1//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 Register file, defining the registers themselves,
11// aliases between the registers, and the register classes built out of the
12// registers.
13//
14//===----------------------------------------------------------------------===//
15
16class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
17  let Namespace = "X86";
18  let HWEncoding = Enc;
19  let SubRegs = subregs;
20}
21
22// Subregister indices.
23let Namespace = "X86" in {
24  def sub_8bit     : SubRegIndex<8>;
25  def sub_8bit_hi  : SubRegIndex<8, 8>;
26  def sub_8bit_hi_phony  : SubRegIndex<8, 8>;
27  def sub_16bit    : SubRegIndex<16>;
28  def sub_16bit_hi : SubRegIndex<16, 16>;
29  def sub_32bit    : SubRegIndex<32>;
30  def sub_xmm      : SubRegIndex<128>;
31  def sub_ymm      : SubRegIndex<256>;
32}
33
34//===----------------------------------------------------------------------===//
35//  Register definitions...
36//
37
38// In the register alias definitions below, we define which registers alias
39// which others.  We only specify which registers the small registers alias,
40// because the register file generator is smart enough to figure out that
41// AL aliases AX if we tell it that AX aliased AL (for example).
42
43// Dwarf numbering is different for 32-bit and 64-bit, and there are
44// variations by target as well. Currently the first entry is for X86-64,
45// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
46// and debug information on X86-32/Darwin)
47
48// 8-bit registers
49// Low registers
50def AL : X86Reg<"al", 0>;
51def DL : X86Reg<"dl", 2>;
52def CL : X86Reg<"cl", 1>;
53def BL : X86Reg<"bl", 3>;
54
55// High registers. On x86-64, these cannot be used in any instruction
56// with a REX prefix.
57def AH : X86Reg<"ah", 4>;
58def DH : X86Reg<"dh", 6>;
59def CH : X86Reg<"ch", 5>;
60def BH : X86Reg<"bh", 7>;
61
62// X86-64 only, requires REX.
63let CostPerUse = 1 in {
64def SIL  : X86Reg<"sil",   6>;
65def DIL  : X86Reg<"dil",   7>;
66def BPL  : X86Reg<"bpl",   5>;
67def SPL  : X86Reg<"spl",   4>;
68def R8B  : X86Reg<"r8b",   8>;
69def R9B  : X86Reg<"r9b",   9>;
70def R10B : X86Reg<"r10b", 10>;
71def R11B : X86Reg<"r11b", 11>;
72def R12B : X86Reg<"r12b", 12>;
73def R13B : X86Reg<"r13b", 13>;
74def R14B : X86Reg<"r14b", 14>;
75def R15B : X86Reg<"r15b", 15>;
76}
77
78let isArtificial = 1 in {
79// High byte of the low 16 bits of the super-register:
80def SIH   : X86Reg<"", -1>;
81def DIH   : X86Reg<"", -1>;
82def BPH   : X86Reg<"", -1>;
83def SPH   : X86Reg<"", -1>;
84def R8BH  : X86Reg<"", -1>;
85def R9BH  : X86Reg<"", -1>;
86def R10BH : X86Reg<"", -1>;
87def R11BH : X86Reg<"", -1>;
88def R12BH : X86Reg<"", -1>;
89def R13BH : X86Reg<"", -1>;
90def R14BH : X86Reg<"", -1>;
91def R15BH : X86Reg<"", -1>;
92// High word of the low 32 bits of the super-register:
93def HAX   : X86Reg<"", -1>;
94def HDX   : X86Reg<"", -1>;
95def HCX   : X86Reg<"", -1>;
96def HBX   : X86Reg<"", -1>;
97def HSI   : X86Reg<"", -1>;
98def HDI   : X86Reg<"", -1>;
99def HBP   : X86Reg<"", -1>;
100def HSP   : X86Reg<"", -1>;
101def HIP   : X86Reg<"", -1>;
102def R8WH  : X86Reg<"", -1>;
103def R9WH  : X86Reg<"", -1>;
104def R10WH : X86Reg<"", -1>;
105def R11WH : X86Reg<"", -1>;
106def R12WH : X86Reg<"", -1>;
107def R13WH : X86Reg<"", -1>;
108def R14WH : X86Reg<"", -1>;
109def R15WH : X86Reg<"", -1>;
110}
111
112// 16-bit registers
113let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
114def AX : X86Reg<"ax", 0, [AL,AH]>;
115def DX : X86Reg<"dx", 2, [DL,DH]>;
116def CX : X86Reg<"cx", 1, [CL,CH]>;
117def BX : X86Reg<"bx", 3, [BL,BH]>;
118}
119let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CoveredBySubRegs = 1 in {
120def SI : X86Reg<"si", 6, [SIL,SIH]>;
121def DI : X86Reg<"di", 7, [DIL,DIH]>;
122def BP : X86Reg<"bp", 5, [BPL,BPH]>;
123def SP : X86Reg<"sp", 4, [SPL,SPH]>;
124}
125def IP : X86Reg<"ip", 0>;
126
127// X86-64 only, requires REX.
128let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CostPerUse = 1,
129    CoveredBySubRegs = 1 in {
130def R8W  : X86Reg<"r8w",   8, [R8B,R8BH]>;
131def R9W  : X86Reg<"r9w",   9, [R9B,R9BH]>;
132def R10W : X86Reg<"r10w", 10, [R10B,R10BH]>;
133def R11W : X86Reg<"r11w", 11, [R11B,R11BH]>;
134def R12W : X86Reg<"r12w", 12, [R12B,R12BH]>;
135def R13W : X86Reg<"r13w", 13, [R13B,R13BH]>;
136def R14W : X86Reg<"r14w", 14, [R14B,R14BH]>;
137def R15W : X86Reg<"r15w", 15, [R15B,R15BH]>;
138}
139
140// 32-bit registers
141let SubRegIndices = [sub_16bit, sub_16bit_hi], CoveredBySubRegs = 1 in {
142def EAX : X86Reg<"eax", 0, [AX, HAX]>, DwarfRegNum<[-2, 0, 0]>;
143def EDX : X86Reg<"edx", 2, [DX, HDX]>, DwarfRegNum<[-2, 2, 2]>;
144def ECX : X86Reg<"ecx", 1, [CX, HCX]>, DwarfRegNum<[-2, 1, 1]>;
145def EBX : X86Reg<"ebx", 3, [BX, HBX]>, DwarfRegNum<[-2, 3, 3]>;
146def ESI : X86Reg<"esi", 6, [SI, HSI]>, DwarfRegNum<[-2, 6, 6]>;
147def EDI : X86Reg<"edi", 7, [DI, HDI]>, DwarfRegNum<[-2, 7, 7]>;
148def EBP : X86Reg<"ebp", 5, [BP, HBP]>, DwarfRegNum<[-2, 4, 5]>;
149def ESP : X86Reg<"esp", 4, [SP, HSP]>, DwarfRegNum<[-2, 5, 4]>;
150def EIP : X86Reg<"eip", 0, [IP, HIP]>, DwarfRegNum<[-2, 8, 8]>;
151}
152
153// X86-64 only, requires REX
154let SubRegIndices = [sub_16bit, sub_16bit_hi], CostPerUse = 1,
155    CoveredBySubRegs = 1 in {
156def R8D  : X86Reg<"r8d",   8, [R8W,R8WH]>;
157def R9D  : X86Reg<"r9d",   9, [R9W,R9WH]>;
158def R10D : X86Reg<"r10d", 10, [R10W,R10WH]>;
159def R11D : X86Reg<"r11d", 11, [R11W,R11WH]>;
160def R12D : X86Reg<"r12d", 12, [R12W,R12WH]>;
161def R13D : X86Reg<"r13d", 13, [R13W,R13WH]>;
162def R14D : X86Reg<"r14d", 14, [R14W,R14WH]>;
163def R15D : X86Reg<"r15d", 15, [R15W,R15WH]>;
164}
165
166// 64-bit registers, X86-64 only
167let SubRegIndices = [sub_32bit] in {
168def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
169def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
170def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
171def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
172def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
173def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
174def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
175def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;
176
177// These also require REX.
178let CostPerUse = 1 in {
179def R8  : X86Reg<"r8",   8, [R8D]>,  DwarfRegNum<[ 8, -2, -2]>;
180def R9  : X86Reg<"r9",   9, [R9D]>,  DwarfRegNum<[ 9, -2, -2]>;
181def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
182def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
183def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
184def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
185def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
186def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
187def RIP : X86Reg<"rip",  0, [EIP]>,  DwarfRegNum<[16, -2, -2]>;
188}}
189
190// MMX Registers. These are actually aliased to ST0 .. ST7
191def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
192def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
193def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
194def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
195def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
196def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
197def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
198def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;
199
200// Pseudo Floating Point registers
201def FP0 : X86Reg<"fp0", 0>;
202def FP1 : X86Reg<"fp1", 0>;
203def FP2 : X86Reg<"fp2", 0>;
204def FP3 : X86Reg<"fp3", 0>;
205def FP4 : X86Reg<"fp4", 0>;
206def FP5 : X86Reg<"fp5", 0>;
207def FP6 : X86Reg<"fp6", 0>;
208def FP7 : X86Reg<"fp7", 0>;
209
210// XMM Registers, used by the various SSE instruction set extensions.
211def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
212def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
213def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
214def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
215def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
216def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
217def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
218def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;
219
220// X86-64 only
221let CostPerUse = 1 in {
222def XMM8:  X86Reg<"xmm8",   8>, DwarfRegNum<[25, -2, -2]>;
223def XMM9:  X86Reg<"xmm9",   9>, DwarfRegNum<[26, -2, -2]>;
224def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
225def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
226def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
227def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
228def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
229def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;
230
231def XMM16:  X86Reg<"xmm16", 16>, DwarfRegNum<[67, -2, -2]>;
232def XMM17:  X86Reg<"xmm17", 17>, DwarfRegNum<[68, -2, -2]>;
233def XMM18:  X86Reg<"xmm18", 18>, DwarfRegNum<[69, -2, -2]>;
234def XMM19:  X86Reg<"xmm19", 19>, DwarfRegNum<[70, -2, -2]>;
235def XMM20:  X86Reg<"xmm20", 20>, DwarfRegNum<[71, -2, -2]>;
236def XMM21:  X86Reg<"xmm21", 21>, DwarfRegNum<[72, -2, -2]>;
237def XMM22:  X86Reg<"xmm22", 22>, DwarfRegNum<[73, -2, -2]>;
238def XMM23:  X86Reg<"xmm23", 23>, DwarfRegNum<[74, -2, -2]>;
239def XMM24:  X86Reg<"xmm24", 24>, DwarfRegNum<[75, -2, -2]>;
240def XMM25:  X86Reg<"xmm25", 25>, DwarfRegNum<[76, -2, -2]>;
241def XMM26:  X86Reg<"xmm26", 26>, DwarfRegNum<[77, -2, -2]>;
242def XMM27:  X86Reg<"xmm27", 27>, DwarfRegNum<[78, -2, -2]>;
243def XMM28:  X86Reg<"xmm28", 28>, DwarfRegNum<[79, -2, -2]>;
244def XMM29:  X86Reg<"xmm29", 29>, DwarfRegNum<[80, -2, -2]>;
245def XMM30:  X86Reg<"xmm30", 30>, DwarfRegNum<[81, -2, -2]>;
246def XMM31:  X86Reg<"xmm31", 31>, DwarfRegNum<[82, -2, -2]>;
247
248} // CostPerUse
249
250// YMM0-15 registers, used by AVX instructions and
251// YMM16-31 registers, used by AVX-512 instructions.
252let SubRegIndices = [sub_xmm] in {
253  foreach  Index = 0-31 in {
254    def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
255                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
256  }
257}
258
259// ZMM Registers, used by AVX-512 instructions.
260let SubRegIndices = [sub_ymm] in {
261  foreach  Index = 0-31 in {
262    def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
263                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
264  }
265}
266
267// Mask Registers, used by AVX-512 instructions.
268def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118,  93,  93]>;
269def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119,  94,  94]>;
270def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120,  95,  95]>;
271def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121,  96,  96]>;
272def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122,  97,  97]>;
273def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123,  98,  98]>;
274def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124,  99,  99]>;
275def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, 100, 100]>;
276
277// Floating point stack registers. These don't map one-to-one to the FP
278// pseudo registers, but we still mark them as aliasing FP registers. That
279// way both kinds can be live without exceeding the stack depth. ST registers
280// are only live around inline assembly.
281def ST0 : X86Reg<"st", 0>, DwarfRegNum<[33, 12, 11]>;
282def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
283def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
284def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
285def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
286def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
287def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
288def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
289
290// Floating-point status word
291def FPSW : X86Reg<"fpsr", 0>;
292
293// Floating-point control word
294def FPCW : X86Reg<"fpcr", 0>;
295
296// Status flags register.
297//
298// Note that some flags that are commonly thought of as part of the status
299// flags register are modeled separately. Typically this is due to instructions
300// reading and updating those flags independently of all the others. We don't
301// want to create false dependencies between these instructions and so we use
302// a separate register to model them.
303def EFLAGS : X86Reg<"flags", 0>;
304
305// The direction flag.
306def DF : X86Reg<"dirflag", 0>;
307
308
309// Segment registers
310def CS : X86Reg<"cs", 1>;
311def DS : X86Reg<"ds", 3>;
312def SS : X86Reg<"ss", 2>;
313def ES : X86Reg<"es", 0>;
314def FS : X86Reg<"fs", 4>;
315def GS : X86Reg<"gs", 5>;
316
317// Debug registers
318def DR0  : X86Reg<"dr0",   0>;
319def DR1  : X86Reg<"dr1",   1>;
320def DR2  : X86Reg<"dr2",   2>;
321def DR3  : X86Reg<"dr3",   3>;
322def DR4  : X86Reg<"dr4",   4>;
323def DR5  : X86Reg<"dr5",   5>;
324def DR6  : X86Reg<"dr6",   6>;
325def DR7  : X86Reg<"dr7",   7>;
326def DR8  : X86Reg<"dr8",   8>;
327def DR9  : X86Reg<"dr9",   9>;
328def DR10 : X86Reg<"dr10", 10>;
329def DR11 : X86Reg<"dr11", 11>;
330def DR12 : X86Reg<"dr12", 12>;
331def DR13 : X86Reg<"dr13", 13>;
332def DR14 : X86Reg<"dr14", 14>;
333def DR15 : X86Reg<"dr15", 15>;
334
335// Control registers
336def CR0  : X86Reg<"cr0",   0>;
337def CR1  : X86Reg<"cr1",   1>;
338def CR2  : X86Reg<"cr2",   2>;
339def CR3  : X86Reg<"cr3",   3>;
340def CR4  : X86Reg<"cr4",   4>;
341def CR5  : X86Reg<"cr5",   5>;
342def CR6  : X86Reg<"cr6",   6>;
343def CR7  : X86Reg<"cr7",   7>;
344def CR8  : X86Reg<"cr8",   8>;
345def CR9  : X86Reg<"cr9",   9>;
346def CR10 : X86Reg<"cr10", 10>;
347def CR11 : X86Reg<"cr11", 11>;
348def CR12 : X86Reg<"cr12", 12>;
349def CR13 : X86Reg<"cr13", 13>;
350def CR14 : X86Reg<"cr14", 14>;
351def CR15 : X86Reg<"cr15", 15>;
352
353// Pseudo index registers
354def EIZ : X86Reg<"eiz", 4>;
355def RIZ : X86Reg<"riz", 4>;
356
357// Bound registers, used in MPX instructions
358def BND0 : X86Reg<"bnd0",   0>;
359def BND1 : X86Reg<"bnd1",   1>;
360def BND2 : X86Reg<"bnd2",   2>;
361def BND3 : X86Reg<"bnd3",   3>;
362
363// CET registers - Shadow Stack Pointer
364def SSP : X86Reg<"ssp", 0>;
365
366//===----------------------------------------------------------------------===//
367// Register Class Definitions... now that we have all of the pieces, define the
368// top-level register classes.  The order specified in the register list is
369// implicitly defined to be the register allocation order.
370//
371
372// List call-clobbered registers before callee-save registers. RBX, RBP, (and
373// R12, R13, R14, and R15 for X86-64) are callee-save registers.
374// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
375// R8B, ... R15B.
376// Allocate R12 and R13 last, as these require an extra byte when
377// encoded in x86_64 instructions.
378// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
379// 64-bit mode. The main complication is that they cannot be encoded in an
380// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
381// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
382// cannot be encoded.
383def GR8 : RegisterClass<"X86", [i8],  8,
384                        (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
385                             R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
386  let AltOrders = [(sub GR8, AH, BH, CH, DH)];
387  let AltOrderSelect = [{
388    return MF.getSubtarget<X86Subtarget>().is64Bit();
389  }];
390}
391
392let isAllocatable = 0 in
393def GRH8 : RegisterClass<"X86", [i8],  8,
394                         (add SIH, DIH, BPH, SPH, R8BH, R9BH, R10BH, R11BH,
395                              R12BH, R13BH, R14BH, R15BH)>;
396
397def GR16 : RegisterClass<"X86", [i16], 16,
398                         (add AX, CX, DX, SI, DI, BX, BP, SP,
399                              R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
400
401let isAllocatable = 0 in
402def GRH16 : RegisterClass<"X86", [i16], 16,
403                          (add HAX, HCX, HDX, HSI, HDI, HBX, HBP, HSP, HIP,
404                               R8WH, R9WH, R10WH, R11WH, R12WH, R13WH, R14WH,
405                               R15WH)>;
406
407def GR32 : RegisterClass<"X86", [i32], 32,
408                         (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
409                              R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
410
411// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
412// RIP isn't really a register and it can't be used anywhere except in an
413// address, but it doesn't cause trouble.
414// FIXME: it *does* cause trouble - CheckBaseRegAndIndexReg() has extra
415// tests because of the inclusion of RIP in this register class.
416def GR64 : RegisterClass<"X86", [i64], 64,
417                         (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
418                              RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
419
420// Segment registers for use by MOV instructions (and others) that have a
421//   segment register as one operand.  Always contain a 16-bit segment
422//   descriptor.
423def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
424
425// Debug registers.
426def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 15)>;
427
428// Control registers.
429def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
430
431// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
432// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
433// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
434// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
435// and GR64_ABCD are classes for registers that support 8-bit h-register
436// operations.
437def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
438def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
439def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
440def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
441def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
442def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, ESP)>;
443def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
444                                                     R8, R9, R11, RIP, RSP)>;
445def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
446                                                      R8, R9, R10, R11,
447                                                      RIP, RSP)>;
448
449// GR8_NOREX - GR8 registers which do not require a REX prefix.
450def GR8_NOREX : RegisterClass<"X86", [i8], 8,
451                              (add AL, CL, DL, AH, CH, DH, BL, BH)> {
452  let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
453  let AltOrderSelect = [{
454    return MF.getSubtarget<X86Subtarget>().is64Bit();
455  }];
456}
457// GR16_NOREX - GR16 registers which do not require a REX prefix.
458def GR16_NOREX : RegisterClass<"X86", [i16], 16,
459                               (add AX, CX, DX, SI, DI, BX, BP, SP)>;
460// GR32_NOREX - GR32 registers which do not require a REX prefix.
461def GR32_NOREX : RegisterClass<"X86", [i32], 32,
462                               (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
463// GR64_NOREX - GR64 registers which do not require a REX prefix.
464def GR64_NOREX : RegisterClass<"X86", [i64], 64,
465                            (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
466
467// GR32_NOSP - GR32 registers except ESP.
468def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
469
470// GR64_NOSP - GR64 registers except RSP (and RIP).
471def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
472
473// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
474// ESP.
475def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
476                                    (and GR32_NOREX, GR32_NOSP)>;
477
478// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
479def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
480                                    (and GR64_NOREX, GR64_NOSP)>;
481
482// Register classes used for ABIs that use 32-bit address accesses,
483// while using the whole x84_64 ISA.
484
485// In such cases, it is fine to use RIP as we are sure the 32 high
486// bits are not set. We do not need variants for NOSP as RIP is not
487// allowed there.
488// RIP is not spilled anywhere for now, so stick to 32-bit alignment
489// to save on memory space.
490// FIXME: We could allow all 64bit registers, but we would need
491// something to check that the 32 high bits are not set,
492// which we do not have right now.
493def LOW32_ADDR_ACCESS : RegisterClass<"X86", [i32], 32, (add GR32, RIP)>;
494
495// When RBP is used as a base pointer in a 32-bit addresses environement,
496// this is also safe to use the full register to access addresses.
497// Since RBP will never be spilled, stick to a 32 alignment to save
498// on memory consumption.
499def LOW32_ADDR_ACCESS_RBP : RegisterClass<"X86", [i32], 32,
500                                          (add LOW32_ADDR_ACCESS, RBP)>;
501
502// A class to support the 'A' assembler constraint: [ER]AX then [ER]DX.
503def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
504def GR64_AD : RegisterClass<"X86", [i64], 64, (add RAX, RDX)>;
505
506// Classes to support the 64-bit assembler constraint tied to a fixed
507// register in 32-bit mode. The second register is always the next in
508// the list. Wrap around causes an error.
509def GR32_DC : RegisterClass<"X86", [i32], 32, (add EDX, ECX)>;
510def GR32_CB : RegisterClass<"X86", [i32], 32, (add ECX, EBX)>;
511def GR32_BSI : RegisterClass<"X86", [i32], 32, (add EBX, ESI)>;
512def GR32_SIDI : RegisterClass<"X86", [i32], 32, (add ESI, EDI)>;
513def GR32_DIBP : RegisterClass<"X86", [i32], 32, (add EDI, EBP)>;
514def GR32_BPSP : RegisterClass<"X86", [i32], 32, (add EBP, ESP)>;
515
516// Scalar SSE2 floating point registers.
517def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
518
519def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
520
521
522// FIXME: This sets up the floating point register files as though they are f64
523// values, though they really are f80 values.  This will cause us to spill
524// values as 64-bit quantities instead of 80-bit quantities, which is much much
525// faster on common hardware.  In reality, this should be controlled by a
526// command line option or something.
527
528
529def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
530def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
531def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
532
533// st(7) may be is not allocatable.
534def RFP80_7 : RegisterClass<"X86",[f80], 32, (add FP7)> {
535  let isAllocatable = 0;
536}
537
538// Floating point stack registers (these are not allocatable by the
539// register allocator - the floating point stackifier is responsible
540// for transforming FPn allocations to STn registers)
541def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
542  let isAllocatable = 0;
543}
544
545// Helper to allow %st to print as %st(0) when its encoded in the instruction.
546def RSTi : RegisterOperand<RST, "printSTiRegOperand">;
547
548// Generic vector registers: VR64 and VR128.
549// Ensure that float types are declared first - only float is legal on SSE1.
550def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
551def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
552                          128, (add FR32)>;
553def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
554                          256, (sequence "YMM%u", 0, 15)>;
555
556// Special classes that help the assembly parser choose some alternate
557// instructions to favor 2-byte VEX encodings.
558def VR128L : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
559                           128, (sequence "XMM%u", 0, 7)>;
560def VR128H : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
561                           128, (sequence "XMM%u", 8, 15)>;
562def VR256L : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
563                           256, (sequence "YMM%u", 0, 7)>;
564def VR256H : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
565                           256, (sequence "YMM%u", 8, 15)>;
566
567// Status flags registers.
568def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
569  let CopyCost = -1;  // Don't allow copying of status registers.
570  let isAllocatable = 0;
571}
572def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
573  let CopyCost = -1;  // Don't allow copying of status registers.
574  let isAllocatable = 0;
575}
576def DFCCR : RegisterClass<"X86", [i32], 32, (add DF)> {
577  let CopyCost = -1;  // Don't allow copying of status registers.
578  let isAllocatable = 0;
579}
580
581// AVX-512 vector/mask registers.
582def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
583                          512, (sequence "ZMM%u", 0, 31)>;
584
585// Scalar AVX-512 floating point registers.
586def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;
587
588def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;
589
590// Extended VR128 and VR256 for AVX-512 instructions
591def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
592                           128, (add FR32X)>;
593def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
594                           256, (sequence "YMM%u", 0, 31)>;
595
596// Mask registers
597def VK1     : RegisterClass<"X86", [v1i1],  16,  (sequence "K%u", 0, 7)> {let Size = 16;}
598def VK2     : RegisterClass<"X86", [v2i1],  16,  (add VK1)> {let Size = 16;}
599def VK4     : RegisterClass<"X86", [v4i1],  16,  (add VK2)> {let Size = 16;}
600def VK8     : RegisterClass<"X86", [v8i1],  16,  (add VK4)> {let Size = 16;}
601def VK16    : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
602def VK32    : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
603def VK64    : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}
604
605def VK1WM   : RegisterClass<"X86", [v1i1],  16,  (sub VK1, K0)> {let Size = 16;}
606def VK2WM   : RegisterClass<"X86", [v2i1],  16,  (sub VK2, K0)> {let Size = 16;}
607def VK4WM   : RegisterClass<"X86", [v4i1],  16,  (sub VK4, K0)> {let Size = 16;}
608def VK8WM   : RegisterClass<"X86", [v8i1],  16,  (sub VK8, K0)> {let Size = 16;}
609def VK16WM  : RegisterClass<"X86", [v16i1], 16, (add VK8WM)>   {let Size = 16;}
610def VK32WM  : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
611def VK64WM  : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}
612
613// Bound registers
614def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>;
615