI.getOpcode();
1527   assert (isPredicable(MI) && "Expected predicable instruction");
1528   bool invertJump = predOpcodeHasNot(Cond);
1529 
1530   // We have to predicate MI "in place", i.e. after this function returns,
1531   // MI will need to be transformed into a predicated form. To avoid com-
1532   // plicated manipulations with the operands (handling tied operands,
1533   // etc.), build a new temporary instruction, then overwrite MI with it.
1534 
1535   MachineBasicBlock &B = *MI.getParent();
1536   DebugLoc DL = MI.getDebugLoc();
1537   unsigned PredOpc = getCondOpcode(Opc, invertJump);
1538   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1539   unsigned NOp = 0, NumOps = MI.getNumOperands();
1540   while (NOp < NumOps) {
1541     MachineOperand &Op = MI.getOperand(NOp);
1542     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1543       break;
1544     T.add(Op);
1545     NOp++;
1546   }
1547 
1548   unsigned PredReg, PredRegPos, PredRegFlags;
1549   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1550   (void)GotPredReg;
1551   assert(GotPredReg);
1552   T.addReg(PredReg, PredRegFlags);
1553   while (NOp < NumOps)
1554     T.add(MI.getOperand(NOp++));
1555 
1556   MI.setDesc(get(PredOpc));
1557   while (unsigned n = MI.getNumOperands())
1558     MI.RemoveOperand(n-1);
1559   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1560     MI.addOperand(T->getOperand(i));
1561 
1562   MachineBasicBlock::instr_iterator TI = T->getIterator();
1563   B.erase(TI);
1564 
1565   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1566   MRI.clearKillFlags(PredReg);
1567   return true;
1568 }
1569 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const1570 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1571       ArrayRef<MachineOperand> Pred2) const {
1572   // TODO: Fix this
1573   return false;
1574 }
1575 
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const1576 bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
1577       std::vector<MachineOperand> &Pred) const {
1578   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1579 
1580   for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1581     MachineOperand MO = MI.getOperand(oper);
1582     if (MO.isReg()) {
1583       if (!MO.isDef())
1584         continue;
1585       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1586       if (RC == &Hexagon::PredRegsRegClass) {
1587         Pred.push_back(MO);
1588         return true;
1589       }
1590       continue;
1591     } else if (MO.isRegMask()) {
1592       for (unsigned PR : Hexagon::PredRegsRegClass) {
1593         if (!MI.modifiesRegister(PR, &HRI))
1594           continue;
1595         Pred.push_back(MO);
1596         return true;
1597       }
1598     }
1599   }
1600   return false;
1601 }
1602 
isPredicable(const MachineInstr & MI) const1603 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1604   if (!MI.getDesc().isPredicable())
1605     return false;
1606 
1607   if (MI.isCall() || isTailCall(MI)) {
1608     if (!Subtarget.usePredicatedCalls())
1609       return false;
1610   }
1611 
1612   // HVX loads are not predicable on v60, but are on v62.
1613   if (!Subtarget.hasV62Ops()) {
1614     switch (MI.getOpcode()) {
1615       case Hexagon::V6_vL32b_ai:
1616       case Hexagon::V6_vL32b_pi:
1617       case Hexagon::V6_vL32b_ppu:
1618       case Hexagon::V6_vL32b_cur_ai:
1619       case Hexagon::V6_vL32b_cur_pi:
1620       case Hexagon::V6_vL32b_cur_ppu:
1621       case Hexagon::V6_vL32b_nt_ai:
1622       case Hexagon::V6_vL32b_nt_pi:
1623       case Hexagon::V6_vL32b_nt_ppu:
1624       case Hexagon::V6_vL32b_tmp_ai:
1625       case Hexagon::V6_vL32b_tmp_pi:
1626       case Hexagon::V6_vL32b_tmp_ppu:
1627       case Hexagon::V6_vL32b_nt_cur_ai:
1628       case Hexagon::V6_vL32b_nt_cur_pi:
1629       case Hexagon::V6_vL32b_nt_cur_ppu:
1630       case Hexagon::V6_vL32b_nt_tmp_ai:
1631       case Hexagon::V6_vL32b_nt_tmp_pi:
1632       case Hexagon::V6_vL32b_nt_tmp_ppu:
1633         return false;
1634     }
1635   }
1636   return true;
1637 }
1638 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1639 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1640                                             const MachineBasicBlock *MBB,
1641                                             const MachineFunction &MF) const {
1642   // Debug info is never a scheduling boundary. It's necessary to be explicit
1643   // due to the special treatment of IT instructions below, otherwise a
1644   // dbg_value followed by an IT will result in the IT instruction being
1645   // considered a scheduling hazard, which is wrong. It should be the actual
1646   // instruction preceding the dbg_value instruction(s), just like it is
1647   // when debug info is not present.
1648   if (MI.isDebugInstr())
1649     return false;
1650 
1651   // Throwing call is a boundary.
1652   if (MI.isCall()) {
1653     // Don't mess around with no return calls.
1654     if (doesNotReturn(MI))
1655       return true;
1656     // If any of the block's successors is a landing pad, this could be a
1657     // throwing call.
1658     for (auto I : MBB->successors())
1659       if (I->isEHPad())
1660         return true;
1661   }
1662 
1663   // Terminators and labels can't be scheduled around.
1664   if (MI.getDesc().isTerminator() || MI.isPosition())
1665     return true;
1666 
1667   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1668     return true;
1669 
1670   return false;
1671 }
1672 
1673 /// Measure the specified inline asm to determine an approximation of its
1674 /// length.
1675 /// Comments (which run till the next SeparatorString or newline) do not
1676 /// count as an instruction.
1677 /// Any other non-whitespace text is considered an instruction, with
1678 /// multiple instructions separated by SeparatorString or newlines.
1679 /// Variable-length instructions are not handled here; this function
1680 /// may be overloaded in the target code to do that.
1681 /// Hexagon counts the number of ##'s and adjust for that many
1682 /// constant exenders.
getInlineAsmLength(const char * Str,const MCAsmInfo & MAI) const1683 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1684       const MCAsmInfo &MAI) const {
1685   StringRef AStr(Str);
1686   // Count the number of instructions in the asm.
1687   bool atInsnStart = true;
1688   unsigned Length = 0;
1689   for (; *Str; ++Str) {
1690     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1691                                 strlen(MAI.getSeparatorString())) == 0)
1692       atInsnStart = true;
1693     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1694       Length += MAI.getMaxInstLength();
1695       atInsnStart = false;
1696     }
1697     if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1698                                MAI.getCommentString().size()) == 0)
1699       atInsnStart = false;
1700   }
1701 
1702   // Add to size number of constant extenders seen * 4.
1703   StringRef Occ("##");
1704   Length += AStr.count(Occ)*4;
1705   return Length;
1706 }
1707 
1708 ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const1709 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1710       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1711   if (UseDFAHazardRec)
1712     return new HexagonHazardRecognizer(II, this, Subtarget);
1713   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1714 }
1715 
1716 /// For a comparison instruction, return the source registers in
1717 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1718 /// compares against in CmpValue. Return true if the comparison instruction
1719 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const1720 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1721                                       unsigned &SrcReg2, int &Mask,
1722                                       int &Value) const {
1723   unsigned Opc = MI.getOpcode();
1724 
1725   // Set mask and the first source register.
1726   switch (Opc) {
1727     case Hexagon::C2_cmpeq:
1728     case Hexagon::C2_cmpeqp:
1729     case Hexagon::C2_cmpgt:
1730     case Hexagon::C2_cmpgtp:
1731     case Hexagon::C2_cmpgtu:
1732     case Hexagon::C2_cmpgtup:
1733     case Hexagon::C4_cmpneq:
1734     case Hexagon::C4_cmplte:
1735     case Hexagon::C4_cmplteu:
1736     case Hexagon::C2_cmpeqi:
1737     case Hexagon::C2_cmpgti:
1738     case Hexagon::C2_cmpgtui:
1739     case Hexagon::C4_cmpneqi:
1740     case Hexagon::C4_cmplteui:
1741     case Hexagon::C4_cmpltei:
1742       SrcReg = MI.getOperand(1).getReg();
1743       Mask = ~0;
1744       break;
1745     case Hexagon::A4_cmpbeq:
1746     case Hexagon::A4_cmpbgt:
1747     case Hexagon::A4_cmpbgtu:
1748     case Hexagon::A4_cmpbeqi:
1749     case Hexagon::A4_cmpbgti:
1750     case Hexagon::A4_cmpbgtui:
1751       SrcReg = MI.getOperand(1).getReg();
1752       Mask = 0xFF;
1753       break;
1754     case Hexagon::A4_cmpheq:
1755     case Hexagon::A4_cmphgt:
1756     case Hexagon::A4_cmphgtu:
1757     case Hexagon::A4_cmpheqi:
1758     case Hexagon::A4_cmphgti:
1759     case Hexagon::A4_cmphgtui:
1760       SrcReg = MI.getOperand(1).getReg();
1761       Mask = 0xFFFF;
1762       break;
1763   }
1764 
1765   // Set the value/second source register.
1766   switch (Opc) {
1767     case Hexagon::C2_cmpeq:
1768     case Hexagon::C2_cmpeqp:
1769     case Hexagon::C2_cmpgt:
1770     case Hexagon::C2_cmpgtp:
1771     case Hexagon::C2_cmpgtu:
1772     case Hexagon::C2_cmpgtup:
1773     case Hexagon::A4_cmpbeq:
1774     case Hexagon::A4_cmpbgt:
1775     case Hexagon::A4_cmpbgtu:
1776     case Hexagon::A4_cmpheq:
1777     case Hexagon::A4_cmphgt:
1778     case Hexagon::A4_cmphgtu:
1779     case Hexagon::C4_cmpneq:
1780     case Hexagon::C4_cmplte:
1781     case Hexagon::C4_cmplteu:
1782       SrcReg2 = MI.getOperand(2).getReg();
1783       return true;
1784 
1785     case Hexagon::C2_cmpeqi:
1786     case Hexagon::C2_cmpgtui:
1787     case Hexagon::C2_cmpgti:
1788     case Hexagon::C4_cmpneqi:
1789     case Hexagon::C4_cmplteui:
1790     case Hexagon::C4_cmpltei:
1791     case Hexagon::A4_cmpbeqi:
1792     case Hexagon::A4_cmpbgti:
1793     case Hexagon::A4_cmpbgtui:
1794     case Hexagon::A4_cmpheqi:
1795     case Hexagon::A4_cmphgti:
1796     case Hexagon::A4_cmphgtui: {
1797       SrcReg2 = 0;
1798       const MachineOperand &Op2 = MI.getOperand(2);
1799       if (!Op2.isImm())
1800         return false;
1801       Value = MI.getOperand(2).getImm();
1802       return true;
1803     }
1804   }
1805 
1806   return false;
1807 }
1808 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const1809 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1810                                            const MachineInstr &MI,
1811                                            unsigned *PredCost) const {
1812   return getInstrTimingClassLatency(ItinData, MI);
1813 }
1814 
CreateTargetScheduleState(const TargetSubtargetInfo & STI) const1815 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1816     const TargetSubtargetInfo &STI) const {
1817   const InstrItineraryData *II = STI.getInstrItineraryData();
1818   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1819 }
1820 
1821 // Inspired by this pair:
1822 //  %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1823 //  S2_storeri_io %r29, 132, killed %r1; flags:  mem:ST4[FixedStack1]
1824 // Currently AA considers the addresses in these instructions to be aliasing.
areMemAccessesTriviallyDisjoint(MachineInstr & MIa,MachineInstr & MIb,AliasAnalysis * AA) const1825 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1826     MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const {
1827   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1828       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1829     return false;
1830 
1831   // Instructions that are pure loads, not loads and stores like memops are not
1832   // dependent.
1833   if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1834     return true;
1835 
1836   // Get the base register in MIa.
1837   unsigned BasePosA, OffsetPosA;
1838   if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1839     return false;
1840   const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1841   unsigned BaseRegA = BaseA.getReg();
1842   unsigned BaseSubA = BaseA.getSubReg();
1843 
1844   // Get the base register in MIb.
1845   unsigned BasePosB, OffsetPosB;
1846   if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1847     return false;
1848   const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1849   unsigned BaseRegB = BaseB.getReg();
1850   unsigned BaseSubB = BaseB.getSubReg();
1851 
1852   if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1853     return false;
1854 
1855   // Get the access sizes.
1856   unsigned SizeA = getMemAccessSize(MIa);
1857   unsigned SizeB = getMemAccessSize(MIb);
1858 
1859   // Get the offsets. Handle immediates only for now.
1860   const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1861   const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1862   if (!MIa.getOperand(OffsetPosA).isImm() ||
1863       !MIb.getOperand(OffsetPosB).isImm())
1864     return false;
1865   int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1866   int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1867 
1868   // This is a mem access with the same base register and known offsets from it.
1869   // Reason about it.
1870   if (OffsetA > OffsetB) {
1871     uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1872     return SizeB <= OffDiff;
1873   }
1874   if (OffsetA < OffsetB) {
1875     uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1876     return SizeA <= OffDiff;
1877   }
1878 
1879   return false;
1880 }
1881 
1882 /// If the instruction is an increment of a constant value, return the amount.
getIncrementValue(const MachineInstr & MI,int & Value) const1883 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1884       int &Value) const {
1885   if (isPostIncrement(MI)) {
1886     unsigned BasePos = 0, OffsetPos = 0;
1887     if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
1888       return false;
1889     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
1890     if (OffsetOp.isImm()) {
1891       Value = OffsetOp.getImm();
1892       return true;
1893     }
1894   } else if (MI.getOpcode() == Hexagon::A2_addi) {
1895     const MachineOperand &AddOp = MI.getOperand(2);
1896     if (AddOp.isImm()) {
1897       Value = AddOp.getImm();
1898       return true;
1899     }
1900   }
1901 
1902   return false;
1903 }
1904 
1905 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const1906 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1907   return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
1908                         TF & HexagonII::MO_Bitmasks);
1909 }
1910 
1911 ArrayRef<std::pair<unsigned, const char*>>
getSerializableDirectMachineOperandTargetFlags() const1912 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1913   using namespace HexagonII;
1914 
1915   static const std::pair<unsigned, const char*> Flags[] = {
1916     {MO_PCREL,  "hexagon-pcrel"},
1917     {MO_GOT,    "hexagon-got"},
1918     {MO_LO16,   "hexagon-lo16"},
1919     {MO_HI16,   "hexagon-hi16"},
1920     {MO_GPREL,  "hexagon-gprel"},
1921     {MO_GDGOT,  "hexagon-gdgot"},
1922     {MO_GDPLT,  "hexagon-gdplt"},
1923     {MO_IE,     "hexagon-ie"},
1924     {MO_IEGOT,  "hexagon-iegot"},
1925     {MO_TPREL,  "hexagon-tprel"}
1926   };
1927   return makeArrayRef(Flags);
1928 }
1929 
1930 ArrayRef<std::pair<unsigned, const char*>>
getSerializableBitmaskMachineOperandTargetFlags() const1931 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1932   using namespace HexagonII;
1933 
1934   static const std::pair<unsigned, const char*> Flags[] = {
1935     {HMOTF_ConstExtended, "hexagon-ext"}
1936   };
1937   return makeArrayRef(Flags);
1938 }
1939 
createVR(MachineFunction * MF,MVT VT) const1940 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
1941   MachineRegisterInfo &MRI = MF->getRegInfo();
1942   const TargetRegisterClass *TRC;
1943   if (VT == MVT::i1) {
1944     TRC = &Hexagon::PredRegsRegClass;
1945   } else if (VT == MVT::i32 || VT == MVT::f32) {
1946     TRC = &Hexagon::IntRegsRegClass;
1947   } else if (VT == MVT::i64 || VT == MVT::f64) {
1948     TRC = &Hexagon::DoubleRegsRegClass;
1949   } else {
1950     llvm_unreachable("Cannot handle this register class");
1951   }
1952 
1953   unsigned NewReg = MRI.createVirtualRegister(TRC);
1954   return NewReg;
1955 }
1956 
isAbsoluteSet(const MachineInstr & MI) const1957 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
1958   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1959 }
1960 
isAccumulator(const MachineInstr & MI) const1961 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
1962   const uint64_t F = MI.getDesc().TSFlags;
1963   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1964 }
1965 
isBaseImmOffset(const MachineInstr & MI) const1966 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
1967   return getAddrMode(MI) == HexagonII::BaseImmOffset;
1968 }
1969 
isComplex(const MachineInstr & MI) const1970 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
1971   return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
1972          !MI.getDesc().mayStore() &&
1973          MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
1974          MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
1975          !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
1976 }
1977 
1978 // Return true if the instruction is a compund branch instruction.
isCompoundBranchInstr(const MachineInstr & MI) const1979 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
1980   return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
1981 }
1982 
1983 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1984 // isFPImm and later getFPImm as well.
isConstExtended(const MachineInstr & MI) const1985 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
1986   const uint64_t F = MI.getDesc().TSFlags;
1987   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1988   if (isExtended) // Instruction must be extended.
1989     return true;
1990 
1991   unsigned isExtendable =
1992     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1993   if (!isExtendable)
1994     return false;
1995 
1996   if (MI.isCall())
1997     return false;
1998 
1999   short ExtOpNum = getCExtOpNum(MI);
2000   const MachineOperand &MO = MI.getOperand(ExtOpNum);
2001   // Use MO operand flags to determine if MO
2002   // has the HMOTF_ConstExtended flag set.
2003   if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2004     return true;
2005   // If this is a Machine BB address we are talking about, and it is
2006   // not marked as extended, say so.
2007   if (MO.isMBB())
2008     return false;
2009 
2010   // We could be using an instruction with an extendable immediate and shoehorn
2011   // a global address into it. If it is a global address it will be constant
2012   // extended. We do this for COMBINE.
2013   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2014       MO.isJTI() || MO.isCPI() || MO.isFPImm())
2015     return true;
2016 
2017   // If the extendable operand is not 'Immediate' type, the instruction should
2018   // have 'isExtended' flag set.
2019   assert(MO.isImm() && "Extendable operand must be Immediate type");
2020 
2021   int MinValue = getMinValue(MI);
2022   int MaxValue = getMaxValue(MI);
2023   int ImmValue = MO.getImm();
2024 
2025   return (ImmValue < MinValue || ImmValue > MaxValue);
2026 }
2027 
isDeallocRet(const MachineInstr & MI) const2028 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2029   switch (MI.getOpcode()) {
2030   case Hexagon::L4_return:
2031   case Hexagon::L4_return_t:
2032   case Hexagon::L4_return_f:
2033   case Hexagon::L4_return_tnew_pnt:
2034   case Hexagon::L4_return_fnew_pnt:
2035   case Hexagon::L4_return_tnew_pt:
2036   case Hexagon::L4_return_fnew_pt:
2037     return true;
2038   }
2039   return false;
2040 }
2041 
2042 // Return true when ConsMI uses a register defined by ProdMI.
isDependent(const MachineInstr & ProdMI,const MachineInstr & ConsMI) const2043 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2044       const MachineInstr &ConsMI) const {
2045   if (!ProdMI.getDesc().getNumDefs())
2046     return false;
2047   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2048 
2049   SmallVector<unsigned, 4> DefsA;
2050   SmallVector<unsigned, 4> DefsB;
2051   SmallVector<unsigned, 8> UsesA;
2052   SmallVector<unsigned, 8> UsesB;
2053 
2054   parseOperands(ProdMI, DefsA, UsesA);
2055   parseOperands(ConsMI, DefsB, UsesB);
2056 
2057   for (auto &RegA : DefsA)
2058     for (auto &RegB : UsesB) {
2059       // True data dependency.
2060       if (RegA == RegB)
2061         return true;
2062 
2063       if (TargetRegisterInfo::isPhysicalRegister(RegA))
2064         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2065           if (RegB == *SubRegs)
2066             return true;
2067 
2068       if (TargetRegisterInfo::isPhysicalRegister(RegB))
2069         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2070           if (RegA == *SubRegs)
2071             return true;
2072     }
2073 
2074   return false;
2075 }
2076 
2077 // Returns true if the instruction is alread a .cur.
isDotCurInst(const MachineInstr & MI) const2078 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2079   switch (MI.getOpcode()) {
2080   case Hexagon::V6_vL32b_cur_pi:
2081   case Hexagon::V6_vL32b_cur_ai:
2082     return true;
2083   }
2084   return false;
2085 }
2086 
2087 // Returns true, if any one of the operands is a dot new
2088 // insn, whether it is predicated dot new or register dot new.
isDotNewInst(const MachineInstr & MI) const2089 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2090   if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2091     return true;
2092 
2093   return false;
2094 }
2095 
2096 /// Symmetrical. See if these two instructions are fit for duplex pair.
isDuplexPair(const MachineInstr & MIa,const MachineInstr & MIb) const2097 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2098       const MachineInstr &MIb) const {
2099   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2100   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2101   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2102 }
2103 
isEarlySourceInstr(const MachineInstr & MI) const2104 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2105   if (MI.mayLoad() || MI.mayStore() || MI.isCompare())
2106     return true;
2107 
2108   // Multiply
2109   unsigned SchedClass = MI.getDesc().getSchedClass();
2110   return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2111 }
2112 
isEndLoopN(unsigned Opcode) const2113 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2114   return (Opcode == Hexagon::ENDLOOP0 ||
2115           Opcode == Hexagon::ENDLOOP1);
2116 }
2117 
isExpr(unsigned OpType) const2118 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2119   switch(OpType) {
2120   case MachineOperand::MO_MachineBasicBlock:
2121   case MachineOperand::MO_GlobalAddress:
2122   case MachineOperand::MO_ExternalSymbol:
2123   case MachineOperand::MO_JumpTableIndex:
2124   case MachineOperand::MO_ConstantPoolIndex:
2125   case MachineOperand::MO_BlockAddress:
2126     return true;
2127   default:
2128     return false;
2129   }
2130 }
2131 
isExtendable(const MachineInstr & MI) const2132 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2133   const MCInstrDesc &MID = MI.getDesc();
2134   const uint64_t F = MID.TSFlags;
2135   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2136     return true;
2137 
2138   // TODO: This is largely obsolete now. Will need to be removed
2139   // in consecutive patches.
2140   switch (MI.getOpcode()) {
2141     // PS_fi and PS_fia remain special cases.
2142     case Hexagon::PS_fi:
2143     case Hexagon::PS_fia:
2144       return true;
2145     default:
2146       return false;
2147   }
2148   return  false;
2149 }
2150 
2151 // This returns true in two cases:
2152 // - The OP code itself indicates that this is an extended instruction.
2153 // - One of MOs has been marked with HMOTF_ConstExtended flag.
isExtended(const MachineInstr & MI) const2154 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2155   // First check if this is permanently extended op code.
2156   const uint64_t F = MI.getDesc().TSFlags;
2157   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2158     return true;
2159   // Use MO operand flags to determine if one of MI's operands
2160   // has HMOTF_ConstExtended flag set.
2161   for (const MachineOperand &MO : MI.operands())
2162     if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2163       return true;
2164   return  false;
2165 }
2166 
isFloat(const MachineInstr & MI) const2167 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2168   unsigned Opcode = MI.getOpcode();
2169   const uint64_t F = get(Opcode).TSFlags;
2170   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2171 }
2172 
2173 // No V60 HVX VMEM with A_INDIRECT.
isHVXMemWithAIndirect(const MachineInstr & I,const MachineInstr & J) const2174 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2175       const MachineInstr &J) const {
2176   if (!isHVXVec(I))
2177     return false;
2178   if (!I.mayLoad() && !I.mayStore())
2179     return false;
2180   return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2181 }
2182 
isIndirectCall(const MachineInstr & MI) const2183 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2184   switch (MI.getOpcode()) {
2185   case Hexagon::J2_callr:
2186   case Hexagon::J2_callrf:
2187   case Hexagon::J2_callrt:
2188   case Hexagon::PS_call_nr:
2189     return true;
2190   }
2191   return false;
2192 }
2193 
isIndirectL4Return(const MachineInstr & MI) const2194 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2195   switch (MI.getOpcode()) {
2196   case Hexagon::L4_return:
2197   case Hexagon::L4_return_t:
2198   case Hexagon::L4_return_f:
2199   case Hexagon::L4_return_fnew_pnt:
2200   case Hexagon::L4_return_fnew_pt:
2201   case Hexagon::L4_return_tnew_pnt:
2202   case Hexagon::L4_return_tnew_pt:
2203     return true;
2204   }
2205   return false;
2206 }
2207 
isJumpR(const MachineInstr & MI) const2208 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2209   switch (MI.getOpcode()) {
2210   case Hexagon::J2_jumpr:
2211   case Hexagon::J2_jumprt:
2212   case Hexagon::J2_jumprf:
2213   case Hexagon::J2_jumprtnewpt:
2214   case Hexagon::J2_jumprfnewpt:
2215   case Hexagon::J2_jumprtnew:
2216   case Hexagon::J2_jumprfnew:
2217     return true;
2218   }
2219   return false;
2220 }
2221 
2222 // Return true if a given MI can accommodate given offset.
2223 // Use abs estimate as oppose to the exact number.
2224 // TODO: This will need to be changed to use MC level
2225 // definition of instruction extendable field size.
isJumpWithinBranchRange(const MachineInstr & MI,unsigned offset) const2226 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2227       unsigned offset) const {
2228   // This selection of jump instructions matches to that what
2229   // analyzeBranch can parse, plus NVJ.
2230   if (isNewValueJump(MI)) // r9:2
2231     return isInt<11>(offset);
2232 
2233   switch (MI.getOpcode()) {
2234   // Still missing Jump to address condition on register value.
2235   default:
2236     return false;
2237   case Hexagon::J2_jump: // bits<24> dst; // r22:2
2238   case Hexagon::J2_call:
2239   case Hexagon::PS_call_nr:
2240     return isInt<24>(offset);
2241   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2242   case Hexagon::J2_jumpf:
2243   case Hexagon::J2_jumptnew:
2244   case Hexagon::J2_jumptnewpt:
2245   case Hexagon::J2_jumpfnew:
2246   case Hexagon::J2_jumpfnewpt:
2247   case Hexagon::J2_callt:
2248   case Hexagon::J2_callf:
2249     return isInt<17>(offset);
2250   case Hexagon::J2_loop0i:
2251   case Hexagon::J2_loop0iext:
2252   case Hexagon::J2_loop0r:
2253   case Hexagon::J2_loop0rext:
2254   case Hexagon::J2_loop1i:
2255   case Hexagon::J2_loop1iext:
2256   case Hexagon::J2_loop1r:
2257   case Hexagon::J2_loop1rext:
2258     return isInt<9>(offset);
2259   // TODO: Add all the compound branches here. Can we do this in Relation model?
2260   case Hexagon::J4_cmpeqi_tp0_jump_nt:
2261   case Hexagon::J4_cmpeqi_tp1_jump_nt:
2262   case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2263   case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2264     return isInt<11>(offset);
2265   }
2266 }
2267 
isLateInstrFeedsEarlyInstr(const MachineInstr & LRMI,const MachineInstr & ESMI) const2268 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2269       const MachineInstr &ESMI) const {
2270   bool isLate = isLateResultInstr(LRMI);
2271   bool isEarly = isEarlySourceInstr(ESMI);
2272 
2273   LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR  " : " --  "));
2274   LLVM_DEBUG(LRMI.dump());
2275   LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES  " : " --  "));
2276   LLVM_DEBUG(ESMI.dump());
2277 
2278   if (isLate && isEarly) {
2279     LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2280     return true;
2281   }
2282 
2283   return false;
2284 }
2285 
isLateResultInstr(const MachineInstr & MI) const2286 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2287   switch (MI.getOpcode()) {
2288   case TargetOpcode::EXTRACT_SUBREG:
2289   case TargetOpcode::INSERT_SUBREG:
2290   case TargetOpcode::SUBREG_TO_REG:
2291   case TargetOpcode::REG_SEQUENCE:
2292   case TargetOpcode::IMPLICIT_DEF:
2293   case TargetOpcode::COPY:
2294   case TargetOpcode::INLINEASM:
2295   case TargetOpcode::PHI:
2296     return false;
2297   default:
2298     break;
2299   }
2300 
2301   unsigned SchedClass = MI.getDesc().getSchedClass();
2302   return !is_TC1(SchedClass);
2303 }
2304 
isLateSourceInstr(const MachineInstr & MI) const2305 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2306   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2307   // resource, but all operands can be received late like an ALU instruction.
2308   return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2309 }
2310 
isLoopN(const MachineInstr & MI) const2311 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2312   unsigned Opcode = MI.getOpcode();
2313   return Opcode == Hexagon::J2_loop0i    ||
2314          Opcode == Hexagon::J2_loop0r    ||
2315          Opcode == Hexagon::J2_loop0iext ||
2316          Opcode == Hexagon::J2_loop0rext ||
2317          Opcode == Hexagon::J2_loop1i    ||
2318          Opcode == Hexagon::J2_loop1r    ||
2319          Opcode == Hexagon::J2_loop1iext ||
2320          Opcode == Hexagon::J2_loop1rext;
2321 }
2322 
isMemOp(const MachineInstr & MI) const2323 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2324   switch (MI.getOpcode()) {
2325     default: return false;
2326     case Hexagon::L4_iadd_memopw_io:
2327     case Hexagon::L4_isub_memopw_io:
2328     case Hexagon::L4_add_memopw_io:
2329     case Hexagon::L4_sub_memopw_io:
2330     case Hexagon::L4_and_memopw_io:
2331     case Hexagon::L4_or_memopw_io:
2332     case Hexagon::L4_iadd_memoph_io:
2333     case Hexagon::L4_isub_memoph_io:
2334     case Hexagon::L4_add_memoph_io:
2335     case Hexagon::L4_sub_memoph_io:
2336     case Hexagon::L4_and_memoph_io:
2337     case Hexagon::L4_or_memoph_io:
2338     case Hexagon::L4_iadd_memopb_io:
2339     case Hexagon::L4_isub_memopb_io:
2340     case Hexagon::L4_add_memopb_io:
2341     case Hexagon::L4_sub_memopb_io:
2342     case Hexagon::L4_and_memopb_io:
2343     case Hexagon::L4_or_memopb_io:
2344     case Hexagon::L4_ior_memopb_io:
2345     case Hexagon::L4_ior_memoph_io:
2346     case Hexagon::L4_ior_memopw_io:
2347     case Hexagon::L4_iand_memopb_io:
2348     case Hexagon::L4_iand_memoph_io:
2349     case Hexagon::L4_iand_memopw_io:
2350     return true;
2351   }
2352   return false;
2353 }
2354 
isNewValue(const MachineInstr & MI) const2355 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2356   const uint64_t F = MI.getDesc().TSFlags;
2357   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2358 }
2359 
isNewValue(unsigned Opcode) const2360 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2361   const uint64_t F = get(Opcode).TSFlags;
2362   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2363 }
2364 
isNewValueInst(const MachineInstr & MI) const2365 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2366   return isNewValueJump(MI) || isNewValueStore(MI);
2367 }
2368 
isNewValueJump(const MachineInstr & MI) const2369 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2370   return isNewValue(MI) && MI.isBranch();
2371 }
2372 
isNewValueJump(unsigned Opcode) const2373 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2374   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2375 }
2376 
isNewValueStore(const MachineInstr & MI) const2377 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2378   const uint64_t F = MI.getDesc().TSFlags;
2379   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2380 }
2381 
isNewValueStore(unsigned Opcode) const2382 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2383   const uint64_t F = get(Opcode).TSFlags;
2384   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2385 }
2386 
2387 // Returns true if a particular operand is extendable for an instruction.
isOperandExtended(const MachineInstr & MI,unsigned OperandNum) const2388 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2389     unsigned OperandNum) const {
2390   const uint64_t F = MI.getDesc().TSFlags;
2391   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2392           == OperandNum;
2393 }
2394 
isPredicatedNew(const MachineInstr & MI) const2395 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2396   const uint64_t F = MI.getDesc().TSFlags;
2397   assert(isPredicated(MI));
2398   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2399 }
2400 
isPredicatedNew(unsigned Opcode) const2401 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2402   const uint64_t F = get(Opcode).TSFlags;
2403   assert(isPredicated(Opcode));
2404   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2405 }
2406 
isPredicatedTrue(const MachineInstr & MI) const2407 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2408   const uint64_t F = MI.getDesc().TSFlags;
2409   return !((F >> HexagonII::PredicatedFalsePos) &
2410            HexagonII::PredicatedFalseMask);
2411 }
2412 
isPredicatedTrue(unsigned Opcode) const2413 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2414   const uint64_t F = get(Opcode).TSFlags;
2415   // Make sure that the instruction is predicated.
2416   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2417   return !((F >> HexagonII::PredicatedFalsePos) &
2418            HexagonII::PredicatedFalseMask);
2419 }
2420 
isPredicated(unsigned Opcode) const2421 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2422   const uint64_t F = get(Opcode).TSFlags;
2423   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2424 }
2425 
isPredicateLate(unsigned Opcode) const2426 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2427   const uint64_t F = get(Opcode).TSFlags;
2428   return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2429 }
2430 
isPredictedTaken(unsigned Opcode) const2431 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2432   const uint64_t F = get(Opcode).TSFlags;
2433   assert(get(Opcode).isBranch() &&
2434          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2435   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2436 }
2437 
isSaveCalleeSavedRegsCall(const MachineInstr & MI) const2438 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2439   return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2440          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2441          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2442          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2443 }
2444 
isSignExtendingLoad(const MachineInstr & MI) const2445 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2446   switch (MI.getOpcode()) {
2447   // Byte
2448   case Hexagon::L2_loadrb_io:
2449   case Hexagon::L4_loadrb_ur:
2450   case Hexagon::L4_loadrb_ap:
2451   case Hexagon::L2_loadrb_pr:
2452   case Hexagon::L2_loadrb_pbr:
2453   case Hexagon::L2_loadrb_pi:
2454   case Hexagon::L2_loadrb_pci:
2455   case Hexagon::L2_loadrb_pcr:
2456   case Hexagon::L2_loadbsw2_io:
2457   case Hexagon::L4_loadbsw2_ur:
2458   case Hexagon::L4_loadbsw2_ap:
2459   case Hexagon::L2_loadbsw2_pr:
2460   case Hexagon::L2_loadbsw2_pbr:
2461   case Hexagon::L2_loadbsw2_pi:
2462   case Hexagon::L2_loadbsw2_pci:
2463   case Hexagon::L2_loadbsw2_pcr:
2464   case Hexagon::L2_loadbsw4_io:
2465   case Hexagon::L4_loadbsw4_ur:
2466   case Hexagon::L4_loadbsw4_ap:
2467   case Hexagon::L2_loadbsw4_pr:
2468   case Hexagon::L2_loadbsw4_pbr:
2469   case Hexagon::L2_loadbsw4_pi:
2470   case Hexagon::L2_loadbsw4_pci:
2471   case Hexagon::L2_loadbsw4_pcr:
2472   case Hexagon::L4_loadrb_rr:
2473   case Hexagon::L2_ploadrbt_io:
2474   case Hexagon::L2_ploadrbt_pi:
2475   case Hexagon::L2_ploadrbf_io:
2476   case Hexagon::L2_ploadrbf_pi:
2477   case Hexagon::L2_ploadrbtnew_io:
2478   case Hexagon::L2_ploadrbfnew_io:
2479   case Hexagon::L4_ploadrbt_rr:
2480   case Hexagon::L4_ploadrbf_rr:
2481   case Hexagon::L4_ploadrbtnew_rr:
2482   case Hexagon::L4_ploadrbfnew_rr:
2483   case Hexagon::L2_ploadrbtnew_pi:
2484   case Hexagon::L2_ploadrbfnew_pi:
2485   case Hexagon::L4_ploadrbt_abs:
2486   case Hexagon::L4_ploadrbf_abs:
2487   case Hexagon::L4_ploadrbtnew_abs:
2488   case Hexagon::L4_ploadrbfnew_abs:
2489   case Hexagon::L2_loadrbgp:
2490   // Half
2491   case Hexagon::L2_loadrh_io:
2492   case Hexagon::L4_loadrh_ur:
2493   case Hexagon::L4_loadrh_ap:
2494   case Hexagon::L2_loadrh_pr:
2495   case Hexagon::L2_loadrh_pbr:
2496   case Hexagon::L2_loadrh_pi:
2497   case Hexagon::L2_loadrh_pci:
2498   case Hexagon::L2_loadrh_pcr:
2499   case Hexagon::L4_loadrh_rr:
2500   case Hexagon::L2_ploadrht_io:
2501   case Hexagon::L2_ploadrht_pi:
2502   case Hexagon::L2_ploadrhf_io:
2503   case Hexagon::L2_ploadrhf_pi:
2504   case Hexagon::L2_ploadrhtnew_io:
2505   case Hexagon::L2_ploadrhfnew_io:
2506   case Hexagon::L4_ploadrht_rr:
2507   case Hexagon::L4_ploadrhf_rr:
2508   case Hexagon::L4_ploadrhtnew_rr:
2509   case Hexagon::L4_ploadrhfnew_rr:
2510   case Hexagon::L2_ploadrhtnew_pi:
2511   case Hexagon::L2_ploadrhfnew_pi:
2512   case Hexagon::L4_ploadrht_abs:
2513   case Hexagon::L4_ploadrhf_abs:
2514   case Hexagon::L4_ploadrhtnew_abs:
2515   case Hexagon::L4_ploadrhfnew_abs:
2516   case Hexagon::L2_loadrhgp:
2517     return true;
2518   default:
2519     return false;
2520   }
2521 }
2522 
isSolo(const MachineInstr & MI) const2523 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2524   const uint64_t F = MI.getDesc().TSFlags;
2525   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2526 }
2527 
isSpillPredRegOp(const MachineInstr & MI) const2528 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2529   switch (MI.getOpcode()) {
2530   case Hexagon::STriw_pred:
2531   case Hexagon::LDriw_pred:
2532     return true;
2533   default:
2534     return false;
2535   }
2536 }
2537 
isTailCall(const MachineInstr & MI) const2538 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2539   if (!MI.isBranch())
2540     return false;
2541 
2542   for (auto &Op : MI.operands())
2543     if (Op.isGlobal() || Op.isSymbol())
2544       return true;
2545   return false;
2546 }
2547 
2548 // Returns true when SU has a timing class TC1.
isTC1(const MachineInstr & MI) const2549 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2550   unsigned SchedClass = MI.getDesc().getSchedClass();
2551   return is_TC1(SchedClass);
2552 }
2553 
isTC2(const MachineInstr & MI) const2554 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2555   unsigned SchedClass = MI.getDesc().getSchedClass();
2556   return is_TC2(SchedClass);
2557 }
2558 
isTC2Early(const MachineInstr & MI) const2559 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2560   unsigned SchedClass = MI.getDesc().getSchedClass();
2561   return is_TC2early(SchedClass);
2562 }
2563 
isTC4x(const MachineInstr & MI) const2564 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2565   unsigned SchedClass = MI.getDesc().getSchedClass();
2566   return is_TC4x(SchedClass);
2567 }
2568 
2569 // Schedule this ASAP.
isToBeScheduledASAP(const MachineInstr & MI1,const MachineInstr & MI2) const2570 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2571       const MachineInstr &MI2) const {
2572   if (mayBeCurLoad(MI1)) {
2573     // if (result of SU is used in Next) return true;
2574     unsigned DstReg = MI1.getOperand(0).getReg();
2575     int N = MI2.getNumOperands();
2576     for (int I = 0; I < N; I++)
2577       if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2578         return true;
2579   }
2580   if (mayBeNewStore(MI2))
2581     if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2582       if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2583           MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2584         return true;
2585   return false;
2586 }
2587 
isHVXVec(const MachineInstr & MI) const2588 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2589   const uint64_t V = getType(MI);
2590   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2591 }
2592 
2593 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
isValidAutoIncImm(const EVT VT,int Offset) const2594 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2595   int Size = VT.getSizeInBits() / 8;
2596   if (Offset % Size != 0)
2597     return false;
2598   int Count = Offset / Size;
2599 
2600   switch (VT.getSimpleVT().SimpleTy) {
2601     // For scalars the auto-inc is s4
2602     case MVT::i8:
2603     case MVT::i16:
2604     case MVT::i32:
2605     case MVT::i64:
2606     case MVT::f32:
2607     case MVT::f64:
2608     case MVT::v2i16:
2609     case MVT::v2i32:
2610     case MVT::v4i8:
2611     case MVT::v4i16:
2612     case MVT::v8i8:
2613       return isInt<4>(Count);
2614     // For HVX vectors the auto-inc is s3
2615     case MVT::v64i8:
2616     case MVT::v32i16:
2617     case MVT::v16i32:
2618     case MVT::v8i64:
2619     case MVT::v128i8:
2620     case MVT::v64i16:
2621     case MVT::v32i32:
2622     case MVT::v16i64:
2623       return isInt<3>(Count);
2624     default:
2625       break;
2626   }
2627 
2628   llvm_unreachable("Not an valid type!");
2629 }
2630 
isValidOffset(unsigned Opcode,int Offset,const TargetRegisterInfo * TRI,bool Extend) const2631 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2632       const TargetRegisterInfo *TRI, bool Extend) const {
2633   // This function is to check whether the "Offset" is in the correct range of
2634   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2635   // inserted to calculate the final address. Due to this reason, the function
2636   // assumes that the "Offset" has correct alignment.
2637   // We used to assert if the offset was not properly aligned, however,
2638   // there are cases where a misaligned pointer recast can cause this
2639   // problem, and we need to allow for it. The front end warns of such
2640   // misaligns with respect to load size.
2641   switch (Opcode) {
2642   case Hexagon::PS_vstorerq_ai:
2643   case Hexagon::PS_vstorerw_ai:
2644   case Hexagon::PS_vstorerw_nt_ai:
2645   case Hexagon::PS_vloadrq_ai:
2646   case Hexagon::PS_vloadrw_ai:
2647   case Hexagon::PS_vloadrw_nt_ai:
2648   case Hexagon::V6_vL32b_ai:
2649   case Hexagon::V6_vS32b_ai:
2650   case Hexagon::V6_vL32b_nt_ai:
2651   case Hexagon::V6_vS32b_nt_ai:
2652   case Hexagon::V6_vL32Ub_ai:
2653   case Hexagon::V6_vS32Ub_ai: {
2654     unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2655     assert(isPowerOf2_32(VectorSize));
2656     if (Offset & (VectorSize-1))
2657       return false;
2658     return isInt<4>(Offset >> Log2_32(VectorSize));
2659   }
2660 
2661   case Hexagon::J2_loop0i:
2662   case Hexagon::J2_loop1i:
2663     return isUInt<10>(Offset);
2664 
2665   case Hexagon::S4_storeirb_io:
2666   case Hexagon::S4_storeirbt_io:
2667   case Hexagon::S4_storeirbf_io:
2668     return isUInt<6>(Offset);
2669 
2670   case Hexagon::S4_storeirh_io:
2671   case Hexagon::S4_storeirht_io:
2672   case Hexagon::S4_storeirhf_io:
2673     return isShiftedUInt<6,1>(Offset);
2674 
2675   case Hexagon::S4_storeiri_io:
2676   case Hexagon::S4_storeirit_io:
2677   case Hexagon::S4_storeirif_io:
2678     return isShiftedUInt<6,2>(Offset);
2679   }
2680 
2681   if (Extend)
2682     return true;
2683 
2684   switch (Opcode) {
2685   case Hexagon::L2_loadri_io:
2686   case Hexagon::S2_storeri_io:
2687     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2688       (Offset <= Hexagon_MEMW_OFFSET_MAX);
2689 
2690   case Hexagon::L2_loadrd_io:
2691   case Hexagon::S2_storerd_io:
2692     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2693       (Offset <= Hexagon_MEMD_OFFSET_MAX);
2694 
2695   case Hexagon::L2_loadrh_io:
2696   case Hexagon::L2_loadruh_io:
2697   case Hexagon::S2_storerh_io:
2698   case Hexagon::S2_storerf_io:
2699     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2700       (Offset <= Hexagon_MEMH_OFFSET_MAX);
2701 
2702   case Hexagon::L2_loadrb_io:
2703   case Hexagon::L2_loadrub_io:
2704   case Hexagon::S2_storerb_io:
2705     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2706       (Offset <= Hexagon_MEMB_OFFSET_MAX);
2707 
2708   case Hexagon::A2_addi:
2709     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2710       (Offset <= Hexagon_ADDI_OFFSET_MAX);
2711 
2712   case Hexagon::L4_iadd_memopw_io:
2713   case Hexagon::L4_isub_memopw_io:
2714   case Hexagon::L4_add_memopw_io:
2715   case Hexagon::L4_sub_memopw_io:
2716   case Hexagon::L4_and_memopw_io:
2717   case Hexagon::L4_or_memopw_io:
2718     return (0 <= Offset && Offset <= 255);
2719 
2720   case Hexagon::L4_iadd_memoph_io:
2721   case Hexagon::L4_isub_memoph_io:
2722   case Hexagon::L4_add_memoph_io:
2723   case Hexagon::L4_sub_memoph_io:
2724   case Hexagon::L4_and_memoph_io:
2725   case Hexagon::L4_or_memoph_io:
2726     return (0 <= Offset && Offset <= 127);
2727 
2728   case Hexagon::L4_iadd_memopb_io:
2729   case Hexagon::L4_isub_memopb_io:
2730   case Hexagon::L4_add_memopb_io:
2731   case Hexagon::L4_sub_memopb_io:
2732   case Hexagon::L4_and_memopb_io:
2733   case Hexagon::L4_or_memopb_io:
2734     return (0 <= Offset && Offset <= 63);
2735 
2736   // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2737   // any size. Later pass knows how to handle it.
2738   case Hexagon::STriw_pred:
2739   case Hexagon::LDriw_pred:
2740   case Hexagon::STriw_ctr:
2741   case Hexagon::LDriw_ctr:
2742     return true;
2743 
2744   case Hexagon::PS_fi:
2745   case Hexagon::PS_fia:
2746   case Hexagon::INLINEASM:
2747     return true;
2748 
2749   case Hexagon::L2_ploadrbt_io:
2750   case Hexagon::L2_ploadrbf_io:
2751   case Hexagon::L2_ploadrubt_io:
2752   case Hexagon::L2_ploadrubf_io:
2753   case Hexagon::S2_pstorerbt_io:
2754   case Hexagon::S2_pstorerbf_io:
2755     return isUInt<6>(Offset);
2756 
2757   case Hexagon::L2_ploadrht_io:
2758   case Hexagon::L2_ploadrhf_io:
2759   case Hexagon::L2_ploadruht_io:
2760   case Hexagon::L2_ploadruhf_io:
2761   case Hexagon::S2_pstorerht_io:
2762   case Hexagon::S2_pstorerhf_io:
2763     return isShiftedUInt<6,1>(Offset);
2764 
2765   case Hexagon::L2_ploadrit_io:
2766   case Hexagon::L2_ploadrif_io:
2767   case Hexagon::S2_pstorerit_io:
2768   case Hexagon::S2_pstorerif_io:
2769     return isShiftedUInt<6,2>(Offset);
2770 
2771   case Hexagon::L2_ploadrdt_io:
2772   case Hexagon::L2_ploadrdf_io:
2773   case Hexagon::S2_pstorerdt_io:
2774   case Hexagon::S2_pstorerdf_io:
2775     return isShiftedUInt<6,3>(Offset);
2776   } // switch
2777 
2778   llvm_unreachable("No offset range is defined for this opcode. "
2779                    "Please define it in the above switch statement!");
2780 }
2781 
isVecAcc(const MachineInstr & MI) const2782 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2783   return isHVXVec(MI) && isAccumulator(MI);
2784 }
2785 
isVecALU(const MachineInstr & MI) const2786 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2787   const uint64_t F = get(MI.getOpcode()).TSFlags;
2788   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2789   return
2790     V == HexagonII::TypeCVI_VA         ||
2791     V == HexagonII::TypeCVI_VA_DV;
2792 }
2793 
isVecUsableNextPacket(const MachineInstr & ProdMI,const MachineInstr & ConsMI) const2794 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2795       const MachineInstr &ConsMI) const {
2796   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2797     return true;
2798 
2799   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2800     return true;
2801 
2802   if (mayBeNewStore(ConsMI))
2803     return true;
2804 
2805   return false;
2806 }
2807 
isZeroExtendingLoad(const MachineInstr & MI) const2808 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2809   switch (MI.getOpcode()) {
2810   // Byte
2811   case Hexagon::L2_loadrub_io:
2812   case Hexagon::L4_loadrub_ur:
2813   case Hexagon::L4_loadrub_ap:
2814   case Hexagon::L2_loadrub_pr:
2815   case Hexagon::L2_loadrub_pbr:
2816   case Hexagon::L2_loadrub_pi:
2817   case Hexagon::L2_loadrub_pci:
2818   case Hexagon::L2_loadrub_pcr:
2819   case Hexagon::L2_loadbzw2_io:
2820   case Hexagon::L4_loadbzw2_ur:
2821   case Hexagon::L4_loadbzw2_ap:
2822   case Hexagon::L2_loadbzw2_pr:
2823   case Hexagon::L2_loadbzw2_pbr:
2824   case Hexagon::L2_loadbzw2_pi:
2825   case Hexagon::L2_loadbzw2_pci:
2826   case Hexagon::L2_loadbzw2_pcr:
2827   case Hexagon::L2_loadbzw4_io:
2828   case Hexagon::L4_loadbzw4_ur:
2829   case Hexagon::L4_loadbzw4_ap:
2830   case Hexagon::L2_loadbzw4_pr:
2831   case Hexagon::L2_loadbzw4_pbr:
2832   case Hexagon::L2_loadbzw4_pi:
2833   case Hexagon::L2_loadbzw4_pci:
2834   case Hexagon::L2_loadbzw4_pcr:
2835   case Hexagon::L4_loadrub_rr:
2836   case Hexagon::L2_ploadrubt_io:
2837   case Hexagon::L2_ploadrubt_pi:
2838   case Hexagon::L2_ploadrubf_io:
2839   case Hexagon::L2_ploadrubf_pi:
2840   case Hexagon::L2_ploadrubtnew_io:
2841   case Hexagon::L2_ploadrubfnew_io:
2842   case Hexagon::L4_ploadrubt_rr:
2843   case Hexagon::L4_ploadrubf_rr:
2844   case Hexagon::L4_ploadrubtnew_rr:
2845   case Hexagon::L4_ploadrubfnew_rr:
2846   case Hexagon::L2_ploadrubtnew_pi:
2847   case Hexagon::L2_ploadrubfnew_pi:
2848   case Hexagon::L4_ploadrubt_abs:
2849   case Hexagon::L4_ploadrubf_abs:
2850   case Hexagon::L4_ploadrubtnew_abs:
2851   case Hexagon::L4_ploadrubfnew_abs:
2852   case Hexagon::L2_loadrubgp:
2853   // Half
2854   case Hexagon::L2_loadruh_io:
2855   case Hexagon::L4_loadruh_ur:
2856   case Hexagon::L4_loadruh_ap:
2857   case Hexagon::L2_loadruh_pr:
2858   case Hexagon::L2_loadruh_pbr:
2859   case Hexagon::L2_loadruh_pi:
2860   case Hexagon::L2_loadruh_pci:
2861   case Hexagon::L2_loadruh_pcr:
2862   case Hexagon::L4_loadruh_rr:
2863   case Hexagon::L2_ploadruht_io:
2864   case Hexagon::L2_ploadruht_pi:
2865   case Hexagon::L2_ploadruhf_io:
2866   case Hexagon::L2_ploadruhf_pi:
2867   case Hexagon::L2_ploadruhtnew_io:
2868   case Hexagon::L2_ploadruhfnew_io:
2869   case Hexagon::L4_ploadruht_rr:
2870   case Hexagon::L4_ploadruhf_rr:
2871   case Hexagon::L4_ploadruhtnew_rr:
2872   case Hexagon::L4_ploadruhfnew_rr:
2873   case Hexagon::L2_ploadruhtnew_pi:
2874   case Hexagon::L2_ploadruhfnew_pi:
2875   case Hexagon::L4_ploadruht_abs:
2876   case Hexagon::L4_ploadruhf_abs:
2877   case Hexagon::L4_ploadruhtnew_abs:
2878   case Hexagon::L4_ploadruhfnew_abs:
2879   case Hexagon::L2_loadruhgp:
2880     return true;
2881   default:
2882     return false;
2883   }
2884 }
2885 
2886 // Add latency to instruction.
addLatencyToSchedule(const MachineInstr & MI1,const MachineInstr & MI2) const2887 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
2888       const MachineInstr &MI2) const {
2889   if (isHVXVec(MI1) && isHVXVec(MI2))
2890     if (!isVecUsableNextPacket(MI1, MI2))
2891       return true;
2892   return false;
2893 }
2894 
2895 /// Get the base register and byte offset of a load/store instr.
getMemOperandWithOffset(MachineInstr & LdSt,MachineOperand * & BaseOp,int64_t & Offset,const TargetRegisterInfo * TRI) const2896 bool HexagonInstrInfo::getMemOperandWithOffset(
2897     MachineInstr &LdSt, MachineOperand *&BaseOp, int64_t &Offset,
2898     const TargetRegisterInfo *TRI) const {
2899   unsigned AccessSize = 0;
2900   BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize);
2901   assert((!BaseOp || BaseOp->isReg()) &&
2902          "getMemOperandWithOffset only supports base "
2903          "operands of type register.");
2904   return BaseOp != nullptr;
2905 }
2906 
2907 /// Can these instructions execute at the same time in a bundle.
canExecuteInBundle(const MachineInstr & First,const MachineInstr & Second) const2908 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
2909       const MachineInstr &Second) const {
2910   if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
2911     const MachineOperand &Op = Second.getOperand(0);
2912     if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
2913       return true;
2914   }
2915   if (DisableNVSchedule)
2916     return false;
2917   if (mayBeNewStore(Second)) {
2918     // Make sure the definition of the first instruction is the value being
2919     // stored.
2920     const MachineOperand &Stored =
2921       Second.getOperand(Second.getNumOperands() - 1);
2922     if (!Stored.isReg())
2923       return false;
2924     for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
2925       const MachineOperand &Op = First.getOperand(i);
2926       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2927         return true;
2928     }
2929   }
2930   return false;
2931 }
2932 
doesNotReturn(const MachineInstr & CallMI) const2933 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
2934   unsigned Opc = CallMI.getOpcode();
2935   return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
2936 }
2937 
hasEHLabel(const MachineBasicBlock * B) const2938 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2939   for (auto &I : *B)
2940     if (I.isEHLabel())
2941       return true;
2942   return false;
2943 }
2944 
2945 // Returns true if an instruction can be converted into a non-extended
2946 // equivalent instruction.
hasNonExtEquivalent(const MachineInstr & MI) const2947 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
2948   short NonExtOpcode;
2949   // Check if the instruction has a register form that uses register in place
2950   // of the extended operand, if so return that as the non-extended form.
2951   if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
2952     return true;
2953 
2954   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
2955     // Check addressing mode and retrieve non-ext equivalent instruction.
2956 
2957     switch (getAddrMode(MI)) {
2958     case HexagonII::Absolute:
2959       // Load/store with absolute addressing mode can be converted into
2960       // base+offset mode.
2961       NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
2962       break;
2963     case HexagonII::BaseImmOffset:
2964       // Load/store with base+offset addressing mode can be converted into
2965       // base+register offset addressing mode. However left shift operand should
2966       // be set to 0.
2967       NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
2968       break;
2969     case HexagonII::BaseLongOffset:
2970       NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
2971       break;
2972     default:
2973       return false;
2974     }
2975     if (NonExtOpcode < 0)
2976       return false;
2977     return true;
2978   }
2979   return false;
2980 }
2981 
hasPseudoInstrPair(const MachineInstr & MI) const2982 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
2983   return Hexagon::getRealHWInstr(MI.getOpcode(),
2984                                  Hexagon::InstrType_Pseudo) >= 0;
2985 }
2986 
hasUncondBranch(const MachineBasicBlock * B) const2987 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2988       const {
2989   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2990   while (I != E) {
2991     if (I->isBarrier())
2992       return true;
2993     ++I;
2994   }
2995   return false;
2996 }
2997 
2998 // Returns true, if a LD insn can be promoted to a cur load.
mayBeCurLoad(const MachineInstr & MI) const2999 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3000   const uint64_t F = MI.getDesc().TSFlags;
3001   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3002          Subtarget.hasV60Ops();
3003 }
3004 
3005 // Returns true, if a ST insn can be promoted to a new-value store.
mayBeNewStore(const MachineInstr & MI) const3006 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3007   if (MI.mayStore() && !Subtarget.useNewValueStores())
3008     return false;
3009 
3010   const uint64_t F = MI.getDesc().TSFlags;
3011   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3012 }
3013 
producesStall(const MachineInstr & ProdMI,const MachineInstr & ConsMI) const3014 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3015       const MachineInstr &ConsMI) const {
3016   // There is no stall when ProdMI is not a V60 vector.
3017   if (!isHVXVec(ProdMI))
3018     return false;
3019 
3020   // There is no stall when ProdMI and ConsMI are not dependent.
3021   if (!isDependent(ProdMI, ConsMI))
3022     return false;
3023 
3024   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3025   // are scheduled in consecutive packets.
3026   if (isVecUsableNextPacket(ProdMI, ConsMI))
3027     return false;
3028 
3029   return true;
3030 }
3031 
producesStall(const MachineInstr & MI,MachineBasicBlock::const_instr_iterator BII) const3032 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3033       MachineBasicBlock::const_instr_iterator BII) const {
3034   // There is no stall when I is not a V60 vector.
3035   if (!isHVXVec(MI))
3036     return false;
3037 
3038   MachineBasicBlock::const_instr_iterator MII = BII;
3039   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3040 
3041   if (!MII->isBundle())
3042     return producesStall(*MII, MI);
3043 
3044   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3045     const MachineInstr &J = *MII;
3046     if (producesStall(J, MI))
3047       return true;
3048   }
3049   return false;
3050 }
3051 
predCanBeUsedAsDotNew(const MachineInstr & MI,unsigned PredReg) const3052 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3053       unsigned PredReg) const {
3054   for (const MachineOperand &MO : MI.operands()) {
3055     // Predicate register must be explicitly defined.
3056     if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3057       return false;
3058     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3059       return false;
3060   }
3061 
3062   // Instruction that produce late predicate cannot be used as sources of
3063   // dot-new.
3064   switch (MI.getOpcode()) {
3065     case Hexagon::A4_addp_c:
3066     case Hexagon::A4_subp_c:
3067     case Hexagon::A4_tlbmatch:
3068     case Hexagon::A5_ACS:
3069     case Hexagon::F2_sfinvsqrta:
3070     case Hexagon::F2_sfrecipa:
3071     case Hexagon::J2_endloop0:
3072     case Hexagon::J2_endloop01:
3073     case Hexagon::J2_ploop1si:
3074     case Hexagon::J2_ploop1sr:
3075     case Hexagon::J2_ploop2si:
3076     case Hexagon::J2_ploop2sr:
3077     case Hexagon::J2_ploop3si:
3078     case Hexagon::J2_ploop3sr:
3079     case Hexagon::S2_cabacdecbin:
3080     case Hexagon::S2_storew_locked:
3081     case Hexagon::S4_stored_locked:
3082       return false;
3083   }
3084   return true;
3085 }
3086 
PredOpcodeHasJMP_c(unsigned Opcode) const3087 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3088   return Opcode == Hexagon::J2_jumpt      ||
3089          Opcode == Hexagon::J2_jumptpt    ||
3090          Opcode == Hexagon::J2_jumpf      ||
3091          Opcode == Hexagon::J2_jumpfpt    ||
3092          Opcode == Hexagon::J2_jumptnew   ||
3093          Opcode == Hexagon::J2_jumpfnew   ||
3094          Opcode == Hexagon::J2_jumptnewpt ||
3095          Opcode == Hexagon::J2_jumpfnewpt;
3096 }
3097 
predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const3098 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3099   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3100     return false;
3101   return !isPredicatedTrue(Cond[0].getImm());
3102 }
3103 
getAddrMode(const MachineInstr & MI) const3104 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3105   const uint64_t F = MI.getDesc().TSFlags;
3106   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3107 }
3108 
3109 // Returns the base register in a memory access (load/store). The offset is
3110 // returned in Offset and the access size is returned in AccessSize.
3111 // If the base operand has a subregister or the offset field does not contain
3112 // an immediate value, return nullptr.
getBaseAndOffset(const MachineInstr & MI,int64_t & Offset,unsigned & AccessSize) const3113 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3114                                                    int64_t &Offset,
3115                                                    unsigned &AccessSize) const {
3116   // Return if it is not a base+offset type instruction or a MemOp.
3117   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3118       getAddrMode(MI) != HexagonII::BaseLongOffset &&
3119       !isMemOp(MI) && !isPostIncrement(MI))
3120     return nullptr;
3121 
3122   AccessSize = getMemAccessSize(MI);
3123 
3124   unsigned BasePos = 0, OffsetPos = 0;
3125   if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3126     return nullptr;
3127 
3128   // Post increment updates its EA after the mem access,
3129   // so we need to treat its offset as zero.
3130   if (isPostIncrement(MI)) {
3131     Offset = 0;
3132   } else {
3133     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3134     if (!OffsetOp.isImm())
3135       return nullptr;
3136     Offset = OffsetOp.getImm();
3137   }
3138 
3139   const MachineOperand &BaseOp = MI.getOperand(BasePos);
3140   if (BaseOp.getSubReg() != 0)
3141     return nullptr;
3142   return &const_cast<MachineOperand&>(BaseOp);
3143 }
3144 
3145 /// Return the position of the base and offset operands for this instruction.
getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos) const3146 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3147       unsigned &BasePos, unsigned &OffsetPos) const {
3148   if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3149     return false;
3150 
3151   // Deal with memops first.
3152   if (isMemOp(MI)) {
3153     BasePos = 0;
3154     OffsetPos = 1;
3155   } else if (MI.mayStore()) {
3156     BasePos = 0;
3157     OffsetPos = 1;
3158   } else if (MI.mayLoad()) {
3159     BasePos = 1;
3160     OffsetPos = 2;
3161   } else
3162     return false;
3163 
3164   if (isPredicated(MI)) {
3165     BasePos++;
3166     OffsetPos++;
3167   }
3168   if (isPostIncrement(MI)) {
3169     BasePos++;
3170     OffsetPos++;
3171   }
3172 
3173   if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3174     return false;
3175 
3176   return true;
3177 }
3178 
3179 // Inserts branching instructions in reverse order of their occurrence.
3180 // e.g. jump_t t1 (i1)
3181 // jump t2        (i2)
3182 // Jumpers = {i2, i1}
getBranchingInstrs(MachineBasicBlock & MBB) const3183 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3184       MachineBasicBlock& MBB) const {
3185   SmallVector<MachineInstr*, 2> Jumpers;
3186   // If the block has no terminators, it just falls into the block after it.
3187   MachineBasicBlock::instr_iterator I = MBB.instr_end();
3188   if (I == MBB.instr_begin())
3189     return Jumpers;
3190 
3191   // A basic block may looks like this:
3192   //
3193   //  [   insn
3194   //     EH_LABEL
3195   //      insn
3196   //      insn
3197   //      insn
3198   //     EH_LABEL
3199   //      insn     ]
3200   //
3201   // It has two succs but does not have a terminator
3202   // Don't know how to handle it.
3203   do {
3204     --I;
3205     if (I->isEHLabel())
3206       return Jumpers;
3207   } while (I != MBB.instr_begin());
3208 
3209   I = MBB.instr_end();
3210   --I;
3211 
3212   while (I->isDebugInstr()) {
3213     if (I == MBB.instr_begin())
3214       return Jumpers;
3215     --I;
3216   }
3217   if (!isUnpredicatedTerminator(*I))
3218     return Jumpers;
3219 
3220   // Get the last instruction in the block.
3221   MachineInstr *LastInst = &*I;
3222   Jumpers.push_back(LastInst);
3223   MachineInstr *SecondLastInst = nullptr;
3224   // Find one more terminator if present.
3225   do {
3226     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3227       if (!SecondLastInst) {
3228         SecondLastInst = &*I;
3229         Jumpers.push_back(SecondLastInst);
3230       } else // This is a third branch.
3231         return Jumpers;
3232     }
3233     if (I == MBB.instr_begin())
3234       break;
3235     --I;
3236   } while (true);
3237   return Jumpers;
3238 }
3239 
3240 // Returns Operand Index for the constant extended instruction.
getCExtOpNum(const MachineInstr & MI) const3241 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3242   const uint64_t F = MI.getDesc().TSFlags;
3243   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3244 }
3245 
3246 // See if instruction could potentially be a duplex candidate.
3247 // If so, return its group. Zero otherwise.
getCompoundCandidateGroup(const MachineInstr & MI) const3248 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3249       const MachineInstr &MI) const {
3250   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3251 
3252   switch (MI.getOpcode()) {
3253   default:
3254     return HexagonII::HCG_None;
3255   //
3256   // Compound pairs.
3257   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3258   // "Rd16=#U6 ; jump #r9:2"
3259   // "Rd16=Rs16 ; jump #r9:2"
3260   //
3261   case Hexagon::C2_cmpeq:
3262   case Hexagon::C2_cmpgt:
3263   case Hexagon::C2_cmpgtu:
3264     DstReg = MI.getOperand(0).getReg();
3265     Src1Reg = MI.getOperand(1).getReg();
3266     Src2Reg = MI.getOperand(2).getReg();
3267     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3268         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3269         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3270       return HexagonII::HCG_A;
3271     break;
3272   case Hexagon::C2_cmpeqi:
3273   case Hexagon::C2_cmpgti:
3274   case Hexagon::C2_cmpgtui:
3275     // P0 = cmp.eq(Rs,#u2)
3276     DstReg = MI.getOperand(0).getReg();
3277     SrcReg = MI.getOperand(1).getReg();
3278     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3279         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3280         isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3281         ((isUInt<5>(MI.getOperand(2).getImm())) ||
3282          (MI.getOperand(2).getImm() == -1)))
3283       return HexagonII::HCG_A;
3284     break;
3285   case Hexagon::A2_tfr:
3286     // Rd = Rs
3287     DstReg = MI.getOperand(0).getReg();
3288     SrcReg = MI.getOperand(1).getReg();
3289     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3290       return HexagonII::HCG_A;
3291     break;
3292   case Hexagon::A2_tfrsi:
3293     // Rd = #u6
3294     // Do not test for #u6 size since the const is getting extended
3295     // regardless and compound could be formed.
3296     DstReg = MI.getOperand(0).getReg();
3297     if (isIntRegForSubInst(DstReg))
3298       return HexagonII::HCG_A;
3299     break;
3300   case Hexagon::S2_tstbit_i:
3301     DstReg = MI.getOperand(0).getReg();
3302     Src1Reg = MI.getOperand(1).getReg();
3303     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3304         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3305         MI.getOperand(2).isImm() &&
3306         isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3307       return HexagonII::HCG_A;
3308     break;
3309   // The fact that .new form is used pretty much guarantees
3310   // that predicate register will match. Nevertheless,
3311   // there could be some false positives without additional
3312   // checking.
3313   case Hexagon::J2_jumptnew:
3314   case Hexagon::J2_jumpfnew:
3315   case Hexagon::J2_jumptnewpt:
3316   case Hexagon::J2_jumpfnewpt:
3317     Src1Reg = MI.getOperand(0).getReg();
3318     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3319         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3320       return HexagonII::HCG_B;
3321     break;
3322   // Transfer and jump:
3323   // Rd=#U6 ; jump #r9:2
3324   // Rd=Rs ; jump #r9:2
3325   // Do not test for jump range here.
3326   case Hexagon::J2_jump:
3327   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3328   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3329     return HexagonII::HCG_C;
3330   }
3331 
3332   return HexagonII::HCG_None;
3333 }
3334 
3335 // Returns -1 when there is no opcode found.
getCompoundOpcode(const MachineInstr & GA,const MachineInstr & GB) const3336 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3337       const MachineInstr &GB) const {
3338   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3339   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3340   if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3341       (GB.getOpcode() != Hexagon::J2_jumptnew))
3342     return -1u;
3343   unsigned DestReg = GA.getOperand(0).getReg();
3344   if (!GB.readsRegister(DestReg))
3345     return -1u;
3346   if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3347     return -1u;
3348   // The value compared against must be either u5 or -1.
3349   const MachineOperand &CmpOp = GA.getOperand(2);
3350   if (!CmpOp.isImm())
3351     return -1u;
3352   int V = CmpOp.getImm();
3353   if (V == -1)
3354     return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3355                                   : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3356   if (!isUInt<5>(V))
3357     return -1u;
3358   return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3359                                 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3360 }
3361 
getCondOpcode(int Opc,bool invertPredicate) const3362 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3363   enum Hexagon::PredSense inPredSense;
3364   inPredSense = invertPredicate ? Hexagon::PredSense_false :
3365                                   Hexagon::PredSense_true;
3366   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3367   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3368     return CondOpcode;
3369 
3370   llvm_unreachable("Unexpected predicable instruction");
3371 }
3372 
3373 // Return the cur value instruction for a given store.
getDotCurOp(const MachineInstr & MI) const3374 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3375   switch (MI.getOpcode()) {
3376   default: llvm_unreachable("Unknown .cur type");
3377   case Hexagon::V6_vL32b_pi:
3378     return Hexagon::V6_vL32b_cur_pi;
3379   case Hexagon::V6_vL32b_ai:
3380     return Hexagon::V6_vL32b_cur_ai;
3381   case Hexagon::V6_vL32b_nt_pi:
3382     return Hexagon::V6_vL32b_nt_cur_pi;
3383   case Hexagon::V6_vL32b_nt_ai:
3384     return Hexagon::V6_vL32b_nt_cur_ai;
3385   }
3386   return 0;
3387 }
3388 
3389 // Return the regular version of the .cur instruction.
getNonDotCurOp(const MachineInstr & MI) const3390 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3391   switch (MI.getOpcode()) {
3392   default: llvm_unreachable("Unknown .cur type");
3393   case Hexagon::V6_vL32b_cur_pi:
3394     return Hexagon::V6_vL32b_pi;
3395   case Hexagon::V6_vL32b_cur_ai:
3396     return Hexagon::V6_vL32b_ai;
3397   case Hexagon::V6_vL32b_nt_cur_pi:
3398     return Hexagon::V6_vL32b_nt_pi;
3399   case Hexagon::V6_vL32b_nt_cur_ai:
3400     return Hexagon::V6_vL32b_nt_ai;
3401   }
3402   return 0;
3403 }
3404 
3405 // The diagram below shows the steps involved in the conversion of a predicated
3406 // store instruction to its .new predicated new-value form.
3407 //
3408 // Note: It doesn't include conditional new-value stores as they can't be
3409 // converted to .new predicate.
3410 //
3411 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3412 //                ^           ^
3413 //               /             \ (not OK. it will cause new-value store to be
3414 //              /               X conditional on p0.new while R2 producer is
3415 //             /                 \ on p0)
3416 //            /                   \.
3417 //     p.new store                 p.old NV store
3418 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
3419 //            ^                  ^
3420 //             \                /
3421 //              \              /
3422 //               \            /
3423 //                 p.old store
3424 //             [if (p0)memw(R0+#0)=R2]
3425 //
3426 // The following set of instructions further explains the scenario where
3427 // conditional new-value store becomes invalid when promoted to .new predicate
3428 // form.
3429 //
3430 // { 1) if (p0) r0 = add(r1, r2)
3431 //   2) p0 = cmp.eq(r3, #0) }
3432 //
3433 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3434 // the first two instructions because in instr 1, r0 is conditional on old value
3435 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3436 // is not valid for new-value stores.
3437 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3438 // from the "Conditional Store" list. Because a predicated new value store
3439 // would NOT be promoted to a double dot new store. See diagram below:
3440 // This function returns yes for those stores that are predicated but not
3441 // yet promoted to predicate dot new instructions.
3442 //
3443 //                          +---------------------+
3444 //                    /-----| if (p0) memw(..)=r0 |---------\~
3445 //                   ||     +---------------------+         ||
3446 //          promote  ||       /\       /\                   ||  promote
3447 //                   ||      /||\     /||\                  ||
3448 //                  \||/    demote     ||                  \||/
3449 //                   \/       ||       ||                   \/
3450 //       +-------------------------+   ||   +-------------------------+
3451 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3452 //       +-------------------------+   ||   +-------------------------+
3453 //                        ||           ||         ||
3454 //                        ||         demote      \||/
3455 //                      promote        ||         \/ NOT possible
3456 //                        ||           ||         /\~
3457 //                       \||/          ||        /||\~
3458 //                        \/           ||         ||
3459 //                      +-----------------------------+
3460 //                      | if (p0.new) memw(..)=r0.new |
3461 //                      +-----------------------------+
3462 //                           Double Dot New Store
3463 //
3464 // Returns the most basic instruction for the .new predicated instructions and
3465 // new-value stores.
3466 // For example, all of the following instructions will be converted back to the
3467 // same instruction:
3468 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
3469 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3470 // 3) if (p0.new) memw(R0+#0) = R1      --->
3471 //
3472 // To understand the translation of instruction 1 to its original form, consider
3473 // a packet with 3 instructions.
3474 // { p0 = cmp.eq(R0,R1)
3475 //   if (p0.new) R2 = add(R3, R4)
3476 //   R5 = add (R3, R1)
3477 // }
3478 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3479 //
3480 // This instruction can be part of the previous packet only if both p0 and R2
3481 // are promoted to .new values. This promotion happens in steps, first
3482 // predicate register is promoted to .new and in the next iteration R2 is
3483 // promoted. Therefore, in case of dependence check failure (due to R5) during
3484 // next iteration, it should be converted back to its most basic form.
3485 
3486 // Return the new value instruction for a given store.
getDotNewOp(const MachineInstr & MI) const3487 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3488   int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3489   if (NVOpcode >= 0) // Valid new-value store instruction.
3490     return NVOpcode;
3491 
3492   switch (MI.getOpcode()) {
3493   default:
3494     report_fatal_error(std::string("Unknown .new type: ") +
3495       std::to_string(MI.getOpcode()));
3496   case Hexagon::S4_storerb_ur:
3497     return Hexagon::S4_storerbnew_ur;
3498 
3499   case Hexagon::S2_storerb_pci:
3500     return Hexagon::S2_storerb_pci;
3501 
3502   case Hexagon::S2_storeri_pci:
3503     return Hexagon::S2_storeri_pci;
3504 
3505   case Hexagon::S2_storerh_pci:
3506     return Hexagon::S2_storerh_pci;
3507 
3508   case Hexagon::S2_storerd_pci:
3509     return Hexagon::S2_storerd_pci;
3510 
3511   case Hexagon::S2_storerf_pci:
3512     return Hexagon::S2_storerf_pci;
3513 
3514   case Hexagon::V6_vS32b_ai:
3515     return Hexagon::V6_vS32b_new_ai;
3516 
3517   case Hexagon::V6_vS32b_pi:
3518     return Hexagon::V6_vS32b_new_pi;
3519   }
3520   return 0;
3521 }
3522 
3523 // Returns the opcode to use when converting MI, which is a conditional jump,
3524 // into a conditional instruction which uses the .new value of the predicate.
3525 // We also use branch probabilities to add a hint to the jump.
3526 // If MBPI is null, all edges will be treated as equally likely for the
3527 // purposes of establishing a predication hint.
getDotNewPredJumpOp(const MachineInstr & MI,const MachineBranchProbabilityInfo * MBPI) const3528 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3529       const MachineBranchProbabilityInfo *MBPI) const {
3530   // We assume that block can have at most two successors.
3531   const MachineBasicBlock *Src = MI.getParent();
3532   const MachineOperand &BrTarget = MI.getOperand(1);
3533   bool Taken = false;
3534   const BranchProbability OneHalf(1, 2);
3535 
3536   auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3537                                     const MachineBasicBlock *Dst) {
3538     if (MBPI)
3539       return MBPI->getEdgeProbability(Src, Dst);
3540     return BranchProbability(1, Src->succ_size());
3541   };
3542 
3543   if (BrTarget.isMBB()) {
3544     const MachineBasicBlock *Dst = BrTarget.getMBB();
3545     Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3546   } else {
3547     // The branch target is not a basic block (most likely a function).
3548     // Since BPI only gives probabilities for targets that are basic blocks,
3549     // try to identify another target of this branch (potentially a fall-
3550     // -through) and check the probability of that target.
3551     //
3552     // The only handled branch combinations are:
3553     // - one conditional branch,
3554     // - one conditional branch followed by one unconditional branch.
3555     // Otherwise, assume not-taken.
3556     assert(MI.isConditionalBranch());
3557     const MachineBasicBlock &B = *MI.getParent();
3558     bool SawCond = false, Bad = false;
3559     for (const MachineInstr &I : B) {
3560       if (!I.isBranch())
3561         continue;
3562       if (I.isConditionalBranch()) {
3563         SawCond = true;
3564         if (&I != &MI) {
3565           Bad = true;
3566           break;
3567         }
3568       }
3569       if (I.isUnconditionalBranch() && !SawCond) {
3570         Bad = true;
3571         break;
3572       }
3573     }
3574     if (!Bad) {
3575       MachineBasicBlock::const_instr_iterator It(MI);
3576       MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3577       if (NextIt == B.instr_end()) {
3578         // If this branch is the last, look for the fall-through block.
3579         for (const MachineBasicBlock *SB : B.successors()) {
3580           if (!B.isLayoutSuccessor(SB))
3581             continue;
3582           Taken = getEdgeProbability(Src, SB) < OneHalf;
3583           break;
3584         }
3585       } else {
3586         assert(NextIt->isUnconditionalBranch());
3587         // Find the first MBB operand and assume it's the target.
3588         const MachineBasicBlock *BT = nullptr;
3589         for (const MachineOperand &Op : NextIt->operands()) {
3590           if (!Op.isMBB())
3591             continue;
3592           BT = Op.getMBB();
3593           break;
3594         }
3595         Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3596       }
3597     } // if (!Bad)
3598   }
3599 
3600   // The Taken flag should be set to something reasonable by this point.
3601 
3602   switch (MI.getOpcode()) {
3603   case Hexagon::J2_jumpt:
3604     return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3605   case Hexagon::J2_jumpf:
3606     return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3607 
3608   default:
3609     llvm_unreachable("Unexpected jump instruction.");
3610   }
3611 }
3612 
3613 // Return .new predicate version for an instruction.
getDotNewPredOp(const MachineInstr & MI,const MachineBranchProbabilityInfo * MBPI) const3614 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3615       const MachineBranchProbabilityInfo *MBPI) const {
3616   switch (MI.getOpcode()) {
3617   // Condtional Jumps
3618   case Hexagon::J2_jumpt:
3619   case Hexagon::J2_jumpf:
3620     return getDotNewPredJumpOp(MI, MBPI);
3621   }
3622 
3623   int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3624   if (NewOpcode >= 0)
3625     return NewOpcode;
3626   return 0;
3627 }
3628 
getDotOldOp(const MachineInstr & MI) const3629 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3630   int NewOp = MI.getOpcode();
3631   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3632     NewOp = Hexagon::getPredOldOpcode(NewOp);
3633     // All Hexagon architectures have prediction bits on dot-new branches,
3634     // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3635     // to pick the right opcode when converting back to dot-old.
3636     if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3637       switch (NewOp) {
3638       case Hexagon::J2_jumptpt:
3639         NewOp = Hexagon::J2_jumpt;
3640         break;
3641       case Hexagon::J2_jumpfpt:
3642         NewOp = Hexagon::J2_jumpf;
3643         break;
3644       case Hexagon::J2_jumprtpt:
3645         NewOp = Hexagon::J2_jumprt;
3646         break;
3647       case Hexagon::J2_jumprfpt:
3648         NewOp = Hexagon::J2_jumprf;
3649         break;
3650       }
3651     }
3652     assert(NewOp >= 0 &&
3653            "Couldn't change predicate new instruction to its old form.");
3654   }
3655 
3656   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3657     NewOp = Hexagon::getNonNVStore(NewOp);
3658     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3659   }
3660 
3661   if (Subtarget.hasV60Ops())
3662     return NewOp;
3663 
3664   // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3665   switch (NewOp) {
3666   case Hexagon::J2_jumpfpt:
3667     return Hexagon::J2_jumpf;
3668   case Hexagon::J2_jumptpt:
3669     return Hexagon::J2_jumpt;
3670   case Hexagon::J2_jumprfpt:
3671     return Hexagon::J2_jumprf;
3672   case Hexagon::J2_jumprtpt:
3673     return Hexagon::J2_jumprt;
3674   }
3675   return NewOp;
3676 }
3677 
3678 // See if instruction could potentially be a duplex candidate.
3679 // If so, return its group. Zero otherwise.
getDuplexCandidateGroup(const MachineInstr & MI) const3680 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3681       const MachineInstr &MI) const {
3682   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3683   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3684 
3685   switch (MI.getOpcode()) {
3686   default:
3687     return HexagonII::HSIG_None;
3688   //
3689   // Group L1:
3690   //
3691   // Rd = memw(Rs+#u4:2)
3692   // Rd = memub(Rs+#u4:0)
3693   case Hexagon::L2_loadri_io:
3694     DstReg = MI.getOperand(0).getReg();
3695     SrcReg = MI.getOperand(1).getReg();
3696     // Special case this one from Group L2.
3697     // Rd = memw(r29+#u5:2)
3698     if (isIntRegForSubInst(DstReg)) {
3699       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3700           HRI.getStackRegister() == SrcReg &&
3701           MI.getOperand(2).isImm() &&
3702           isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3703         return HexagonII::HSIG_L2;
3704       // Rd = memw(Rs+#u4:2)
3705       if (isIntRegForSubInst(SrcReg) &&
3706           (MI.getOperand(2).isImm() &&
3707           isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3708         return HexagonII::HSIG_L1;
3709     }
3710     break;
3711   case Hexagon::L2_loadrub_io:
3712     // Rd = memub(Rs+#u4:0)
3713     DstReg = MI.getOperand(0).getReg();
3714     SrcReg = MI.getOperand(1).getReg();
3715     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3716         MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3717       return HexagonII::HSIG_L1;
3718     break;
3719   //
3720   // Group L2:
3721   //
3722   // Rd = memh/memuh(Rs+#u3:1)
3723   // Rd = memb(Rs+#u3:0)
3724   // Rd = memw(r29+#u5:2) - Handled above.
3725   // Rdd = memd(r29+#u5:3)
3726   // deallocframe
3727   // [if ([!]p0[.new])] dealloc_return
3728   // [if ([!]p0[.new])] jumpr r31
3729   case Hexagon::L2_loadrh_io:
3730   case Hexagon::L2_loadruh_io:
3731     // Rd = memh/memuh(Rs+#u3:1)
3732     DstReg = MI.getOperand(0).getReg();
3733     SrcReg = MI.getOperand(1).getReg();
3734     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3735         MI.getOperand(2).isImm() &&
3736         isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3737       return HexagonII::HSIG_L2;
3738     break;
3739   case Hexagon::L2_loadrb_io:
3740     // Rd = memb(Rs+#u3:0)
3741     DstReg = MI.getOperand(0).getReg();
3742     SrcReg = MI.getOperand(1).getReg();
3743     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3744         MI.getOperand(2).isImm() &&
3745         isUInt<3>(MI.getOperand(2).getImm()))
3746       return HexagonII::HSIG_L2;
3747     break;
3748   case Hexagon::L2_loadrd_io:
3749     // Rdd = memd(r29+#u5:3)
3750     DstReg = MI.getOperand(0).getReg();
3751     SrcReg = MI.getOperand(1).getReg();
3752     if (isDblRegForSubInst(DstReg, HRI) &&
3753         Hexagon::IntRegsRegClass.contains(SrcReg) &&
3754         HRI.getStackRegister() == SrcReg &&
3755         MI.getOperand(2).isImm() &&
3756         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3757       return HexagonII::HSIG_L2;
3758     break;
3759   // dealloc_return is not documented in Hexagon Manual, but marked
3760   // with A_SUBINSN attribute in iset_v4classic.py.
3761   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3762   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3763   case Hexagon::L4_return:
3764   case Hexagon::L2_deallocframe:
3765     return HexagonII::HSIG_L2;
3766   case Hexagon::EH_RETURN_JMPR:
3767   case Hexagon::PS_jmpret:
3768   case Hexagon::SL2_jumpr31:
3769     // jumpr r31
3770     // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3771     DstReg = MI.getOperand(0).getReg();
3772     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3773       return HexagonII::HSIG_L2;
3774     break;
3775   case Hexagon::PS_jmprett:
3776   case Hexagon::PS_jmpretf:
3777   case Hexagon::PS_jmprettnewpt:
3778   case Hexagon::PS_jmpretfnewpt:
3779   case Hexagon::PS_jmprettnew:
3780   case Hexagon::PS_jmpretfnew:
3781   case Hexagon::SL2_jumpr31_t:
3782   case Hexagon::SL2_jumpr31_f:
3783   case Hexagon::SL2_jumpr31_tnew:
3784     DstReg = MI.getOperand(1).getReg();
3785     SrcReg = MI.getOperand(0).getReg();
3786     // [if ([!]p0[.new])] jumpr r31
3787     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3788         (Hexagon::P0 == SrcReg)) &&
3789         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3790       return HexagonII::HSIG_L2;
3791     break;
3792   case Hexagon::L4_return_t:
3793   case Hexagon::L4_return_f:
3794   case Hexagon::L4_return_tnew_pnt:
3795   case Hexagon::L4_return_fnew_pnt:
3796   case Hexagon::L4_return_tnew_pt:
3797   case Hexagon::L4_return_fnew_pt:
3798     // [if ([!]p0[.new])] dealloc_return
3799     SrcReg = MI.getOperand(0).getReg();
3800     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3801       return HexagonII::HSIG_L2;
3802     break;
3803   //
3804   // Group S1:
3805   //
3806   // memw(Rs+#u4:2) = Rt
3807   // memb(Rs+#u4:0) = Rt
3808   case Hexagon::S2_storeri_io:
3809     // Special case this one from Group S2.
3810     // memw(r29+#u5:2) = Rt
3811     Src1Reg = MI.getOperand(0).getReg();
3812     Src2Reg = MI.getOperand(2).getReg();
3813     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3814         isIntRegForSubInst(Src2Reg) &&
3815         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3816         isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
3817       return HexagonII::HSIG_S2;
3818     // memw(Rs+#u4:2) = Rt
3819     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3820         MI.getOperand(1).isImm() &&
3821         isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
3822       return HexagonII::HSIG_S1;
3823     break;
3824   case Hexagon::S2_storerb_io:
3825     // memb(Rs+#u4:0) = Rt
3826     Src1Reg = MI.getOperand(0).getReg();
3827     Src2Reg = MI.getOperand(2).getReg();
3828     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3829         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
3830       return HexagonII::HSIG_S1;
3831     break;
3832   //
3833   // Group S2:
3834   //
3835   // memh(Rs+#u3:1) = Rt
3836   // memw(r29+#u5:2) = Rt
3837   // memd(r29+#s6:3) = Rtt
3838   // memw(Rs+#u4:2) = #U1
3839   // memb(Rs+#u4) = #U1
3840   // allocframe(#u5:3)
3841   case Hexagon::S2_storerh_io:
3842     // memh(Rs+#u3:1) = Rt
3843     Src1Reg = MI.getOperand(0).getReg();
3844     Src2Reg = MI.getOperand(2).getReg();
3845     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3846         MI.getOperand(1).isImm() &&
3847         isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
3848       return HexagonII::HSIG_S1;
3849     break;
3850   case Hexagon::S2_storerd_io:
3851     // memd(r29+#s6:3) = Rtt
3852     Src1Reg = MI.getOperand(0).getReg();
3853     Src2Reg = MI.getOperand(2).getReg();
3854     if (isDblRegForSubInst(Src2Reg, HRI) &&
3855         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3856         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3857         isShiftedInt<6,3>(MI.getOperand(1).getImm()))
3858       return HexagonII::HSIG_S2;
3859     break;
3860   case Hexagon::S4_storeiri_io:
3861     // memw(Rs+#u4:2) = #U1
3862     Src1Reg = MI.getOperand(0).getReg();
3863     if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
3864         isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
3865         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3866       return HexagonII::HSIG_S2;
3867     break;
3868   case Hexagon::S4_storeirb_io:
3869     // memb(Rs+#u4) = #U1
3870     Src1Reg = MI.getOperand(0).getReg();
3871     if (isIntRegForSubInst(Src1Reg) &&
3872         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
3873         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3874       return HexagonII::HSIG_S2;
3875     break;
3876   case Hexagon::S2_allocframe:
3877     if (MI.getOperand(2).isImm() &&
3878         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3879       return HexagonII::HSIG_S1;
3880     break;
3881   //
3882   // Group A:
3883   //
3884   // Rx = add(Rx,#s7)
3885   // Rd = Rs
3886   // Rd = #u6
3887   // Rd = #-1
3888   // if ([!]P0[.new]) Rd = #0
3889   // Rd = add(r29,#u6:2)
3890   // Rx = add(Rx,Rs)
3891   // P0 = cmp.eq(Rs,#u2)
3892   // Rdd = combine(#0,Rs)
3893   // Rdd = combine(Rs,#0)
3894   // Rdd = combine(#u2,#U2)
3895   // Rd = add(Rs,#1)
3896   // Rd = add(Rs,#-1)
3897   // Rd = sxth/sxtb/zxtb/zxth(Rs)
3898   // Rd = and(Rs,#1)
3899   case Hexagon::A2_addi:
3900     DstReg = MI.getOperand(0).getReg();
3901     SrcReg = MI.getOperand(1).getReg();
3902     if (isIntRegForSubInst(DstReg)) {
3903       // Rd = add(r29,#u6:2)
3904       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3905         HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
3906         isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
3907         return HexagonII::HSIG_A;
3908       // Rx = add(Rx,#s7)
3909       if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
3910           isInt<7>(MI.getOperand(2).getImm()))
3911         return HexagonII::HSIG_A;
3912       // Rd = add(Rs,#1)
3913       // Rd = add(Rs,#-1)
3914       if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3915           ((MI.getOperand(2).getImm() == 1) ||
3916           (MI.getOperand(2).getImm() == -1)))
3917         return HexagonII::HSIG_A;
3918     }
3919     break;
3920   case Hexagon::A2_add:
3921     // Rx = add(Rx,Rs)
3922     DstReg = MI.getOperand(0).getReg();
3923     Src1Reg = MI.getOperand(1).getReg();
3924     Src2Reg = MI.getOperand(2).getReg();
3925     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3926         isIntRegForSubInst(Src2Reg))
3927       return HexagonII::HSIG_A;
3928     break;
3929   case Hexagon::A2_andir:
3930     // Same as zxtb.
3931     // Rd16=and(Rs16,#255)
3932     // Rd16=and(Rs16,#1)
3933     DstReg = MI.getOperand(0).getReg();
3934     SrcReg = MI.getOperand(1).getReg();
3935     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3936         MI.getOperand(2).isImm() &&
3937         ((MI.getOperand(2).getImm() == 1) ||
3938         (MI.getOperand(2).getImm() == 255)))
3939       return HexagonII::HSIG_A;
3940     break;
3941   case Hexagon::A2_tfr:
3942     // Rd = Rs
3943     DstReg = MI.getOperand(0).getReg();
3944     SrcReg = MI.getOperand(1).getReg();
3945     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3946       return HexagonII::HSIG_A;
3947     break;
3948   case Hexagon::A2_tfrsi:
3949     // Rd = #u6
3950     // Do not test for #u6 size since the const is getting extended
3951     // regardless and compound could be formed.
3952     // Rd = #-1
3953     DstReg = MI.getOperand(0).getReg();
3954     if (isIntRegForSubInst(DstReg))
3955       return HexagonII::HSIG_A;
3956     break;
3957   case Hexagon::C2_cmoveit:
3958   case Hexagon::C2_cmovenewit:
3959   case Hexagon::C2_cmoveif:
3960   case Hexagon::C2_cmovenewif:
3961     // if ([!]P0[.new]) Rd = #0
3962     // Actual form:
3963     // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3964     DstReg = MI.getOperand(0).getReg();
3965     SrcReg = MI.getOperand(1).getReg();
3966     if (isIntRegForSubInst(DstReg) &&
3967         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3968         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
3969       return HexagonII::HSIG_A;
3970     break;
3971   case Hexagon::C2_cmpeqi:
3972     // P0 = cmp.eq(Rs,#u2)
3973     DstReg = MI.getOperand(0).getReg();
3974     SrcReg = MI.getOperand(1).getReg();
3975     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3976         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3977         MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
3978       return HexagonII::HSIG_A;
3979     break;
3980   case Hexagon::A2_combineii:
3981   case Hexagon::A4_combineii:
3982     // Rdd = combine(#u2,#U2)
3983     DstReg = MI.getOperand(0).getReg();
3984     if (isDblRegForSubInst(DstReg, HRI) &&
3985         ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
3986         (MI.getOperand(1).isGlobal() &&
3987         isUInt<2>(MI.getOperand(1).getOffset()))) &&
3988         ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
3989         (MI.getOperand(2).isGlobal() &&
3990         isUInt<2>(MI.getOperand(2).getOffset()))))
3991       return HexagonII::HSIG_A;
3992     break;
3993   case Hexagon::A4_combineri:
3994     // Rdd = combine(Rs,#0)
3995     DstReg = MI.getOperand(0).getReg();
3996     SrcReg = MI.getOperand(1).getReg();
3997     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3998         ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
3999         (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4000       return HexagonII::HSIG_A;
4001     break;
4002   case Hexagon::A4_combineir:
4003     // Rdd = combine(#0,Rs)
4004     DstReg = MI.getOperand(0).getReg();
4005     SrcReg = MI.getOperand(2).getReg();
4006     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4007         ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4008         (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4009       return HexagonII::HSIG_A;
4010     break;
4011   case Hexagon::A2_sxtb:
4012   case Hexagon::A2_sxth:
4013   case Hexagon::A2_zxtb:
4014   case Hexagon::A2_zxth:
4015     // Rd = sxth/sxtb/zxtb/zxth(Rs)
4016     DstReg = MI.getOperand(0).getReg();
4017     SrcReg = MI.getOperand(1).getReg();
4018     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4019       return HexagonII::HSIG_A;
4020     break;
4021   }
4022 
4023   return HexagonII::HSIG_None;
4024 }
4025 
getEquivalentHWInstr(const MachineInstr & MI) const4026 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4027   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4028 }
4029 
getInstrTimingClassLatency(const InstrItineraryData * ItinData,const MachineInstr & MI) const4030 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4031       const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4032   // Default to one cycle for no itinerary. However, an "empty" itinerary may
4033   // still have a MinLatency property, which getStageLatency checks.
4034   if (!ItinData)
4035     return getInstrLatency(ItinData, MI);
4036 
4037   if (MI.isTransient())
4038     return 0;
4039   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4040 }
4041 
4042 /// getOperandLatency - Compute and return the use operand latency of a given
4043 /// pair of def and use.
4044 /// In most cases, the static scheduling itinerary was enough to determine the
4045 /// operand latency. But it may not be possible for instructions with variable
4046 /// number of defs / uses.
4047 ///
4048 /// This is a raw interface to the itinerary that may be directly overriden by
4049 /// a target. Use computeOperandLatency to get the best estimate of latency.
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4050 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4051                                         const MachineInstr &DefMI,
4052                                         unsigned DefIdx,
4053                                         const MachineInstr &UseMI,
4054                                         unsigned UseIdx) const {
4055   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4056 
4057   // Get DefIdx and UseIdx for super registers.
4058   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4059 
4060   if (DefMO.isReg() && HRI.isPhysicalRegister(DefMO.getReg())) {
4061     if (DefMO.isImplicit()) {
4062       for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4063         int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4064         if (Idx != -1) {
4065           DefIdx = Idx;
4066           break;
4067         }
4068       }
4069     }
4070 
4071     const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4072     if (UseMO.isImplicit()) {
4073       for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4074         int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4075         if (Idx != -1) {
4076           UseIdx = Idx;
4077           break;
4078         }
4079       }
4080     }
4081   }
4082 
4083   int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4084                                                    UseMI, UseIdx);
4085   if (!Latency)
4086     // We should never have 0 cycle latency between two instructions unless
4087     // they can be packetized together. However, this decision can't be made
4088     // here.
4089     Latency = 1;
4090   return Latency;
4091 }
4092 
4093 // inverts the predication logic.
4094 // p -> NotP
4095 // NotP -> P
getInvertedPredSense(SmallVectorImpl<MachineOperand> & Cond) const4096 bool HexagonInstrInfo::getInvertedPredSense(
4097       SmallVectorImpl<MachineOperand> &Cond) const {
4098   if (Cond.empty())
4099     return false;
4100   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4101   Cond[0].setImm(Opc);
4102   return true;
4103 }
4104 
getInvertedPredicatedOpcode(const int Opc) const4105 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4106   int InvPredOpcode;
4107   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4108                                         : Hexagon::getTruePredOpcode(Opc);
4109   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4110     return InvPredOpcode;
4111 
4112   llvm_unreachable("Unexpected predicated instruction");
4113 }
4114 
4115 // Returns the max value that doesn't need to be extended.
getMaxValue(const MachineInstr & MI) const4116 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4117   const uint64_t F = MI.getDesc().TSFlags;
4118   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4119                     & HexagonII::ExtentSignedMask;
4120   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4121                     & HexagonII::ExtentBitsMask;
4122 
4123   if (isSigned) // if value is signed
4124     return ~(-1U << (bits - 1));
4125   else
4126     return ~(-1U << bits);
4127 }
4128 
4129 
isAddrModeWithOffset(const MachineInstr & MI) const4130 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4131   switch (MI.getOpcode()) {
4132   case Hexagon::L2_loadrbgp:
4133   case Hexagon::L2_loadrdgp:
4134   case Hexagon::L2_loadrhgp:
4135   case Hexagon::L2_loadrigp:
4136   case Hexagon::L2_loadrubgp:
4137   case Hexagon::L2_loadruhgp:
4138   case Hexagon::S2_storerbgp:
4139   case Hexagon::S2_storerbnewgp:
4140   case Hexagon::S2_storerhgp:
4141   case Hexagon::S2_storerhnewgp:
4142   case Hexagon::S2_storerigp:
4143   case Hexagon::S2_storerinewgp:
4144   case Hexagon::S2_storerdgp:
4145   case Hexagon::S2_storerfgp:
4146     return true;
4147   }
4148   const uint64_t F = MI.getDesc().TSFlags;
4149   unsigned addrMode =
4150     ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4151   // Disallow any base+offset instruction. The assembler does not yet reorder
4152   // based up any zero offset instruction.
4153   return (addrMode == HexagonII::BaseRegOffset ||
4154           addrMode == HexagonII::BaseImmOffset ||
4155           addrMode == HexagonII::BaseLongOffset);
4156 }
4157 
getMemAccessSize(const MachineInstr & MI) const4158 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4159   using namespace HexagonII;
4160 
4161   const uint64_t F = MI.getDesc().TSFlags;
4162   unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4163   unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4164   if (Size != 0)
4165     return Size;
4166 
4167   // Handle vector access sizes.
4168   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4169   switch (S) {
4170     case HexagonII::HVXVectorAccess:
4171       return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4172     default:
4173       llvm_unreachable("Unexpected instruction");
4174   }
4175 }
4176 
4177 // Returns the min value that doesn't need to be extended.
getMinValue(const MachineInstr & MI) const4178 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4179   const uint64_t F = MI.getDesc().TSFlags;
4180   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4181                     & HexagonII::ExtentSignedMask;
4182   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4183                     & HexagonII::ExtentBitsMask;
4184 
4185   if (isSigned) // if value is signed
4186     return -1U << (bits - 1);
4187   else
4188     return 0;
4189 }
4190 
4191 // Returns opcode of the non-extended equivalent instruction.
getNonExtOpcode(const MachineInstr & MI) const4192 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4193   // Check if the instruction has a register form that uses register in place
4194   // of the extended operand, if so return that as the non-extended form.
4195   short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4196     if (NonExtOpcode >= 0)
4197       return NonExtOpcode;
4198 
4199   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4200     // Check addressing mode and retrieve non-ext equivalent instruction.
4201     switch (getAddrMode(MI)) {
4202     case HexagonII::Absolute:
4203       return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4204     case HexagonII::BaseImmOffset:
4205       return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4206     case HexagonII::BaseLongOffset:
4207       return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4208 
4209     default:
4210       return -1;
4211     }
4212   }
4213   return -1;
4214 }
4215 
getPredReg(ArrayRef<MachineOperand> Cond,unsigned & PredReg,unsigned & PredRegPos,unsigned & PredRegFlags) const4216 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4217       unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4218   if (Cond.empty())
4219     return false;
4220   assert(Cond.size() == 2);
4221   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4222     LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4223     return false;
4224   }
4225   PredReg = Cond[1].getReg();
4226   PredRegPos = 1;
4227   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4228   PredRegFlags = 0;
4229   if (Cond[1].isImplicit())
4230     PredRegFlags = RegState::Implicit;
4231   if (Cond[1].isUndef())
4232     PredRegFlags |= RegState::Undef;
4233   return true;
4234 }
4235 
getPseudoInstrPair(const MachineInstr & MI) const4236 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4237   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4238 }
4239 
getRegForm(const MachineInstr & MI) const4240 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4241   return Hexagon::getRegForm(MI.getOpcode());
4242 }
4243 
4244 // Return the number of bytes required to encode the instruction.
4245 // Hexagon instructions are fixed length, 4 bytes, unless they
4246 // use a constant extender, which requires another 4 bytes.
4247 // For debug instructions and prolog labels, return 0.
getSize(const MachineInstr & MI) const4248 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4249   if (MI.isDebugInstr() || MI.isPosition())
4250     return 0;
4251 
4252   unsigned Size = MI.getDesc().getSize();
4253   if (!Size)
4254     // Assume the default insn size in case it cannot be determined
4255     // for whatever reason.
4256     Size = HEXAGON_INSTR_SIZE;
4257 
4258   if (isConstExtended(MI) || isExtended(MI))
4259     Size += HEXAGON_INSTR_SIZE;
4260 
4261   // Try and compute number of instructions in asm.
4262   if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4263     const MachineBasicBlock &MBB = *MI.getParent();
4264     const MachineFunction *MF = MBB.getParent();
4265     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4266 
4267     // Count the number of register definitions to find the asm string.
4268     unsigned NumDefs = 0;
4269     for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4270          ++NumDefs)
4271       assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4272 
4273     assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4274     // Disassemble the AsmStr and approximate number of instructions.
4275     const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4276     Size = getInlineAsmLength(AsmStr, *MAI);
4277   }
4278 
4279   return Size;
4280 }
4281 
getType(const MachineInstr & MI) const4282 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4283   const uint64_t F = MI.getDesc().TSFlags;
4284   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4285 }
4286 
getUnits(const MachineInstr & MI) const4287 unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4288   const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4289   const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4290 
4291   return IS.getUnits();
4292 }
4293 
4294 // Calculate size of the basic block without debug instructions.
nonDbgBBSize(const MachineBasicBlock * BB) const4295 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4296   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4297 }
4298 
nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const4299 unsigned HexagonInstrInfo::nonDbgBundleSize(
4300       MachineBasicBlock::const_iterator BundleHead) const {
4301   assert(BundleHead->isBundle() && "Not a bundle header");
4302   auto MII = BundleHead.getInstrIterator();
4303   // Skip the bundle header.
4304   return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4305 }
4306 
4307 /// immediateExtend - Changes the instruction in place to one using an immediate
4308 /// extender.
immediateExtend(MachineInstr & MI) const4309 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4310   assert((isExtendable(MI)||isConstExtended(MI)) &&
4311                                "Instruction must be extendable");
4312   // Find which operand is extendable.
4313   short ExtOpNum = getCExtOpNum(MI);
4314   MachineOperand &MO = MI.getOperand(ExtOpNum);
4315   // This needs to be something we understand.
4316   assert((MO.isMBB() || MO.isImm()) &&
4317          "Branch with unknown extendable field type");
4318   // Mark given operand as extended.
4319   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4320 }
4321 
invertAndChangeJumpTarget(MachineInstr & MI,MachineBasicBlock * NewTarget) const4322 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4323       MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4324   LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4325                     << printMBBReference(*NewTarget);
4326              MI.dump(););
4327   assert(MI.isBranch());
4328   unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4329   int TargetPos = MI.getNumOperands() - 1;
4330   // In general branch target is the last operand,
4331   // but some implicit defs added at the end might change it.
4332   while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4333     --TargetPos;
4334   assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4335   MI.getOperand(TargetPos).setMBB(NewTarget);
4336   if (EnableBranchPrediction && isPredicatedNew(MI)) {
4337     NewOpcode = reversePrediction(NewOpcode);
4338   }
4339   MI.setDesc(get(NewOpcode));
4340   return true;
4341 }
4342 
genAllInsnTimingClasses(MachineFunction & MF) const4343 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4344   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4345   MachineFunction::iterator A = MF.begin();
4346   MachineBasicBlock &B = *A;
4347   MachineBasicBlock::iterator I = B.begin();
4348   DebugLoc DL = I->getDebugLoc();
4349   MachineInstr *NewMI;
4350 
4351   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4352        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4353     NewMI = BuildMI(B, I, DL, get(insn));
4354     LLVM_DEBUG(dbgs() << "\n"
4355                       << getName(NewMI->getOpcode())
4356                       << "  Class: " << NewMI->getDesc().getSchedClass());
4357     NewMI->eraseFromParent();
4358   }
4359   /* --- The code above is used to generate complete set of Hexagon Insn --- */
4360 }
4361 
4362 // inverts the predication logic.
4363 // p -> NotP
4364 // NotP -> P
reversePredSense(MachineInstr & MI) const4365 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4366   LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4367   MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4368   return true;
4369 }
4370 
4371 // Reverse the branch prediction.
reversePrediction(unsigned Opcode) const4372 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4373   int PredRevOpcode = -1;
4374   if (isPredictedTaken(Opcode))
4375     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4376   else
4377     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4378   assert(PredRevOpcode > 0);
4379   return PredRevOpcode;
4380 }
4381 
4382 // TODO: Add more rigorous validation.
validateBranchCond(const ArrayRef<MachineOperand> & Cond) const4383 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4384       const {
4385   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4386 }
4387 
4388 void HexagonInstrInfo::
setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const4389 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4390   assert(MIB->isBundle());
4391   MachineOperand &Operand = MIB->getOperand(0);
4392   if (Operand.isImm())
4393     Operand.setImm(Operand.getImm() | memShufDisabledMask);
4394   else
4395     MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4396 }
4397 
getBundleNoShuf(const MachineInstr & MIB) const4398 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4399   assert(MIB.isBundle());
4400   const MachineOperand &Operand = MIB.getOperand(0);
4401   return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4402 }
4403 
4404 // Addressing mode relations.
changeAddrMode_abs_io(short Opc) const4405 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4406   return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4407 }
4408 
changeAddrMode_io_abs(short Opc) const4409 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4410   return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4411 }
4412 
changeAddrMode_io_pi(short Opc) const4413 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4414   return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4415 }
4416 
changeAddrMode_io_rr(short Opc) const4417 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4418   return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4419 }
4420 
changeAddrMode_pi_io(short Opc) const4421 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4422   return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4423 }
4424 
changeAddrMode_rr_io(short Opc) const4425 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4426   return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4427 }
4428 
changeAddrMode_rr_ur(short Opc) const4429 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4430   return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4431 }
4432 
changeAddrMode_ur_rr(short Opc) const4433 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4434   return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4435 }
4436