1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 // MCInsts.
13 //
14 //
15 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
16 // 64-bit X86 instruction sets. The main decode sequence for an assembly
17 // instruction in this disassembler is:
18 //
19 // 1. Read the prefix bytes and determine the attributes of the instruction.
20 // These attributes, recorded in enum attributeBits
21 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
22 // provides a mapping from bitmasks to contexts, which are represented by
23 // enum InstructionContext (ibid.).
24 //
25 // 2. Read the opcode, and determine what kind of opcode it is. The
26 // disassembler distinguishes four kinds of opcodes, which are enumerated in
27 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
28 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
29 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
30 //
31 // 3. Depending on the opcode type, look in one of four ClassDecision structures
32 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
33 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
34 // a ModRMDecision (ibid.).
35 //
36 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
37 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
38 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
39 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
40 // ModR/M byte is required and how to interpret it.
41 //
42 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
43 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
44 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
45 // meanings of its operands.
46 //
47 // 6. For each operand, its encoding is an entry from OperandEncoding
48 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
49 // OperandType (ibid.). The encoding indicates how to read it from the
50 // instruction; the type indicates how to interpret the value once it has
51 // been read. For example, a register operand could be stored in the R/M
52 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
53 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
54 // register, for instance). Given this information, the operands can be
55 // extracted and interpreted.
56 //
57 // 7. As the last step, the disassembler translates the instruction information
58 // and operands into a format understandable by the client - in this case, an
59 // MCInst for use by the MC infrastructure.
60 //
61 // The disassembler is broken broadly into two parts: the table emitter that
62 // emits the instruction decode tables discussed above during compilation, and
63 // the disassembler itself. The table emitter is documented in more detail in
64 // utils/TableGen/X86DisassemblerEmitter.h.
65 //
66 // X86Disassembler.cpp contains the code responsible for step 7, and for
67 // invoking the decoder to execute steps 1-6.
68 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
69 // table emitter and the disassembler.
70 // X86DisassemblerDecoder.h contains the public interface of the decoder,
71 // factored out into C for possible use by other projects.
72 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
73 // responsible for steps 1-6.
74 //
75 //===----------------------------------------------------------------------===//
76
77 #include "MCTargetDesc/X86BaseInfo.h"
78 #include "MCTargetDesc/X86MCTargetDesc.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/TargetRegistry.h"
88 #include "llvm/Support/raw_ostream.h"
89
90 using namespace llvm;
91 using namespace llvm::X86Disassembler;
92
93 #define DEBUG_TYPE "x86-disassembler"
94
Debug(const char * file,unsigned line,const char * s)95 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
96 const char *s) {
97 dbgs() << file << ":" << line << ": " << s;
98 }
99
GetInstrName(unsigned Opcode,const void * mii)100 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
101 const void *mii) {
102 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
103 return MII->getName(Opcode);
104 }
105
106 #define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s));
107
108 namespace llvm {
109
110 // Fill-ins to make the compiler happy. These constants are never actually
111 // assigned; they are just filler to make an automatically-generated switch
112 // statement work.
113 namespace X86 {
114 enum {
115 BX_SI = 500,
116 BX_DI = 501,
117 BP_SI = 502,
118 BP_DI = 503,
119 sib = 504,
120 sib64 = 505
121 };
122 }
123
124 }
125
126 static bool translateInstruction(MCInst &target,
127 InternalInstruction &source,
128 const MCDisassembler *Dis);
129
130 namespace {
131
132 /// Generic disassembler for all X86 platforms. All each platform class should
133 /// have to do is subclass the constructor, and provide a different
134 /// disassemblerMode value.
135 class X86GenericDisassembler : public MCDisassembler {
136 std::unique_ptr<const MCInstrInfo> MII;
137 public:
138 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
139 std::unique_ptr<const MCInstrInfo> MII);
140 public:
141 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
142 ArrayRef<uint8_t> Bytes, uint64_t Address,
143 raw_ostream &vStream,
144 raw_ostream &cStream) const override;
145
146 private:
147 DisassemblerMode fMode;
148 };
149
150 }
151
X86GenericDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,std::unique_ptr<const MCInstrInfo> MII)152 X86GenericDisassembler::X86GenericDisassembler(
153 const MCSubtargetInfo &STI,
154 MCContext &Ctx,
155 std::unique_ptr<const MCInstrInfo> MII)
156 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
157 const FeatureBitset &FB = STI.getFeatureBits();
158 if (FB[X86::Mode16Bit]) {
159 fMode = MODE_16BIT;
160 return;
161 } else if (FB[X86::Mode32Bit]) {
162 fMode = MODE_32BIT;
163 return;
164 } else if (FB[X86::Mode64Bit]) {
165 fMode = MODE_64BIT;
166 return;
167 }
168
169 llvm_unreachable("Invalid CPU mode");
170 }
171
172 namespace {
173 struct Region {
174 ArrayRef<uint8_t> Bytes;
175 uint64_t Base;
Region__anona4268e100311::Region176 Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
177 };
178 } // end anonymous namespace
179
180 /// A callback function that wraps the readByte method from Region.
181 ///
182 /// @param Arg - The generic callback parameter. In this case, this should
183 /// be a pointer to a Region.
184 /// @param Byte - A pointer to the byte to be read.
185 /// @param Address - The address to be read.
regionReader(const void * Arg,uint8_t * Byte,uint64_t Address)186 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
187 auto *R = static_cast<const Region *>(Arg);
188 ArrayRef<uint8_t> Bytes = R->Bytes;
189 unsigned Index = Address - R->Base;
190 if (Bytes.size() <= Index)
191 return -1;
192 *Byte = Bytes[Index];
193 return 0;
194 }
195
196 /// logger - a callback function that wraps the operator<< method from
197 /// raw_ostream.
198 ///
199 /// @param arg - The generic callback parameter. This should be a pointe
200 /// to a raw_ostream.
201 /// @param log - A string to be logged. logger() adds a newline.
logger(void * arg,const char * log)202 static void logger(void* arg, const char* log) {
203 if (!arg)
204 return;
205
206 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
207 vStream << log << "\n";
208 }
209
210 //
211 // Public interface for the disassembler
212 //
213
getInstruction(MCInst & Instr,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & VStream,raw_ostream & CStream) const214 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
215 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
216 raw_ostream &VStream, raw_ostream &CStream) const {
217 CommentStream = &CStream;
218
219 InternalInstruction InternalInstr;
220
221 dlog_t LoggerFn = logger;
222 if (&VStream == &nulls())
223 LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
224
225 Region R(Bytes, Address);
226
227 int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
228 LoggerFn, (void *)&VStream,
229 (const void *)MII.get(), Address, fMode);
230
231 if (Ret) {
232 Size = InternalInstr.readerCursor - Address;
233 return Fail;
234 } else {
235 Size = InternalInstr.length;
236 bool Ret = translateInstruction(Instr, InternalInstr, this);
237 if (!Ret) {
238 unsigned Flags = X86::IP_NO_PREFIX;
239 if (InternalInstr.hasAdSize)
240 Flags |= X86::IP_HAS_AD_SIZE;
241 if (!InternalInstr.mandatoryPrefix) {
242 if (InternalInstr.hasOpSize)
243 Flags |= X86::IP_HAS_OP_SIZE;
244 if (InternalInstr.repeatPrefix == 0xf2)
245 Flags |= X86::IP_HAS_REPEAT_NE;
246 else if (InternalInstr.repeatPrefix == 0xf3 &&
247 // It should not be 'pause' f3 90
248 InternalInstr.opcode != 0x90)
249 Flags |= X86::IP_HAS_REPEAT;
250 if (InternalInstr.hasLockPrefix)
251 Flags |= X86::IP_HAS_LOCK;
252 }
253 Instr.setFlags(Flags);
254 }
255 return (!Ret) ? Success : Fail;
256 }
257 }
258
259 //
260 // Private code that translates from struct InternalInstructions to MCInsts.
261 //
262
263 /// translateRegister - Translates an internal register to the appropriate LLVM
264 /// register, and appends it as an operand to an MCInst.
265 ///
266 /// @param mcInst - The MCInst to append to.
267 /// @param reg - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)268 static void translateRegister(MCInst &mcInst, Reg reg) {
269 #define ENTRY(x) X86::x,
270 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
271 #undef ENTRY
272
273 MCPhysReg llvmRegnum = llvmRegnums[reg];
274 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
275 }
276
277 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
278 /// immediate Value in the MCInst.
279 ///
280 /// @param Value - The immediate Value, has had any PC adjustment made by
281 /// the caller.
282 /// @param isBranch - If the instruction is a branch instruction
283 /// @param Address - The starting address of the instruction
284 /// @param Offset - The byte offset to this immediate in the instruction
285 /// @param Width - The byte width of this immediate in the instruction
286 ///
287 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
288 /// called then that function is called to get any symbolic information for the
289 /// immediate in the instruction using the Address, Offset and Width. If that
290 /// returns non-zero then the symbolic information it returns is used to create
291 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
292 /// returns zero and isBranch is true then a symbol look up for immediate Value
293 /// is done and if a symbol is found an MCExpr is created with that, else
294 /// an MCExpr with the immediate Value is created. This function returns true
295 /// if it adds an operand to the MCInst and false otherwise.
tryAddingSymbolicOperand(int64_t Value,bool isBranch,uint64_t Address,uint64_t Offset,uint64_t Width,MCInst & MI,const MCDisassembler * Dis)296 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
297 uint64_t Address, uint64_t Offset,
298 uint64_t Width, MCInst &MI,
299 const MCDisassembler *Dis) {
300 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
301 Offset, Width);
302 }
303
304 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
305 /// referenced by a load instruction with the base register that is the rip.
306 /// These can often be addresses in a literal pool. The Address of the
307 /// instruction and its immediate Value are used to determine the address
308 /// being referenced in the literal pool entry. The SymbolLookUp call back will
309 /// return a pointer to a literal 'C' string if the referenced address is an
310 /// address into a section with 'C' string literals.
tryAddingPcLoadReferenceComment(uint64_t Address,uint64_t Value,const void * Decoder)311 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
312 const void *Decoder) {
313 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
314 Dis->tryAddingPcLoadReferenceComment(Value, Address);
315 }
316
317 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
318 0, // SEG_OVERRIDE_NONE
319 X86::CS,
320 X86::SS,
321 X86::DS,
322 X86::ES,
323 X86::FS,
324 X86::GS
325 };
326
327 /// translateSrcIndex - Appends a source index operand to an MCInst.
328 ///
329 /// @param mcInst - The MCInst to append to.
330 /// @param insn - The internal instruction.
translateSrcIndex(MCInst & mcInst,InternalInstruction & insn)331 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
332 unsigned baseRegNo;
333
334 if (insn.mode == MODE_64BIT)
335 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
336 else if (insn.mode == MODE_32BIT)
337 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
338 else {
339 assert(insn.mode == MODE_16BIT);
340 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
341 }
342 MCOperand baseReg = MCOperand::createReg(baseRegNo);
343 mcInst.addOperand(baseReg);
344
345 MCOperand segmentReg;
346 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
347 mcInst.addOperand(segmentReg);
348 return false;
349 }
350
351 /// translateDstIndex - Appends a destination index operand to an MCInst.
352 ///
353 /// @param mcInst - The MCInst to append to.
354 /// @param insn - The internal instruction.
355
translateDstIndex(MCInst & mcInst,InternalInstruction & insn)356 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
357 unsigned baseRegNo;
358
359 if (insn.mode == MODE_64BIT)
360 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
361 else if (insn.mode == MODE_32BIT)
362 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
363 else {
364 assert(insn.mode == MODE_16BIT);
365 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
366 }
367 MCOperand baseReg = MCOperand::createReg(baseRegNo);
368 mcInst.addOperand(baseReg);
369 return false;
370 }
371
372 /// translateImmediate - Appends an immediate operand to an MCInst.
373 ///
374 /// @param mcInst - The MCInst to append to.
375 /// @param immediate - The immediate value to append.
376 /// @param operand - The operand, as stored in the descriptor table.
377 /// @param insn - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)378 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
379 const OperandSpecifier &operand,
380 InternalInstruction &insn,
381 const MCDisassembler *Dis) {
382 // Sign-extend the immediate if necessary.
383
384 OperandType type = (OperandType)operand.type;
385
386 bool isBranch = false;
387 uint64_t pcrel = 0;
388 if (type == TYPE_REL) {
389 isBranch = true;
390 pcrel = insn.startLocation +
391 insn.immediateOffset + insn.immediateSize;
392 switch (operand.encoding) {
393 default:
394 break;
395 case ENCODING_Iv:
396 switch (insn.displacementSize) {
397 default:
398 break;
399 case 1:
400 if(immediate & 0x80)
401 immediate |= ~(0xffull);
402 break;
403 case 2:
404 if(immediate & 0x8000)
405 immediate |= ~(0xffffull);
406 break;
407 case 4:
408 if(immediate & 0x80000000)
409 immediate |= ~(0xffffffffull);
410 break;
411 case 8:
412 break;
413 }
414 break;
415 case ENCODING_IB:
416 if(immediate & 0x80)
417 immediate |= ~(0xffull);
418 break;
419 case ENCODING_IW:
420 if(immediate & 0x8000)
421 immediate |= ~(0xffffull);
422 break;
423 case ENCODING_ID:
424 if(immediate & 0x80000000)
425 immediate |= ~(0xffffffffull);
426 break;
427 }
428 }
429 // By default sign-extend all X86 immediates based on their encoding.
430 else if (type == TYPE_IMM) {
431 switch (operand.encoding) {
432 default:
433 break;
434 case ENCODING_IB:
435 if(immediate & 0x80)
436 immediate |= ~(0xffull);
437 break;
438 case ENCODING_IW:
439 if(immediate & 0x8000)
440 immediate |= ~(0xffffull);
441 break;
442 case ENCODING_ID:
443 if(immediate & 0x80000000)
444 immediate |= ~(0xffffffffull);
445 break;
446 case ENCODING_IO:
447 break;
448 }
449 } else if (type == TYPE_IMM3) {
450 // Check for immediates that printSSECC can't handle.
451 if (immediate >= 8) {
452 unsigned NewOpc;
453 switch (mcInst.getOpcode()) {
454 default: llvm_unreachable("unexpected opcode");
455 case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
456 case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
457 case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
458 case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
459 case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
460 case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
461 case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
462 case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
463 case X86::VPCOMBri: NewOpc = X86::VPCOMBri_alt; break;
464 case X86::VPCOMBmi: NewOpc = X86::VPCOMBmi_alt; break;
465 case X86::VPCOMWri: NewOpc = X86::VPCOMWri_alt; break;
466 case X86::VPCOMWmi: NewOpc = X86::VPCOMWmi_alt; break;
467 case X86::VPCOMDri: NewOpc = X86::VPCOMDri_alt; break;
468 case X86::VPCOMDmi: NewOpc = X86::VPCOMDmi_alt; break;
469 case X86::VPCOMQri: NewOpc = X86::VPCOMQri_alt; break;
470 case X86::VPCOMQmi: NewOpc = X86::VPCOMQmi_alt; break;
471 case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break;
472 case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break;
473 case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break;
474 case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break;
475 case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break;
476 case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break;
477 case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break;
478 case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break;
479 }
480 // Switch opcode to the one that doesn't get special printing.
481 mcInst.setOpcode(NewOpc);
482 }
483 } else if (type == TYPE_IMM5) {
484 // Check for immediates that printAVXCC can't handle.
485 if (immediate >= 32) {
486 unsigned NewOpc;
487 switch (mcInst.getOpcode()) {
488 default: llvm_unreachable("unexpected opcode");
489 case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
490 case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
491 case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
492 case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
493 case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
494 case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
495 case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
496 case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
497 case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
498 case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
499 case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
500 case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
501 case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
502 case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
503 case X86::VCMPPDZrrib: NewOpc = X86::VCMPPDZrrib_alt; break;
504 case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
505 case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
506 case X86::VCMPPSZrrib: NewOpc = X86::VCMPPSZrrib_alt; break;
507 case X86::VCMPPDZ128rmi: NewOpc = X86::VCMPPDZ128rmi_alt; break;
508 case X86::VCMPPDZ128rri: NewOpc = X86::VCMPPDZ128rri_alt; break;
509 case X86::VCMPPSZ128rmi: NewOpc = X86::VCMPPSZ128rmi_alt; break;
510 case X86::VCMPPSZ128rri: NewOpc = X86::VCMPPSZ128rri_alt; break;
511 case X86::VCMPPDZ256rmi: NewOpc = X86::VCMPPDZ256rmi_alt; break;
512 case X86::VCMPPDZ256rri: NewOpc = X86::VCMPPDZ256rri_alt; break;
513 case X86::VCMPPSZ256rmi: NewOpc = X86::VCMPPSZ256rmi_alt; break;
514 case X86::VCMPPSZ256rri: NewOpc = X86::VCMPPSZ256rri_alt; break;
515 case X86::VCMPSDZrm_Int: NewOpc = X86::VCMPSDZrmi_alt; break;
516 case X86::VCMPSDZrr_Int: NewOpc = X86::VCMPSDZrri_alt; break;
517 case X86::VCMPSDZrrb_Int: NewOpc = X86::VCMPSDZrrb_alt; break;
518 case X86::VCMPSSZrm_Int: NewOpc = X86::VCMPSSZrmi_alt; break;
519 case X86::VCMPSSZrr_Int: NewOpc = X86::VCMPSSZrri_alt; break;
520 case X86::VCMPSSZrrb_Int: NewOpc = X86::VCMPSSZrrb_alt; break;
521 }
522 // Switch opcode to the one that doesn't get special printing.
523 mcInst.setOpcode(NewOpc);
524 }
525 } else if (type == TYPE_AVX512ICC) {
526 if (immediate >= 8 || ((immediate & 0x3) == 3)) {
527 unsigned NewOpc;
528 switch (mcInst.getOpcode()) {
529 default: llvm_unreachable("unexpected opcode");
530 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPBZ128rmi_alt; break;
531 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPBZ128rmik_alt; break;
532 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPBZ128rri_alt; break;
533 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPBZ128rrik_alt; break;
534 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPBZ256rmi_alt; break;
535 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPBZ256rmik_alt; break;
536 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPBZ256rri_alt; break;
537 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPBZ256rrik_alt; break;
538 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPBZrmi_alt; break;
539 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPBZrmik_alt; break;
540 case X86::VPCMPBZrri: NewOpc = X86::VPCMPBZrri_alt; break;
541 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPBZrrik_alt; break;
542 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPDZ128rmi_alt; break;
543 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPDZ128rmib_alt; break;
544 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPDZ128rmibk_alt; break;
545 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPDZ128rmik_alt; break;
546 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPDZ128rri_alt; break;
547 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPDZ128rrik_alt; break;
548 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPDZ256rmi_alt; break;
549 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPDZ256rmib_alt; break;
550 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPDZ256rmibk_alt; break;
551 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPDZ256rmik_alt; break;
552 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPDZ256rri_alt; break;
553 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPDZ256rrik_alt; break;
554 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPDZrmi_alt; break;
555 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPDZrmib_alt; break;
556 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPDZrmibk_alt; break;
557 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPDZrmik_alt; break;
558 case X86::VPCMPDZrri: NewOpc = X86::VPCMPDZrri_alt; break;
559 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPDZrrik_alt; break;
560 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPQZ128rmi_alt; break;
561 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPQZ128rmib_alt; break;
562 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPQZ128rmibk_alt; break;
563 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPQZ128rmik_alt; break;
564 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPQZ128rri_alt; break;
565 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPQZ128rrik_alt; break;
566 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPQZ256rmi_alt; break;
567 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPQZ256rmib_alt; break;
568 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPQZ256rmibk_alt; break;
569 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPQZ256rmik_alt; break;
570 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPQZ256rri_alt; break;
571 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPQZ256rrik_alt; break;
572 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPQZrmi_alt; break;
573 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPQZrmib_alt; break;
574 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPQZrmibk_alt; break;
575 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPQZrmik_alt; break;
576 case X86::VPCMPQZrri: NewOpc = X86::VPCMPQZrri_alt; break;
577 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPQZrrik_alt; break;
578 case X86::VPCMPUBZ128rmi: NewOpc = X86::VPCMPUBZ128rmi_alt; break;
579 case X86::VPCMPUBZ128rmik: NewOpc = X86::VPCMPUBZ128rmik_alt; break;
580 case X86::VPCMPUBZ128rri: NewOpc = X86::VPCMPUBZ128rri_alt; break;
581 case X86::VPCMPUBZ128rrik: NewOpc = X86::VPCMPUBZ128rrik_alt; break;
582 case X86::VPCMPUBZ256rmi: NewOpc = X86::VPCMPUBZ256rmi_alt; break;
583 case X86::VPCMPUBZ256rmik: NewOpc = X86::VPCMPUBZ256rmik_alt; break;
584 case X86::VPCMPUBZ256rri: NewOpc = X86::VPCMPUBZ256rri_alt; break;
585 case X86::VPCMPUBZ256rrik: NewOpc = X86::VPCMPUBZ256rrik_alt; break;
586 case X86::VPCMPUBZrmi: NewOpc = X86::VPCMPUBZrmi_alt; break;
587 case X86::VPCMPUBZrmik: NewOpc = X86::VPCMPUBZrmik_alt; break;
588 case X86::VPCMPUBZrri: NewOpc = X86::VPCMPUBZrri_alt; break;
589 case X86::VPCMPUBZrrik: NewOpc = X86::VPCMPUBZrrik_alt; break;
590 case X86::VPCMPUDZ128rmi: NewOpc = X86::VPCMPUDZ128rmi_alt; break;
591 case X86::VPCMPUDZ128rmib: NewOpc = X86::VPCMPUDZ128rmib_alt; break;
592 case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break;
593 case X86::VPCMPUDZ128rmik: NewOpc = X86::VPCMPUDZ128rmik_alt; break;
594 case X86::VPCMPUDZ128rri: NewOpc = X86::VPCMPUDZ128rri_alt; break;
595 case X86::VPCMPUDZ128rrik: NewOpc = X86::VPCMPUDZ128rrik_alt; break;
596 case X86::VPCMPUDZ256rmi: NewOpc = X86::VPCMPUDZ256rmi_alt; break;
597 case X86::VPCMPUDZ256rmib: NewOpc = X86::VPCMPUDZ256rmib_alt; break;
598 case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break;
599 case X86::VPCMPUDZ256rmik: NewOpc = X86::VPCMPUDZ256rmik_alt; break;
600 case X86::VPCMPUDZ256rri: NewOpc = X86::VPCMPUDZ256rri_alt; break;
601 case X86::VPCMPUDZ256rrik: NewOpc = X86::VPCMPUDZ256rrik_alt; break;
602 case X86::VPCMPUDZrmi: NewOpc = X86::VPCMPUDZrmi_alt; break;
603 case X86::VPCMPUDZrmib: NewOpc = X86::VPCMPUDZrmib_alt; break;
604 case X86::VPCMPUDZrmibk: NewOpc = X86::VPCMPUDZrmibk_alt; break;
605 case X86::VPCMPUDZrmik: NewOpc = X86::VPCMPUDZrmik_alt; break;
606 case X86::VPCMPUDZrri: NewOpc = X86::VPCMPUDZrri_alt; break;
607 case X86::VPCMPUDZrrik: NewOpc = X86::VPCMPUDZrrik_alt; break;
608 case X86::VPCMPUQZ128rmi: NewOpc = X86::VPCMPUQZ128rmi_alt; break;
609 case X86::VPCMPUQZ128rmib: NewOpc = X86::VPCMPUQZ128rmib_alt; break;
610 case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break;
611 case X86::VPCMPUQZ128rmik: NewOpc = X86::VPCMPUQZ128rmik_alt; break;
612 case X86::VPCMPUQZ128rri: NewOpc = X86::VPCMPUQZ128rri_alt; break;
613 case X86::VPCMPUQZ128rrik: NewOpc = X86::VPCMPUQZ128rrik_alt; break;
614 case X86::VPCMPUQZ256rmi: NewOpc = X86::VPCMPUQZ256rmi_alt; break;
615 case X86::VPCMPUQZ256rmib: NewOpc = X86::VPCMPUQZ256rmib_alt; break;
616 case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break;
617 case X86::VPCMPUQZ256rmik: NewOpc = X86::VPCMPUQZ256rmik_alt; break;
618 case X86::VPCMPUQZ256rri: NewOpc = X86::VPCMPUQZ256rri_alt; break;
619 case X86::VPCMPUQZ256rrik: NewOpc = X86::VPCMPUQZ256rrik_alt; break;
620 case X86::VPCMPUQZrmi: NewOpc = X86::VPCMPUQZrmi_alt; break;
621 case X86::VPCMPUQZrmib: NewOpc = X86::VPCMPUQZrmib_alt; break;
622 case X86::VPCMPUQZrmibk: NewOpc = X86::VPCMPUQZrmibk_alt; break;
623 case X86::VPCMPUQZrmik: NewOpc = X86::VPCMPUQZrmik_alt; break;
624 case X86::VPCMPUQZrri: NewOpc = X86::VPCMPUQZrri_alt; break;
625 case X86::VPCMPUQZrrik: NewOpc = X86::VPCMPUQZrrik_alt; break;
626 case X86::VPCMPUWZ128rmi: NewOpc = X86::VPCMPUWZ128rmi_alt; break;
627 case X86::VPCMPUWZ128rmik: NewOpc = X86::VPCMPUWZ128rmik_alt; break;
628 case X86::VPCMPUWZ128rri: NewOpc = X86::VPCMPUWZ128rri_alt; break;
629 case X86::VPCMPUWZ128rrik: NewOpc = X86::VPCMPUWZ128rrik_alt; break;
630 case X86::VPCMPUWZ256rmi: NewOpc = X86::VPCMPUWZ256rmi_alt; break;
631 case X86::VPCMPUWZ256rmik: NewOpc = X86::VPCMPUWZ256rmik_alt; break;
632 case X86::VPCMPUWZ256rri: NewOpc = X86::VPCMPUWZ256rri_alt; break;
633 case X86::VPCMPUWZ256rrik: NewOpc = X86::VPCMPUWZ256rrik_alt; break;
634 case X86::VPCMPUWZrmi: NewOpc = X86::VPCMPUWZrmi_alt; break;
635 case X86::VPCMPUWZrmik: NewOpc = X86::VPCMPUWZrmik_alt; break;
636 case X86::VPCMPUWZrri: NewOpc = X86::VPCMPUWZrri_alt; break;
637 case X86::VPCMPUWZrrik: NewOpc = X86::VPCMPUWZrrik_alt; break;
638 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPWZ128rmi_alt; break;
639 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPWZ128rmik_alt; break;
640 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPWZ128rri_alt; break;
641 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPWZ128rrik_alt; break;
642 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPWZ256rmi_alt; break;
643 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPWZ256rmik_alt; break;
644 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPWZ256rri_alt; break;
645 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPWZ256rrik_alt; break;
646 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPWZrmi_alt; break;
647 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPWZrmik_alt; break;
648 case X86::VPCMPWZrri: NewOpc = X86::VPCMPWZrri_alt; break;
649 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPWZrrik_alt; break;
650 }
651 // Switch opcode to the one that doesn't get special printing.
652 mcInst.setOpcode(NewOpc);
653 }
654 }
655
656 switch (type) {
657 case TYPE_XMM:
658 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
659 return;
660 case TYPE_YMM:
661 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
662 return;
663 case TYPE_ZMM:
664 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
665 return;
666 default:
667 // operand is 64 bits wide. Do nothing.
668 break;
669 }
670
671 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
672 insn.immediateOffset, insn.immediateSize,
673 mcInst, Dis))
674 mcInst.addOperand(MCOperand::createImm(immediate));
675
676 if (type == TYPE_MOFFS) {
677 MCOperand segmentReg;
678 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
679 mcInst.addOperand(segmentReg);
680 }
681 }
682
683 /// translateRMRegister - Translates a register stored in the R/M field of the
684 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
685 /// @param mcInst - The MCInst to append to.
686 /// @param insn - The internal instruction to extract the R/M field
687 /// from.
688 /// @return - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)689 static bool translateRMRegister(MCInst &mcInst,
690 InternalInstruction &insn) {
691 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
692 debug("A R/M register operand may not have a SIB byte");
693 return true;
694 }
695
696 switch (insn.eaBase) {
697 default:
698 debug("Unexpected EA base register");
699 return true;
700 case EA_BASE_NONE:
701 debug("EA_BASE_NONE for ModR/M base");
702 return true;
703 #define ENTRY(x) case EA_BASE_##x:
704 ALL_EA_BASES
705 #undef ENTRY
706 debug("A R/M register operand may not have a base; "
707 "the operand must be a register.");
708 return true;
709 #define ENTRY(x) \
710 case EA_REG_##x: \
711 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
712 ALL_REGS
713 #undef ENTRY
714 }
715
716 return false;
717 }
718
719 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
720 /// fields of an internal instruction (and possibly its SIB byte) to a memory
721 /// operand in LLVM's format, and appends it to an MCInst.
722 ///
723 /// @param mcInst - The MCInst to append to.
724 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
725 /// from.
726 /// @return - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)727 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
728 const MCDisassembler *Dis) {
729 // Addresses in an MCInst are represented as five operands:
730 // 1. basereg (register) The R/M base, or (if there is a SIB) the
731 // SIB base
732 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
733 // scale amount
734 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
735 // the index (which is multiplied by the
736 // scale amount)
737 // 4. displacement (immediate) 0, or the displacement if there is one
738 // 5. segmentreg (register) x86_registerNONE for now, but could be set
739 // if we have segment overrides
740
741 MCOperand baseReg;
742 MCOperand scaleAmount;
743 MCOperand indexReg;
744 MCOperand displacement;
745 MCOperand segmentReg;
746 uint64_t pcrel = 0;
747
748 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
749 if (insn.sibBase != SIB_BASE_NONE) {
750 switch (insn.sibBase) {
751 default:
752 debug("Unexpected sibBase");
753 return true;
754 #define ENTRY(x) \
755 case SIB_BASE_##x: \
756 baseReg = MCOperand::createReg(X86::x); break;
757 ALL_SIB_BASES
758 #undef ENTRY
759 }
760 } else {
761 baseReg = MCOperand::createReg(X86::NoRegister);
762 }
763
764 if (insn.sibIndex != SIB_INDEX_NONE) {
765 switch (insn.sibIndex) {
766 default:
767 debug("Unexpected sibIndex");
768 return true;
769 #define ENTRY(x) \
770 case SIB_INDEX_##x: \
771 indexReg = MCOperand::createReg(X86::x); break;
772 EA_BASES_32BIT
773 EA_BASES_64BIT
774 REGS_XMM
775 REGS_YMM
776 REGS_ZMM
777 #undef ENTRY
778 }
779 } else {
780 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
781 // but no index is used and modrm alone should have been enough.
782 // -No base register in 32-bit mode. In 64-bit mode this is used to
783 // avoid rip-relative addressing.
784 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
785 // base always requires a SIB byte.
786 // -A scale other than 1 is used.
787 if (insn.sibScale != 1 ||
788 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
789 (insn.sibBase != SIB_BASE_NONE &&
790 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
791 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
792 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
793 X86::RIZ);
794 } else
795 indexReg = MCOperand::createReg(X86::NoRegister);
796 }
797
798 scaleAmount = MCOperand::createImm(insn.sibScale);
799 } else {
800 switch (insn.eaBase) {
801 case EA_BASE_NONE:
802 if (insn.eaDisplacement == EA_DISP_NONE) {
803 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
804 return true;
805 }
806 if (insn.mode == MODE_64BIT){
807 pcrel = insn.startLocation +
808 insn.displacementOffset + insn.displacementSize;
809 tryAddingPcLoadReferenceComment(insn.startLocation +
810 insn.displacementOffset,
811 insn.displacement + pcrel, Dis);
812 // Section 2.2.1.6
813 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
814 X86::RIP);
815 }
816 else
817 baseReg = MCOperand::createReg(X86::NoRegister);
818
819 indexReg = MCOperand::createReg(X86::NoRegister);
820 break;
821 case EA_BASE_BX_SI:
822 baseReg = MCOperand::createReg(X86::BX);
823 indexReg = MCOperand::createReg(X86::SI);
824 break;
825 case EA_BASE_BX_DI:
826 baseReg = MCOperand::createReg(X86::BX);
827 indexReg = MCOperand::createReg(X86::DI);
828 break;
829 case EA_BASE_BP_SI:
830 baseReg = MCOperand::createReg(X86::BP);
831 indexReg = MCOperand::createReg(X86::SI);
832 break;
833 case EA_BASE_BP_DI:
834 baseReg = MCOperand::createReg(X86::BP);
835 indexReg = MCOperand::createReg(X86::DI);
836 break;
837 default:
838 indexReg = MCOperand::createReg(X86::NoRegister);
839 switch (insn.eaBase) {
840 default:
841 debug("Unexpected eaBase");
842 return true;
843 // Here, we will use the fill-ins defined above. However,
844 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
845 // sib and sib64 were handled in the top-level if, so they're only
846 // placeholders to keep the compiler happy.
847 #define ENTRY(x) \
848 case EA_BASE_##x: \
849 baseReg = MCOperand::createReg(X86::x); break;
850 ALL_EA_BASES
851 #undef ENTRY
852 #define ENTRY(x) case EA_REG_##x:
853 ALL_REGS
854 #undef ENTRY
855 debug("A R/M memory operand may not be a register; "
856 "the base field must be a base.");
857 return true;
858 }
859 }
860
861 scaleAmount = MCOperand::createImm(1);
862 }
863
864 displacement = MCOperand::createImm(insn.displacement);
865
866 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
867
868 mcInst.addOperand(baseReg);
869 mcInst.addOperand(scaleAmount);
870 mcInst.addOperand(indexReg);
871 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
872 insn.startLocation, insn.displacementOffset,
873 insn.displacementSize, mcInst, Dis))
874 mcInst.addOperand(displacement);
875 mcInst.addOperand(segmentReg);
876 return false;
877 }
878
879 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
880 /// byte of an instruction to LLVM form, and appends it to an MCInst.
881 ///
882 /// @param mcInst - The MCInst to append to.
883 /// @param operand - The operand, as stored in the descriptor table.
884 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
885 /// from.
886 /// @return - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)887 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
888 InternalInstruction &insn, const MCDisassembler *Dis) {
889 switch (operand.type) {
890 default:
891 debug("Unexpected type for a R/M operand");
892 return true;
893 case TYPE_R8:
894 case TYPE_R16:
895 case TYPE_R32:
896 case TYPE_R64:
897 case TYPE_Rv:
898 case TYPE_MM64:
899 case TYPE_XMM:
900 case TYPE_YMM:
901 case TYPE_ZMM:
902 case TYPE_VK:
903 case TYPE_DEBUGREG:
904 case TYPE_CONTROLREG:
905 case TYPE_BNDR:
906 return translateRMRegister(mcInst, insn);
907 case TYPE_M:
908 case TYPE_MVSIBX:
909 case TYPE_MVSIBY:
910 case TYPE_MVSIBZ:
911 return translateRMMemory(mcInst, insn, Dis);
912 }
913 }
914
915 /// translateFPRegister - Translates a stack position on the FPU stack to its
916 /// LLVM form, and appends it to an MCInst.
917 ///
918 /// @param mcInst - The MCInst to append to.
919 /// @param stackPos - The stack position to translate.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)920 static void translateFPRegister(MCInst &mcInst,
921 uint8_t stackPos) {
922 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
923 }
924
925 /// translateMaskRegister - Translates a 3-bit mask register number to
926 /// LLVM form, and appends it to an MCInst.
927 ///
928 /// @param mcInst - The MCInst to append to.
929 /// @param maskRegNum - Number of mask register from 0 to 7.
930 /// @return - false on success; true otherwise.
translateMaskRegister(MCInst & mcInst,uint8_t maskRegNum)931 static bool translateMaskRegister(MCInst &mcInst,
932 uint8_t maskRegNum) {
933 if (maskRegNum >= 8) {
934 debug("Invalid mask register number");
935 return true;
936 }
937
938 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
939 return false;
940 }
941
942 /// translateOperand - Translates an operand stored in an internal instruction
943 /// to LLVM's format and appends it to an MCInst.
944 ///
945 /// @param mcInst - The MCInst to append to.
946 /// @param operand - The operand, as stored in the descriptor table.
947 /// @param insn - The internal instruction.
948 /// @return - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)949 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
950 InternalInstruction &insn,
951 const MCDisassembler *Dis) {
952 switch (operand.encoding) {
953 default:
954 debug("Unhandled operand encoding during translation");
955 return true;
956 case ENCODING_REG:
957 translateRegister(mcInst, insn.reg);
958 return false;
959 case ENCODING_WRITEMASK:
960 return translateMaskRegister(mcInst, insn.writemask);
961 CASE_ENCODING_RM:
962 CASE_ENCODING_VSIB:
963 return translateRM(mcInst, operand, insn, Dis);
964 case ENCODING_IB:
965 case ENCODING_IW:
966 case ENCODING_ID:
967 case ENCODING_IO:
968 case ENCODING_Iv:
969 case ENCODING_Ia:
970 translateImmediate(mcInst,
971 insn.immediates[insn.numImmediatesTranslated++],
972 operand,
973 insn,
974 Dis);
975 return false;
976 case ENCODING_IRC:
977 mcInst.addOperand(MCOperand::createImm(insn.RC));
978 return false;
979 case ENCODING_SI:
980 return translateSrcIndex(mcInst, insn);
981 case ENCODING_DI:
982 return translateDstIndex(mcInst, insn);
983 case ENCODING_RB:
984 case ENCODING_RW:
985 case ENCODING_RD:
986 case ENCODING_RO:
987 case ENCODING_Rv:
988 translateRegister(mcInst, insn.opcodeRegister);
989 return false;
990 case ENCODING_FP:
991 translateFPRegister(mcInst, insn.modRM & 7);
992 return false;
993 case ENCODING_VVVV:
994 translateRegister(mcInst, insn.vvvv);
995 return false;
996 case ENCODING_DUP:
997 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
998 insn, Dis);
999 }
1000 }
1001
1002 /// translateInstruction - Translates an internal instruction and all its
1003 /// operands to an MCInst.
1004 ///
1005 /// @param mcInst - The MCInst to populate with the instruction's data.
1006 /// @param insn - The internal instruction.
1007 /// @return - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)1008 static bool translateInstruction(MCInst &mcInst,
1009 InternalInstruction &insn,
1010 const MCDisassembler *Dis) {
1011 if (!insn.spec) {
1012 debug("Instruction has no specification");
1013 return true;
1014 }
1015
1016 mcInst.clear();
1017 mcInst.setOpcode(insn.instructionID);
1018 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
1019 // prefix bytes should be disassembled as xrelease and xacquire then set the
1020 // opcode to those instead of the rep and repne opcodes.
1021 if (insn.xAcquireRelease) {
1022 if(mcInst.getOpcode() == X86::REP_PREFIX)
1023 mcInst.setOpcode(X86::XRELEASE_PREFIX);
1024 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
1025 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
1026 }
1027
1028 insn.numImmediatesTranslated = 0;
1029
1030 for (const auto &Op : insn.operands) {
1031 if (Op.encoding != ENCODING_NONE) {
1032 if (translateOperand(mcInst, Op, insn, Dis)) {
1033 return true;
1034 }
1035 }
1036 }
1037
1038 return false;
1039 }
1040
createX86Disassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)1041 static MCDisassembler *createX86Disassembler(const Target &T,
1042 const MCSubtargetInfo &STI,
1043 MCContext &Ctx) {
1044 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
1045 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
1046 }
1047
LLVMInitializeX86Disassembler()1048 extern "C" void LLVMInitializeX86Disassembler() {
1049 // Register the disassembler.
1050 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
1051 createX86Disassembler);
1052 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
1053 createX86Disassembler);
1054 }
1055