1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "NVPTXISelLowering.h"
16 #include "MCTargetDesc/NVPTXBaseInfo.h"
17 #include "NVPTX.h"
18 #include "NVPTXSubtarget.h"
19 #include "NVPTXTargetMachine.h"
20 #include "NVPTXTargetObjectFile.h"
21 #include "NVPTXUtilities.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63
64 #define DEBUG_TYPE "nvptx-lower"
65
66 using namespace llvm;
67
68 static unsigned int uniqueCallSite = 0;
69
70 static cl::opt<bool> sched4reg(
71 "nvptx-sched4reg",
72 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73
74 static cl::opt<unsigned>
75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
76 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77 " 1: do it 2: do it aggressively"),
78 cl::init(2));
79
80 static cl::opt<int> UsePrecDivF32(
81 "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
82 cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83 " IEEE Compliant F32 div.rnd if available."),
84 cl::init(2));
85
86 static cl::opt<bool> UsePrecSqrtF32(
87 "nvptx-prec-sqrtf32", cl::Hidden,
88 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89 cl::init(true));
90
91 static cl::opt<bool> FtzEnabled(
92 "nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
93 cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
94 cl::init(false));
95
getDivF32Level() const96 int NVPTXTargetLowering::getDivF32Level() const {
97 if (UsePrecDivF32.getNumOccurrences() > 0) {
98 // If nvptx-prec-div32=N is used on the command-line, always honor it
99 return UsePrecDivF32;
100 } else {
101 // Otherwise, use div.approx if fast math is enabled
102 if (getTargetMachine().Options.UnsafeFPMath)
103 return 0;
104 else
105 return 2;
106 }
107 }
108
usePrecSqrtF32() const109 bool NVPTXTargetLowering::usePrecSqrtF32() const {
110 if (UsePrecSqrtF32.getNumOccurrences() > 0) {
111 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
112 return UsePrecSqrtF32;
113 } else {
114 // Otherwise, use sqrt.approx if fast math is enabled
115 return !getTargetMachine().Options.UnsafeFPMath;
116 }
117 }
118
useF32FTZ(const MachineFunction & MF) const119 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
120 // TODO: Get rid of this flag; there can be only one way to do this.
121 if (FtzEnabled.getNumOccurrences() > 0) {
122 // If nvptx-f32ftz is used on the command-line, always honor it
123 return FtzEnabled;
124 } else {
125 const Function &F = MF.getFunction();
126 // Otherwise, check for an nvptx-f32ftz attribute on the function
127 if (F.hasFnAttribute("nvptx-f32ftz"))
128 return F.getFnAttribute("nvptx-f32ftz").getValueAsString() == "true";
129 else
130 return false;
131 }
132 }
133
IsPTXVectorType(MVT VT)134 static bool IsPTXVectorType(MVT VT) {
135 switch (VT.SimpleTy) {
136 default:
137 return false;
138 case MVT::v2i1:
139 case MVT::v4i1:
140 case MVT::v2i8:
141 case MVT::v4i8:
142 case MVT::v2i16:
143 case MVT::v4i16:
144 case MVT::v2i32:
145 case MVT::v4i32:
146 case MVT::v2i64:
147 case MVT::v2f16:
148 case MVT::v4f16:
149 case MVT::v8f16: // <4 x f16x2>
150 case MVT::v2f32:
151 case MVT::v4f32:
152 case MVT::v2f64:
153 return true;
154 }
155 }
156
157 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
158 /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
159 /// into their primitive components.
160 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
161 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
162 /// LowerCall, and LowerReturn.
ComputePTXValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets=nullptr,uint64_t StartingOffset=0)163 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
164 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
165 SmallVectorImpl<uint64_t> *Offsets = nullptr,
166 uint64_t StartingOffset = 0) {
167 SmallVector<EVT, 16> TempVTs;
168 SmallVector<uint64_t, 16> TempOffsets;
169
170 // Special case for i128 - decompose to (i64, i64)
171 if (Ty->isIntegerTy(128)) {
172 ValueVTs.push_back(EVT(MVT::i64));
173 ValueVTs.push_back(EVT(MVT::i64));
174
175 if (Offsets) {
176 Offsets->push_back(StartingOffset + 0);
177 Offsets->push_back(StartingOffset + 8);
178 }
179
180 return;
181 }
182
183 // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
184 if (StructType *STy = dyn_cast<StructType>(Ty)) {
185 auto const *SL = DL.getStructLayout(STy);
186 auto ElementNum = 0;
187 for(auto *EI : STy->elements()) {
188 ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
189 StartingOffset + SL->getElementOffset(ElementNum));
190 ++ElementNum;
191 }
192 return;
193 }
194
195 ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
196 for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
197 EVT VT = TempVTs[i];
198 uint64_t Off = TempOffsets[i];
199 // Split vectors into individual elements, except for v2f16, which
200 // we will pass as a single scalar.
201 if (VT.isVector()) {
202 unsigned NumElts = VT.getVectorNumElements();
203 EVT EltVT = VT.getVectorElementType();
204 // Vectors with an even number of f16 elements will be passed to
205 // us as an array of v2f16 elements. We must match this so we
206 // stay in sync with Ins/Outs.
207 if (EltVT == MVT::f16 && NumElts % 2 == 0) {
208 EltVT = MVT::v2f16;
209 NumElts /= 2;
210 }
211 for (unsigned j = 0; j != NumElts; ++j) {
212 ValueVTs.push_back(EltVT);
213 if (Offsets)
214 Offsets->push_back(Off + j * EltVT.getStoreSize());
215 }
216 } else {
217 ValueVTs.push_back(VT);
218 if (Offsets)
219 Offsets->push_back(Off);
220 }
221 }
222 }
223
224 // Check whether we can merge loads/stores of some of the pieces of a
225 // flattened function parameter or return value into a single vector
226 // load/store.
227 //
228 // The flattened parameter is represented as a list of EVTs and
229 // offsets, and the whole structure is aligned to ParamAlignment. This
230 // function determines whether we can load/store pieces of the
231 // parameter starting at index Idx using a single vectorized op of
232 // size AccessSize. If so, it returns the number of param pieces
233 // covered by the vector op. Otherwise, it returns 1.
CanMergeParamLoadStoresStartingAt(unsigned Idx,uint32_t AccessSize,const SmallVectorImpl<EVT> & ValueVTs,const SmallVectorImpl<uint64_t> & Offsets,unsigned ParamAlignment)234 static unsigned CanMergeParamLoadStoresStartingAt(
235 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
236 const SmallVectorImpl<uint64_t> &Offsets, unsigned ParamAlignment) {
237 assert(isPowerOf2_32(AccessSize) && "must be a power of 2!");
238
239 // Can't vectorize if param alignment is not sufficient.
240 if (AccessSize > ParamAlignment)
241 return 1;
242 // Can't vectorize if offset is not aligned.
243 if (Offsets[Idx] & (AccessSize - 1))
244 return 1;
245
246 EVT EltVT = ValueVTs[Idx];
247 unsigned EltSize = EltVT.getStoreSize();
248
249 // Element is too large to vectorize.
250 if (EltSize >= AccessSize)
251 return 1;
252
253 unsigned NumElts = AccessSize / EltSize;
254 // Can't vectorize if AccessBytes if not a multiple of EltSize.
255 if (AccessSize != EltSize * NumElts)
256 return 1;
257
258 // We don't have enough elements to vectorize.
259 if (Idx + NumElts > ValueVTs.size())
260 return 1;
261
262 // PTX ISA can only deal with 2- and 4-element vector ops.
263 if (NumElts != 4 && NumElts != 2)
264 return 1;
265
266 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
267 // Types do not match.
268 if (ValueVTs[j] != EltVT)
269 return 1;
270
271 // Elements are not contiguous.
272 if (Offsets[j] - Offsets[j - 1] != EltSize)
273 return 1;
274 }
275 // OK. We can vectorize ValueVTs[i..i+NumElts)
276 return NumElts;
277 }
278
279 // Flags for tracking per-element vectorization state of loads/stores
280 // of a flattened function parameter or return value.
281 enum ParamVectorizationFlags {
282 PVF_INNER = 0x0, // Middle elements of a vector.
283 PVF_FIRST = 0x1, // First element of the vector.
284 PVF_LAST = 0x2, // Last element of the vector.
285 // Scalar is effectively a 1-element vector.
286 PVF_SCALAR = PVF_FIRST | PVF_LAST
287 };
288
289 // Computes whether and how we can vectorize the loads/stores of a
290 // flattened function parameter or return value.
291 //
292 // The flattened parameter is represented as the list of ValueVTs and
293 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
294 // of the same size as ValueVTs indicating how each piece should be
295 // loaded/stored (i.e. as a scalar, or as part of a vector
296 // load/store).
297 static SmallVector<ParamVectorizationFlags, 16>
VectorizePTXValueVTs(const SmallVectorImpl<EVT> & ValueVTs,const SmallVectorImpl<uint64_t> & Offsets,unsigned ParamAlignment)298 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
299 const SmallVectorImpl<uint64_t> &Offsets,
300 unsigned ParamAlignment) {
301 // Set vector size to match ValueVTs and mark all elements as
302 // scalars by default.
303 SmallVector<ParamVectorizationFlags, 16> VectorInfo;
304 VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
305
306 // Check what we can vectorize using 128/64/32-bit accesses.
307 for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
308 // Skip elements we've already processed.
309 assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
310 for (unsigned AccessSize : {16, 8, 4, 2}) {
311 unsigned NumElts = CanMergeParamLoadStoresStartingAt(
312 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
313 // Mark vectorized elements.
314 switch (NumElts) {
315 default:
316 llvm_unreachable("Unexpected return value");
317 case 1:
318 // Can't vectorize using this size, try next smaller size.
319 continue;
320 case 2:
321 assert(I + 1 < E && "Not enough elements.");
322 VectorInfo[I] = PVF_FIRST;
323 VectorInfo[I + 1] = PVF_LAST;
324 I += 1;
325 break;
326 case 4:
327 assert(I + 3 < E && "Not enough elements.");
328 VectorInfo[I] = PVF_FIRST;
329 VectorInfo[I + 1] = PVF_INNER;
330 VectorInfo[I + 2] = PVF_INNER;
331 VectorInfo[I + 3] = PVF_LAST;
332 I += 3;
333 break;
334 }
335 // Break out of the inner loop because we've already succeeded
336 // using largest possible AccessSize.
337 break;
338 }
339 }
340 return VectorInfo;
341 }
342
343 // NVPTXTargetLowering Constructor.
NVPTXTargetLowering(const NVPTXTargetMachine & TM,const NVPTXSubtarget & STI)344 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
345 const NVPTXSubtarget &STI)
346 : TargetLowering(TM), nvTM(&TM), STI(STI) {
347 // always lower memset, memcpy, and memmove intrinsics to load/store
348 // instructions, rather
349 // then generating calls to memset, mempcy or memmove.
350 MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
351 MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
352 MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
353
354 setBooleanContents(ZeroOrNegativeOneBooleanContent);
355 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
356
357 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
358 // condition branches.
359 setJumpIsExpensive(true);
360
361 // Wide divides are _very_ slow. Try to reduce the width of the divide if
362 // possible.
363 addBypassSlowDiv(64, 32);
364
365 // By default, use the Source scheduling
366 if (sched4reg)
367 setSchedulingPreference(Sched::RegPressure);
368 else
369 setSchedulingPreference(Sched::Source);
370
371 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
372 LegalizeAction NoF16Action) {
373 setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
374 };
375
376 addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
377 addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
378 addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
379 addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
380 addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
381 addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
382 addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
383 addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
384
385 // Conversion to/from FP16/FP16x2 is always legal.
386 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
387 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
388 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
390 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
391 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
392
393 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
394 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
395
396 // Operations not directly supported by NVPTX.
397 for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
398 MVT::i16, MVT::i32, MVT::i64}) {
399 setOperationAction(ISD::SELECT_CC, VT, Expand);
400 setOperationAction(ISD::BR_CC, VT, Expand);
401 }
402
403 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
404 // For others we will expand to a SHL/SRA pair.
405 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
406 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
407 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
408 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
409 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
410
411 setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
412 setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
413 setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
414 setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
415 setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
416 setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
417
418 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
419 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
420
421 // TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs
422 // that don't have h/w rotation we lower them to multi-instruction assembly.
423 // See ROT*_sw in NVPTXIntrInfo.td
424 setOperationAction(ISD::ROTL, MVT::i64, Legal);
425 setOperationAction(ISD::ROTR, MVT::i64, Legal);
426 setOperationAction(ISD::ROTL, MVT::i32, Legal);
427 setOperationAction(ISD::ROTR, MVT::i32, Legal);
428
429 setOperationAction(ISD::ROTL, MVT::i16, Expand);
430 setOperationAction(ISD::ROTR, MVT::i16, Expand);
431 setOperationAction(ISD::ROTL, MVT::i8, Expand);
432 setOperationAction(ISD::ROTR, MVT::i8, Expand);
433 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
434 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
435 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
436
437 // Indirect branch is not supported.
438 // This also disables Jump Table creation.
439 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
440 setOperationAction(ISD::BRIND, MVT::Other, Expand);
441
442 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
443 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
444
445 // We want to legalize constant related memmove and memcopy
446 // intrinsics.
447 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
448
449 // Turn FP extload into load/fpextend
450 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
451 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
452 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
453 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
454 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
455 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
456 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
457 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
458 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
459 // Turn FP truncstore into trunc + store.
460 // FIXME: vector types should also be expanded
461 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
462 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
463 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
464
465 // PTX does not support load / store predicate registers
466 setOperationAction(ISD::LOAD, MVT::i1, Custom);
467 setOperationAction(ISD::STORE, MVT::i1, Custom);
468
469 for (MVT VT : MVT::integer_valuetypes()) {
470 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
471 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
472 setTruncStoreAction(VT, MVT::i1, Expand);
473 }
474
475 // This is legal in NVPTX
476 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
477 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
478 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
479
480 // TRAP can be lowered to PTX trap
481 setOperationAction(ISD::TRAP, MVT::Other, Legal);
482
483 // Register custom handling for vector loads/stores
484 for (MVT VT : MVT::vector_valuetypes()) {
485 if (IsPTXVectorType(VT)) {
486 setOperationAction(ISD::LOAD, VT, Custom);
487 setOperationAction(ISD::STORE, VT, Custom);
488 setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
489 }
490 }
491
492 // Custom handling for i8 intrinsics
493 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
494
495 for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
496 setOperationAction(ISD::ABS, Ty, Legal);
497 setOperationAction(ISD::SMIN, Ty, Legal);
498 setOperationAction(ISD::SMAX, Ty, Legal);
499 setOperationAction(ISD::UMIN, Ty, Legal);
500 setOperationAction(ISD::UMAX, Ty, Legal);
501
502 setOperationAction(ISD::CTPOP, Ty, Legal);
503 setOperationAction(ISD::CTLZ, Ty, Legal);
504 }
505
506 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
507 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
508 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
509
510 // PTX does not directly support SELP of i1, so promote to i32 first
511 setOperationAction(ISD::SELECT, MVT::i1, Custom);
512
513 // PTX cannot multiply two i64s in a single instruction.
514 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
515 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
516
517 // We have some custom DAG combine patterns for these nodes
518 setTargetDAGCombine(ISD::ADD);
519 setTargetDAGCombine(ISD::AND);
520 setTargetDAGCombine(ISD::FADD);
521 setTargetDAGCombine(ISD::MUL);
522 setTargetDAGCombine(ISD::SHL);
523 setTargetDAGCombine(ISD::SREM);
524 setTargetDAGCombine(ISD::UREM);
525
526 // setcc for f16x2 needs special handling to prevent legalizer's
527 // attempt to scalarize it due to v2i1 not being legal.
528 if (STI.allowFP16Math())
529 setTargetDAGCombine(ISD::SETCC);
530
531 // Promote fp16 arithmetic if fp16 hardware isn't available or the
532 // user passed --nvptx-no-fp16-math. The flag is useful because,
533 // although sm_53+ GPUs have some sort of FP16 support in
534 // hardware, only sm_53 and sm_60 have full implementation. Others
535 // only have token amount of hardware and are likely to run faster
536 // by using fp32 units instead.
537 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
538 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
539 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
540 }
541
542 // There's no neg.f16 instruction. Expand to (0-x).
543 setOperationAction(ISD::FNEG, MVT::f16, Expand);
544 setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
545
546 // (would be) Library functions.
547
548 // These map to conversion instructions for scalar FP types.
549 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
550 ISD::FROUND, ISD::FTRUNC}) {
551 setOperationAction(Op, MVT::f16, Legal);
552 setOperationAction(Op, MVT::f32, Legal);
553 setOperationAction(Op, MVT::f64, Legal);
554 setOperationAction(Op, MVT::v2f16, Expand);
555 }
556
557 // 'Expand' implements FCOPYSIGN without calling an external library.
558 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
559 setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
560 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
561 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
562
563 // These map to corresponding instructions for f32/f64. f16 must be
564 // promoted to f32. v2f16 is expanded to f16, which is then promoted
565 // to f32.
566 for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
567 ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
568 setOperationAction(Op, MVT::f16, Promote);
569 setOperationAction(Op, MVT::f32, Legal);
570 setOperationAction(Op, MVT::f64, Legal);
571 setOperationAction(Op, MVT::v2f16, Expand);
572 }
573 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
574 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
575 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
576 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
577
578 // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate.
579 // No FPOW or FREM in PTX.
580
581 // Now deduce the information based on the above mentioned
582 // actions
583 computeRegisterProperties(STI.getRegisterInfo());
584 }
585
getTargetNodeName(unsigned Opcode) const586 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
587 switch ((NVPTXISD::NodeType)Opcode) {
588 case NVPTXISD::FIRST_NUMBER:
589 break;
590 case NVPTXISD::CALL:
591 return "NVPTXISD::CALL";
592 case NVPTXISD::RET_FLAG:
593 return "NVPTXISD::RET_FLAG";
594 case NVPTXISD::LOAD_PARAM:
595 return "NVPTXISD::LOAD_PARAM";
596 case NVPTXISD::Wrapper:
597 return "NVPTXISD::Wrapper";
598 case NVPTXISD::DeclareParam:
599 return "NVPTXISD::DeclareParam";
600 case NVPTXISD::DeclareScalarParam:
601 return "NVPTXISD::DeclareScalarParam";
602 case NVPTXISD::DeclareRet:
603 return "NVPTXISD::DeclareRet";
604 case NVPTXISD::DeclareScalarRet:
605 return "NVPTXISD::DeclareScalarRet";
606 case NVPTXISD::DeclareRetParam:
607 return "NVPTXISD::DeclareRetParam";
608 case NVPTXISD::PrintCall:
609 return "NVPTXISD::PrintCall";
610 case NVPTXISD::PrintConvergentCall:
611 return "NVPTXISD::PrintConvergentCall";
612 case NVPTXISD::PrintCallUni:
613 return "NVPTXISD::PrintCallUni";
614 case NVPTXISD::PrintConvergentCallUni:
615 return "NVPTXISD::PrintConvergentCallUni";
616 case NVPTXISD::LoadParam:
617 return "NVPTXISD::LoadParam";
618 case NVPTXISD::LoadParamV2:
619 return "NVPTXISD::LoadParamV2";
620 case NVPTXISD::LoadParamV4:
621 return "NVPTXISD::LoadParamV4";
622 case NVPTXISD::StoreParam:
623 return "NVPTXISD::StoreParam";
624 case NVPTXISD::StoreParamV2:
625 return "NVPTXISD::StoreParamV2";
626 case NVPTXISD::StoreParamV4:
627 return "NVPTXISD::StoreParamV4";
628 case NVPTXISD::StoreParamS32:
629 return "NVPTXISD::StoreParamS32";
630 case NVPTXISD::StoreParamU32:
631 return "NVPTXISD::StoreParamU32";
632 case NVPTXISD::CallArgBegin:
633 return "NVPTXISD::CallArgBegin";
634 case NVPTXISD::CallArg:
635 return "NVPTXISD::CallArg";
636 case NVPTXISD::LastCallArg:
637 return "NVPTXISD::LastCallArg";
638 case NVPTXISD::CallArgEnd:
639 return "NVPTXISD::CallArgEnd";
640 case NVPTXISD::CallVoid:
641 return "NVPTXISD::CallVoid";
642 case NVPTXISD::CallVal:
643 return "NVPTXISD::CallVal";
644 case NVPTXISD::CallSymbol:
645 return "NVPTXISD::CallSymbol";
646 case NVPTXISD::Prototype:
647 return "NVPTXISD::Prototype";
648 case NVPTXISD::MoveParam:
649 return "NVPTXISD::MoveParam";
650 case NVPTXISD::StoreRetval:
651 return "NVPTXISD::StoreRetval";
652 case NVPTXISD::StoreRetvalV2:
653 return "NVPTXISD::StoreRetvalV2";
654 case NVPTXISD::StoreRetvalV4:
655 return "NVPTXISD::StoreRetvalV4";
656 case NVPTXISD::PseudoUseParam:
657 return "NVPTXISD::PseudoUseParam";
658 case NVPTXISD::RETURN:
659 return "NVPTXISD::RETURN";
660 case NVPTXISD::CallSeqBegin:
661 return "NVPTXISD::CallSeqBegin";
662 case NVPTXISD::CallSeqEnd:
663 return "NVPTXISD::CallSeqEnd";
664 case NVPTXISD::CallPrototype:
665 return "NVPTXISD::CallPrototype";
666 case NVPTXISD::ProxyReg:
667 return "NVPTXISD::ProxyReg";
668 case NVPTXISD::LoadV2:
669 return "NVPTXISD::LoadV2";
670 case NVPTXISD::LoadV4:
671 return "NVPTXISD::LoadV4";
672 case NVPTXISD::LDGV2:
673 return "NVPTXISD::LDGV2";
674 case NVPTXISD::LDGV4:
675 return "NVPTXISD::LDGV4";
676 case NVPTXISD::LDUV2:
677 return "NVPTXISD::LDUV2";
678 case NVPTXISD::LDUV4:
679 return "NVPTXISD::LDUV4";
680 case NVPTXISD::StoreV2:
681 return "NVPTXISD::StoreV2";
682 case NVPTXISD::StoreV4:
683 return "NVPTXISD::StoreV4";
684 case NVPTXISD::FUN_SHFL_CLAMP:
685 return "NVPTXISD::FUN_SHFL_CLAMP";
686 case NVPTXISD::FUN_SHFR_CLAMP:
687 return "NVPTXISD::FUN_SHFR_CLAMP";
688 case NVPTXISD::IMAD:
689 return "NVPTXISD::IMAD";
690 case NVPTXISD::SETP_F16X2:
691 return "NVPTXISD::SETP_F16X2";
692 case NVPTXISD::Dummy:
693 return "NVPTXISD::Dummy";
694 case NVPTXISD::MUL_WIDE_SIGNED:
695 return "NVPTXISD::MUL_WIDE_SIGNED";
696 case NVPTXISD::MUL_WIDE_UNSIGNED:
697 return "NVPTXISD::MUL_WIDE_UNSIGNED";
698 case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32";
699 case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat";
700 case NVPTXISD::Tex1DFloatFloatLevel:
701 return "NVPTXISD::Tex1DFloatFloatLevel";
702 case NVPTXISD::Tex1DFloatFloatGrad:
703 return "NVPTXISD::Tex1DFloatFloatGrad";
704 case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32";
705 case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float";
706 case NVPTXISD::Tex1DS32FloatLevel:
707 return "NVPTXISD::Tex1DS32FloatLevel";
708 case NVPTXISD::Tex1DS32FloatGrad:
709 return "NVPTXISD::Tex1DS32FloatGrad";
710 case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32";
711 case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float";
712 case NVPTXISD::Tex1DU32FloatLevel:
713 return "NVPTXISD::Tex1DU32FloatLevel";
714 case NVPTXISD::Tex1DU32FloatGrad:
715 return "NVPTXISD::Tex1DU32FloatGrad";
716 case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32";
717 case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
718 case NVPTXISD::Tex1DArrayFloatFloatLevel:
719 return "NVPTXISD::Tex1DArrayFloatFloatLevel";
720 case NVPTXISD::Tex1DArrayFloatFloatGrad:
721 return "NVPTXISD::Tex1DArrayFloatFloatGrad";
722 case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32";
723 case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float";
724 case NVPTXISD::Tex1DArrayS32FloatLevel:
725 return "NVPTXISD::Tex1DArrayS32FloatLevel";
726 case NVPTXISD::Tex1DArrayS32FloatGrad:
727 return "NVPTXISD::Tex1DArrayS32FloatGrad";
728 case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32";
729 case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float";
730 case NVPTXISD::Tex1DArrayU32FloatLevel:
731 return "NVPTXISD::Tex1DArrayU32FloatLevel";
732 case NVPTXISD::Tex1DArrayU32FloatGrad:
733 return "NVPTXISD::Tex1DArrayU32FloatGrad";
734 case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32";
735 case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat";
736 case NVPTXISD::Tex2DFloatFloatLevel:
737 return "NVPTXISD::Tex2DFloatFloatLevel";
738 case NVPTXISD::Tex2DFloatFloatGrad:
739 return "NVPTXISD::Tex2DFloatFloatGrad";
740 case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32";
741 case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float";
742 case NVPTXISD::Tex2DS32FloatLevel:
743 return "NVPTXISD::Tex2DS32FloatLevel";
744 case NVPTXISD::Tex2DS32FloatGrad:
745 return "NVPTXISD::Tex2DS32FloatGrad";
746 case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32";
747 case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float";
748 case NVPTXISD::Tex2DU32FloatLevel:
749 return "NVPTXISD::Tex2DU32FloatLevel";
750 case NVPTXISD::Tex2DU32FloatGrad:
751 return "NVPTXISD::Tex2DU32FloatGrad";
752 case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32";
753 case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
754 case NVPTXISD::Tex2DArrayFloatFloatLevel:
755 return "NVPTXISD::Tex2DArrayFloatFloatLevel";
756 case NVPTXISD::Tex2DArrayFloatFloatGrad:
757 return "NVPTXISD::Tex2DArrayFloatFloatGrad";
758 case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32";
759 case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float";
760 case NVPTXISD::Tex2DArrayS32FloatLevel:
761 return "NVPTXISD::Tex2DArrayS32FloatLevel";
762 case NVPTXISD::Tex2DArrayS32FloatGrad:
763 return "NVPTXISD::Tex2DArrayS32FloatGrad";
764 case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32";
765 case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float";
766 case NVPTXISD::Tex2DArrayU32FloatLevel:
767 return "NVPTXISD::Tex2DArrayU32FloatLevel";
768 case NVPTXISD::Tex2DArrayU32FloatGrad:
769 return "NVPTXISD::Tex2DArrayU32FloatGrad";
770 case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32";
771 case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat";
772 case NVPTXISD::Tex3DFloatFloatLevel:
773 return "NVPTXISD::Tex3DFloatFloatLevel";
774 case NVPTXISD::Tex3DFloatFloatGrad:
775 return "NVPTXISD::Tex3DFloatFloatGrad";
776 case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32";
777 case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float";
778 case NVPTXISD::Tex3DS32FloatLevel:
779 return "NVPTXISD::Tex3DS32FloatLevel";
780 case NVPTXISD::Tex3DS32FloatGrad:
781 return "NVPTXISD::Tex3DS32FloatGrad";
782 case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32";
783 case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float";
784 case NVPTXISD::Tex3DU32FloatLevel:
785 return "NVPTXISD::Tex3DU32FloatLevel";
786 case NVPTXISD::Tex3DU32FloatGrad:
787 return "NVPTXISD::Tex3DU32FloatGrad";
788 case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat";
789 case NVPTXISD::TexCubeFloatFloatLevel:
790 return "NVPTXISD::TexCubeFloatFloatLevel";
791 case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float";
792 case NVPTXISD::TexCubeS32FloatLevel:
793 return "NVPTXISD::TexCubeS32FloatLevel";
794 case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float";
795 case NVPTXISD::TexCubeU32FloatLevel:
796 return "NVPTXISD::TexCubeU32FloatLevel";
797 case NVPTXISD::TexCubeArrayFloatFloat:
798 return "NVPTXISD::TexCubeArrayFloatFloat";
799 case NVPTXISD::TexCubeArrayFloatFloatLevel:
800 return "NVPTXISD::TexCubeArrayFloatFloatLevel";
801 case NVPTXISD::TexCubeArrayS32Float:
802 return "NVPTXISD::TexCubeArrayS32Float";
803 case NVPTXISD::TexCubeArrayS32FloatLevel:
804 return "NVPTXISD::TexCubeArrayS32FloatLevel";
805 case NVPTXISD::TexCubeArrayU32Float:
806 return "NVPTXISD::TexCubeArrayU32Float";
807 case NVPTXISD::TexCubeArrayU32FloatLevel:
808 return "NVPTXISD::TexCubeArrayU32FloatLevel";
809 case NVPTXISD::Tld4R2DFloatFloat:
810 return "NVPTXISD::Tld4R2DFloatFloat";
811 case NVPTXISD::Tld4G2DFloatFloat:
812 return "NVPTXISD::Tld4G2DFloatFloat";
813 case NVPTXISD::Tld4B2DFloatFloat:
814 return "NVPTXISD::Tld4B2DFloatFloat";
815 case NVPTXISD::Tld4A2DFloatFloat:
816 return "NVPTXISD::Tld4A2DFloatFloat";
817 case NVPTXISD::Tld4R2DS64Float:
818 return "NVPTXISD::Tld4R2DS64Float";
819 case NVPTXISD::Tld4G2DS64Float:
820 return "NVPTXISD::Tld4G2DS64Float";
821 case NVPTXISD::Tld4B2DS64Float:
822 return "NVPTXISD::Tld4B2DS64Float";
823 case NVPTXISD::Tld4A2DS64Float:
824 return "NVPTXISD::Tld4A2DS64Float";
825 case NVPTXISD::Tld4R2DU64Float:
826 return "NVPTXISD::Tld4R2DU64Float";
827 case NVPTXISD::Tld4G2DU64Float:
828 return "NVPTXISD::Tld4G2DU64Float";
829 case NVPTXISD::Tld4B2DU64Float:
830 return "NVPTXISD::Tld4B2DU64Float";
831 case NVPTXISD::Tld4A2DU64Float:
832 return "NVPTXISD::Tld4A2DU64Float";
833
834 case NVPTXISD::TexUnified1DFloatS32:
835 return "NVPTXISD::TexUnified1DFloatS32";
836 case NVPTXISD::TexUnified1DFloatFloat:
837 return "NVPTXISD::TexUnified1DFloatFloat";
838 case NVPTXISD::TexUnified1DFloatFloatLevel:
839 return "NVPTXISD::TexUnified1DFloatFloatLevel";
840 case NVPTXISD::TexUnified1DFloatFloatGrad:
841 return "NVPTXISD::TexUnified1DFloatFloatGrad";
842 case NVPTXISD::TexUnified1DS32S32:
843 return "NVPTXISD::TexUnified1DS32S32";
844 case NVPTXISD::TexUnified1DS32Float:
845 return "NVPTXISD::TexUnified1DS32Float";
846 case NVPTXISD::TexUnified1DS32FloatLevel:
847 return "NVPTXISD::TexUnified1DS32FloatLevel";
848 case NVPTXISD::TexUnified1DS32FloatGrad:
849 return "NVPTXISD::TexUnified1DS32FloatGrad";
850 case NVPTXISD::TexUnified1DU32S32:
851 return "NVPTXISD::TexUnified1DU32S32";
852 case NVPTXISD::TexUnified1DU32Float:
853 return "NVPTXISD::TexUnified1DU32Float";
854 case NVPTXISD::TexUnified1DU32FloatLevel:
855 return "NVPTXISD::TexUnified1DU32FloatLevel";
856 case NVPTXISD::TexUnified1DU32FloatGrad:
857 return "NVPTXISD::TexUnified1DU32FloatGrad";
858 case NVPTXISD::TexUnified1DArrayFloatS32:
859 return "NVPTXISD::TexUnified1DArrayFloatS32";
860 case NVPTXISD::TexUnified1DArrayFloatFloat:
861 return "NVPTXISD::TexUnified1DArrayFloatFloat";
862 case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
863 return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
864 case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
865 return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
866 case NVPTXISD::TexUnified1DArrayS32S32:
867 return "NVPTXISD::TexUnified1DArrayS32S32";
868 case NVPTXISD::TexUnified1DArrayS32Float:
869 return "NVPTXISD::TexUnified1DArrayS32Float";
870 case NVPTXISD::TexUnified1DArrayS32FloatLevel:
871 return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
872 case NVPTXISD::TexUnified1DArrayS32FloatGrad:
873 return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
874 case NVPTXISD::TexUnified1DArrayU32S32:
875 return "NVPTXISD::TexUnified1DArrayU32S32";
876 case NVPTXISD::TexUnified1DArrayU32Float:
877 return "NVPTXISD::TexUnified1DArrayU32Float";
878 case NVPTXISD::TexUnified1DArrayU32FloatLevel:
879 return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
880 case NVPTXISD::TexUnified1DArrayU32FloatGrad:
881 return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
882 case NVPTXISD::TexUnified2DFloatS32:
883 return "NVPTXISD::TexUnified2DFloatS32";
884 case NVPTXISD::TexUnified2DFloatFloat:
885 return "NVPTXISD::TexUnified2DFloatFloat";
886 case NVPTXISD::TexUnified2DFloatFloatLevel:
887 return "NVPTXISD::TexUnified2DFloatFloatLevel";
888 case NVPTXISD::TexUnified2DFloatFloatGrad:
889 return "NVPTXISD::TexUnified2DFloatFloatGrad";
890 case NVPTXISD::TexUnified2DS32S32:
891 return "NVPTXISD::TexUnified2DS32S32";
892 case NVPTXISD::TexUnified2DS32Float:
893 return "NVPTXISD::TexUnified2DS32Float";
894 case NVPTXISD::TexUnified2DS32FloatLevel:
895 return "NVPTXISD::TexUnified2DS32FloatLevel";
896 case NVPTXISD::TexUnified2DS32FloatGrad:
897 return "NVPTXISD::TexUnified2DS32FloatGrad";
898 case NVPTXISD::TexUnified2DU32S32:
899 return "NVPTXISD::TexUnified2DU32S32";
900 case NVPTXISD::TexUnified2DU32Float:
901 return "NVPTXISD::TexUnified2DU32Float";
902 case NVPTXISD::TexUnified2DU32FloatLevel:
903 return "NVPTXISD::TexUnified2DU32FloatLevel";
904 case NVPTXISD::TexUnified2DU32FloatGrad:
905 return "NVPTXISD::TexUnified2DU32FloatGrad";
906 case NVPTXISD::TexUnified2DArrayFloatS32:
907 return "NVPTXISD::TexUnified2DArrayFloatS32";
908 case NVPTXISD::TexUnified2DArrayFloatFloat:
909 return "NVPTXISD::TexUnified2DArrayFloatFloat";
910 case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
911 return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
912 case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
913 return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
914 case NVPTXISD::TexUnified2DArrayS32S32:
915 return "NVPTXISD::TexUnified2DArrayS32S32";
916 case NVPTXISD::TexUnified2DArrayS32Float:
917 return "NVPTXISD::TexUnified2DArrayS32Float";
918 case NVPTXISD::TexUnified2DArrayS32FloatLevel:
919 return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
920 case NVPTXISD::TexUnified2DArrayS32FloatGrad:
921 return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
922 case NVPTXISD::TexUnified2DArrayU32S32:
923 return "NVPTXISD::TexUnified2DArrayU32S32";
924 case NVPTXISD::TexUnified2DArrayU32Float:
925 return "NVPTXISD::TexUnified2DArrayU32Float";
926 case NVPTXISD::TexUnified2DArrayU32FloatLevel:
927 return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
928 case NVPTXISD::TexUnified2DArrayU32FloatGrad:
929 return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
930 case NVPTXISD::TexUnified3DFloatS32:
931 return "NVPTXISD::TexUnified3DFloatS32";
932 case NVPTXISD::TexUnified3DFloatFloat:
933 return "NVPTXISD::TexUnified3DFloatFloat";
934 case NVPTXISD::TexUnified3DFloatFloatLevel:
935 return "NVPTXISD::TexUnified3DFloatFloatLevel";
936 case NVPTXISD::TexUnified3DFloatFloatGrad:
937 return "NVPTXISD::TexUnified3DFloatFloatGrad";
938 case NVPTXISD::TexUnified3DS32S32:
939 return "NVPTXISD::TexUnified3DS32S32";
940 case NVPTXISD::TexUnified3DS32Float:
941 return "NVPTXISD::TexUnified3DS32Float";
942 case NVPTXISD::TexUnified3DS32FloatLevel:
943 return "NVPTXISD::TexUnified3DS32FloatLevel";
944 case NVPTXISD::TexUnified3DS32FloatGrad:
945 return "NVPTXISD::TexUnified3DS32FloatGrad";
946 case NVPTXISD::TexUnified3DU32S32:
947 return "NVPTXISD::TexUnified3DU32S32";
948 case NVPTXISD::TexUnified3DU32Float:
949 return "NVPTXISD::TexUnified3DU32Float";
950 case NVPTXISD::TexUnified3DU32FloatLevel:
951 return "NVPTXISD::TexUnified3DU32FloatLevel";
952 case NVPTXISD::TexUnified3DU32FloatGrad:
953 return "NVPTXISD::TexUnified3DU32FloatGrad";
954 case NVPTXISD::TexUnifiedCubeFloatFloat:
955 return "NVPTXISD::TexUnifiedCubeFloatFloat";
956 case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
957 return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
958 case NVPTXISD::TexUnifiedCubeS32Float:
959 return "NVPTXISD::TexUnifiedCubeS32Float";
960 case NVPTXISD::TexUnifiedCubeS32FloatLevel:
961 return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
962 case NVPTXISD::TexUnifiedCubeU32Float:
963 return "NVPTXISD::TexUnifiedCubeU32Float";
964 case NVPTXISD::TexUnifiedCubeU32FloatLevel:
965 return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
966 case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
967 return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
968 case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
969 return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
970 case NVPTXISD::TexUnifiedCubeArrayS32Float:
971 return "NVPTXISD::TexUnifiedCubeArrayS32Float";
972 case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
973 return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
974 case NVPTXISD::TexUnifiedCubeArrayU32Float:
975 return "NVPTXISD::TexUnifiedCubeArrayU32Float";
976 case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
977 return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
978 case NVPTXISD::Tld4UnifiedR2DFloatFloat:
979 return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
980 case NVPTXISD::Tld4UnifiedG2DFloatFloat:
981 return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
982 case NVPTXISD::Tld4UnifiedB2DFloatFloat:
983 return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
984 case NVPTXISD::Tld4UnifiedA2DFloatFloat:
985 return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
986 case NVPTXISD::Tld4UnifiedR2DS64Float:
987 return "NVPTXISD::Tld4UnifiedR2DS64Float";
988 case NVPTXISD::Tld4UnifiedG2DS64Float:
989 return "NVPTXISD::Tld4UnifiedG2DS64Float";
990 case NVPTXISD::Tld4UnifiedB2DS64Float:
991 return "NVPTXISD::Tld4UnifiedB2DS64Float";
992 case NVPTXISD::Tld4UnifiedA2DS64Float:
993 return "NVPTXISD::Tld4UnifiedA2DS64Float";
994 case NVPTXISD::Tld4UnifiedR2DU64Float:
995 return "NVPTXISD::Tld4UnifiedR2DU64Float";
996 case NVPTXISD::Tld4UnifiedG2DU64Float:
997 return "NVPTXISD::Tld4UnifiedG2DU64Float";
998 case NVPTXISD::Tld4UnifiedB2DU64Float:
999 return "NVPTXISD::Tld4UnifiedB2DU64Float";
1000 case NVPTXISD::Tld4UnifiedA2DU64Float:
1001 return "NVPTXISD::Tld4UnifiedA2DU64Float";
1002
1003 case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp";
1004 case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp";
1005 case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp";
1006 case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp";
1007 case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp";
1008 case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp";
1009 case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp";
1010 case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp";
1011 case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp";
1012 case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp";
1013 case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp";
1014
1015 case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp";
1016 case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp";
1017 case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp";
1018 case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp";
1019 case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1020 case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1021 case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1022 case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1023 case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1024 case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1025 case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1026
1027 case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp";
1028 case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp";
1029 case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp";
1030 case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp";
1031 case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp";
1032 case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp";
1033 case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp";
1034 case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp";
1035 case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp";
1036 case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp";
1037 case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp";
1038
1039 case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp";
1040 case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp";
1041 case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp";
1042 case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp";
1043 case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1044 case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1045 case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1046 case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1047 case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1048 case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1049 case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1050
1051 case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp";
1052 case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp";
1053 case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp";
1054 case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp";
1055 case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp";
1056 case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp";
1057 case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp";
1058 case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp";
1059 case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp";
1060 case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp";
1061 case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp";
1062
1063 case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap";
1064 case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap";
1065 case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap";
1066 case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap";
1067 case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap";
1068 case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap";
1069 case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap";
1070 case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap";
1071 case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap";
1072 case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap";
1073 case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap";
1074
1075 case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap";
1076 case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap";
1077 case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap";
1078 case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap";
1079 case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap";
1080 case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap";
1081 case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap";
1082 case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap";
1083 case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap";
1084 case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap";
1085 case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap";
1086
1087 case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap";
1088 case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap";
1089 case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap";
1090 case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap";
1091 case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap";
1092 case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap";
1093 case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap";
1094 case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap";
1095 case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap";
1096 case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap";
1097 case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap";
1098
1099 case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap";
1100 case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap";
1101 case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap";
1102 case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap";
1103 case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap";
1104 case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap";
1105 case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap";
1106 case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap";
1107 case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap";
1108 case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap";
1109 case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap";
1110
1111 case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap";
1112 case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap";
1113 case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap";
1114 case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap";
1115 case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap";
1116 case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap";
1117 case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap";
1118 case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap";
1119 case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap";
1120 case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap";
1121 case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap";
1122
1123 case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero";
1124 case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero";
1125 case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero";
1126 case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero";
1127 case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero";
1128 case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero";
1129 case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero";
1130 case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero";
1131 case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero";
1132 case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero";
1133 case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero";
1134
1135 case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero";
1136 case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero";
1137 case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero";
1138 case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero";
1139 case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero";
1140 case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero";
1141 case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero";
1142 case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero";
1143 case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero";
1144 case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero";
1145 case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero";
1146
1147 case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero";
1148 case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero";
1149 case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero";
1150 case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero";
1151 case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero";
1152 case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero";
1153 case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero";
1154 case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero";
1155 case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero";
1156 case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero";
1157 case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero";
1158
1159 case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero";
1160 case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero";
1161 case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero";
1162 case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero";
1163 case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero";
1164 case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero";
1165 case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero";
1166 case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero";
1167 case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero";
1168 case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero";
1169 case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero";
1170
1171 case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero";
1172 case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero";
1173 case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero";
1174 case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero";
1175 case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero";
1176 case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero";
1177 case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero";
1178 case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero";
1179 case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero";
1180 case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero";
1181 case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero";
1182 }
1183 return nullptr;
1184 }
1185
1186 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const1187 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1188 if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1189 return TypeSplitVector;
1190 if (VT == MVT::v2f16)
1191 return TypeLegal;
1192 return TargetLoweringBase::getPreferredVectorAction(VT);
1193 }
1194
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const1195 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1196 int Enabled, int &ExtraSteps,
1197 bool &UseOneConst,
1198 bool Reciprocal) const {
1199 if (!(Enabled == ReciprocalEstimate::Enabled ||
1200 (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1201 return SDValue();
1202
1203 if (ExtraSteps == ReciprocalEstimate::Unspecified)
1204 ExtraSteps = 0;
1205
1206 SDLoc DL(Operand);
1207 EVT VT = Operand.getValueType();
1208 bool Ftz = useF32FTZ(DAG.getMachineFunction());
1209
1210 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1211 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1212 DAG.getConstant(IID, DL, MVT::i32), Operand);
1213 };
1214
1215 // The sqrt and rsqrt refinement processes assume we always start out with an
1216 // approximation of the rsqrt. Therefore, if we're going to do any refinement
1217 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
1218 // any refinement, we must return a regular sqrt.
1219 if (Reciprocal || ExtraSteps > 0) {
1220 if (VT == MVT::f32)
1221 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1222 : Intrinsic::nvvm_rsqrt_approx_f);
1223 else if (VT == MVT::f64)
1224 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1225 else
1226 return SDValue();
1227 } else {
1228 if (VT == MVT::f32)
1229 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1230 : Intrinsic::nvvm_sqrt_approx_f);
1231 else {
1232 // There's no sqrt.approx.f64 instruction, so we emit
1233 // reciprocal(rsqrt(x)). This is faster than
1234 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
1235 // x * rsqrt(x).)
1236 return DAG.getNode(
1237 ISD::INTRINSIC_WO_CHAIN, DL, VT,
1238 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1239 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1240 }
1241 }
1242 }
1243
1244 SDValue
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1245 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1246 SDLoc dl(Op);
1247 const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1248 auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1249 Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1250 return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1251 }
1252
getPrototype(const DataLayout & DL,Type * retTy,const ArgListTy & Args,const SmallVectorImpl<ISD::OutputArg> & Outs,unsigned retAlignment,ImmutableCallSite CS) const1253 std::string NVPTXTargetLowering::getPrototype(
1254 const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1255 const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
1256 ImmutableCallSite CS) const {
1257 auto PtrVT = getPointerTy(DL);
1258
1259 bool isABI = (STI.getSmVersion() >= 20);
1260 assert(isABI && "Non-ABI compilation is not supported");
1261 if (!isABI)
1262 return "";
1263
1264 std::stringstream O;
1265 O << "prototype_" << uniqueCallSite << " : .callprototype ";
1266
1267 if (retTy->getTypeID() == Type::VoidTyID) {
1268 O << "()";
1269 } else {
1270 O << "(";
1271 if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1272 unsigned size = 0;
1273 if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1274 size = ITy->getBitWidth();
1275 } else {
1276 assert(retTy->isFloatingPointTy() &&
1277 "Floating point type expected here");
1278 size = retTy->getPrimitiveSizeInBits();
1279 }
1280 // PTX ABI requires all scalar return values to be at least 32
1281 // bits in size. fp16 normally uses .b16 as its storage type in
1282 // PTX, so its size must be adjusted here, too.
1283 if (size < 32)
1284 size = 32;
1285
1286 O << ".param .b" << size << " _";
1287 } else if (isa<PointerType>(retTy)) {
1288 O << ".param .b" << PtrVT.getSizeInBits() << " _";
1289 } else if (retTy->isAggregateType() || retTy->isVectorTy() || retTy->isIntegerTy(128)) {
1290 auto &DL = CS.getCalledFunction()->getParent()->getDataLayout();
1291 O << ".param .align " << retAlignment << " .b8 _["
1292 << DL.getTypeAllocSize(retTy) << "]";
1293 } else {
1294 llvm_unreachable("Unknown return type");
1295 }
1296 O << ") ";
1297 }
1298 O << "_ (";
1299
1300 bool first = true;
1301
1302 unsigned OIdx = 0;
1303 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1304 Type *Ty = Args[i].Ty;
1305 if (!first) {
1306 O << ", ";
1307 }
1308 first = false;
1309
1310 if (!Outs[OIdx].Flags.isByVal()) {
1311 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1312 unsigned align = 0;
1313 const CallInst *CallI = cast<CallInst>(CS.getInstruction());
1314 // +1 because index 0 is reserved for return type alignment
1315 if (!getAlign(*CallI, i + 1, align))
1316 align = DL.getABITypeAlignment(Ty);
1317 unsigned sz = DL.getTypeAllocSize(Ty);
1318 O << ".param .align " << align << " .b8 ";
1319 O << "_";
1320 O << "[" << sz << "]";
1321 // update the index for Outs
1322 SmallVector<EVT, 16> vtparts;
1323 ComputeValueVTs(*this, DL, Ty, vtparts);
1324 if (unsigned len = vtparts.size())
1325 OIdx += len - 1;
1326 continue;
1327 }
1328 // i8 types in IR will be i16 types in SDAG
1329 assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1330 (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1331 "type mismatch between callee prototype and arguments");
1332 // scalar type
1333 unsigned sz = 0;
1334 if (isa<IntegerType>(Ty)) {
1335 sz = cast<IntegerType>(Ty)->getBitWidth();
1336 if (sz < 32)
1337 sz = 32;
1338 } else if (isa<PointerType>(Ty)) {
1339 sz = PtrVT.getSizeInBits();
1340 } else if (Ty->isHalfTy())
1341 // PTX ABI requires all scalar parameters to be at least 32
1342 // bits in size. fp16 normally uses .b16 as its storage type
1343 // in PTX, so its size must be adjusted here, too.
1344 sz = 32;
1345 else
1346 sz = Ty->getPrimitiveSizeInBits();
1347 O << ".param .b" << sz << " ";
1348 O << "_";
1349 continue;
1350 }
1351 auto *PTy = dyn_cast<PointerType>(Ty);
1352 assert(PTy && "Param with byval attribute should be a pointer type");
1353 Type *ETy = PTy->getElementType();
1354
1355 unsigned align = Outs[OIdx].Flags.getByValAlign();
1356 unsigned sz = DL.getTypeAllocSize(ETy);
1357 O << ".param .align " << align << " .b8 ";
1358 O << "_";
1359 O << "[" << sz << "]";
1360 }
1361 O << ");";
1362 return O.str();
1363 }
1364
getArgumentAlignment(SDValue Callee,ImmutableCallSite CS,Type * Ty,unsigned Idx,const DataLayout & DL) const1365 unsigned NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1366 ImmutableCallSite CS,
1367 Type *Ty, unsigned Idx,
1368 const DataLayout &DL) const {
1369 if (!CS) {
1370 // CallSite is zero, fallback to ABI type alignment
1371 return DL.getABITypeAlignment(Ty);
1372 }
1373
1374 unsigned Align = 0;
1375 const Value *DirectCallee = CS.getCalledFunction();
1376
1377 if (!DirectCallee) {
1378 // We don't have a direct function symbol, but that may be because of
1379 // constant cast instructions in the call.
1380 const Instruction *CalleeI = CS.getInstruction();
1381 assert(CalleeI && "Call target is not a function or derived value?");
1382
1383 // With bitcast'd call targets, the instruction will be the call
1384 if (isa<CallInst>(CalleeI)) {
1385 // Check if we have call alignment metadata
1386 if (getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1387 return Align;
1388
1389 const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1390 // Ignore any bitcast instructions
1391 while (isa<ConstantExpr>(CalleeV)) {
1392 const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1393 if (!CE->isCast())
1394 break;
1395 // Look through the bitcast
1396 CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1397 }
1398
1399 // We have now looked past all of the bitcasts. Do we finally have a
1400 // Function?
1401 if (isa<Function>(CalleeV))
1402 DirectCallee = CalleeV;
1403 }
1404 }
1405
1406 // Check for function alignment information if we found that the
1407 // ultimate target is a Function
1408 if (DirectCallee)
1409 if (getAlign(*cast<Function>(DirectCallee), Idx, Align))
1410 return Align;
1411
1412 // Call is indirect or alignment information is not available, fall back to
1413 // the ABI type alignment
1414 return DL.getABITypeAlignment(Ty);
1415 }
1416
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1417 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1418 SmallVectorImpl<SDValue> &InVals) const {
1419 SelectionDAG &DAG = CLI.DAG;
1420 SDLoc dl = CLI.DL;
1421 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1422 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1423 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1424 SDValue Chain = CLI.Chain;
1425 SDValue Callee = CLI.Callee;
1426 bool &isTailCall = CLI.IsTailCall;
1427 ArgListTy &Args = CLI.getArgs();
1428 Type *RetTy = CLI.RetTy;
1429 ImmutableCallSite CS = CLI.CS;
1430 const DataLayout &DL = DAG.getDataLayout();
1431
1432 bool isABI = (STI.getSmVersion() >= 20);
1433 assert(isABI && "Non-ABI compilation is not supported");
1434 if (!isABI)
1435 return Chain;
1436
1437 SDValue tempChain = Chain;
1438 Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
1439 SDValue InFlag = Chain.getValue(1);
1440
1441 unsigned paramCount = 0;
1442 // Args.size() and Outs.size() need not match.
1443 // Outs.size() will be larger
1444 // * if there is an aggregate argument with multiple fields (each field
1445 // showing up separately in Outs)
1446 // * if there is a vector argument with more than typical vector-length
1447 // elements (generally if more than 4) where each vector element is
1448 // individually present in Outs.
1449 // So a different index should be used for indexing into Outs/OutVals.
1450 // See similar issue in LowerFormalArguments.
1451 unsigned OIdx = 0;
1452 // Declare the .params or .reg need to pass values
1453 // to the function
1454 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1455 EVT VT = Outs[OIdx].VT;
1456 Type *Ty = Args[i].Ty;
1457
1458 if (!Outs[OIdx].Flags.isByVal()) {
1459 SmallVector<EVT, 16> VTs;
1460 SmallVector<uint64_t, 16> Offsets;
1461 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1462 unsigned ArgAlign =
1463 getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
1464 unsigned AllocSize = DL.getTypeAllocSize(Ty);
1465 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1466 bool NeedAlign; // Does argument declaration specify alignment?
1467 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1468 // declare .param .align <align> .b8 .param<n>[<size>];
1469 SDValue DeclareParamOps[] = {
1470 Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1471 DAG.getConstant(paramCount, dl, MVT::i32),
1472 DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1473 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1474 DeclareParamOps);
1475 NeedAlign = true;
1476 } else {
1477 // declare .param .b<size> .param<n>;
1478 if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1479 // PTX ABI requires integral types to be at least 32 bits in
1480 // size. FP16 is loaded/stored using i16, so it's handled
1481 // here as well.
1482 AllocSize = 4;
1483 }
1484 SDValue DeclareScalarParamOps[] = {
1485 Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1486 DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1487 DAG.getConstant(0, dl, MVT::i32), InFlag};
1488 Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1489 DeclareScalarParamOps);
1490 NeedAlign = false;
1491 }
1492 InFlag = Chain.getValue(1);
1493
1494 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1495 // than 32-bits are sign extended or zero extended, depending on
1496 // whether they are signed or unsigned types. This case applies
1497 // only to scalar parameters and not to aggregate values.
1498 bool ExtendIntegerParam =
1499 Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1500
1501 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1502 SmallVector<SDValue, 6> StoreOperands;
1503 for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1504 // New store.
1505 if (VectorInfo[j] & PVF_FIRST) {
1506 assert(StoreOperands.empty() && "Unfinished preceeding store.");
1507 StoreOperands.push_back(Chain);
1508 StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1509 StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1510 }
1511
1512 EVT EltVT = VTs[j];
1513 SDValue StVal = OutVals[OIdx];
1514 if (ExtendIntegerParam) {
1515 assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1516 // zext/sext to i32
1517 StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1518 : ISD::ZERO_EXTEND,
1519 dl, MVT::i32, StVal);
1520 } else if (EltVT.getSizeInBits() < 16) {
1521 // Use 16-bit registers for small stores as it's the
1522 // smallest general purpose register size supported by NVPTX.
1523 StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1524 }
1525
1526 // Record the value to store.
1527 StoreOperands.push_back(StVal);
1528
1529 if (VectorInfo[j] & PVF_LAST) {
1530 unsigned NumElts = StoreOperands.size() - 3;
1531 NVPTXISD::NodeType Op;
1532 switch (NumElts) {
1533 case 1:
1534 Op = NVPTXISD::StoreParam;
1535 break;
1536 case 2:
1537 Op = NVPTXISD::StoreParamV2;
1538 break;
1539 case 4:
1540 Op = NVPTXISD::StoreParamV4;
1541 break;
1542 default:
1543 llvm_unreachable("Invalid vector info.");
1544 }
1545
1546 StoreOperands.push_back(InFlag);
1547
1548 // Adjust type of the store op if we've extended the scalar
1549 // return value.
1550 EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1551 unsigned EltAlign =
1552 NeedAlign ? GreatestCommonDivisor64(ArgAlign, Offsets[j]) : 0;
1553
1554 Chain = DAG.getMemIntrinsicNode(
1555 Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1556 TheStoreType, MachinePointerInfo(), EltAlign,
1557 MachineMemOperand::MOStore);
1558 InFlag = Chain.getValue(1);
1559
1560 // Cleanup.
1561 StoreOperands.clear();
1562 }
1563 ++OIdx;
1564 }
1565 assert(StoreOperands.empty() && "Unfinished parameter store.");
1566 if (VTs.size() > 0)
1567 --OIdx;
1568 ++paramCount;
1569 continue;
1570 }
1571
1572 // ByVal arguments
1573 SmallVector<EVT, 16> VTs;
1574 SmallVector<uint64_t, 16> Offsets;
1575 auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1576 assert(PTy && "Type of a byval parameter should be pointer");
1577 ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1578
1579 // declare .param .align <align> .b8 .param<n>[<size>];
1580 unsigned sz = Outs[OIdx].Flags.getByValSize();
1581 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1582 unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1583 // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1584 // so we don't need to worry about natural alignment or not.
1585 // See TargetLowering::LowerCallTo().
1586
1587 // Enforce minumum alignment of 4 to work around ptxas miscompile
1588 // for sm_50+. See corresponding alignment adjustment in
1589 // emitFunctionParamList() for details.
1590 if (ArgAlign < 4)
1591 ArgAlign = 4;
1592 SDValue DeclareParamOps[] = {Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1593 DAG.getConstant(paramCount, dl, MVT::i32),
1594 DAG.getConstant(sz, dl, MVT::i32), InFlag};
1595 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1596 DeclareParamOps);
1597 InFlag = Chain.getValue(1);
1598 for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1599 EVT elemtype = VTs[j];
1600 int curOffset = Offsets[j];
1601 unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1602 auto PtrVT = getPointerTy(DL);
1603 SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1604 DAG.getConstant(curOffset, dl, PtrVT));
1605 SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1606 MachinePointerInfo(), PartAlign);
1607 if (elemtype.getSizeInBits() < 16) {
1608 theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1609 }
1610 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1611 SDValue CopyParamOps[] = { Chain,
1612 DAG.getConstant(paramCount, dl, MVT::i32),
1613 DAG.getConstant(curOffset, dl, MVT::i32),
1614 theVal, InFlag };
1615 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1616 CopyParamOps, elemtype,
1617 MachinePointerInfo(), /* Align */ 0,
1618 MachineMemOperand::MOStore);
1619
1620 InFlag = Chain.getValue(1);
1621 }
1622 ++paramCount;
1623 }
1624
1625 GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1626 unsigned retAlignment = 0;
1627
1628 // Handle Result
1629 if (Ins.size() > 0) {
1630 SmallVector<EVT, 16> resvtparts;
1631 ComputeValueVTs(*this, DL, RetTy, resvtparts);
1632
1633 // Declare
1634 // .param .align 16 .b8 retval0[<size-in-bytes>], or
1635 // .param .b<size-in-bits> retval0
1636 unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1637 // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1638 // these three types to match the logic in
1639 // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1640 // Plus, this behavior is consistent with nvcc's.
1641 if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1642 (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1643 // Scalar needs to be at least 32bit wide
1644 if (resultsz < 32)
1645 resultsz = 32;
1646 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1647 SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1648 DAG.getConstant(resultsz, dl, MVT::i32),
1649 DAG.getConstant(0, dl, MVT::i32), InFlag };
1650 Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1651 DeclareRetOps);
1652 InFlag = Chain.getValue(1);
1653 } else {
1654 retAlignment = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1655 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1656 SDValue DeclareRetOps[] = { Chain,
1657 DAG.getConstant(retAlignment, dl, MVT::i32),
1658 DAG.getConstant(resultsz / 8, dl, MVT::i32),
1659 DAG.getConstant(0, dl, MVT::i32), InFlag };
1660 Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1661 DeclareRetOps);
1662 InFlag = Chain.getValue(1);
1663 }
1664 }
1665
1666 // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1667 // between them we must rely on the call site value which is valid for
1668 // indirect calls but is always null for libcalls.
1669 bool isIndirectCall = !Func && CS;
1670
1671 if (isa<ExternalSymbolSDNode>(Callee)) {
1672 Function* CalleeFunc = nullptr;
1673
1674 // Try to find the callee in the current module.
1675 Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1676 assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1677
1678 // Set the "libcall callee" attribute to indicate that the function
1679 // must always have a declaration.
1680 CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1681 }
1682
1683 if (isIndirectCall) {
1684 // This is indirect function call case : PTX requires a prototype of the
1685 // form
1686 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1687 // to be emitted, and the label has to used as the last arg of call
1688 // instruction.
1689 // The prototype is embedded in a string and put as the operand for a
1690 // CallPrototype SDNode which will print out to the value of the string.
1691 SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1692 std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, CS);
1693 const char *ProtoStr =
1694 nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1695 SDValue ProtoOps[] = {
1696 Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1697 };
1698 Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1699 InFlag = Chain.getValue(1);
1700 }
1701 // Op to just print "call"
1702 SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1703 SDValue PrintCallOps[] = {
1704 Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1705 };
1706 // We model convergent calls as separate opcodes.
1707 unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1708 if (CLI.IsConvergent)
1709 Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1710 : NVPTXISD::PrintConvergentCall;
1711 Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1712 InFlag = Chain.getValue(1);
1713
1714 // Ops to print out the function name
1715 SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1716 SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1717 Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1718 InFlag = Chain.getValue(1);
1719
1720 // Ops to print out the param list
1721 SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1722 SDValue CallArgBeginOps[] = { Chain, InFlag };
1723 Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1724 CallArgBeginOps);
1725 InFlag = Chain.getValue(1);
1726
1727 for (unsigned i = 0, e = paramCount; i != e; ++i) {
1728 unsigned opcode;
1729 if (i == (e - 1))
1730 opcode = NVPTXISD::LastCallArg;
1731 else
1732 opcode = NVPTXISD::CallArg;
1733 SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1734 SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1735 DAG.getConstant(i, dl, MVT::i32), InFlag };
1736 Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1737 InFlag = Chain.getValue(1);
1738 }
1739 SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1740 SDValue CallArgEndOps[] = { Chain,
1741 DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1742 InFlag };
1743 Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1744 InFlag = Chain.getValue(1);
1745
1746 if (isIndirectCall) {
1747 SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1748 SDValue PrototypeOps[] = { Chain,
1749 DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1750 InFlag };
1751 Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1752 InFlag = Chain.getValue(1);
1753 }
1754
1755 SmallVector<SDValue, 16> ProxyRegOps;
1756 SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1757
1758 // Generate loads from param memory/moves from registers for result
1759 if (Ins.size() > 0) {
1760 SmallVector<EVT, 16> VTs;
1761 SmallVector<uint64_t, 16> Offsets;
1762 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1763 assert(VTs.size() == Ins.size() && "Bad value decomposition");
1764
1765 unsigned RetAlign = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1766 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1767
1768 SmallVector<EVT, 6> LoadVTs;
1769 int VecIdx = -1; // Index of the first element of the vector.
1770
1771 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1772 // 32-bits are sign extended or zero extended, depending on whether
1773 // they are signed or unsigned types.
1774 bool ExtendIntegerRetVal =
1775 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1776
1777 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1778 bool needTruncate = false;
1779 EVT TheLoadType = VTs[i];
1780 EVT EltType = Ins[i].VT;
1781 unsigned EltAlign = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1782 if (ExtendIntegerRetVal) {
1783 TheLoadType = MVT::i32;
1784 EltType = MVT::i32;
1785 needTruncate = true;
1786 } else if (TheLoadType.getSizeInBits() < 16) {
1787 if (VTs[i].isInteger())
1788 needTruncate = true;
1789 EltType = MVT::i16;
1790 }
1791
1792 // Record index of the very first element of the vector.
1793 if (VectorInfo[i] & PVF_FIRST) {
1794 assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1795 VecIdx = i;
1796 }
1797
1798 LoadVTs.push_back(EltType);
1799
1800 if (VectorInfo[i] & PVF_LAST) {
1801 unsigned NumElts = LoadVTs.size();
1802 LoadVTs.push_back(MVT::Other);
1803 LoadVTs.push_back(MVT::Glue);
1804 NVPTXISD::NodeType Op;
1805 switch (NumElts) {
1806 case 1:
1807 Op = NVPTXISD::LoadParam;
1808 break;
1809 case 2:
1810 Op = NVPTXISD::LoadParamV2;
1811 break;
1812 case 4:
1813 Op = NVPTXISD::LoadParamV4;
1814 break;
1815 default:
1816 llvm_unreachable("Invalid vector info.");
1817 }
1818
1819 SDValue LoadOperands[] = {
1820 Chain, DAG.getConstant(1, dl, MVT::i32),
1821 DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1822 SDValue RetVal = DAG.getMemIntrinsicNode(
1823 Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1824 MachinePointerInfo(), EltAlign,
1825 MachineMemOperand::MOLoad);
1826
1827 for (unsigned j = 0; j < NumElts; ++j) {
1828 ProxyRegOps.push_back(RetVal.getValue(j));
1829
1830 if (needTruncate)
1831 ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1832 else
1833 ProxyRegTruncates.push_back(Optional<MVT>());
1834 }
1835
1836 Chain = RetVal.getValue(NumElts);
1837 InFlag = RetVal.getValue(NumElts + 1);
1838
1839 // Cleanup
1840 VecIdx = -1;
1841 LoadVTs.clear();
1842 }
1843 }
1844 }
1845
1846 Chain = DAG.getCALLSEQ_END(Chain,
1847 DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1848 DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1849 true),
1850 InFlag, dl);
1851 InFlag = Chain.getValue(1);
1852 uniqueCallSite++;
1853
1854 // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1855 // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1856 // dangling.
1857 for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1858 SDValue Ret = DAG.getNode(
1859 NVPTXISD::ProxyReg, dl,
1860 DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1861 { Chain, ProxyRegOps[i], InFlag }
1862 );
1863
1864 Chain = Ret.getValue(1);
1865 InFlag = Ret.getValue(2);
1866
1867 if (ProxyRegTruncates[i].hasValue()) {
1868 Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1869 }
1870
1871 InVals.push_back(Ret);
1872 }
1873
1874 // set isTailCall to false for now, until we figure out how to express
1875 // tail call optimization in PTX
1876 isTailCall = false;
1877 return Chain;
1878 }
1879
1880 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1881 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1882 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1883 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const1884 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1885 SDNode *Node = Op.getNode();
1886 SDLoc dl(Node);
1887 SmallVector<SDValue, 8> Ops;
1888 unsigned NumOperands = Node->getNumOperands();
1889 for (unsigned i = 0; i < NumOperands; ++i) {
1890 SDValue SubOp = Node->getOperand(i);
1891 EVT VVT = SubOp.getNode()->getValueType(0);
1892 EVT EltVT = VVT.getVectorElementType();
1893 unsigned NumSubElem = VVT.getVectorNumElements();
1894 for (unsigned j = 0; j < NumSubElem; ++j) {
1895 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1896 DAG.getIntPtrConstant(j, dl)));
1897 }
1898 }
1899 return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1900 }
1901
1902 // We can init constant f16x2 with a single .b32 move. Normally it
1903 // would get lowered as two constant loads and vector-packing move.
1904 // mov.b16 %h1, 0x4000;
1905 // mov.b16 %h2, 0x3C00;
1906 // mov.b32 %hh2, {%h2, %h1};
1907 // Instead we want just a constant move:
1908 // mov.b32 %hh2, 0x40003C00
1909 //
1910 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1911 // generates good SASS in both cases.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const1912 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1913 SelectionDAG &DAG) const {
1914 //return Op;
1915 if (!(Op->getValueType(0) == MVT::v2f16 &&
1916 isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1917 isa<ConstantFPSDNode>(Op->getOperand(1))))
1918 return Op;
1919
1920 APInt E0 =
1921 cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1922 APInt E1 =
1923 cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1924 SDValue Const =
1925 DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1926 return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1927 }
1928
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const1929 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1930 SelectionDAG &DAG) const {
1931 SDValue Index = Op->getOperand(1);
1932 // Constant index will be matched by tablegen.
1933 if (isa<ConstantSDNode>(Index.getNode()))
1934 return Op;
1935
1936 // Extract individual elements and select one of them.
1937 SDValue Vector = Op->getOperand(0);
1938 EVT VectorVT = Vector.getValueType();
1939 assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1940 EVT EltVT = VectorVT.getVectorElementType();
1941
1942 SDLoc dl(Op.getNode());
1943 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1944 DAG.getIntPtrConstant(0, dl));
1945 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1946 DAG.getIntPtrConstant(1, dl));
1947 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1948 ISD::CondCode::SETEQ);
1949 }
1950
1951 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1952 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1953 /// amount, or
1954 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1955 /// amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const1956 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1957 SelectionDAG &DAG) const {
1958 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1959 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1960
1961 EVT VT = Op.getValueType();
1962 unsigned VTBits = VT.getSizeInBits();
1963 SDLoc dl(Op);
1964 SDValue ShOpLo = Op.getOperand(0);
1965 SDValue ShOpHi = Op.getOperand(1);
1966 SDValue ShAmt = Op.getOperand(2);
1967 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1968
1969 if (VTBits == 32 && STI.getSmVersion() >= 35) {
1970 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1971 // {dHi, dLo} = {aHi, aLo} >> Amt
1972 // dHi = aHi >> Amt
1973 // dLo = shf.r.clamp aLo, aHi, Amt
1974
1975 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1976 SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1977 ShAmt);
1978
1979 SDValue Ops[2] = { Lo, Hi };
1980 return DAG.getMergeValues(Ops, dl);
1981 }
1982 else {
1983 // {dHi, dLo} = {aHi, aLo} >> Amt
1984 // - if (Amt>=size) then
1985 // dLo = aHi >> (Amt-size)
1986 // dHi = aHi >> Amt (this is either all 0 or all 1)
1987 // else
1988 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1989 // dHi = aHi >> Amt
1990
1991 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1992 DAG.getConstant(VTBits, dl, MVT::i32),
1993 ShAmt);
1994 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1995 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1996 DAG.getConstant(VTBits, dl, MVT::i32));
1997 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1998 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1999 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2000
2001 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2002 DAG.getConstant(VTBits, dl, MVT::i32),
2003 ISD::SETGE);
2004 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2005 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2006
2007 SDValue Ops[2] = { Lo, Hi };
2008 return DAG.getMergeValues(Ops, dl);
2009 }
2010 }
2011
2012 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2013 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2014 /// amount, or
2015 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2016 /// amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const2017 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2018 SelectionDAG &DAG) const {
2019 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2020 assert(Op.getOpcode() == ISD::SHL_PARTS);
2021
2022 EVT VT = Op.getValueType();
2023 unsigned VTBits = VT.getSizeInBits();
2024 SDLoc dl(Op);
2025 SDValue ShOpLo = Op.getOperand(0);
2026 SDValue ShOpHi = Op.getOperand(1);
2027 SDValue ShAmt = Op.getOperand(2);
2028
2029 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2030 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2031 // {dHi, dLo} = {aHi, aLo} << Amt
2032 // dHi = shf.l.clamp aLo, aHi, Amt
2033 // dLo = aLo << Amt
2034
2035 SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2036 ShAmt);
2037 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2038
2039 SDValue Ops[2] = { Lo, Hi };
2040 return DAG.getMergeValues(Ops, dl);
2041 }
2042 else {
2043 // {dHi, dLo} = {aHi, aLo} << Amt
2044 // - if (Amt>=size) then
2045 // dLo = aLo << Amt (all 0)
2046 // dLo = aLo << (Amt-size)
2047 // else
2048 // dLo = aLo << Amt
2049 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
2050
2051 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2052 DAG.getConstant(VTBits, dl, MVT::i32),
2053 ShAmt);
2054 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2055 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2056 DAG.getConstant(VTBits, dl, MVT::i32));
2057 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2058 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2059 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2060
2061 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2062 DAG.getConstant(VTBits, dl, MVT::i32),
2063 ISD::SETGE);
2064 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2065 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2066
2067 SDValue Ops[2] = { Lo, Hi };
2068 return DAG.getMergeValues(Ops, dl);
2069 }
2070 }
2071
2072 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const2073 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2074 switch (Op.getOpcode()) {
2075 case ISD::RETURNADDR:
2076 return SDValue();
2077 case ISD::FRAMEADDR:
2078 return SDValue();
2079 case ISD::GlobalAddress:
2080 return LowerGlobalAddress(Op, DAG);
2081 case ISD::INTRINSIC_W_CHAIN:
2082 return Op;
2083 case ISD::BUILD_VECTOR:
2084 return LowerBUILD_VECTOR(Op, DAG);
2085 case ISD::EXTRACT_SUBVECTOR:
2086 return Op;
2087 case ISD::EXTRACT_VECTOR_ELT:
2088 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2089 case ISD::CONCAT_VECTORS:
2090 return LowerCONCAT_VECTORS(Op, DAG);
2091 case ISD::STORE:
2092 return LowerSTORE(Op, DAG);
2093 case ISD::LOAD:
2094 return LowerLOAD(Op, DAG);
2095 case ISD::SHL_PARTS:
2096 return LowerShiftLeftParts(Op, DAG);
2097 case ISD::SRA_PARTS:
2098 case ISD::SRL_PARTS:
2099 return LowerShiftRightParts(Op, DAG);
2100 case ISD::SELECT:
2101 return LowerSelect(Op, DAG);
2102 default:
2103 llvm_unreachable("Custom lowering not defined for operation");
2104 }
2105 }
2106
LowerSelect(SDValue Op,SelectionDAG & DAG) const2107 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2108 SDValue Op0 = Op->getOperand(0);
2109 SDValue Op1 = Op->getOperand(1);
2110 SDValue Op2 = Op->getOperand(2);
2111 SDLoc DL(Op.getNode());
2112
2113 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2114
2115 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2116 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2117 SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2118 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2119
2120 return Trunc;
2121 }
2122
LowerLOAD(SDValue Op,SelectionDAG & DAG) const2123 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2124 if (Op.getValueType() == MVT::i1)
2125 return LowerLOADi1(Op, DAG);
2126
2127 // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2128 // loads and have to handle it here.
2129 if (Op.getValueType() == MVT::v2f16) {
2130 LoadSDNode *Load = cast<LoadSDNode>(Op);
2131 EVT MemVT = Load->getMemoryVT();
2132 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
2133 Load->getAddressSpace(), Load->getAlignment())) {
2134 SDValue Ops[2];
2135 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2136 return DAG.getMergeValues(Ops, SDLoc(Op));
2137 }
2138 }
2139
2140 return SDValue();
2141 }
2142
2143 // v = ld i1* addr
2144 // =>
2145 // v1 = ld i8* addr (-> i16)
2146 // v = trunc i16 to i1
LowerLOADi1(SDValue Op,SelectionDAG & DAG) const2147 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2148 SDNode *Node = Op.getNode();
2149 LoadSDNode *LD = cast<LoadSDNode>(Node);
2150 SDLoc dl(Node);
2151 assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2152 assert(Node->getValueType(0) == MVT::i1 &&
2153 "Custom lowering for i1 load only");
2154 SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2155 LD->getPointerInfo(), LD->getAlignment(),
2156 LD->getMemOperand()->getFlags());
2157 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2158 // The legalizer (the caller) is expecting two values from the legalized
2159 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2160 // in LegalizeDAG.cpp which also uses MergeValues.
2161 SDValue Ops[] = { result, LD->getChain() };
2162 return DAG.getMergeValues(Ops, dl);
2163 }
2164
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2165 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2166 StoreSDNode *Store = cast<StoreSDNode>(Op);
2167 EVT VT = Store->getMemoryVT();
2168
2169 if (VT == MVT::i1)
2170 return LowerSTOREi1(Op, DAG);
2171
2172 // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2173 // stores and have to handle it here.
2174 if (VT == MVT::v2f16 &&
2175 !allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
2176 Store->getAddressSpace(), Store->getAlignment()))
2177 return expandUnalignedStore(Store, DAG);
2178
2179 if (VT.isVector())
2180 return LowerSTOREVector(Op, DAG);
2181
2182 return SDValue();
2183 }
2184
2185 SDValue
LowerSTOREVector(SDValue Op,SelectionDAG & DAG) const2186 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2187 SDNode *N = Op.getNode();
2188 SDValue Val = N->getOperand(1);
2189 SDLoc DL(N);
2190 EVT ValVT = Val.getValueType();
2191
2192 if (ValVT.isVector()) {
2193 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2194 // legal. We can (and should) split that into 2 stores of <2 x double> here
2195 // but I'm leaving that as a TODO for now.
2196 if (!ValVT.isSimple())
2197 return SDValue();
2198 switch (ValVT.getSimpleVT().SimpleTy) {
2199 default:
2200 return SDValue();
2201 case MVT::v2i8:
2202 case MVT::v2i16:
2203 case MVT::v2i32:
2204 case MVT::v2i64:
2205 case MVT::v2f16:
2206 case MVT::v2f32:
2207 case MVT::v2f64:
2208 case MVT::v4i8:
2209 case MVT::v4i16:
2210 case MVT::v4i32:
2211 case MVT::v4f16:
2212 case MVT::v4f32:
2213 case MVT::v8f16: // <4 x f16x2>
2214 // This is a "native" vector type
2215 break;
2216 }
2217
2218 MemSDNode *MemSD = cast<MemSDNode>(N);
2219 const DataLayout &TD = DAG.getDataLayout();
2220
2221 unsigned Align = MemSD->getAlignment();
2222 unsigned PrefAlign =
2223 TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
2224 if (Align < PrefAlign) {
2225 // This store is not sufficiently aligned, so bail out and let this vector
2226 // store be scalarized. Note that we may still be able to emit smaller
2227 // vector stores. For example, if we are storing a <4 x float> with an
2228 // alignment of 8, this check will fail but the legalizer will try again
2229 // with 2 x <2 x float>, which will succeed with an alignment of 8.
2230 return SDValue();
2231 }
2232
2233 unsigned Opcode = 0;
2234 EVT EltVT = ValVT.getVectorElementType();
2235 unsigned NumElts = ValVT.getVectorNumElements();
2236
2237 // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2238 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
2239 // stored type to i16 and propagate the "real" type as the memory type.
2240 bool NeedExt = false;
2241 if (EltVT.getSizeInBits() < 16)
2242 NeedExt = true;
2243
2244 bool StoreF16x2 = false;
2245 switch (NumElts) {
2246 default:
2247 return SDValue();
2248 case 2:
2249 Opcode = NVPTXISD::StoreV2;
2250 break;
2251 case 4:
2252 Opcode = NVPTXISD::StoreV4;
2253 break;
2254 case 8:
2255 // v8f16 is a special case. PTX doesn't have st.v8.f16
2256 // instruction. Instead, we split the vector into v2f16 chunks and
2257 // store them with st.v4.b32.
2258 assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2259 Opcode = NVPTXISD::StoreV4;
2260 StoreF16x2 = true;
2261 break;
2262 }
2263
2264 SmallVector<SDValue, 8> Ops;
2265
2266 // First is the chain
2267 Ops.push_back(N->getOperand(0));
2268
2269 if (StoreF16x2) {
2270 // Combine f16,f16 -> v2f16
2271 NumElts /= 2;
2272 for (unsigned i = 0; i < NumElts; ++i) {
2273 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2274 DAG.getIntPtrConstant(i * 2, DL));
2275 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2276 DAG.getIntPtrConstant(i * 2 + 1, DL));
2277 SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2278 Ops.push_back(V2);
2279 }
2280 } else {
2281 // Then the split values
2282 for (unsigned i = 0; i < NumElts; ++i) {
2283 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2284 DAG.getIntPtrConstant(i, DL));
2285 if (NeedExt)
2286 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2287 Ops.push_back(ExtVal);
2288 }
2289 }
2290
2291 // Then any remaining arguments
2292 Ops.append(N->op_begin() + 2, N->op_end());
2293
2294 SDValue NewSt =
2295 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2296 MemSD->getMemoryVT(), MemSD->getMemOperand());
2297
2298 // return DCI.CombineTo(N, NewSt, true);
2299 return NewSt;
2300 }
2301
2302 return SDValue();
2303 }
2304
2305 // st i1 v, addr
2306 // =>
2307 // v1 = zxt v to i16
2308 // st.u8 i16, addr
LowerSTOREi1(SDValue Op,SelectionDAG & DAG) const2309 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2310 SDNode *Node = Op.getNode();
2311 SDLoc dl(Node);
2312 StoreSDNode *ST = cast<StoreSDNode>(Node);
2313 SDValue Tmp1 = ST->getChain();
2314 SDValue Tmp2 = ST->getBasePtr();
2315 SDValue Tmp3 = ST->getValue();
2316 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2317 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2318 SDValue Result =
2319 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2320 ST->getAlignment(), ST->getMemOperand()->getFlags());
2321 return Result;
2322 }
2323
2324 SDValue
getParamSymbol(SelectionDAG & DAG,int idx,EVT v) const2325 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2326 std::string ParamSym;
2327 raw_string_ostream ParamStr(ParamSym);
2328
2329 ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2330 ParamStr.flush();
2331
2332 std::string *SavedStr =
2333 nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2334 return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2335 }
2336
2337 // Check to see if the kernel argument is image*_t or sampler_t
2338
isImageOrSamplerVal(const Value * arg,const Module * context)2339 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2340 static const char *const specialTypes[] = { "struct._image2d_t",
2341 "struct._image3d_t",
2342 "struct._sampler_t" };
2343
2344 Type *Ty = arg->getType();
2345 auto *PTy = dyn_cast<PointerType>(Ty);
2346
2347 if (!PTy)
2348 return false;
2349
2350 if (!context)
2351 return false;
2352
2353 auto *STy = dyn_cast<StructType>(PTy->getElementType());
2354 if (!STy || STy->isLiteral())
2355 return false;
2356
2357 return std::find(std::begin(specialTypes), std::end(specialTypes),
2358 STy->getName()) != std::end(specialTypes);
2359 }
2360
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2361 SDValue NVPTXTargetLowering::LowerFormalArguments(
2362 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2363 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2364 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2365 MachineFunction &MF = DAG.getMachineFunction();
2366 const DataLayout &DL = DAG.getDataLayout();
2367 auto PtrVT = getPointerTy(DAG.getDataLayout());
2368
2369 const Function *F = &MF.getFunction();
2370 const AttributeList &PAL = F->getAttributes();
2371 const TargetLowering *TLI = STI.getTargetLowering();
2372
2373 SDValue Root = DAG.getRoot();
2374 std::vector<SDValue> OutChains;
2375
2376 bool isABI = (STI.getSmVersion() >= 20);
2377 assert(isABI && "Non-ABI compilation is not supported");
2378 if (!isABI)
2379 return Chain;
2380
2381 std::vector<Type *> argTypes;
2382 std::vector<const Argument *> theArgs;
2383 for (const Argument &I : F->args()) {
2384 theArgs.push_back(&I);
2385 argTypes.push_back(I.getType());
2386 }
2387 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2388 // Ins.size() will be larger
2389 // * if there is an aggregate argument with multiple fields (each field
2390 // showing up separately in Ins)
2391 // * if there is a vector argument with more than typical vector-length
2392 // elements (generally if more than 4) where each vector element is
2393 // individually present in Ins.
2394 // So a different index should be used for indexing into Ins.
2395 // See similar issue in LowerCall.
2396 unsigned InsIdx = 0;
2397
2398 int idx = 0;
2399 for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2400 Type *Ty = argTypes[i];
2401
2402 // If the kernel argument is image*_t or sampler_t, convert it to
2403 // a i32 constant holding the parameter position. This can later
2404 // matched in the AsmPrinter to output the correct mangled name.
2405 if (isImageOrSamplerVal(
2406 theArgs[i],
2407 (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2408 : nullptr))) {
2409 assert(isKernelFunction(*F) &&
2410 "Only kernels can have image/sampler params");
2411 InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2412 continue;
2413 }
2414
2415 if (theArgs[i]->use_empty()) {
2416 // argument is dead
2417 if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2418 SmallVector<EVT, 16> vtparts;
2419
2420 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2421 assert(vtparts.size() > 0 && "empty aggregate type not expected");
2422 for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2423 ++parti) {
2424 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2425 ++InsIdx;
2426 }
2427 if (vtparts.size() > 0)
2428 --InsIdx;
2429 continue;
2430 }
2431 if (Ty->isVectorTy()) {
2432 EVT ObjectVT = getValueType(DL, Ty);
2433 unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2434 for (unsigned parti = 0; parti < NumRegs; ++parti) {
2435 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2436 ++InsIdx;
2437 }
2438 if (NumRegs > 0)
2439 --InsIdx;
2440 continue;
2441 }
2442 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2443 continue;
2444 }
2445
2446 // In the following cases, assign a node order of "idx+1"
2447 // to newly created nodes. The SDNodes for params have to
2448 // appear in the same order as their order of appearance
2449 // in the original function. "idx+1" holds that order.
2450 if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2451 bool aggregateIsPacked = false;
2452 if (StructType *STy = dyn_cast<StructType>(Ty))
2453 aggregateIsPacked = STy->isPacked();
2454
2455 SmallVector<EVT, 16> VTs;
2456 SmallVector<uint64_t, 16> Offsets;
2457 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2458 assert(VTs.size() > 0 && "Unexpected empty type.");
2459 auto VectorInfo =
2460 VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlignment(Ty));
2461
2462 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2463 int VecIdx = -1; // Index of the first element of the current vector.
2464 for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2465 if (VectorInfo[parti] & PVF_FIRST) {
2466 assert(VecIdx == -1 && "Orphaned vector.");
2467 VecIdx = parti;
2468 }
2469
2470 // That's the last element of this store op.
2471 if (VectorInfo[parti] & PVF_LAST) {
2472 unsigned NumElts = parti - VecIdx + 1;
2473 EVT EltVT = VTs[parti];
2474 // i1 is loaded/stored as i8.
2475 EVT LoadVT = EltVT;
2476 if (EltVT == MVT::i1)
2477 LoadVT = MVT::i8;
2478 else if (EltVT == MVT::v2f16)
2479 // getLoad needs a vector type, but it can't handle
2480 // vectors which contain v2f16 elements. So we must load
2481 // using i32 here and then bitcast back.
2482 LoadVT = MVT::i32;
2483
2484 EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2485 SDValue VecAddr =
2486 DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2487 DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2488 Value *srcValue = Constant::getNullValue(PointerType::get(
2489 EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2490 SDValue P =
2491 DAG.getLoad(VecVT, dl, Root, VecAddr,
2492 MachinePointerInfo(srcValue), aggregateIsPacked,
2493 MachineMemOperand::MODereferenceable |
2494 MachineMemOperand::MOInvariant);
2495 if (P.getNode())
2496 P.getNode()->setIROrder(idx + 1);
2497 for (unsigned j = 0; j < NumElts; ++j) {
2498 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2499 DAG.getIntPtrConstant(j, dl));
2500 // We've loaded i1 as an i8 and now must truncate it back to i1
2501 if (EltVT == MVT::i1)
2502 Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2503 // v2f16 was loaded as an i32. Now we must bitcast it back.
2504 else if (EltVT == MVT::v2f16)
2505 Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2506 // Extend the element if necessary (e.g. an i8 is loaded
2507 // into an i16 register)
2508 if (Ins[InsIdx].VT.isInteger() &&
2509 Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
2510 unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2511 : ISD::ZERO_EXTEND;
2512 Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2513 }
2514 InVals.push_back(Elt);
2515 }
2516
2517 // Reset vector tracking state.
2518 VecIdx = -1;
2519 }
2520 ++InsIdx;
2521 }
2522 if (VTs.size() > 0)
2523 --InsIdx;
2524 continue;
2525 }
2526
2527 // Param has ByVal attribute
2528 // Return MoveParam(param symbol).
2529 // Ideally, the param symbol can be returned directly,
2530 // but when SDNode builder decides to use it in a CopyToReg(),
2531 // machine instruction fails because TargetExternalSymbol
2532 // (not lowered) is target dependent, and CopyToReg assumes
2533 // the source is lowered.
2534 EVT ObjectVT = getValueType(DL, Ty);
2535 assert(ObjectVT == Ins[InsIdx].VT &&
2536 "Ins type did not match function type");
2537 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2538 SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2539 if (p.getNode())
2540 p.getNode()->setIROrder(idx + 1);
2541 InVals.push_back(p);
2542 }
2543
2544 // Clang will check explicit VarArg and issue error if any. However, Clang
2545 // will let code with
2546 // implicit var arg like f() pass. See bug 617733.
2547 // We treat this case as if the arg list is empty.
2548 // if (F.isVarArg()) {
2549 // assert(0 && "VarArg not supported yet!");
2550 //}
2551
2552 if (!OutChains.empty())
2553 DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2554
2555 return Chain;
2556 }
2557
2558 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2559 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2560 bool isVarArg,
2561 const SmallVectorImpl<ISD::OutputArg> &Outs,
2562 const SmallVectorImpl<SDValue> &OutVals,
2563 const SDLoc &dl, SelectionDAG &DAG) const {
2564 MachineFunction &MF = DAG.getMachineFunction();
2565 Type *RetTy = MF.getFunction().getReturnType();
2566
2567 bool isABI = (STI.getSmVersion() >= 20);
2568 assert(isABI && "Non-ABI compilation is not supported");
2569 if (!isABI)
2570 return Chain;
2571
2572 const DataLayout DL = DAG.getDataLayout();
2573 SmallVector<EVT, 16> VTs;
2574 SmallVector<uint64_t, 16> Offsets;
2575 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2576 assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2577
2578 auto VectorInfo = VectorizePTXValueVTs(
2579 VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlignment(RetTy) : 1);
2580
2581 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2582 // 32-bits are sign extended or zero extended, depending on whether
2583 // they are signed or unsigned types.
2584 bool ExtendIntegerRetVal =
2585 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2586
2587 SmallVector<SDValue, 6> StoreOperands;
2588 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2589 // New load/store. Record chain and offset operands.
2590 if (VectorInfo[i] & PVF_FIRST) {
2591 assert(StoreOperands.empty() && "Orphaned operand list.");
2592 StoreOperands.push_back(Chain);
2593 StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2594 }
2595
2596 SDValue RetVal = OutVals[i];
2597 if (ExtendIntegerRetVal) {
2598 RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2599 : ISD::ZERO_EXTEND,
2600 dl, MVT::i32, RetVal);
2601 } else if (RetVal.getValueSizeInBits() < 16) {
2602 // Use 16-bit registers for small load-stores as it's the
2603 // smallest general purpose register size supported by NVPTX.
2604 RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2605 }
2606
2607 // Record the value to return.
2608 StoreOperands.push_back(RetVal);
2609
2610 // That's the last element of this store op.
2611 if (VectorInfo[i] & PVF_LAST) {
2612 NVPTXISD::NodeType Op;
2613 unsigned NumElts = StoreOperands.size() - 2;
2614 switch (NumElts) {
2615 case 1:
2616 Op = NVPTXISD::StoreRetval;
2617 break;
2618 case 2:
2619 Op = NVPTXISD::StoreRetvalV2;
2620 break;
2621 case 4:
2622 Op = NVPTXISD::StoreRetvalV4;
2623 break;
2624 default:
2625 llvm_unreachable("Invalid vector info.");
2626 }
2627
2628 // Adjust type of load/store op if we've extended the scalar
2629 // return value.
2630 EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2631 Chain = DAG.getMemIntrinsicNode(Op, dl, DAG.getVTList(MVT::Other),
2632 StoreOperands, TheStoreType,
2633 MachinePointerInfo(), /* Align */ 1,
2634 MachineMemOperand::MOStore);
2635 // Cleanup vector state.
2636 StoreOperands.clear();
2637 }
2638 }
2639
2640 return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2641 }
2642
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2643 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2644 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2645 SelectionDAG &DAG) const {
2646 if (Constraint.length() > 1)
2647 return;
2648 else
2649 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2650 }
2651
getOpcForTextureInstr(unsigned Intrinsic)2652 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2653 switch (Intrinsic) {
2654 default:
2655 return 0;
2656
2657 case Intrinsic::nvvm_tex_1d_v4f32_s32:
2658 return NVPTXISD::Tex1DFloatS32;
2659 case Intrinsic::nvvm_tex_1d_v4f32_f32:
2660 return NVPTXISD::Tex1DFloatFloat;
2661 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2662 return NVPTXISD::Tex1DFloatFloatLevel;
2663 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2664 return NVPTXISD::Tex1DFloatFloatGrad;
2665 case Intrinsic::nvvm_tex_1d_v4s32_s32:
2666 return NVPTXISD::Tex1DS32S32;
2667 case Intrinsic::nvvm_tex_1d_v4s32_f32:
2668 return NVPTXISD::Tex1DS32Float;
2669 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2670 return NVPTXISD::Tex1DS32FloatLevel;
2671 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2672 return NVPTXISD::Tex1DS32FloatGrad;
2673 case Intrinsic::nvvm_tex_1d_v4u32_s32:
2674 return NVPTXISD::Tex1DU32S32;
2675 case Intrinsic::nvvm_tex_1d_v4u32_f32:
2676 return NVPTXISD::Tex1DU32Float;
2677 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2678 return NVPTXISD::Tex1DU32FloatLevel;
2679 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2680 return NVPTXISD::Tex1DU32FloatGrad;
2681
2682 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2683 return NVPTXISD::Tex1DArrayFloatS32;
2684 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2685 return NVPTXISD::Tex1DArrayFloatFloat;
2686 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2687 return NVPTXISD::Tex1DArrayFloatFloatLevel;
2688 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2689 return NVPTXISD::Tex1DArrayFloatFloatGrad;
2690 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2691 return NVPTXISD::Tex1DArrayS32S32;
2692 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2693 return NVPTXISD::Tex1DArrayS32Float;
2694 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2695 return NVPTXISD::Tex1DArrayS32FloatLevel;
2696 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2697 return NVPTXISD::Tex1DArrayS32FloatGrad;
2698 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2699 return NVPTXISD::Tex1DArrayU32S32;
2700 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2701 return NVPTXISD::Tex1DArrayU32Float;
2702 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2703 return NVPTXISD::Tex1DArrayU32FloatLevel;
2704 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2705 return NVPTXISD::Tex1DArrayU32FloatGrad;
2706
2707 case Intrinsic::nvvm_tex_2d_v4f32_s32:
2708 return NVPTXISD::Tex2DFloatS32;
2709 case Intrinsic::nvvm_tex_2d_v4f32_f32:
2710 return NVPTXISD::Tex2DFloatFloat;
2711 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2712 return NVPTXISD::Tex2DFloatFloatLevel;
2713 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2714 return NVPTXISD::Tex2DFloatFloatGrad;
2715 case Intrinsic::nvvm_tex_2d_v4s32_s32:
2716 return NVPTXISD::Tex2DS32S32;
2717 case Intrinsic::nvvm_tex_2d_v4s32_f32:
2718 return NVPTXISD::Tex2DS32Float;
2719 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2720 return NVPTXISD::Tex2DS32FloatLevel;
2721 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2722 return NVPTXISD::Tex2DS32FloatGrad;
2723 case Intrinsic::nvvm_tex_2d_v4u32_s32:
2724 return NVPTXISD::Tex2DU32S32;
2725 case Intrinsic::nvvm_tex_2d_v4u32_f32:
2726 return NVPTXISD::Tex2DU32Float;
2727 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2728 return NVPTXISD::Tex2DU32FloatLevel;
2729 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2730 return NVPTXISD::Tex2DU32FloatGrad;
2731
2732 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2733 return NVPTXISD::Tex2DArrayFloatS32;
2734 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2735 return NVPTXISD::Tex2DArrayFloatFloat;
2736 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2737 return NVPTXISD::Tex2DArrayFloatFloatLevel;
2738 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2739 return NVPTXISD::Tex2DArrayFloatFloatGrad;
2740 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2741 return NVPTXISD::Tex2DArrayS32S32;
2742 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2743 return NVPTXISD::Tex2DArrayS32Float;
2744 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2745 return NVPTXISD::Tex2DArrayS32FloatLevel;
2746 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2747 return NVPTXISD::Tex2DArrayS32FloatGrad;
2748 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2749 return NVPTXISD::Tex2DArrayU32S32;
2750 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2751 return NVPTXISD::Tex2DArrayU32Float;
2752 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2753 return NVPTXISD::Tex2DArrayU32FloatLevel;
2754 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2755 return NVPTXISD::Tex2DArrayU32FloatGrad;
2756
2757 case Intrinsic::nvvm_tex_3d_v4f32_s32:
2758 return NVPTXISD::Tex3DFloatS32;
2759 case Intrinsic::nvvm_tex_3d_v4f32_f32:
2760 return NVPTXISD::Tex3DFloatFloat;
2761 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2762 return NVPTXISD::Tex3DFloatFloatLevel;
2763 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2764 return NVPTXISD::Tex3DFloatFloatGrad;
2765 case Intrinsic::nvvm_tex_3d_v4s32_s32:
2766 return NVPTXISD::Tex3DS32S32;
2767 case Intrinsic::nvvm_tex_3d_v4s32_f32:
2768 return NVPTXISD::Tex3DS32Float;
2769 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2770 return NVPTXISD::Tex3DS32FloatLevel;
2771 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2772 return NVPTXISD::Tex3DS32FloatGrad;
2773 case Intrinsic::nvvm_tex_3d_v4u32_s32:
2774 return NVPTXISD::Tex3DU32S32;
2775 case Intrinsic::nvvm_tex_3d_v4u32_f32:
2776 return NVPTXISD::Tex3DU32Float;
2777 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2778 return NVPTXISD::Tex3DU32FloatLevel;
2779 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2780 return NVPTXISD::Tex3DU32FloatGrad;
2781
2782 case Intrinsic::nvvm_tex_cube_v4f32_f32:
2783 return NVPTXISD::TexCubeFloatFloat;
2784 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2785 return NVPTXISD::TexCubeFloatFloatLevel;
2786 case Intrinsic::nvvm_tex_cube_v4s32_f32:
2787 return NVPTXISD::TexCubeS32Float;
2788 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2789 return NVPTXISD::TexCubeS32FloatLevel;
2790 case Intrinsic::nvvm_tex_cube_v4u32_f32:
2791 return NVPTXISD::TexCubeU32Float;
2792 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2793 return NVPTXISD::TexCubeU32FloatLevel;
2794
2795 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2796 return NVPTXISD::TexCubeArrayFloatFloat;
2797 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2798 return NVPTXISD::TexCubeArrayFloatFloatLevel;
2799 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2800 return NVPTXISD::TexCubeArrayS32Float;
2801 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2802 return NVPTXISD::TexCubeArrayS32FloatLevel;
2803 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2804 return NVPTXISD::TexCubeArrayU32Float;
2805 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2806 return NVPTXISD::TexCubeArrayU32FloatLevel;
2807
2808 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2809 return NVPTXISD::Tld4R2DFloatFloat;
2810 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2811 return NVPTXISD::Tld4G2DFloatFloat;
2812 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2813 return NVPTXISD::Tld4B2DFloatFloat;
2814 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2815 return NVPTXISD::Tld4A2DFloatFloat;
2816 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2817 return NVPTXISD::Tld4R2DS64Float;
2818 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2819 return NVPTXISD::Tld4G2DS64Float;
2820 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2821 return NVPTXISD::Tld4B2DS64Float;
2822 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2823 return NVPTXISD::Tld4A2DS64Float;
2824 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2825 return NVPTXISD::Tld4R2DU64Float;
2826 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2827 return NVPTXISD::Tld4G2DU64Float;
2828 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2829 return NVPTXISD::Tld4B2DU64Float;
2830 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2831 return NVPTXISD::Tld4A2DU64Float;
2832
2833 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2834 return NVPTXISD::TexUnified1DFloatS32;
2835 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2836 return NVPTXISD::TexUnified1DFloatFloat;
2837 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2838 return NVPTXISD::TexUnified1DFloatFloatLevel;
2839 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2840 return NVPTXISD::TexUnified1DFloatFloatGrad;
2841 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2842 return NVPTXISD::TexUnified1DS32S32;
2843 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2844 return NVPTXISD::TexUnified1DS32Float;
2845 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2846 return NVPTXISD::TexUnified1DS32FloatLevel;
2847 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2848 return NVPTXISD::TexUnified1DS32FloatGrad;
2849 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2850 return NVPTXISD::TexUnified1DU32S32;
2851 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2852 return NVPTXISD::TexUnified1DU32Float;
2853 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2854 return NVPTXISD::TexUnified1DU32FloatLevel;
2855 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2856 return NVPTXISD::TexUnified1DU32FloatGrad;
2857
2858 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2859 return NVPTXISD::TexUnified1DArrayFloatS32;
2860 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2861 return NVPTXISD::TexUnified1DArrayFloatFloat;
2862 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2863 return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2864 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2865 return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2866 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2867 return NVPTXISD::TexUnified1DArrayS32S32;
2868 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2869 return NVPTXISD::TexUnified1DArrayS32Float;
2870 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2871 return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2872 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2873 return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2874 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2875 return NVPTXISD::TexUnified1DArrayU32S32;
2876 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2877 return NVPTXISD::TexUnified1DArrayU32Float;
2878 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2879 return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2880 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2881 return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2882
2883 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2884 return NVPTXISD::TexUnified2DFloatS32;
2885 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2886 return NVPTXISD::TexUnified2DFloatFloat;
2887 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2888 return NVPTXISD::TexUnified2DFloatFloatLevel;
2889 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2890 return NVPTXISD::TexUnified2DFloatFloatGrad;
2891 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2892 return NVPTXISD::TexUnified2DS32S32;
2893 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2894 return NVPTXISD::TexUnified2DS32Float;
2895 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2896 return NVPTXISD::TexUnified2DS32FloatLevel;
2897 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2898 return NVPTXISD::TexUnified2DS32FloatGrad;
2899 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2900 return NVPTXISD::TexUnified2DU32S32;
2901 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2902 return NVPTXISD::TexUnified2DU32Float;
2903 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2904 return NVPTXISD::TexUnified2DU32FloatLevel;
2905 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2906 return NVPTXISD::TexUnified2DU32FloatGrad;
2907
2908 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2909 return NVPTXISD::TexUnified2DArrayFloatS32;
2910 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2911 return NVPTXISD::TexUnified2DArrayFloatFloat;
2912 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2913 return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2914 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2915 return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
2916 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
2917 return NVPTXISD::TexUnified2DArrayS32S32;
2918 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
2919 return NVPTXISD::TexUnified2DArrayS32Float;
2920 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
2921 return NVPTXISD::TexUnified2DArrayS32FloatLevel;
2922 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
2923 return NVPTXISD::TexUnified2DArrayS32FloatGrad;
2924 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
2925 return NVPTXISD::TexUnified2DArrayU32S32;
2926 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
2927 return NVPTXISD::TexUnified2DArrayU32Float;
2928 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
2929 return NVPTXISD::TexUnified2DArrayU32FloatLevel;
2930 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
2931 return NVPTXISD::TexUnified2DArrayU32FloatGrad;
2932
2933 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
2934 return NVPTXISD::TexUnified3DFloatS32;
2935 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
2936 return NVPTXISD::TexUnified3DFloatFloat;
2937 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
2938 return NVPTXISD::TexUnified3DFloatFloatLevel;
2939 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
2940 return NVPTXISD::TexUnified3DFloatFloatGrad;
2941 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
2942 return NVPTXISD::TexUnified3DS32S32;
2943 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
2944 return NVPTXISD::TexUnified3DS32Float;
2945 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
2946 return NVPTXISD::TexUnified3DS32FloatLevel;
2947 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
2948 return NVPTXISD::TexUnified3DS32FloatGrad;
2949 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
2950 return NVPTXISD::TexUnified3DU32S32;
2951 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
2952 return NVPTXISD::TexUnified3DU32Float;
2953 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
2954 return NVPTXISD::TexUnified3DU32FloatLevel;
2955 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
2956 return NVPTXISD::TexUnified3DU32FloatGrad;
2957
2958 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
2959 return NVPTXISD::TexUnifiedCubeFloatFloat;
2960 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
2961 return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
2962 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
2963 return NVPTXISD::TexUnifiedCubeS32Float;
2964 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
2965 return NVPTXISD::TexUnifiedCubeS32FloatLevel;
2966 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
2967 return NVPTXISD::TexUnifiedCubeU32Float;
2968 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
2969 return NVPTXISD::TexUnifiedCubeU32FloatLevel;
2970
2971 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
2972 return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
2973 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
2974 return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
2975 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
2976 return NVPTXISD::TexUnifiedCubeArrayS32Float;
2977 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
2978 return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
2979 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
2980 return NVPTXISD::TexUnifiedCubeArrayU32Float;
2981 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
2982 return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
2983
2984 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
2985 return NVPTXISD::Tld4UnifiedR2DFloatFloat;
2986 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
2987 return NVPTXISD::Tld4UnifiedG2DFloatFloat;
2988 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
2989 return NVPTXISD::Tld4UnifiedB2DFloatFloat;
2990 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
2991 return NVPTXISD::Tld4UnifiedA2DFloatFloat;
2992 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
2993 return NVPTXISD::Tld4UnifiedR2DS64Float;
2994 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
2995 return NVPTXISD::Tld4UnifiedG2DS64Float;
2996 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
2997 return NVPTXISD::Tld4UnifiedB2DS64Float;
2998 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
2999 return NVPTXISD::Tld4UnifiedA2DS64Float;
3000 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3001 return NVPTXISD::Tld4UnifiedR2DU64Float;
3002 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3003 return NVPTXISD::Tld4UnifiedG2DU64Float;
3004 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3005 return NVPTXISD::Tld4UnifiedB2DU64Float;
3006 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3007 return NVPTXISD::Tld4UnifiedA2DU64Float;
3008 }
3009 }
3010
getOpcForSurfaceInstr(unsigned Intrinsic)3011 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3012 switch (Intrinsic) {
3013 default:
3014 return 0;
3015 case Intrinsic::nvvm_suld_1d_i8_clamp:
3016 return NVPTXISD::Suld1DI8Clamp;
3017 case Intrinsic::nvvm_suld_1d_i16_clamp:
3018 return NVPTXISD::Suld1DI16Clamp;
3019 case Intrinsic::nvvm_suld_1d_i32_clamp:
3020 return NVPTXISD::Suld1DI32Clamp;
3021 case Intrinsic::nvvm_suld_1d_i64_clamp:
3022 return NVPTXISD::Suld1DI64Clamp;
3023 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3024 return NVPTXISD::Suld1DV2I8Clamp;
3025 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3026 return NVPTXISD::Suld1DV2I16Clamp;
3027 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3028 return NVPTXISD::Suld1DV2I32Clamp;
3029 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3030 return NVPTXISD::Suld1DV2I64Clamp;
3031 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3032 return NVPTXISD::Suld1DV4I8Clamp;
3033 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3034 return NVPTXISD::Suld1DV4I16Clamp;
3035 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3036 return NVPTXISD::Suld1DV4I32Clamp;
3037 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3038 return NVPTXISD::Suld1DArrayI8Clamp;
3039 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3040 return NVPTXISD::Suld1DArrayI16Clamp;
3041 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3042 return NVPTXISD::Suld1DArrayI32Clamp;
3043 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3044 return NVPTXISD::Suld1DArrayI64Clamp;
3045 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3046 return NVPTXISD::Suld1DArrayV2I8Clamp;
3047 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3048 return NVPTXISD::Suld1DArrayV2I16Clamp;
3049 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3050 return NVPTXISD::Suld1DArrayV2I32Clamp;
3051 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3052 return NVPTXISD::Suld1DArrayV2I64Clamp;
3053 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3054 return NVPTXISD::Suld1DArrayV4I8Clamp;
3055 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3056 return NVPTXISD::Suld1DArrayV4I16Clamp;
3057 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3058 return NVPTXISD::Suld1DArrayV4I32Clamp;
3059 case Intrinsic::nvvm_suld_2d_i8_clamp:
3060 return NVPTXISD::Suld2DI8Clamp;
3061 case Intrinsic::nvvm_suld_2d_i16_clamp:
3062 return NVPTXISD::Suld2DI16Clamp;
3063 case Intrinsic::nvvm_suld_2d_i32_clamp:
3064 return NVPTXISD::Suld2DI32Clamp;
3065 case Intrinsic::nvvm_suld_2d_i64_clamp:
3066 return NVPTXISD::Suld2DI64Clamp;
3067 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3068 return NVPTXISD::Suld2DV2I8Clamp;
3069 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3070 return NVPTXISD::Suld2DV2I16Clamp;
3071 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3072 return NVPTXISD::Suld2DV2I32Clamp;
3073 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3074 return NVPTXISD::Suld2DV2I64Clamp;
3075 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3076 return NVPTXISD::Suld2DV4I8Clamp;
3077 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3078 return NVPTXISD::Suld2DV4I16Clamp;
3079 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3080 return NVPTXISD::Suld2DV4I32Clamp;
3081 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3082 return NVPTXISD::Suld2DArrayI8Clamp;
3083 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3084 return NVPTXISD::Suld2DArrayI16Clamp;
3085 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3086 return NVPTXISD::Suld2DArrayI32Clamp;
3087 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3088 return NVPTXISD::Suld2DArrayI64Clamp;
3089 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3090 return NVPTXISD::Suld2DArrayV2I8Clamp;
3091 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3092 return NVPTXISD::Suld2DArrayV2I16Clamp;
3093 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3094 return NVPTXISD::Suld2DArrayV2I32Clamp;
3095 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3096 return NVPTXISD::Suld2DArrayV2I64Clamp;
3097 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3098 return NVPTXISD::Suld2DArrayV4I8Clamp;
3099 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3100 return NVPTXISD::Suld2DArrayV4I16Clamp;
3101 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3102 return NVPTXISD::Suld2DArrayV4I32Clamp;
3103 case Intrinsic::nvvm_suld_3d_i8_clamp:
3104 return NVPTXISD::Suld3DI8Clamp;
3105 case Intrinsic::nvvm_suld_3d_i16_clamp:
3106 return NVPTXISD::Suld3DI16Clamp;
3107 case Intrinsic::nvvm_suld_3d_i32_clamp:
3108 return NVPTXISD::Suld3DI32Clamp;
3109 case Intrinsic::nvvm_suld_3d_i64_clamp:
3110 return NVPTXISD::Suld3DI64Clamp;
3111 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3112 return NVPTXISD::Suld3DV2I8Clamp;
3113 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3114 return NVPTXISD::Suld3DV2I16Clamp;
3115 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3116 return NVPTXISD::Suld3DV2I32Clamp;
3117 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3118 return NVPTXISD::Suld3DV2I64Clamp;
3119 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3120 return NVPTXISD::Suld3DV4I8Clamp;
3121 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3122 return NVPTXISD::Suld3DV4I16Clamp;
3123 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3124 return NVPTXISD::Suld3DV4I32Clamp;
3125 case Intrinsic::nvvm_suld_1d_i8_trap:
3126 return NVPTXISD::Suld1DI8Trap;
3127 case Intrinsic::nvvm_suld_1d_i16_trap:
3128 return NVPTXISD::Suld1DI16Trap;
3129 case Intrinsic::nvvm_suld_1d_i32_trap:
3130 return NVPTXISD::Suld1DI32Trap;
3131 case Intrinsic::nvvm_suld_1d_i64_trap:
3132 return NVPTXISD::Suld1DI64Trap;
3133 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3134 return NVPTXISD::Suld1DV2I8Trap;
3135 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3136 return NVPTXISD::Suld1DV2I16Trap;
3137 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3138 return NVPTXISD::Suld1DV2I32Trap;
3139 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3140 return NVPTXISD::Suld1DV2I64Trap;
3141 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3142 return NVPTXISD::Suld1DV4I8Trap;
3143 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3144 return NVPTXISD::Suld1DV4I16Trap;
3145 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3146 return NVPTXISD::Suld1DV4I32Trap;
3147 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3148 return NVPTXISD::Suld1DArrayI8Trap;
3149 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3150 return NVPTXISD::Suld1DArrayI16Trap;
3151 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3152 return NVPTXISD::Suld1DArrayI32Trap;
3153 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3154 return NVPTXISD::Suld1DArrayI64Trap;
3155 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3156 return NVPTXISD::Suld1DArrayV2I8Trap;
3157 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3158 return NVPTXISD::Suld1DArrayV2I16Trap;
3159 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3160 return NVPTXISD::Suld1DArrayV2I32Trap;
3161 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3162 return NVPTXISD::Suld1DArrayV2I64Trap;
3163 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3164 return NVPTXISD::Suld1DArrayV4I8Trap;
3165 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3166 return NVPTXISD::Suld1DArrayV4I16Trap;
3167 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3168 return NVPTXISD::Suld1DArrayV4I32Trap;
3169 case Intrinsic::nvvm_suld_2d_i8_trap:
3170 return NVPTXISD::Suld2DI8Trap;
3171 case Intrinsic::nvvm_suld_2d_i16_trap:
3172 return NVPTXISD::Suld2DI16Trap;
3173 case Intrinsic::nvvm_suld_2d_i32_trap:
3174 return NVPTXISD::Suld2DI32Trap;
3175 case Intrinsic::nvvm_suld_2d_i64_trap:
3176 return NVPTXISD::Suld2DI64Trap;
3177 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3178 return NVPTXISD::Suld2DV2I8Trap;
3179 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3180 return NVPTXISD::Suld2DV2I16Trap;
3181 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3182 return NVPTXISD::Suld2DV2I32Trap;
3183 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3184 return NVPTXISD::Suld2DV2I64Trap;
3185 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3186 return NVPTXISD::Suld2DV4I8Trap;
3187 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3188 return NVPTXISD::Suld2DV4I16Trap;
3189 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3190 return NVPTXISD::Suld2DV4I32Trap;
3191 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3192 return NVPTXISD::Suld2DArrayI8Trap;
3193 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3194 return NVPTXISD::Suld2DArrayI16Trap;
3195 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3196 return NVPTXISD::Suld2DArrayI32Trap;
3197 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3198 return NVPTXISD::Suld2DArrayI64Trap;
3199 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3200 return NVPTXISD::Suld2DArrayV2I8Trap;
3201 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3202 return NVPTXISD::Suld2DArrayV2I16Trap;
3203 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3204 return NVPTXISD::Suld2DArrayV2I32Trap;
3205 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3206 return NVPTXISD::Suld2DArrayV2I64Trap;
3207 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3208 return NVPTXISD::Suld2DArrayV4I8Trap;
3209 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3210 return NVPTXISD::Suld2DArrayV4I16Trap;
3211 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3212 return NVPTXISD::Suld2DArrayV4I32Trap;
3213 case Intrinsic::nvvm_suld_3d_i8_trap:
3214 return NVPTXISD::Suld3DI8Trap;
3215 case Intrinsic::nvvm_suld_3d_i16_trap:
3216 return NVPTXISD::Suld3DI16Trap;
3217 case Intrinsic::nvvm_suld_3d_i32_trap:
3218 return NVPTXISD::Suld3DI32Trap;
3219 case Intrinsic::nvvm_suld_3d_i64_trap:
3220 return NVPTXISD::Suld3DI64Trap;
3221 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3222 return NVPTXISD::Suld3DV2I8Trap;
3223 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3224 return NVPTXISD::Suld3DV2I16Trap;
3225 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3226 return NVPTXISD::Suld3DV2I32Trap;
3227 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3228 return NVPTXISD::Suld3DV2I64Trap;
3229 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3230 return NVPTXISD::Suld3DV4I8Trap;
3231 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3232 return NVPTXISD::Suld3DV4I16Trap;
3233 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3234 return NVPTXISD::Suld3DV4I32Trap;
3235 case Intrinsic::nvvm_suld_1d_i8_zero:
3236 return NVPTXISD::Suld1DI8Zero;
3237 case Intrinsic::nvvm_suld_1d_i16_zero:
3238 return NVPTXISD::Suld1DI16Zero;
3239 case Intrinsic::nvvm_suld_1d_i32_zero:
3240 return NVPTXISD::Suld1DI32Zero;
3241 case Intrinsic::nvvm_suld_1d_i64_zero:
3242 return NVPTXISD::Suld1DI64Zero;
3243 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3244 return NVPTXISD::Suld1DV2I8Zero;
3245 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3246 return NVPTXISD::Suld1DV2I16Zero;
3247 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3248 return NVPTXISD::Suld1DV2I32Zero;
3249 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3250 return NVPTXISD::Suld1DV2I64Zero;
3251 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3252 return NVPTXISD::Suld1DV4I8Zero;
3253 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3254 return NVPTXISD::Suld1DV4I16Zero;
3255 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3256 return NVPTXISD::Suld1DV4I32Zero;
3257 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3258 return NVPTXISD::Suld1DArrayI8Zero;
3259 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3260 return NVPTXISD::Suld1DArrayI16Zero;
3261 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3262 return NVPTXISD::Suld1DArrayI32Zero;
3263 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3264 return NVPTXISD::Suld1DArrayI64Zero;
3265 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3266 return NVPTXISD::Suld1DArrayV2I8Zero;
3267 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3268 return NVPTXISD::Suld1DArrayV2I16Zero;
3269 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3270 return NVPTXISD::Suld1DArrayV2I32Zero;
3271 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3272 return NVPTXISD::Suld1DArrayV2I64Zero;
3273 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3274 return NVPTXISD::Suld1DArrayV4I8Zero;
3275 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3276 return NVPTXISD::Suld1DArrayV4I16Zero;
3277 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3278 return NVPTXISD::Suld1DArrayV4I32Zero;
3279 case Intrinsic::nvvm_suld_2d_i8_zero:
3280 return NVPTXISD::Suld2DI8Zero;
3281 case Intrinsic::nvvm_suld_2d_i16_zero:
3282 return NVPTXISD::Suld2DI16Zero;
3283 case Intrinsic::nvvm_suld_2d_i32_zero:
3284 return NVPTXISD::Suld2DI32Zero;
3285 case Intrinsic::nvvm_suld_2d_i64_zero:
3286 return NVPTXISD::Suld2DI64Zero;
3287 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3288 return NVPTXISD::Suld2DV2I8Zero;
3289 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3290 return NVPTXISD::Suld2DV2I16Zero;
3291 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3292 return NVPTXISD::Suld2DV2I32Zero;
3293 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3294 return NVPTXISD::Suld2DV2I64Zero;
3295 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3296 return NVPTXISD::Suld2DV4I8Zero;
3297 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3298 return NVPTXISD::Suld2DV4I16Zero;
3299 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3300 return NVPTXISD::Suld2DV4I32Zero;
3301 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3302 return NVPTXISD::Suld2DArrayI8Zero;
3303 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3304 return NVPTXISD::Suld2DArrayI16Zero;
3305 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3306 return NVPTXISD::Suld2DArrayI32Zero;
3307 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3308 return NVPTXISD::Suld2DArrayI64Zero;
3309 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3310 return NVPTXISD::Suld2DArrayV2I8Zero;
3311 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3312 return NVPTXISD::Suld2DArrayV2I16Zero;
3313 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3314 return NVPTXISD::Suld2DArrayV2I32Zero;
3315 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3316 return NVPTXISD::Suld2DArrayV2I64Zero;
3317 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3318 return NVPTXISD::Suld2DArrayV4I8Zero;
3319 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3320 return NVPTXISD::Suld2DArrayV4I16Zero;
3321 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3322 return NVPTXISD::Suld2DArrayV4I32Zero;
3323 case Intrinsic::nvvm_suld_3d_i8_zero:
3324 return NVPTXISD::Suld3DI8Zero;
3325 case Intrinsic::nvvm_suld_3d_i16_zero:
3326 return NVPTXISD::Suld3DI16Zero;
3327 case Intrinsic::nvvm_suld_3d_i32_zero:
3328 return NVPTXISD::Suld3DI32Zero;
3329 case Intrinsic::nvvm_suld_3d_i64_zero:
3330 return NVPTXISD::Suld3DI64Zero;
3331 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3332 return NVPTXISD::Suld3DV2I8Zero;
3333 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3334 return NVPTXISD::Suld3DV2I16Zero;
3335 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3336 return NVPTXISD::Suld3DV2I32Zero;
3337 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3338 return NVPTXISD::Suld3DV2I64Zero;
3339 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3340 return NVPTXISD::Suld3DV4I8Zero;
3341 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3342 return NVPTXISD::Suld3DV4I16Zero;
3343 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3344 return NVPTXISD::Suld3DV4I32Zero;
3345 }
3346 }
3347
3348 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3349 // TgtMemIntrinsic
3350 // because we need the information that is only available in the "Value" type
3351 // of destination
3352 // pointer. In particular, the address space information.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const3353 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3354 IntrinsicInfo &Info, const CallInst &I,
3355 MachineFunction &MF, unsigned Intrinsic) const {
3356 switch (Intrinsic) {
3357 default:
3358 return false;
3359 case Intrinsic::nvvm_match_all_sync_i32p:
3360 case Intrinsic::nvvm_match_all_sync_i64p:
3361 Info.opc = ISD::INTRINSIC_W_CHAIN;
3362 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3363 // in order to model data exchange with other threads, but perform no real
3364 // memory accesses.
3365 Info.memVT = MVT::i1;
3366
3367 // Our result depends on both our and other thread's arguments.
3368 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3369 return true;
3370 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3371 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3372 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3373 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3374 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3375 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3376 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3377 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3378 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3379 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3380 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3381 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3382 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3383 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3384 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3385 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3386 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3387 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3388 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3389 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3390 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3391 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3392 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3393 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3394 Info.opc = ISD::INTRINSIC_W_CHAIN;
3395 Info.memVT = MVT::v8f16;
3396 Info.ptrVal = I.getArgOperand(0);
3397 Info.offset = 0;
3398 Info.flags = MachineMemOperand::MOLoad;
3399 Info.align = 16;
3400 return true;
3401 }
3402
3403 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3404 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3405 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3406 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3407 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3408 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3409 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3410 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3411 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3412 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3413 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3414 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3415 Info.opc = ISD::INTRINSIC_W_CHAIN;
3416 Info.memVT = MVT::v4f16;
3417 Info.ptrVal = I.getArgOperand(0);
3418 Info.offset = 0;
3419 Info.flags = MachineMemOperand::MOLoad;
3420 Info.align = 16;
3421 return true;
3422 }
3423
3424 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3425 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3426 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3427 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3428 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3429 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3430 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3431 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3432 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3433 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3434 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3435 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
3436 Info.opc = ISD::INTRINSIC_W_CHAIN;
3437 Info.memVT = MVT::v8f32;
3438 Info.ptrVal = I.getArgOperand(0);
3439 Info.offset = 0;
3440 Info.flags = MachineMemOperand::MOLoad;
3441 Info.align = 16;
3442 return true;
3443 }
3444
3445 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3446 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3447 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3448 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3449 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3450 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3451 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3452 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3453 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3454 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3455 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3456 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3457 Info.opc = ISD::INTRINSIC_VOID;
3458 Info.memVT = MVT::v4f16;
3459 Info.ptrVal = I.getArgOperand(0);
3460 Info.offset = 0;
3461 Info.flags = MachineMemOperand::MOStore;
3462 Info.align = 16;
3463 return true;
3464 }
3465
3466 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3467 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3468 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3469 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3470 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3471 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3472 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3473 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3474 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3475 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3476 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3477 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
3478 Info.opc = ISD::INTRINSIC_VOID;
3479 Info.memVT = MVT::v8f32;
3480 Info.ptrVal = I.getArgOperand(0);
3481 Info.offset = 0;
3482 Info.flags = MachineMemOperand::MOStore;
3483 Info.align = 16;
3484 return true;
3485 }
3486
3487 case Intrinsic::nvvm_atomic_load_add_f32:
3488 case Intrinsic::nvvm_atomic_load_add_f64:
3489 case Intrinsic::nvvm_atomic_load_inc_32:
3490 case Intrinsic::nvvm_atomic_load_dec_32:
3491
3492 case Intrinsic::nvvm_atomic_add_gen_f_cta:
3493 case Intrinsic::nvvm_atomic_add_gen_f_sys:
3494 case Intrinsic::nvvm_atomic_add_gen_i_cta:
3495 case Intrinsic::nvvm_atomic_add_gen_i_sys:
3496 case Intrinsic::nvvm_atomic_and_gen_i_cta:
3497 case Intrinsic::nvvm_atomic_and_gen_i_sys:
3498 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3499 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3500 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3501 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3502 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3503 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3504 case Intrinsic::nvvm_atomic_max_gen_i_cta:
3505 case Intrinsic::nvvm_atomic_max_gen_i_sys:
3506 case Intrinsic::nvvm_atomic_min_gen_i_cta:
3507 case Intrinsic::nvvm_atomic_min_gen_i_sys:
3508 case Intrinsic::nvvm_atomic_or_gen_i_cta:
3509 case Intrinsic::nvvm_atomic_or_gen_i_sys:
3510 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3511 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3512 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3513 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3514 auto &DL = I.getModule()->getDataLayout();
3515 Info.opc = ISD::INTRINSIC_W_CHAIN;
3516 Info.memVT = getValueType(DL, I.getType());
3517 Info.ptrVal = I.getArgOperand(0);
3518 Info.offset = 0;
3519 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3520 Info.align = 0;
3521 return true;
3522 }
3523
3524 case Intrinsic::nvvm_ldu_global_i:
3525 case Intrinsic::nvvm_ldu_global_f:
3526 case Intrinsic::nvvm_ldu_global_p: {
3527 auto &DL = I.getModule()->getDataLayout();
3528 Info.opc = ISD::INTRINSIC_W_CHAIN;
3529 if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3530 Info.memVT = getValueType(DL, I.getType());
3531 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3532 Info.memVT = getPointerTy(DL);
3533 else
3534 Info.memVT = getValueType(DL, I.getType());
3535 Info.ptrVal = I.getArgOperand(0);
3536 Info.offset = 0;
3537 Info.flags = MachineMemOperand::MOLoad;
3538 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3539
3540 return true;
3541 }
3542 case Intrinsic::nvvm_ldg_global_i:
3543 case Intrinsic::nvvm_ldg_global_f:
3544 case Intrinsic::nvvm_ldg_global_p: {
3545 auto &DL = I.getModule()->getDataLayout();
3546
3547 Info.opc = ISD::INTRINSIC_W_CHAIN;
3548 if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3549 Info.memVT = getValueType(DL, I.getType());
3550 else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3551 Info.memVT = getPointerTy(DL);
3552 else
3553 Info.memVT = getValueType(DL, I.getType());
3554 Info.ptrVal = I.getArgOperand(0);
3555 Info.offset = 0;
3556 Info.flags = MachineMemOperand::MOLoad;
3557 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3558
3559 return true;
3560 }
3561
3562 case Intrinsic::nvvm_tex_1d_v4f32_s32:
3563 case Intrinsic::nvvm_tex_1d_v4f32_f32:
3564 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3565 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3566 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3567 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3568 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3569 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3570 case Intrinsic::nvvm_tex_2d_v4f32_s32:
3571 case Intrinsic::nvvm_tex_2d_v4f32_f32:
3572 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3573 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3574 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3575 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3576 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3577 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3578 case Intrinsic::nvvm_tex_3d_v4f32_s32:
3579 case Intrinsic::nvvm_tex_3d_v4f32_f32:
3580 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3581 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3582 case Intrinsic::nvvm_tex_cube_v4f32_f32:
3583 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3584 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3585 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3586 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3587 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3588 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3589 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3590 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3591 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3592 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3593 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3594 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3595 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3596 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3597 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3598 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3599 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3600 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3601 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3602 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3603 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3604 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3605 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3606 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3607 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3608 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3609 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3610 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3611 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3612 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3613 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3614 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3615 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3616 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3617 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3618 Info.opc = getOpcForTextureInstr(Intrinsic);
3619 Info.memVT = MVT::v4f32;
3620 Info.ptrVal = nullptr;
3621 Info.offset = 0;
3622 Info.flags = MachineMemOperand::MOLoad;
3623 Info.align = 16;
3624 return true;
3625
3626 case Intrinsic::nvvm_tex_1d_v4s32_s32:
3627 case Intrinsic::nvvm_tex_1d_v4s32_f32:
3628 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3629 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3630 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3631 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3632 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3633 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3634 case Intrinsic::nvvm_tex_2d_v4s32_s32:
3635 case Intrinsic::nvvm_tex_2d_v4s32_f32:
3636 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3637 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3638 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3639 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3640 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3641 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3642 case Intrinsic::nvvm_tex_3d_v4s32_s32:
3643 case Intrinsic::nvvm_tex_3d_v4s32_f32:
3644 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3645 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3646 case Intrinsic::nvvm_tex_cube_v4s32_f32:
3647 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3648 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3649 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3650 case Intrinsic::nvvm_tex_cube_v4u32_f32:
3651 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3652 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3653 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3654 case Intrinsic::nvvm_tex_1d_v4u32_s32:
3655 case Intrinsic::nvvm_tex_1d_v4u32_f32:
3656 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3657 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3658 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3659 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3660 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3661 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3662 case Intrinsic::nvvm_tex_2d_v4u32_s32:
3663 case Intrinsic::nvvm_tex_2d_v4u32_f32:
3664 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3665 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3666 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3667 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3668 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3669 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3670 case Intrinsic::nvvm_tex_3d_v4u32_s32:
3671 case Intrinsic::nvvm_tex_3d_v4u32_f32:
3672 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3673 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3674 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3675 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3676 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3677 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3678 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3679 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3680 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3681 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3682 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3683 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3684 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3685 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3686 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3687 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3688 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3689 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3690 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3691 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3692 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3693 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3694 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3695 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3696 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3697 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3698 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3699 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3700 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3701 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3702 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3703 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3704 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3705 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3706 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3707 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3708 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3709 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3710 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3711 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3712 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3713 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3714 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3715 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3716 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3717 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3718 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3719 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3720 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3721 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3722 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3723 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3724 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3725 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3726 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3727 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3728 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3729 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3730 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3731 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3732 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3733 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3734 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3735 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3736 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3737 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3738 Info.opc = getOpcForTextureInstr(Intrinsic);
3739 Info.memVT = MVT::v4i32;
3740 Info.ptrVal = nullptr;
3741 Info.offset = 0;
3742 Info.flags = MachineMemOperand::MOLoad;
3743 Info.align = 16;
3744 return true;
3745
3746 case Intrinsic::nvvm_suld_1d_i8_clamp:
3747 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3748 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3749 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3750 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3751 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3752 case Intrinsic::nvvm_suld_2d_i8_clamp:
3753 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3754 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3755 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3756 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3757 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3758 case Intrinsic::nvvm_suld_3d_i8_clamp:
3759 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3760 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3761 case Intrinsic::nvvm_suld_1d_i8_trap:
3762 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3763 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3764 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3765 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3766 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3767 case Intrinsic::nvvm_suld_2d_i8_trap:
3768 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3769 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3770 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3771 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3772 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3773 case Intrinsic::nvvm_suld_3d_i8_trap:
3774 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3775 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3776 case Intrinsic::nvvm_suld_1d_i8_zero:
3777 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3778 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3779 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3780 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3781 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3782 case Intrinsic::nvvm_suld_2d_i8_zero:
3783 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3784 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3785 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3786 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3787 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3788 case Intrinsic::nvvm_suld_3d_i8_zero:
3789 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3790 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3791 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3792 Info.memVT = MVT::i8;
3793 Info.ptrVal = nullptr;
3794 Info.offset = 0;
3795 Info.flags = MachineMemOperand::MOLoad;
3796 Info.align = 16;
3797 return true;
3798
3799 case Intrinsic::nvvm_suld_1d_i16_clamp:
3800 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3801 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3802 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3803 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3804 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3805 case Intrinsic::nvvm_suld_2d_i16_clamp:
3806 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3807 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3808 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3809 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3810 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3811 case Intrinsic::nvvm_suld_3d_i16_clamp:
3812 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3813 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3814 case Intrinsic::nvvm_suld_1d_i16_trap:
3815 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3816 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3817 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3818 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3819 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3820 case Intrinsic::nvvm_suld_2d_i16_trap:
3821 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3822 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3823 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3824 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3825 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3826 case Intrinsic::nvvm_suld_3d_i16_trap:
3827 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3828 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3829 case Intrinsic::nvvm_suld_1d_i16_zero:
3830 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3831 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3832 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3833 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3834 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3835 case Intrinsic::nvvm_suld_2d_i16_zero:
3836 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3837 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3838 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3839 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3840 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3841 case Intrinsic::nvvm_suld_3d_i16_zero:
3842 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3843 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3844 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3845 Info.memVT = MVT::i16;
3846 Info.ptrVal = nullptr;
3847 Info.offset = 0;
3848 Info.flags = MachineMemOperand::MOLoad;
3849 Info.align = 16;
3850 return true;
3851
3852 case Intrinsic::nvvm_suld_1d_i32_clamp:
3853 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3854 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3855 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3856 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3857 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3858 case Intrinsic::nvvm_suld_2d_i32_clamp:
3859 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3860 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3861 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3862 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3863 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3864 case Intrinsic::nvvm_suld_3d_i32_clamp:
3865 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3866 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3867 case Intrinsic::nvvm_suld_1d_i32_trap:
3868 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3869 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3870 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3871 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3872 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3873 case Intrinsic::nvvm_suld_2d_i32_trap:
3874 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3875 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3876 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3877 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3878 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3879 case Intrinsic::nvvm_suld_3d_i32_trap:
3880 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3881 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3882 case Intrinsic::nvvm_suld_1d_i32_zero:
3883 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3884 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3885 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3886 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3887 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3888 case Intrinsic::nvvm_suld_2d_i32_zero:
3889 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3890 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3891 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3892 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3893 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3894 case Intrinsic::nvvm_suld_3d_i32_zero:
3895 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3896 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3897 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3898 Info.memVT = MVT::i32;
3899 Info.ptrVal = nullptr;
3900 Info.offset = 0;
3901 Info.flags = MachineMemOperand::MOLoad;
3902 Info.align = 16;
3903 return true;
3904
3905 case Intrinsic::nvvm_suld_1d_i64_clamp:
3906 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3907 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3908 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3909 case Intrinsic::nvvm_suld_2d_i64_clamp:
3910 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3911 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3912 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3913 case Intrinsic::nvvm_suld_3d_i64_clamp:
3914 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3915 case Intrinsic::nvvm_suld_1d_i64_trap:
3916 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3917 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3918 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3919 case Intrinsic::nvvm_suld_2d_i64_trap:
3920 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3921 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3922 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3923 case Intrinsic::nvvm_suld_3d_i64_trap:
3924 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3925 case Intrinsic::nvvm_suld_1d_i64_zero:
3926 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3927 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3928 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3929 case Intrinsic::nvvm_suld_2d_i64_zero:
3930 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3931 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3932 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3933 case Intrinsic::nvvm_suld_3d_i64_zero:
3934 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3935 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3936 Info.memVT = MVT::i64;
3937 Info.ptrVal = nullptr;
3938 Info.offset = 0;
3939 Info.flags = MachineMemOperand::MOLoad;
3940 Info.align = 16;
3941 return true;
3942 }
3943 return false;
3944 }
3945
3946 /// isLegalAddressingMode - Return true if the addressing mode represented
3947 /// by AM is legal for this target, for a load/store of the specified type.
3948 /// Used to guide target specific optimizations, like loop strength reduction
3949 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
3950 /// (CodeGenPrepare.cpp)
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const3951 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3952 const AddrMode &AM, Type *Ty,
3953 unsigned AS, Instruction *I) const {
3954 // AddrMode - This represents an addressing mode of:
3955 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
3956 //
3957 // The legal address modes are
3958 // - [avar]
3959 // - [areg]
3960 // - [areg+immoff]
3961 // - [immAddr]
3962
3963 if (AM.BaseGV) {
3964 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
3965 }
3966
3967 switch (AM.Scale) {
3968 case 0: // "r", "r+i" or "i" is allowed
3969 break;
3970 case 1:
3971 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
3972 return false;
3973 // Otherwise we have r+i.
3974 break;
3975 default:
3976 // No scale > 1 is allowed
3977 return false;
3978 }
3979 return true;
3980 }
3981
3982 //===----------------------------------------------------------------------===//
3983 // NVPTX Inline Assembly Support
3984 //===----------------------------------------------------------------------===//
3985
3986 /// getConstraintType - Given a constraint letter, return the type of
3987 /// constraint it is for this target.
3988 NVPTXTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3989 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
3990 if (Constraint.size() == 1) {
3991 switch (Constraint[0]) {
3992 default:
3993 break;
3994 case 'b':
3995 case 'r':
3996 case 'h':
3997 case 'c':
3998 case 'l':
3999 case 'f':
4000 case 'd':
4001 case '0':
4002 case 'N':
4003 return C_RegisterClass;
4004 }
4005 }
4006 return TargetLowering::getConstraintType(Constraint);
4007 }
4008
4009 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const4010 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4011 StringRef Constraint,
4012 MVT VT) const {
4013 if (Constraint.size() == 1) {
4014 switch (Constraint[0]) {
4015 case 'b':
4016 return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4017 case 'c':
4018 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4019 case 'h':
4020 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4021 case 'r':
4022 return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4023 case 'l':
4024 case 'N':
4025 return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4026 case 'f':
4027 return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4028 case 'd':
4029 return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4030 }
4031 }
4032 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4033 }
4034
4035 //===----------------------------------------------------------------------===//
4036 // NVPTX DAG Combining
4037 //===----------------------------------------------------------------------===//
4038
allowFMA(MachineFunction & MF,CodeGenOpt::Level OptLevel) const4039 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4040 CodeGenOpt::Level OptLevel) const {
4041 // Always honor command-line argument
4042 if (FMAContractLevelOpt.getNumOccurrences() > 0)
4043 return FMAContractLevelOpt > 0;
4044
4045 // Do not contract if we're not optimizing the code.
4046 if (OptLevel == 0)
4047 return false;
4048
4049 // Honor TargetOptions flags that explicitly say fusion is okay.
4050 if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4051 return true;
4052
4053 return allowUnsafeFPMath(MF);
4054 }
4055
allowUnsafeFPMath(MachineFunction & MF) const4056 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4057 // Honor TargetOptions flags that explicitly say unsafe math is okay.
4058 if (MF.getTarget().Options.UnsafeFPMath)
4059 return true;
4060
4061 // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4062 const Function &F = MF.getFunction();
4063 if (F.hasFnAttribute("unsafe-fp-math")) {
4064 Attribute Attr = F.getFnAttribute("unsafe-fp-math");
4065 StringRef Val = Attr.getValueAsString();
4066 if (Val == "true")
4067 return true;
4068 }
4069
4070 return false;
4071 }
4072
4073 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4074 /// operands N0 and N1. This is a helper for PerformADDCombine that is
4075 /// called with the default operands, and if that fails, with commuted
4076 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)4077 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4078 TargetLowering::DAGCombinerInfo &DCI,
4079 const NVPTXSubtarget &Subtarget,
4080 CodeGenOpt::Level OptLevel) {
4081 SelectionDAG &DAG = DCI.DAG;
4082 // Skip non-integer, non-scalar case
4083 EVT VT=N0.getValueType();
4084 if (VT.isVector())
4085 return SDValue();
4086
4087 // fold (add (mul a, b), c) -> (mad a, b, c)
4088 //
4089 if (N0.getOpcode() == ISD::MUL) {
4090 assert (VT.isInteger());
4091 // For integer:
4092 // Since integer multiply-add costs the same as integer multiply
4093 // but is more costly than integer add, do the fusion only when
4094 // the mul is only used in the add.
4095 if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4096 !N0.getNode()->hasOneUse())
4097 return SDValue();
4098
4099 // Do the folding
4100 return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4101 N0.getOperand(0), N0.getOperand(1), N1);
4102 }
4103 else if (N0.getOpcode() == ISD::FMUL) {
4104 if (VT == MVT::f32 || VT == MVT::f64) {
4105 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4106 &DAG.getTargetLoweringInfo());
4107 if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4108 return SDValue();
4109
4110 // For floating point:
4111 // Do the fusion only when the mul has less than 5 uses and all
4112 // are add.
4113 // The heuristic is that if a use is not an add, then that use
4114 // cannot be fused into fma, therefore mul is still needed anyway.
4115 // If there are more than 4 uses, even if they are all add, fusing
4116 // them will increase register pressue.
4117 //
4118 int numUses = 0;
4119 int nonAddCount = 0;
4120 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4121 UE = N0.getNode()->use_end();
4122 UI != UE; ++UI) {
4123 numUses++;
4124 SDNode *User = *UI;
4125 if (User->getOpcode() != ISD::FADD)
4126 ++nonAddCount;
4127 }
4128 if (numUses >= 5)
4129 return SDValue();
4130 if (nonAddCount) {
4131 int orderNo = N->getIROrder();
4132 int orderNo2 = N0.getNode()->getIROrder();
4133 // simple heuristics here for considering potential register
4134 // pressure, the logics here is that the differnce are used
4135 // to measure the distance between def and use, the longer distance
4136 // more likely cause register pressure.
4137 if (orderNo - orderNo2 < 500)
4138 return SDValue();
4139
4140 // Now, check if at least one of the FMUL's operands is live beyond the node N,
4141 // which guarantees that the FMA will not increase register pressure at node N.
4142 bool opIsLive = false;
4143 const SDNode *left = N0.getOperand(0).getNode();
4144 const SDNode *right = N0.getOperand(1).getNode();
4145
4146 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4147 opIsLive = true;
4148
4149 if (!opIsLive)
4150 for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4151 SDNode *User = *UI;
4152 int orderNo3 = User->getIROrder();
4153 if (orderNo3 > orderNo) {
4154 opIsLive = true;
4155 break;
4156 }
4157 }
4158
4159 if (!opIsLive)
4160 for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4161 SDNode *User = *UI;
4162 int orderNo3 = User->getIROrder();
4163 if (orderNo3 > orderNo) {
4164 opIsLive = true;
4165 break;
4166 }
4167 }
4168
4169 if (!opIsLive)
4170 return SDValue();
4171 }
4172
4173 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4174 N0.getOperand(0), N0.getOperand(1), N1);
4175 }
4176 }
4177
4178 return SDValue();
4179 }
4180
4181 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4182 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)4183 static SDValue PerformADDCombine(SDNode *N,
4184 TargetLowering::DAGCombinerInfo &DCI,
4185 const NVPTXSubtarget &Subtarget,
4186 CodeGenOpt::Level OptLevel) {
4187 SDValue N0 = N->getOperand(0);
4188 SDValue N1 = N->getOperand(1);
4189
4190 // First try with the default operand order.
4191 if (SDValue Result =
4192 PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4193 return Result;
4194
4195 // If that didn't work, try again with the operands commuted.
4196 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4197 }
4198
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4199 static SDValue PerformANDCombine(SDNode *N,
4200 TargetLowering::DAGCombinerInfo &DCI) {
4201 // The type legalizer turns a vector load of i8 values into a zextload to i16
4202 // registers, optionally ANY_EXTENDs it (if target type is integer),
4203 // and ANDs off the high 8 bits. Since we turn this load into a
4204 // target-specific DAG node, the DAG combiner fails to eliminate these AND
4205 // nodes. Do that here.
4206 SDValue Val = N->getOperand(0);
4207 SDValue Mask = N->getOperand(1);
4208
4209 if (isa<ConstantSDNode>(Val)) {
4210 std::swap(Val, Mask);
4211 }
4212
4213 SDValue AExt;
4214 // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4215 if (Val.getOpcode() == ISD::ANY_EXTEND) {
4216 AExt = Val;
4217 Val = Val->getOperand(0);
4218 }
4219
4220 if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4221 Val = Val->getOperand(0);
4222 }
4223
4224 if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4225 Val->getOpcode() == NVPTXISD::LoadV4) {
4226 ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4227 if (!MaskCnst) {
4228 // Not an AND with a constant
4229 return SDValue();
4230 }
4231
4232 uint64_t MaskVal = MaskCnst->getZExtValue();
4233 if (MaskVal != 0xff) {
4234 // Not an AND that chops off top 8 bits
4235 return SDValue();
4236 }
4237
4238 MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4239 if (!Mem) {
4240 // Not a MemSDNode?!?
4241 return SDValue();
4242 }
4243
4244 EVT MemVT = Mem->getMemoryVT();
4245 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4246 // We only handle the i8 case
4247 return SDValue();
4248 }
4249
4250 unsigned ExtType =
4251 cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4252 getZExtValue();
4253 if (ExtType == ISD::SEXTLOAD) {
4254 // If for some reason the load is a sextload, the and is needed to zero
4255 // out the high 8 bits
4256 return SDValue();
4257 }
4258
4259 bool AddTo = false;
4260 if (AExt.getNode() != nullptr) {
4261 // Re-insert the ext as a zext.
4262 Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4263 AExt.getValueType(), Val);
4264 AddTo = true;
4265 }
4266
4267 // If we get here, the AND is unnecessary. Just replace it with the load
4268 DCI.CombineTo(N, Val, AddTo);
4269 }
4270
4271 return SDValue();
4272 }
4273
PerformREMCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4274 static SDValue PerformREMCombine(SDNode *N,
4275 TargetLowering::DAGCombinerInfo &DCI,
4276 CodeGenOpt::Level OptLevel) {
4277 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4278
4279 // Don't do anything at less than -O2.
4280 if (OptLevel < CodeGenOpt::Default)
4281 return SDValue();
4282
4283 SelectionDAG &DAG = DCI.DAG;
4284 SDLoc DL(N);
4285 EVT VT = N->getValueType(0);
4286 bool IsSigned = N->getOpcode() == ISD::SREM;
4287 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4288
4289 const SDValue &Num = N->getOperand(0);
4290 const SDValue &Den = N->getOperand(1);
4291
4292 for (const SDNode *U : Num->uses()) {
4293 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4294 U->getOperand(1) == Den) {
4295 // Num % Den -> Num - (Num / Den) * Den
4296 return DAG.getNode(ISD::SUB, DL, VT, Num,
4297 DAG.getNode(ISD::MUL, DL, VT,
4298 DAG.getNode(DivOpc, DL, VT, Num, Den),
4299 Den));
4300 }
4301 }
4302 return SDValue();
4303 }
4304
4305 enum OperandSignedness {
4306 Signed = 0,
4307 Unsigned,
4308 Unknown
4309 };
4310
4311 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4312 /// that can be demoted to \p OptSize bits without loss of information. The
4313 /// signedness of the operand, if determinable, is placed in \p S.
IsMulWideOperandDemotable(SDValue Op,unsigned OptSize,OperandSignedness & S)4314 static bool IsMulWideOperandDemotable(SDValue Op,
4315 unsigned OptSize,
4316 OperandSignedness &S) {
4317 S = Unknown;
4318
4319 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4320 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4321 EVT OrigVT = Op.getOperand(0).getValueType();
4322 if (OrigVT.getSizeInBits() <= OptSize) {
4323 S = Signed;
4324 return true;
4325 }
4326 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4327 EVT OrigVT = Op.getOperand(0).getValueType();
4328 if (OrigVT.getSizeInBits() <= OptSize) {
4329 S = Unsigned;
4330 return true;
4331 }
4332 }
4333
4334 return false;
4335 }
4336
4337 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4338 /// be demoted to \p OptSize bits without loss of information. If the operands
4339 /// contain a constant, it should appear as the RHS operand. The signedness of
4340 /// the operands is placed in \p IsSigned.
AreMulWideOperandsDemotable(SDValue LHS,SDValue RHS,unsigned OptSize,bool & IsSigned)4341 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4342 unsigned OptSize,
4343 bool &IsSigned) {
4344 OperandSignedness LHSSign;
4345
4346 // The LHS operand must be a demotable op
4347 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4348 return false;
4349
4350 // We should have been able to determine the signedness from the LHS
4351 if (LHSSign == Unknown)
4352 return false;
4353
4354 IsSigned = (LHSSign == Signed);
4355
4356 // The RHS can be a demotable op or a constant
4357 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4358 const APInt &Val = CI->getAPIntValue();
4359 if (LHSSign == Unsigned) {
4360 return Val.isIntN(OptSize);
4361 } else {
4362 return Val.isSignedIntN(OptSize);
4363 }
4364 } else {
4365 OperandSignedness RHSSign;
4366 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4367 return false;
4368
4369 return LHSSign == RHSSign;
4370 }
4371 }
4372
4373 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4374 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4375 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4376 /// amount.
TryMULWIDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4377 static SDValue TryMULWIDECombine(SDNode *N,
4378 TargetLowering::DAGCombinerInfo &DCI) {
4379 EVT MulType = N->getValueType(0);
4380 if (MulType != MVT::i32 && MulType != MVT::i64) {
4381 return SDValue();
4382 }
4383
4384 SDLoc DL(N);
4385 unsigned OptSize = MulType.getSizeInBits() >> 1;
4386 SDValue LHS = N->getOperand(0);
4387 SDValue RHS = N->getOperand(1);
4388
4389 // Canonicalize the multiply so the constant (if any) is on the right
4390 if (N->getOpcode() == ISD::MUL) {
4391 if (isa<ConstantSDNode>(LHS)) {
4392 std::swap(LHS, RHS);
4393 }
4394 }
4395
4396 // If we have a SHL, determine the actual multiply amount
4397 if (N->getOpcode() == ISD::SHL) {
4398 ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4399 if (!ShlRHS) {
4400 return SDValue();
4401 }
4402
4403 APInt ShiftAmt = ShlRHS->getAPIntValue();
4404 unsigned BitWidth = MulType.getSizeInBits();
4405 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4406 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4407 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4408 } else {
4409 return SDValue();
4410 }
4411 }
4412
4413 bool Signed;
4414 // Verify that our operands are demotable
4415 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4416 return SDValue();
4417 }
4418
4419 EVT DemotedVT;
4420 if (MulType == MVT::i32) {
4421 DemotedVT = MVT::i16;
4422 } else {
4423 DemotedVT = MVT::i32;
4424 }
4425
4426 // Truncate the operands to the correct size. Note that these are just for
4427 // type consistency and will (likely) be eliminated in later phases.
4428 SDValue TruncLHS =
4429 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4430 SDValue TruncRHS =
4431 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4432
4433 unsigned Opc;
4434 if (Signed) {
4435 Opc = NVPTXISD::MUL_WIDE_SIGNED;
4436 } else {
4437 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4438 }
4439
4440 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4441 }
4442
4443 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4444 static SDValue PerformMULCombine(SDNode *N,
4445 TargetLowering::DAGCombinerInfo &DCI,
4446 CodeGenOpt::Level OptLevel) {
4447 if (OptLevel > 0) {
4448 // Try mul.wide combining at OptLevel > 0
4449 if (SDValue Ret = TryMULWIDECombine(N, DCI))
4450 return Ret;
4451 }
4452
4453 return SDValue();
4454 }
4455
4456 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
PerformSHLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4457 static SDValue PerformSHLCombine(SDNode *N,
4458 TargetLowering::DAGCombinerInfo &DCI,
4459 CodeGenOpt::Level OptLevel) {
4460 if (OptLevel > 0) {
4461 // Try mul.wide combining at OptLevel > 0
4462 if (SDValue Ret = TryMULWIDECombine(N, DCI))
4463 return Ret;
4464 }
4465
4466 return SDValue();
4467 }
4468
PerformSETCCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4469 static SDValue PerformSETCCCombine(SDNode *N,
4470 TargetLowering::DAGCombinerInfo &DCI) {
4471 EVT CCType = N->getValueType(0);
4472 SDValue A = N->getOperand(0);
4473 SDValue B = N->getOperand(1);
4474
4475 if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4476 return SDValue();
4477
4478 SDLoc DL(N);
4479 // setp.f16x2 returns two scalar predicates, which we need to
4480 // convert back to v2i1. The returned result will be scalarized by
4481 // the legalizer, but the comparison will remain a single vector
4482 // instruction.
4483 SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4484 DCI.DAG.getVTList(MVT::i1, MVT::i1),
4485 {A, B, N->getOperand(2)});
4486 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4487 CCNode.getValue(1));
4488 }
4489
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4490 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4491 DAGCombinerInfo &DCI) const {
4492 CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4493 switch (N->getOpcode()) {
4494 default: break;
4495 case ISD::ADD:
4496 case ISD::FADD:
4497 return PerformADDCombine(N, DCI, STI, OptLevel);
4498 case ISD::MUL:
4499 return PerformMULCombine(N, DCI, OptLevel);
4500 case ISD::SHL:
4501 return PerformSHLCombine(N, DCI, OptLevel);
4502 case ISD::AND:
4503 return PerformANDCombine(N, DCI);
4504 case ISD::UREM:
4505 case ISD::SREM:
4506 return PerformREMCombine(N, DCI, OptLevel);
4507 case ISD::SETCC:
4508 return PerformSETCCCombine(N, DCI);
4509 }
4510 return SDValue();
4511 }
4512
4513 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
ReplaceLoadVector(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4514 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4515 SmallVectorImpl<SDValue> &Results) {
4516 EVT ResVT = N->getValueType(0);
4517 SDLoc DL(N);
4518
4519 assert(ResVT.isVector() && "Vector load must have vector type");
4520
4521 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4522 // legal. We can (and should) split that into 2 loads of <2 x double> here
4523 // but I'm leaving that as a TODO for now.
4524 assert(ResVT.isSimple() && "Can only handle simple types");
4525 switch (ResVT.getSimpleVT().SimpleTy) {
4526 default:
4527 return;
4528 case MVT::v2i8:
4529 case MVT::v2i16:
4530 case MVT::v2i32:
4531 case MVT::v2i64:
4532 case MVT::v2f16:
4533 case MVT::v2f32:
4534 case MVT::v2f64:
4535 case MVT::v4i8:
4536 case MVT::v4i16:
4537 case MVT::v4i32:
4538 case MVT::v4f16:
4539 case MVT::v4f32:
4540 case MVT::v8f16: // <4 x f16x2>
4541 // This is a "native" vector type
4542 break;
4543 }
4544
4545 LoadSDNode *LD = cast<LoadSDNode>(N);
4546
4547 unsigned Align = LD->getAlignment();
4548 auto &TD = DAG.getDataLayout();
4549 unsigned PrefAlign =
4550 TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4551 if (Align < PrefAlign) {
4552 // This load is not sufficiently aligned, so bail out and let this vector
4553 // load be scalarized. Note that we may still be able to emit smaller
4554 // vector loads. For example, if we are loading a <4 x float> with an
4555 // alignment of 8, this check will fail but the legalizer will try again
4556 // with 2 x <2 x float>, which will succeed with an alignment of 8.
4557 return;
4558 }
4559
4560 EVT EltVT = ResVT.getVectorElementType();
4561 unsigned NumElts = ResVT.getVectorNumElements();
4562
4563 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4564 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4565 // loaded type to i16 and propagate the "real" type as the memory type.
4566 bool NeedTrunc = false;
4567 if (EltVT.getSizeInBits() < 16) {
4568 EltVT = MVT::i16;
4569 NeedTrunc = true;
4570 }
4571
4572 unsigned Opcode = 0;
4573 SDVTList LdResVTs;
4574 bool LoadF16x2 = false;
4575
4576 switch (NumElts) {
4577 default:
4578 return;
4579 case 2:
4580 Opcode = NVPTXISD::LoadV2;
4581 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4582 break;
4583 case 4: {
4584 Opcode = NVPTXISD::LoadV4;
4585 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4586 LdResVTs = DAG.getVTList(ListVTs);
4587 break;
4588 }
4589 case 8: {
4590 // v8f16 is a special case. PTX doesn't have ld.v8.f16
4591 // instruction. Instead, we split the vector into v2f16 chunks and
4592 // load them with ld.v4.b32.
4593 assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4594 LoadF16x2 = true;
4595 Opcode = NVPTXISD::LoadV4;
4596 EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4597 MVT::Other};
4598 LdResVTs = DAG.getVTList(ListVTs);
4599 break;
4600 }
4601 }
4602
4603 // Copy regular operands
4604 SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4605
4606 // The select routine does not have access to the LoadSDNode instance, so
4607 // pass along the extension information
4608 OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4609
4610 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4611 LD->getMemoryVT(),
4612 LD->getMemOperand());
4613
4614 SmallVector<SDValue, 8> ScalarRes;
4615 if (LoadF16x2) {
4616 // Split v2f16 subvectors back into individual elements.
4617 NumElts /= 2;
4618 for (unsigned i = 0; i < NumElts; ++i) {
4619 SDValue SubVector = NewLD.getValue(i);
4620 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4621 DAG.getIntPtrConstant(0, DL));
4622 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4623 DAG.getIntPtrConstant(1, DL));
4624 ScalarRes.push_back(E0);
4625 ScalarRes.push_back(E1);
4626 }
4627 } else {
4628 for (unsigned i = 0; i < NumElts; ++i) {
4629 SDValue Res = NewLD.getValue(i);
4630 if (NeedTrunc)
4631 Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4632 ScalarRes.push_back(Res);
4633 }
4634 }
4635
4636 SDValue LoadChain = NewLD.getValue(NumElts);
4637
4638 SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4639
4640 Results.push_back(BuildVec);
4641 Results.push_back(LoadChain);
4642 }
4643
ReplaceINTRINSIC_W_CHAIN(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4644 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4645 SmallVectorImpl<SDValue> &Results) {
4646 SDValue Chain = N->getOperand(0);
4647 SDValue Intrin = N->getOperand(1);
4648 SDLoc DL(N);
4649
4650 // Get the intrinsic ID
4651 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4652 switch (IntrinNo) {
4653 default:
4654 return;
4655 case Intrinsic::nvvm_ldg_global_i:
4656 case Intrinsic::nvvm_ldg_global_f:
4657 case Intrinsic::nvvm_ldg_global_p:
4658 case Intrinsic::nvvm_ldu_global_i:
4659 case Intrinsic::nvvm_ldu_global_f:
4660 case Intrinsic::nvvm_ldu_global_p: {
4661 EVT ResVT = N->getValueType(0);
4662
4663 if (ResVT.isVector()) {
4664 // Vector LDG/LDU
4665
4666 unsigned NumElts = ResVT.getVectorNumElements();
4667 EVT EltVT = ResVT.getVectorElementType();
4668
4669 // Since LDU/LDG are target nodes, we cannot rely on DAG type
4670 // legalization.
4671 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4672 // loaded type to i16 and propagate the "real" type as the memory type.
4673 bool NeedTrunc = false;
4674 if (EltVT.getSizeInBits() < 16) {
4675 EltVT = MVT::i16;
4676 NeedTrunc = true;
4677 }
4678
4679 unsigned Opcode = 0;
4680 SDVTList LdResVTs;
4681
4682 switch (NumElts) {
4683 default:
4684 return;
4685 case 2:
4686 switch (IntrinNo) {
4687 default:
4688 return;
4689 case Intrinsic::nvvm_ldg_global_i:
4690 case Intrinsic::nvvm_ldg_global_f:
4691 case Intrinsic::nvvm_ldg_global_p:
4692 Opcode = NVPTXISD::LDGV2;
4693 break;
4694 case Intrinsic::nvvm_ldu_global_i:
4695 case Intrinsic::nvvm_ldu_global_f:
4696 case Intrinsic::nvvm_ldu_global_p:
4697 Opcode = NVPTXISD::LDUV2;
4698 break;
4699 }
4700 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4701 break;
4702 case 4: {
4703 switch (IntrinNo) {
4704 default:
4705 return;
4706 case Intrinsic::nvvm_ldg_global_i:
4707 case Intrinsic::nvvm_ldg_global_f:
4708 case Intrinsic::nvvm_ldg_global_p:
4709 Opcode = NVPTXISD::LDGV4;
4710 break;
4711 case Intrinsic::nvvm_ldu_global_i:
4712 case Intrinsic::nvvm_ldu_global_f:
4713 case Intrinsic::nvvm_ldu_global_p:
4714 Opcode = NVPTXISD::LDUV4;
4715 break;
4716 }
4717 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4718 LdResVTs = DAG.getVTList(ListVTs);
4719 break;
4720 }
4721 }
4722
4723 SmallVector<SDValue, 8> OtherOps;
4724
4725 // Copy regular operands
4726
4727 OtherOps.push_back(Chain); // Chain
4728 // Skip operand 1 (intrinsic ID)
4729 // Others
4730 OtherOps.append(N->op_begin() + 2, N->op_end());
4731
4732 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4733
4734 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4735 MemSD->getMemoryVT(),
4736 MemSD->getMemOperand());
4737
4738 SmallVector<SDValue, 4> ScalarRes;
4739
4740 for (unsigned i = 0; i < NumElts; ++i) {
4741 SDValue Res = NewLD.getValue(i);
4742 if (NeedTrunc)
4743 Res =
4744 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4745 ScalarRes.push_back(Res);
4746 }
4747
4748 SDValue LoadChain = NewLD.getValue(NumElts);
4749
4750 SDValue BuildVec =
4751 DAG.getBuildVector(ResVT, DL, ScalarRes);
4752
4753 Results.push_back(BuildVec);
4754 Results.push_back(LoadChain);
4755 } else {
4756 // i8 LDG/LDU
4757 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
4758 "Custom handling of non-i8 ldu/ldg?");
4759
4760 // Just copy all operands as-is
4761 SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
4762
4763 // Force output to i16
4764 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
4765
4766 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4767
4768 // We make sure the memory type is i8, which will be used during isel
4769 // to select the proper instruction.
4770 SDValue NewLD =
4771 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
4772 MVT::i8, MemSD->getMemOperand());
4773
4774 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
4775 NewLD.getValue(0)));
4776 Results.push_back(NewLD.getValue(1));
4777 }
4778 }
4779 }
4780 }
4781
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4782 void NVPTXTargetLowering::ReplaceNodeResults(
4783 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
4784 switch (N->getOpcode()) {
4785 default:
4786 report_fatal_error("Unhandled custom legalization");
4787 case ISD::LOAD:
4788 ReplaceLoadVector(N, DAG, Results);
4789 return;
4790 case ISD::INTRINSIC_W_CHAIN:
4791 ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
4792 return;
4793 }
4794 }
4795
4796 // Pin NVPTXTargetObjectFile's vtables to this file.
~NVPTXTargetObjectFile()4797 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
4798
SelectSectionForGlobal(const GlobalObject * GO,SectionKind Kind,const TargetMachine & TM) const4799 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
4800 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
4801 return getDataSection();
4802 }
4803