1//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// TODO: Most floating-point instructions (except for simple moves and the
11// like) can raise exceptions -- should they have hasSideEffects=1 ?
12
13//===----------------------------------------------------------------------===//
14// Select instructions
15//===----------------------------------------------------------------------===//
16
17// C's ?: operator for floating-point operands.
18let Predicates = [FeatureVector] in {
19  def SelectVR32 : SelectWrapper<f32, VR32>;
20  def SelectVR64 : SelectWrapper<f64, VR64>;
21}
22def SelectF32  : SelectWrapper<f32, FP32>;
23def SelectF64  : SelectWrapper<f64, FP64>;
24let Predicates = [FeatureNoVectorEnhancements1] in
25  def SelectF128 : SelectWrapper<f128, FP128>;
26let Predicates = [FeatureVectorEnhancements1] in
27  def SelectVR128 : SelectWrapper<f128, VR128>;
28
29defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
30                               nonvolatile_load, bdxaddr20only>;
31defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
32                               nonvolatile_load, bdxaddr20only>;
33
34//===----------------------------------------------------------------------===//
35// Move instructions
36//===----------------------------------------------------------------------===//
37
38// Load zero.
39let isAsCheapAsAMove = 1, isMoveImm = 1 in {
40  def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>;
41  def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>;
42  def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>;
43}
44
45// Moves between two floating-point registers.
46def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
47def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
48def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
49
50// For z13 we prefer LDR over LER to avoid partial register dependencies.
51let isCodeGenOnly = 1 in
52  def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>;
53
54// Moves between two floating-point registers that also set the condition
55// codes.
56let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
57  defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>;
58  defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>;
59  defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>;
60}
61// Note that LTxBRCompare is not available if we have vector support,
62// since load-and-test instructions will partially clobber the target
63// (vector) register.
64let Predicates = [FeatureNoVector] in {
65  defm : CompareZeroFP<LTEBRCompare, FP32>;
66  defm : CompareZeroFP<LTDBRCompare, FP64>;
67  defm : CompareZeroFP<LTXBRCompare, FP128>;
68}
69
70// Use a normal load-and-test for compare against zero in case of
71// vector support (via a pseudo to simplify instruction selection).
72let Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
73  def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
74  def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
75  def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
76}
77let Predicates = [FeatureVector] in {
78  defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
79  defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
80}
81let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in
82  defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;
83
84// Moves between 64-bit integer and floating-point registers.
85def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
86def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
87
88// fcopysign with an FP32 result.
89let isCodeGenOnly = 1 in {
90  def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>;
91  def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>;
92}
93
94// The sign of an FP128 is in the high register.
95let Predicates = [FeatureNoVectorEnhancements1] in
96  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))),
97            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
98let Predicates = [FeatureVectorEnhancements1] in
99  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))),
100            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;
101
102// fcopysign with an FP64 result.
103let isCodeGenOnly = 1 in
104  def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>;
105def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>;
106
107// The sign of an FP128 is in the high register.
108let Predicates = [FeatureNoVectorEnhancements1] in
109  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))),
110            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
111let Predicates = [FeatureVectorEnhancements1] in
112  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))),
113            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;
114
115// fcopysign with an FP128 result.  Use "upper" as the high half and leave
116// the low half as-is.
117class CopySign128<RegisterOperand cls, dag upper>
118  : Pat<(fcopysign FP128:$src1, cls:$src2),
119        (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
120
121let Predicates = [FeatureNoVectorEnhancements1] in {
122  def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
123                                    FP32:$src2)>;
124  def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
125                                    FP64:$src2)>;
126  def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
127                                    (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
128}
129
130defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
131defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
132defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
133
134//===----------------------------------------------------------------------===//
135// Load instructions
136//===----------------------------------------------------------------------===//
137
138let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
139  defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
140  defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
141
142  // For z13 we prefer LDE over LE to avoid partial register dependencies.
143  let isCodeGenOnly = 1 in
144    def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;
145
146  // These instructions are split after register allocation, so we don't
147  // want a custom inserter.
148  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
149    def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
150                     [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
151  }
152}
153
154//===----------------------------------------------------------------------===//
155// Store instructions
156//===----------------------------------------------------------------------===//
157
158let SimpleBDXStore = 1, mayStore = 1 in {
159  defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
160  defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
161
162  // These instructions are split after register allocation, so we don't
163  // want a custom inserter.
164  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
165    def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
166                     [(store FP128:$src, bdxaddr20only128:$dst)]>;
167  }
168}
169
170//===----------------------------------------------------------------------===//
171// Conversion instructions
172//===----------------------------------------------------------------------===//
173
174// Convert floating-point values to narrower representations, rounding
175// according to the current mode.  The destination of LEXBR and LDXBR
176// is a 128-bit value, but only the first register of the pair is used.
177def LEDBR : UnaryRRE<"ledbr", 0xB344, fpround,    FP32,  FP64>;
178def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
179def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
180
181def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>,
182             Requires<[FeatureFPExtension]>;
183def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>,
184             Requires<[FeatureFPExtension]>;
185def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>,
186             Requires<[FeatureFPExtension]>;
187
188let Predicates = [FeatureNoVectorEnhancements1] in {
189  def : Pat<(f32 (fpround FP128:$src)),
190            (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>;
191  def : Pat<(f64 (fpround FP128:$src)),
192            (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
193}
194
195// Extend register floating-point values to wider representations.
196def LDEBR : UnaryRRE<"ldebr", 0xB304, fpextend,  FP64,  FP32>;
197def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>;
198def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>;
199let Predicates = [FeatureNoVectorEnhancements1] in {
200  def : Pat<(f128 (fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>;
201  def : Pat<(f128 (fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>;
202}
203
204// Extend memory floating-point values to wider representations.
205def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64,  4>;
206def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag,  FP128, 4>;
207def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag,  FP128, 8>;
208let Predicates = [FeatureNoVectorEnhancements1] in {
209  def : Pat<(f128 (extloadf32 bdxaddr12only:$src)),
210            (LXEB bdxaddr12only:$src)>;
211  def : Pat<(f128 (extloadf64 bdxaddr12only:$src)),
212            (LXDB bdxaddr12only:$src)>;
213}
214
215// Convert a signed integer register value to a floating-point one.
216def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32,  GR32>;
217def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64,  GR32>;
218def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
219
220def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32,  GR64>;
221def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64,  GR64>;
222def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
223
224// The FP extension feature provides versions of the above that allow
225// specifying rounding mode and inexact-exception suppression flags.
226let Predicates = [FeatureFPExtension] in {
227  def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>;
228  def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>;
229  def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>;
230
231  def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>;
232  def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>;
233  def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>;
234}
235
236// Convert am unsigned integer register value to a floating-point one.
237let Predicates = [FeatureFPExtension] in {
238  def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>;
239  def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>;
240  def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>;
241
242  def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>;
243  def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>;
244  def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>;
245
246  def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
247  def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
248  def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
249
250  def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
251  def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
252  def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
253}
254
255// Convert a floating-point register value to a signed integer value,
256// with the second operand (modifier M3) specifying the rounding mode.
257let Defs = [CC] in {
258  def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>;
259  def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>;
260  def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>;
261
262  def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>;
263  def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>;
264  def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>;
265}
266
267// fp_to_sint always rounds towards zero, which is modifier value 5.
268def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
269def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
270def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
271
272def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
273def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
274def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
275
276// The FP extension feature provides versions of the above that allow
277// also specifying the inexact-exception suppression flag.
278let Predicates = [FeatureFPExtension], Defs = [CC] in {
279  def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>;
280  def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>;
281  def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>;
282
283  def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>;
284  def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>;
285  def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>;
286}
287
288// Convert a floating-point register value to an unsigned integer value.
289let Predicates = [FeatureFPExtension] in {
290  let Defs = [CC] in {
291    def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>;
292    def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>;
293    def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>;
294
295    def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>;
296    def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>;
297    def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>;
298  }
299
300  def : Pat<(i32 (fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
301  def : Pat<(i32 (fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
302  def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
303
304  def : Pat<(i64 (fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
305  def : Pat<(i64 (fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
306  def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
307}
308
309
310//===----------------------------------------------------------------------===//
311// Unary arithmetic
312//===----------------------------------------------------------------------===//
313
314// We prefer generic instructions during isel, because they do not
315// clobber CC and therefore give the scheduler more freedom. In cases
316// the CC is actually useful, the SystemZElimCompare pass will try to
317// convert generic instructions into opcodes that also set CC. Note
318// that lcdf / lpdf / lndf only affect the sign bit, and can therefore
319// be used with fp32 as well. This could be done for fp128, in which
320// case the operands would have to be tied.
321
322// Negation (Load Complement).
323let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
324  def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>;
325  def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>;
326  def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
327}
328// Generic form, which does not set CC.
329def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>;
330let isCodeGenOnly = 1 in
331  def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>;
332
333// Absolute value (Load Positive).
334let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
335  def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>;
336  def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>;
337  def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
338}
339// Generic form, which does not set CC.
340def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>;
341let isCodeGenOnly = 1 in
342  def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>;
343
344// Negative absolute value (Load Negative).
345let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
346  def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>;
347  def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>;
348  def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
349}
350// Generic form, which does not set CC.
351def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>;
352let isCodeGenOnly = 1 in
353  def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>;
354
355// Square root.
356def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32,  FP32>;
357def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64,  FP64>;
358def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>;
359
360def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>;
361def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>;
362
363// Round to an integer, with the second operand (modifier M3) specifying
364// the rounding mode.  These forms always check for inexact conditions.
365def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>;
366def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>;
367def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>;
368
369// frint rounds according to the current mode (modifier 0) and detects
370// inexact conditions.
371def : Pat<(frint FP32:$src),  (FIEBR 0, FP32:$src)>;
372def : Pat<(frint FP64:$src),  (FIDBR 0, FP64:$src)>;
373def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
374
375let Predicates = [FeatureFPExtension] in {
376  // Extended forms of the FIxBR instructions.  M4 can be set to 4
377  // to suppress detection of inexact conditions.
378  def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>;
379  def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>;
380  def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>;
381
382  // fnearbyint is like frint but does not detect inexact conditions.
383  def : Pat<(fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
384  def : Pat<(fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
385  def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
386
387  // floor is no longer allowed to raise an inexact condition,
388  // so restrict it to the cases where the condition can be suppressed.
389  // Mode 7 is round towards -inf.
390  def : Pat<(ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
391  def : Pat<(ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
392  def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
393
394  // Same idea for ceil, where mode 6 is round towards +inf.
395  def : Pat<(fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
396  def : Pat<(fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
397  def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
398
399  // Same idea for trunc, where mode 5 is round towards zero.
400  def : Pat<(ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
401  def : Pat<(ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
402  def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
403
404  // Same idea for round, where mode 1 is round towards nearest with
405  // ties away from zero.
406  def : Pat<(fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
407  def : Pat<(fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
408  def : Pat<(fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
409}
410
411//===----------------------------------------------------------------------===//
412// Binary arithmetic
413//===----------------------------------------------------------------------===//
414
415// Addition.
416let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
417  let isCommutable = 1 in {
418    def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32,  FP32>;
419    def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64,  FP64>;
420    def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>;
421  }
422  def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>;
423  def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>;
424}
425
426// Subtraction.
427let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
428  def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32,  FP32>;
429  def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64,  FP64>;
430  def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>;
431
432  def SEB : BinaryRXE<"seb",  0xED0B, fsub, FP32, load, 4>;
433  def SDB : BinaryRXE<"sdb",  0xED1B, fsub, FP64, load, 8>;
434}
435
436// Multiplication.
437let isCommutable = 1 in {
438  def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32,  FP32>;
439  def MDBR  : BinaryRRE<"mdbr",  0xB31C, fmul, FP64,  FP64>;
440  def MXBR  : BinaryRRE<"mxbr",  0xB34C, fmul, FP128, FP128>;
441}
442def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>;
443def MDB  : BinaryRXE<"mdb",  0xED1C, fmul, FP64, load, 8>;
444
445// f64 multiplication of two FP32 registers.
446def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
447def : Pat<(fmul (f64 (fpextend FP32:$src1)), (f64 (fpextend FP32:$src2))),
448          (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
449                                FP32:$src1, subreg_h32), FP32:$src2)>;
450
451// f64 multiplication of an FP32 register and an f32 memory.
452def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
453def : Pat<(fmul (f64 (fpextend FP32:$src1)),
454                (f64 (extloadf32 bdxaddr12only:$addr))),
455          (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
456                bdxaddr12only:$addr)>;
457
458// f128 multiplication of two FP64 registers.
459def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
460let Predicates = [FeatureNoVectorEnhancements1] in
461  def : Pat<(fmul (f128 (fpextend FP64:$src1)), (f128 (fpextend FP64:$src2))),
462            (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
463                                  FP64:$src1, subreg_h64), FP64:$src2)>;
464
465// f128 multiplication of an FP64 register and an f64 memory.
466def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
467let Predicates = [FeatureNoVectorEnhancements1] in
468  def : Pat<(fmul (f128 (fpextend FP64:$src1)),
469                  (f128 (extloadf64 bdxaddr12only:$addr))),
470            (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
471                  bdxaddr12only:$addr)>;
472
473// Fused multiply-add.
474def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32, FP32>;
475def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64, FP64>;
476
477def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, FP32, load, 4>;
478def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, FP64, load, 8>;
479
480// Fused multiply-subtract.
481def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32, FP32>;
482def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64, FP64>;
483
484def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, FP32, load, 4>;
485def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, FP64, load, 8>;
486
487// Division.
488def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32,  FP32>;
489def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64,  FP64>;
490def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>;
491
492def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>;
493def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>;
494
495// Divide to integer.
496let Defs = [CC] in {
497  def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>;
498  def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>;
499}
500
501//===----------------------------------------------------------------------===//
502// Comparisons
503//===----------------------------------------------------------------------===//
504
505let Defs = [CC], CCValues = 0xF in {
506  def CEBR : CompareRRE<"cebr", 0xB309, z_fcmp, FP32,  FP32>;
507  def CDBR : CompareRRE<"cdbr", 0xB319, z_fcmp, FP64,  FP64>;
508  def CXBR : CompareRRE<"cxbr", 0xB349, z_fcmp, FP128, FP128>;
509
510  def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
511  def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
512
513  def KEBR : CompareRRE<"kebr", 0xB308, null_frag, FP32,  FP32>;
514  def KDBR : CompareRRE<"kdbr", 0xB318, null_frag, FP64,  FP64>;
515  def KXBR : CompareRRE<"kxbr", 0xB348, null_frag, FP128, FP128>;
516
517  def KEB : CompareRXE<"keb", 0xED08, null_frag, FP32, load, 4>;
518  def KDB : CompareRXE<"kdb", 0xED18, null_frag, FP64, load, 8>;
519}
520
521// Test Data Class.
522let Defs = [CC], CCValues = 0xC in {
523  def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
524  def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
525  def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
526}
527
528//===----------------------------------------------------------------------===//
529// Floating-point control register instructions
530//===----------------------------------------------------------------------===//
531
532let hasSideEffects = 1 in {
533  let mayLoad = 1, mayStore = 1 in {
534    // TODO: EFPC and SFPC do not touch memory at all
535    def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>;
536    def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>;
537
538    def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>;
539    def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>;
540  }
541
542  def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>;
543  def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>;
544
545  def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>,
546              Requires<[FeatureFPExtension]>;
547  def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>;
548  def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>;
549}
550
551//===----------------------------------------------------------------------===//
552// Peepholes
553//===----------------------------------------------------------------------===//
554
555def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
556def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
557def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
558