1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32 uint64_t &Offset) {
33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34 Offset = CI->getZExtValue();
35 Scale = 0;
36 return ConstantInt::get(Val->getType(), 0);
37 }
38
39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40 // Cannot look past anything that might overflow.
41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43 Scale = 1;
44 Offset = 0;
45 return Val;
46 }
47
48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49 if (I->getOpcode() == Instruction::Shl) {
50 // This is a value scaled by '1 << the shift amt'.
51 Scale = UINT64_C(1) << RHS->getZExtValue();
52 Offset = 0;
53 return I->getOperand(0);
54 }
55
56 if (I->getOpcode() == Instruction::Mul) {
57 // This value is scaled by 'RHS'.
58 Scale = RHS->getZExtValue();
59 Offset = 0;
60 return I->getOperand(0);
61 }
62
63 if (I->getOpcode() == Instruction::Add) {
64 // We have X+C. Check to see if we really have (X*C2)+C1,
65 // where C1 is divisible by C2.
66 unsigned SubScale;
67 Value *SubVal =
68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69 Offset += RHS->getZExtValue();
70 Scale = SubScale;
71 return SubVal;
72 }
73 }
74 }
75
76 // Otherwise, we can't look past this.
77 Scale = 1;
78 Offset = 0;
79 return Val;
80 }
81
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85 AllocaInst &AI) {
86 PointerType *PTy = cast<PointerType>(CI.getType());
87
88 BuilderTy AllocaBuilder(Builder);
89 AllocaBuilder.SetInsertPoint(&AI);
90
91 // Get the type really allocated and the type casted to.
92 Type *AllocElTy = AI.getAllocatedType();
93 Type *CastElTy = PTy->getElementType();
94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95
96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98 if (CastElTyAlign < AllocElTyAlign) return nullptr;
99
100 // If the allocation has multiple uses, only promote it if we are strictly
101 // increasing the alignment of the resultant allocation. If we keep it the
102 // same, we open the door to infinite loops of various kinds.
103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104
105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108
109 // If the allocation has multiple uses, only promote it if we're not
110 // shrinking the amount of memory being allocated.
111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114
115 // See if we can satisfy the modulus by pulling a scale out of the array
116 // size argument.
117 unsigned ArraySizeScale;
118 uint64_t ArrayOffset;
119 Value *NumElements = // See if the array size is a decomposable linear expr.
120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121
122 // If we can now satisfy the modulus, by using a non-1 scale, we really can
123 // do the xform.
124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
126
127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128 Value *Amt = nullptr;
129 if (Scale == 1) {
130 Amt = NumElements;
131 } else {
132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133 // Insert before the alloca, not before the cast.
134 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135 }
136
137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139 Offset, true);
140 Amt = AllocaBuilder.CreateAdd(Amt, Off);
141 }
142
143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144 New->setAlignment(AI.getAlignment());
145 New->takeName(&AI);
146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147
148 // If the allocation has multiple real uses, insert a cast and change all
149 // things that used it to use the new cast. This will also hack on CI, but it
150 // will die soon.
151 if (!AI.hasOneUse()) {
152 // New is the allocation instruction, pointer typed. AI is the original
153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155 replaceInstUsesWith(AI, NewCast);
156 }
157 return replaceInstUsesWith(CI, New);
158 }
159
160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163 bool isSigned) {
164 if (Constant *C = dyn_cast<Constant>(V)) {
165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166 // If we got a constantexpr back, try to simplify it with DL info.
167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168 C = FoldedC;
169 return C;
170 }
171
172 // Otherwise, it must be an instruction.
173 Instruction *I = cast<Instruction>(V);
174 Instruction *Res = nullptr;
175 unsigned Opc = I->getOpcode();
176 switch (Opc) {
177 case Instruction::Add:
178 case Instruction::Sub:
179 case Instruction::Mul:
180 case Instruction::And:
181 case Instruction::Or:
182 case Instruction::Xor:
183 case Instruction::AShr:
184 case Instruction::LShr:
185 case Instruction::Shl:
186 case Instruction::UDiv:
187 case Instruction::URem: {
188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191 break;
192 }
193 case Instruction::Trunc:
194 case Instruction::ZExt:
195 case Instruction::SExt:
196 // If the source type of the cast is the type we're trying for then we can
197 // just return the source. There's no need to insert it because it is not
198 // new.
199 if (I->getOperand(0)->getType() == Ty)
200 return I->getOperand(0);
201
202 // Otherwise, must be the same type of cast, so just reinsert a new one.
203 // This also handles the case of zext(trunc(x)) -> zext(x).
204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205 Opc == Instruction::SExt);
206 break;
207 case Instruction::Select: {
208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210 Res = SelectInst::Create(I->getOperand(0), True, False);
211 break;
212 }
213 case Instruction::PHI: {
214 PHINode *OPN = cast<PHINode>(I);
215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217 Value *V =
218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219 NPN->addIncoming(V, OPN->getIncomingBlock(i));
220 }
221 Res = NPN;
222 break;
223 }
224 default:
225 // TODO: Can handle more cases here.
226 llvm_unreachable("Unreachable!");
227 }
228
229 Res->takeName(I);
230 return InsertNewInstWith(Res, *I);
231 }
232
isEliminableCastPair(const CastInst * CI1,const CastInst * CI2)233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
234 const CastInst *CI2) {
235 Type *SrcTy = CI1->getSrcTy();
236 Type *MidTy = CI1->getDestTy();
237 Type *DstTy = CI2->getDestTy();
238
239 Instruction::CastOps firstOp = CI1->getOpcode();
240 Instruction::CastOps secondOp = CI2->getOpcode();
241 Type *SrcIntPtrTy =
242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
243 Type *MidIntPtrTy =
244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
245 Type *DstIntPtrTy =
246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248 DstTy, SrcIntPtrTy, MidIntPtrTy,
249 DstIntPtrTy);
250
251 // We don't want to form an inttoptr or ptrtoint that converts to an integer
252 // type that differs from the pointer size.
253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255 Res = 0;
256
257 return Instruction::CastOps(Res);
258 }
259
260 /// Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
262 Value *Src = CI.getOperand(0);
263
264 // Try to eliminate a cast of a cast.
265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
267 // The first cast (CSrc) is eliminable so we need to fix up or replace
268 // the second cast (CI). CSrc will then have a good chance of being dead.
269 auto *Ty = CI.getType();
270 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
271 // Point debug users of the dying cast to the new one.
272 if (CSrc->hasOneUse())
273 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
274 return Res;
275 }
276 }
277
278 if (auto *Sel = dyn_cast<SelectInst>(Src)) {
279 // We are casting a select. Try to fold the cast into the select, but only
280 // if the select does not have a compare instruction with matching operand
281 // types. Creating a select with operands that are different sizes than its
282 // condition may inhibit other folds and lead to worse codegen.
283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
285 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
286 replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
287 return NV;
288 }
289 }
290
291 // If we are casting a PHI, then fold the cast into the PHI.
292 if (auto *PN = dyn_cast<PHINode>(Src)) {
293 // Don't do this if it would create a PHI node with an illegal type from a
294 // legal type.
295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
296 shouldChangeType(CI.getType(), Src->getType()))
297 if (Instruction *NV = foldOpIntoPhi(CI, PN))
298 return NV;
299 }
300
301 return nullptr;
302 }
303
304 /// Constants and extensions/truncates from the destination type are always
305 /// free to be evaluated in that type. This is a helper for canEvaluate*.
canAlwaysEvaluateInType(Value * V,Type * Ty)306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
307 if (isa<Constant>(V))
308 return true;
309 Value *X;
310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
311 X->getType() == Ty)
312 return true;
313
314 return false;
315 }
316
317 /// Filter out values that we can not evaluate in the destination type for free.
318 /// This is a helper for canEvaluate*.
canNotEvaluateInType(Value * V,Type * Ty)319 static bool canNotEvaluateInType(Value *V, Type *Ty) {
320 assert(!isa<Constant>(V) && "Constant should already be handled.");
321 if (!isa<Instruction>(V))
322 return true;
323 // We don't extend or shrink something that has multiple uses -- doing so
324 // would require duplicating the instruction which isn't profitable.
325 if (!V->hasOneUse())
326 return true;
327
328 return false;
329 }
330
331 /// Return true if we can evaluate the specified expression tree as type Ty
332 /// instead of its larger type, and arrive with the same value.
333 /// This is used by code that tries to eliminate truncates.
334 ///
335 /// Ty will always be a type smaller than V. We should return true if trunc(V)
336 /// can be computed by computing V in the smaller type. If V is an instruction,
337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
338 /// makes sense if x and y can be efficiently truncated.
339 ///
340 /// This function works on both vectors and scalars.
341 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombiner & IC,Instruction * CxtI)342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
343 Instruction *CxtI) {
344 if (canAlwaysEvaluateInType(V, Ty))
345 return true;
346 if (canNotEvaluateInType(V, Ty))
347 return false;
348
349 auto *I = cast<Instruction>(V);
350 Type *OrigTy = V->getType();
351 switch (I->getOpcode()) {
352 case Instruction::Add:
353 case Instruction::Sub:
354 case Instruction::Mul:
355 case Instruction::And:
356 case Instruction::Or:
357 case Instruction::Xor:
358 // These operators can all arbitrarily be extended or truncated.
359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361
362 case Instruction::UDiv:
363 case Instruction::URem: {
364 // UDiv and URem can be truncated if all the truncated bits are zero.
365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
366 uint32_t BitWidth = Ty->getScalarSizeInBits();
367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373 }
374 break;
375 }
376 case Instruction::Shl: {
377 // If we are truncating the result of this SHL, and if it's a shift of a
378 // constant amount, we can always perform a SHL in a smaller type.
379 const APInt *Amt;
380 if (match(I->getOperand(1), m_APInt(Amt))) {
381 uint32_t BitWidth = Ty->getScalarSizeInBits();
382 if (Amt->getLimitedValue(BitWidth) < BitWidth)
383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384 }
385 break;
386 }
387 case Instruction::LShr: {
388 // If this is a truncate of a logical shr, we can truncate it to a smaller
389 // lshr iff we know that the bits we would otherwise be shifting in are
390 // already zeros.
391 const APInt *Amt;
392 if (match(I->getOperand(1), m_APInt(Amt))) {
393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394 uint32_t BitWidth = Ty->getScalarSizeInBits();
395 if (Amt->getLimitedValue(BitWidth) < BitWidth &&
396 IC.MaskedValueIsZero(I->getOperand(0),
397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399 }
400 }
401 break;
402 }
403 case Instruction::AShr: {
404 // If this is a truncate of an arithmetic shr, we can truncate it to a
405 // smaller ashr iff we know that all the bits from the sign bit of the
406 // original type and the sign bit of the truncate type are similar.
407 // TODO: It is enough to check that the bits we would be shifting in are
408 // similar to sign bit of the truncate type.
409 const APInt *Amt;
410 if (match(I->getOperand(1), m_APInt(Amt))) {
411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
412 uint32_t BitWidth = Ty->getScalarSizeInBits();
413 if (Amt->getLimitedValue(BitWidth) < BitWidth &&
414 OrigBitWidth - BitWidth <
415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417 }
418 break;
419 }
420 case Instruction::Trunc:
421 // trunc(trunc(x)) -> trunc(x)
422 return true;
423 case Instruction::ZExt:
424 case Instruction::SExt:
425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
427 return true;
428 case Instruction::Select: {
429 SelectInst *SI = cast<SelectInst>(I);
430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432 }
433 case Instruction::PHI: {
434 // We can change a phi if we can change all operands. Note that we never
435 // get into trouble with cyclic PHIs here because we only consider
436 // instructions with a single use.
437 PHINode *PN = cast<PHINode>(I);
438 for (Value *IncValue : PN->incoming_values())
439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
440 return false;
441 return true;
442 }
443 default:
444 // TODO: Can handle more cases here.
445 break;
446 }
447
448 return false;
449 }
450
451 /// Given a vector that is bitcast to an integer, optionally logically
452 /// right-shifted, and truncated, convert it to an extractelement.
453 /// Example (big endian):
454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
455 /// --->
456 /// extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombiner & IC)457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
458 Value *TruncOp = Trunc.getOperand(0);
459 Type *DestType = Trunc.getType();
460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
461 return nullptr;
462
463 Value *VecInput = nullptr;
464 ConstantInt *ShiftVal = nullptr;
465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
466 m_LShr(m_BitCast(m_Value(VecInput)),
467 m_ConstantInt(ShiftVal)))) ||
468 !isa<VectorType>(VecInput->getType()))
469 return nullptr;
470
471 VectorType *VecType = cast<VectorType>(VecInput->getType());
472 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
473 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475
476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
477 return nullptr;
478
479 // If the element type of the vector doesn't match the result type,
480 // bitcast it to a vector type that we can extract from.
481 unsigned NumVecElts = VecWidth / DestWidth;
482 if (VecType->getElementType() != DestType) {
483 VecType = VectorType::get(DestType, NumVecElts);
484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
485 }
486
487 unsigned Elt = ShiftAmount / DestWidth;
488 if (IC.getDataLayout().isBigEndian())
489 Elt = NumVecElts - 1 - Elt;
490
491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
492 }
493
494 /// Rotate left/right may occur in a wider type than necessary because of type
495 /// promotion rules. Try to narrow the inputs and convert to funnel shift.
narrowRotate(TruncInst & Trunc)496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
497 assert((isa<VectorType>(Trunc.getSrcTy()) ||
498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
499 "Don't narrow to an illegal scalar type");
500
501 // Bail out on strange types. It is possible to handle some of these patterns
502 // even with non-power-of-2 sizes, but it is not a likely scenario.
503 Type *DestTy = Trunc.getType();
504 unsigned NarrowWidth = DestTy->getScalarSizeInBits();
505 if (!isPowerOf2_32(NarrowWidth))
506 return nullptr;
507
508 // First, find an or'd pair of opposite shifts with the same shifted operand:
509 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
510 Value *Or0, *Or1;
511 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
512 return nullptr;
513
514 Value *ShVal, *ShAmt0, *ShAmt1;
515 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
516 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
517 return nullptr;
518
519 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
520 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
521 if (ShiftOpcode0 == ShiftOpcode1)
522 return nullptr;
523
524 // Match the shift amount operands for a rotate pattern. This always matches
525 // a subtraction on the R operand.
526 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
527 // The shift amounts may add up to the narrow bit width:
528 // (shl ShVal, L) | (lshr ShVal, Width - L)
529 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
530 return L;
531
532 // The shift amount may be masked with negation:
533 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
534 Value *X;
535 unsigned Mask = Width - 1;
536 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
537 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
538 return X;
539
540 // Same as above, but the shift amount may be extended after masking:
541 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
542 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
543 return X;
544
545 return nullptr;
546 };
547
548 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
549 bool SubIsOnLHS = false;
550 if (!ShAmt) {
551 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
552 SubIsOnLHS = true;
553 }
554 if (!ShAmt)
555 return nullptr;
556
557 // The shifted value must have high zeros in the wide type. Typically, this
558 // will be a zext, but it could also be the result of an 'and' or 'shift'.
559 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
560 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
561 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
562 return nullptr;
563
564 // We have an unnecessarily wide rotate!
565 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
566 // Narrow the inputs and convert to funnel shift intrinsic:
567 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
568 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
569 Value *X = Builder.CreateTrunc(ShVal, DestTy);
570 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
571 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
572 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
573 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
574 return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
575 }
576
577 /// Try to narrow the width of math or bitwise logic instructions by pulling a
578 /// truncate ahead of binary operators.
579 /// TODO: Transforms for truncated shifts should be moved into here.
narrowBinOp(TruncInst & Trunc)580 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
581 Type *SrcTy = Trunc.getSrcTy();
582 Type *DestTy = Trunc.getType();
583 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
584 return nullptr;
585
586 BinaryOperator *BinOp;
587 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
588 return nullptr;
589
590 Value *BinOp0 = BinOp->getOperand(0);
591 Value *BinOp1 = BinOp->getOperand(1);
592 switch (BinOp->getOpcode()) {
593 case Instruction::And:
594 case Instruction::Or:
595 case Instruction::Xor:
596 case Instruction::Add:
597 case Instruction::Sub:
598 case Instruction::Mul: {
599 Constant *C;
600 if (match(BinOp0, m_Constant(C))) {
601 // trunc (binop C, X) --> binop (trunc C', X)
602 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
603 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
604 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
605 }
606 if (match(BinOp1, m_Constant(C))) {
607 // trunc (binop X, C) --> binop (trunc X, C')
608 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
609 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
610 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
611 }
612 Value *X;
613 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
614 // trunc (binop (ext X), Y) --> binop X, (trunc Y)
615 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
616 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
617 }
618 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
619 // trunc (binop Y, (ext X)) --> binop (trunc Y), X
620 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
621 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
622 }
623 break;
624 }
625
626 default: break;
627 }
628
629 if (Instruction *NarrowOr = narrowRotate(Trunc))
630 return NarrowOr;
631
632 return nullptr;
633 }
634
635 /// Try to narrow the width of a splat shuffle. This could be generalized to any
636 /// shuffle with a constant operand, but we limit the transform to avoid
637 /// creating a shuffle type that targets may not be able to lower effectively.
shrinkSplatShuffle(TruncInst & Trunc,InstCombiner::BuilderTy & Builder)638 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
639 InstCombiner::BuilderTy &Builder) {
640 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
641 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
642 Shuf->getMask()->getSplatValue() &&
643 Shuf->getType() == Shuf->getOperand(0)->getType()) {
644 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
645 Constant *NarrowUndef = UndefValue::get(Trunc.getType());
646 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
647 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
648 }
649
650 return nullptr;
651 }
652
653 /// Try to narrow the width of an insert element. This could be generalized for
654 /// any vector constant, but we limit the transform to insertion into undef to
655 /// avoid potential backend problems from unsupported insertion widths. This
656 /// could also be extended to handle the case of inserting a scalar constant
657 /// into a vector variable.
shrinkInsertElt(CastInst & Trunc,InstCombiner::BuilderTy & Builder)658 static Instruction *shrinkInsertElt(CastInst &Trunc,
659 InstCombiner::BuilderTy &Builder) {
660 Instruction::CastOps Opcode = Trunc.getOpcode();
661 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
662 "Unexpected instruction for shrinking");
663
664 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
665 if (!InsElt || !InsElt->hasOneUse())
666 return nullptr;
667
668 Type *DestTy = Trunc.getType();
669 Type *DestScalarTy = DestTy->getScalarType();
670 Value *VecOp = InsElt->getOperand(0);
671 Value *ScalarOp = InsElt->getOperand(1);
672 Value *Index = InsElt->getOperand(2);
673
674 if (isa<UndefValue>(VecOp)) {
675 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
676 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
677 UndefValue *NarrowUndef = UndefValue::get(DestTy);
678 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
679 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
680 }
681
682 return nullptr;
683 }
684
visitTrunc(TruncInst & CI)685 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
686 if (Instruction *Result = commonCastTransforms(CI))
687 return Result;
688
689 Value *Src = CI.getOperand(0);
690 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
691
692 // Attempt to truncate the entire input expression tree to the destination
693 // type. Only do this if the dest type is a simple type, don't convert the
694 // expression tree to something weird like i93 unless the source is also
695 // strange.
696 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
697 canEvaluateTruncated(Src, DestTy, *this, &CI)) {
698
699 // If this cast is a truncate, evaluting in a different type always
700 // eliminates the cast, so it is always a win.
701 LLVM_DEBUG(
702 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
703 " to avoid cast: "
704 << CI << '\n');
705 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
706 assert(Res->getType() == DestTy);
707 return replaceInstUsesWith(CI, Res);
708 }
709
710 // Test if the trunc is the user of a select which is part of a
711 // minimum or maximum operation. If so, don't do any more simplification.
712 // Even simplifying demanded bits can break the canonical form of a
713 // min/max.
714 Value *LHS, *RHS;
715 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
716 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
717 return nullptr;
718
719 // See if we can simplify any instructions used by the input whose sole
720 // purpose is to compute bits we don't care about.
721 if (SimplifyDemandedInstructionBits(CI))
722 return &CI;
723
724 if (DestTy->getScalarSizeInBits() == 1) {
725 Value *Zero = Constant::getNullValue(Src->getType());
726 if (DestTy->isIntegerTy()) {
727 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
728 // TODO: We canonicalize to more instructions here because we are probably
729 // lacking equivalent analysis for trunc relative to icmp. There may also
730 // be codegen concerns. If those trunc limitations were removed, we could
731 // remove this transform.
732 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
733 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
734 }
735
736 // For vectors, we do not canonicalize all truncs to icmp, so optimize
737 // patterns that would be covered within visitICmpInst.
738 Value *X;
739 const APInt *C;
740 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
741 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
742 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
743 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
744 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
745 }
746 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
747 m_Deferred(X))))) {
748 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
749 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
750 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
751 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
752 }
753 }
754
755 // FIXME: Maybe combine the next two transforms to handle the no cast case
756 // more efficiently. Support vector types. Cleanup code by using m_OneUse.
757
758 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
759 Value *A = nullptr; ConstantInt *Cst = nullptr;
760 if (Src->hasOneUse() &&
761 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
762 // We have three types to worry about here, the type of A, the source of
763 // the truncate (MidSize), and the destination of the truncate. We know that
764 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
765 // between ASize and ResultSize.
766 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
767
768 // If the shift amount is larger than the size of A, then the result is
769 // known to be zero because all the input bits got shifted out.
770 if (Cst->getZExtValue() >= ASize)
771 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
772
773 // Since we're doing an lshr and a zero extend, and know that the shift
774 // amount is smaller than ASize, it is always safe to do the shift in A's
775 // type, then zero extend or truncate to the result.
776 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
777 Shift->takeName(Src);
778 return CastInst::CreateIntegerCast(Shift, DestTy, false);
779 }
780
781 // FIXME: We should canonicalize to zext/trunc and remove this transform.
782 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
783 // conversion.
784 // It works because bits coming from sign extension have the same value as
785 // the sign bit of the original value; performing ashr instead of lshr
786 // generates bits of the same value as the sign bit.
787 if (Src->hasOneUse() &&
788 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
789 Value *SExt = cast<Instruction>(Src)->getOperand(0);
790 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
791 const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
792 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
793 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
794 unsigned ShiftAmt = Cst->getZExtValue();
795
796 // This optimization can be only performed when zero bits generated by
797 // the original lshr aren't pulled into the value after truncation, so we
798 // can only shift by values no larger than the number of extension bits.
799 // FIXME: Instead of bailing when the shift is too large, use and to clear
800 // the extra bits.
801 if (ShiftAmt <= MaxAmt) {
802 if (CISize == ASize)
803 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
804 std::min(ShiftAmt, ASize - 1)));
805 if (SExt->hasOneUse()) {
806 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
807 Shift->takeName(Src);
808 return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
809 }
810 }
811 }
812
813 if (Instruction *I = narrowBinOp(CI))
814 return I;
815
816 if (Instruction *I = shrinkSplatShuffle(CI, Builder))
817 return I;
818
819 if (Instruction *I = shrinkInsertElt(CI, Builder))
820 return I;
821
822 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
823 shouldChangeType(SrcTy, DestTy)) {
824 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
825 // dest type is native and cst < dest size.
826 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
827 !match(A, m_Shr(m_Value(), m_Constant()))) {
828 // Skip shifts of shift by constants. It undoes a combine in
829 // FoldShiftByConstant and is the extend in reg pattern.
830 const unsigned DestSize = DestTy->getScalarSizeInBits();
831 if (Cst->getValue().ult(DestSize)) {
832 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
833
834 return BinaryOperator::Create(
835 Instruction::Shl, NewTrunc,
836 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
837 }
838 }
839 }
840
841 if (Instruction *I = foldVecTruncToExtElt(CI, *this))
842 return I;
843
844 return nullptr;
845 }
846
transformZExtICmp(ICmpInst * ICI,ZExtInst & CI,bool DoTransform)847 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
848 bool DoTransform) {
849 // If we are just checking for a icmp eq of a single bit and zext'ing it
850 // to an integer, then shift the bit to the appropriate place and then
851 // cast to integer to avoid the comparison.
852 const APInt *Op1CV;
853 if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
854
855 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
856 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
857 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
858 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
859 if (!DoTransform) return ICI;
860
861 Value *In = ICI->getOperand(0);
862 Value *Sh = ConstantInt::get(In->getType(),
863 In->getType()->getScalarSizeInBits() - 1);
864 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
865 if (In->getType() != CI.getType())
866 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
867
868 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
869 Constant *One = ConstantInt::get(In->getType(), 1);
870 In = Builder.CreateXor(In, One, In->getName() + ".not");
871 }
872
873 return replaceInstUsesWith(CI, In);
874 }
875
876 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
877 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
878 // zext (X == 1) to i32 --> X iff X has only the low bit set.
879 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
880 // zext (X != 0) to i32 --> X iff X has only the low bit set.
881 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
882 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
883 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
884 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
885 // This only works for EQ and NE
886 ICI->isEquality()) {
887 // If Op1C some other power of two, convert:
888 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
889
890 APInt KnownZeroMask(~Known.Zero);
891 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
892 if (!DoTransform) return ICI;
893
894 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
895 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
896 // (X&4) == 2 --> false
897 // (X&4) != 2 --> true
898 Constant *Res = ConstantInt::get(CI.getType(), isNE);
899 return replaceInstUsesWith(CI, Res);
900 }
901
902 uint32_t ShAmt = KnownZeroMask.logBase2();
903 Value *In = ICI->getOperand(0);
904 if (ShAmt) {
905 // Perform a logical shr by shiftamt.
906 // Insert the shift to put the result in the low bit.
907 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
908 In->getName() + ".lobit");
909 }
910
911 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
912 Constant *One = ConstantInt::get(In->getType(), 1);
913 In = Builder.CreateXor(In, One);
914 }
915
916 if (CI.getType() == In->getType())
917 return replaceInstUsesWith(CI, In);
918
919 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
920 return replaceInstUsesWith(CI, IntCast);
921 }
922 }
923 }
924
925 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
926 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
927 // may lead to additional simplifications.
928 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
929 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
930 Value *LHS = ICI->getOperand(0);
931 Value *RHS = ICI->getOperand(1);
932
933 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
934 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
935
936 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
937 APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
938 APInt UnknownBit = ~KnownBits;
939 if (UnknownBit.countPopulation() == 1) {
940 if (!DoTransform) return ICI;
941
942 Value *Result = Builder.CreateXor(LHS, RHS);
943
944 // Mask off any bits that are set and won't be shifted away.
945 if (KnownLHS.One.uge(UnknownBit))
946 Result = Builder.CreateAnd(Result,
947 ConstantInt::get(ITy, UnknownBit));
948
949 // Shift the bit we're testing down to the lsb.
950 Result = Builder.CreateLShr(
951 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
952
953 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
954 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
955 Result->takeName(ICI);
956 return replaceInstUsesWith(CI, Result);
957 }
958 }
959 }
960 }
961
962 return nullptr;
963 }
964
965 /// Determine if the specified value can be computed in the specified wider type
966 /// and produce the same low bits. If not, return false.
967 ///
968 /// If this function returns true, it can also return a non-zero number of bits
969 /// (in BitsToClear) which indicates that the value it computes is correct for
970 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
971 /// out. For example, to promote something like:
972 ///
973 /// %B = trunc i64 %A to i32
974 /// %C = lshr i32 %B, 8
975 /// %E = zext i32 %C to i64
976 ///
977 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
978 /// set to 8 to indicate that the promoted value needs to have bits 24-31
979 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
980 /// clear the top bits anyway, doing this has no extra cost.
981 ///
982 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombiner & IC,Instruction * CxtI)983 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
984 InstCombiner &IC, Instruction *CxtI) {
985 BitsToClear = 0;
986 if (canAlwaysEvaluateInType(V, Ty))
987 return true;
988 if (canNotEvaluateInType(V, Ty))
989 return false;
990
991 auto *I = cast<Instruction>(V);
992 unsigned Tmp;
993 switch (I->getOpcode()) {
994 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
995 case Instruction::SExt: // zext(sext(x)) -> sext(x).
996 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
997 return true;
998 case Instruction::And:
999 case Instruction::Or:
1000 case Instruction::Xor:
1001 case Instruction::Add:
1002 case Instruction::Sub:
1003 case Instruction::Mul:
1004 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1005 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1006 return false;
1007 // These can all be promoted if neither operand has 'bits to clear'.
1008 if (BitsToClear == 0 && Tmp == 0)
1009 return true;
1010
1011 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1012 // other side, BitsToClear is ok.
1013 if (Tmp == 0 && I->isBitwiseLogicOp()) {
1014 // We use MaskedValueIsZero here for generality, but the case we care
1015 // about the most is constant RHS.
1016 unsigned VSize = V->getType()->getScalarSizeInBits();
1017 if (IC.MaskedValueIsZero(I->getOperand(1),
1018 APInt::getHighBitsSet(VSize, BitsToClear),
1019 0, CxtI)) {
1020 // If this is an And instruction and all of the BitsToClear are
1021 // known to be zero we can reset BitsToClear.
1022 if (I->getOpcode() == Instruction::And)
1023 BitsToClear = 0;
1024 return true;
1025 }
1026 }
1027
1028 // Otherwise, we don't know how to analyze this BitsToClear case yet.
1029 return false;
1030
1031 case Instruction::Shl: {
1032 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
1033 // upper bits we can reduce BitsToClear by the shift amount.
1034 const APInt *Amt;
1035 if (match(I->getOperand(1), m_APInt(Amt))) {
1036 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1037 return false;
1038 uint64_t ShiftAmt = Amt->getZExtValue();
1039 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1040 return true;
1041 }
1042 return false;
1043 }
1044 case Instruction::LShr: {
1045 // We can promote lshr(x, cst) if we can promote x. This requires the
1046 // ultimate 'and' to clear out the high zero bits we're clearing out though.
1047 const APInt *Amt;
1048 if (match(I->getOperand(1), m_APInt(Amt))) {
1049 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1050 return false;
1051 BitsToClear += Amt->getZExtValue();
1052 if (BitsToClear > V->getType()->getScalarSizeInBits())
1053 BitsToClear = V->getType()->getScalarSizeInBits();
1054 return true;
1055 }
1056 // Cannot promote variable LSHR.
1057 return false;
1058 }
1059 case Instruction::Select:
1060 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1061 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1062 // TODO: If important, we could handle the case when the BitsToClear are
1063 // known zero in the disagreeing side.
1064 Tmp != BitsToClear)
1065 return false;
1066 return true;
1067
1068 case Instruction::PHI: {
1069 // We can change a phi if we can change all operands. Note that we never
1070 // get into trouble with cyclic PHIs here because we only consider
1071 // instructions with a single use.
1072 PHINode *PN = cast<PHINode>(I);
1073 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1074 return false;
1075 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1076 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1077 // TODO: If important, we could handle the case when the BitsToClear
1078 // are known zero in the disagreeing input.
1079 Tmp != BitsToClear)
1080 return false;
1081 return true;
1082 }
1083 default:
1084 // TODO: Can handle more cases here.
1085 return false;
1086 }
1087 }
1088
visitZExt(ZExtInst & CI)1089 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1090 // If this zero extend is only used by a truncate, let the truncate be
1091 // eliminated before we try to optimize this zext.
1092 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1093 return nullptr;
1094
1095 // If one of the common conversion will work, do it.
1096 if (Instruction *Result = commonCastTransforms(CI))
1097 return Result;
1098
1099 Value *Src = CI.getOperand(0);
1100 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1101
1102 // Try to extend the entire expression tree to the wide destination type.
1103 unsigned BitsToClear;
1104 if (shouldChangeType(SrcTy, DestTy) &&
1105 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1106 assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1107 "Can't clear more bits than in SrcTy");
1108
1109 // Okay, we can transform this! Insert the new expression now.
1110 LLVM_DEBUG(
1111 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1112 " to avoid zero extend: "
1113 << CI << '\n');
1114 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1115 assert(Res->getType() == DestTy);
1116
1117 // Preserve debug values referring to Src if the zext is its last use.
1118 if (auto *SrcOp = dyn_cast<Instruction>(Src))
1119 if (SrcOp->hasOneUse())
1120 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1121
1122 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1123 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1124
1125 // If the high bits are already filled with zeros, just replace this
1126 // cast with the result.
1127 if (MaskedValueIsZero(Res,
1128 APInt::getHighBitsSet(DestBitSize,
1129 DestBitSize-SrcBitsKept),
1130 0, &CI))
1131 return replaceInstUsesWith(CI, Res);
1132
1133 // We need to emit an AND to clear the high bits.
1134 Constant *C = ConstantInt::get(Res->getType(),
1135 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1136 return BinaryOperator::CreateAnd(Res, C);
1137 }
1138
1139 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1140 // types and if the sizes are just right we can convert this into a logical
1141 // 'and' which will be much cheaper than the pair of casts.
1142 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
1143 // TODO: Subsume this into EvaluateInDifferentType.
1144
1145 // Get the sizes of the types involved. We know that the intermediate type
1146 // will be smaller than A or C, but don't know the relation between A and C.
1147 Value *A = CSrc->getOperand(0);
1148 unsigned SrcSize = A->getType()->getScalarSizeInBits();
1149 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1150 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1151 // If we're actually extending zero bits, then if
1152 // SrcSize < DstSize: zext(a & mask)
1153 // SrcSize == DstSize: a & mask
1154 // SrcSize > DstSize: trunc(a) & mask
1155 if (SrcSize < DstSize) {
1156 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1157 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1158 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1159 return new ZExtInst(And, CI.getType());
1160 }
1161
1162 if (SrcSize == DstSize) {
1163 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1164 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1165 AndValue));
1166 }
1167 if (SrcSize > DstSize) {
1168 Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1169 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1170 return BinaryOperator::CreateAnd(Trunc,
1171 ConstantInt::get(Trunc->getType(),
1172 AndValue));
1173 }
1174 }
1175
1176 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1177 return transformZExtICmp(ICI, CI);
1178
1179 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1180 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1181 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1182 // of the (zext icmp) can be eliminated. If so, immediately perform the
1183 // according elimination.
1184 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1185 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1186 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1187 (transformZExtICmp(LHS, CI, false) ||
1188 transformZExtICmp(RHS, CI, false))) {
1189 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1190 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1191 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1192 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1193
1194 // Perform the elimination.
1195 if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1196 transformZExtICmp(LHS, *LZExt);
1197 if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1198 transformZExtICmp(RHS, *RZExt);
1199
1200 return Or;
1201 }
1202 }
1203
1204 // zext(trunc(X) & C) -> (X & zext(C)).
1205 Constant *C;
1206 Value *X;
1207 if (SrcI &&
1208 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1209 X->getType() == CI.getType())
1210 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1211
1212 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1213 Value *And;
1214 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1215 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1216 X->getType() == CI.getType()) {
1217 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1218 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1219 }
1220
1221 return nullptr;
1222 }
1223
1224 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)1225 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1226 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1227 ICmpInst::Predicate Pred = ICI->getPredicate();
1228
1229 // Don't bother if Op1 isn't of vector or integer type.
1230 if (!Op1->getType()->isIntOrIntVectorTy())
1231 return nullptr;
1232
1233 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1234 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1235 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
1236 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
1237 Value *Sh = ConstantInt::get(Op0->getType(),
1238 Op0->getType()->getScalarSizeInBits() - 1);
1239 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1240 if (In->getType() != CI.getType())
1241 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1242
1243 if (Pred == ICmpInst::ICMP_SGT)
1244 In = Builder.CreateNot(In, In->getName() + ".not");
1245 return replaceInstUsesWith(CI, In);
1246 }
1247
1248 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1249 // If we know that only one bit of the LHS of the icmp can be set and we
1250 // have an equality comparison with zero or a power of 2, we can transform
1251 // the icmp and sext into bitwise/integer operations.
1252 if (ICI->hasOneUse() &&
1253 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1254 KnownBits Known = computeKnownBits(Op0, 0, &CI);
1255
1256 APInt KnownZeroMask(~Known.Zero);
1257 if (KnownZeroMask.isPowerOf2()) {
1258 Value *In = ICI->getOperand(0);
1259
1260 // If the icmp tests for a known zero bit we can constant fold it.
1261 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1262 Value *V = Pred == ICmpInst::ICMP_NE ?
1263 ConstantInt::getAllOnesValue(CI.getType()) :
1264 ConstantInt::getNullValue(CI.getType());
1265 return replaceInstUsesWith(CI, V);
1266 }
1267
1268 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1269 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1270 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1271 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1272 // Perform a right shift to place the desired bit in the LSB.
1273 if (ShiftAmt)
1274 In = Builder.CreateLShr(In,
1275 ConstantInt::get(In->getType(), ShiftAmt));
1276
1277 // At this point "In" is either 1 or 0. Subtract 1 to turn
1278 // {1, 0} -> {0, -1}.
1279 In = Builder.CreateAdd(In,
1280 ConstantInt::getAllOnesValue(In->getType()),
1281 "sext");
1282 } else {
1283 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1284 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1285 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1286 // Perform a left shift to place the desired bit in the MSB.
1287 if (ShiftAmt)
1288 In = Builder.CreateShl(In,
1289 ConstantInt::get(In->getType(), ShiftAmt));
1290
1291 // Distribute the bit over the whole bit width.
1292 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1293 KnownZeroMask.getBitWidth() - 1), "sext");
1294 }
1295
1296 if (CI.getType() == In->getType())
1297 return replaceInstUsesWith(CI, In);
1298 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1299 }
1300 }
1301 }
1302
1303 return nullptr;
1304 }
1305
1306 /// Return true if we can take the specified value and return it as type Ty
1307 /// without inserting any new casts and without changing the value of the common
1308 /// low bits. This is used by code that tries to promote integer operations to
1309 /// a wider types will allow us to eliminate the extension.
1310 ///
1311 /// This function works on both vectors and scalars.
1312 ///
canEvaluateSExtd(Value * V,Type * Ty)1313 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1314 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1315 "Can't sign extend type to a smaller type");
1316 if (canAlwaysEvaluateInType(V, Ty))
1317 return true;
1318 if (canNotEvaluateInType(V, Ty))
1319 return false;
1320
1321 auto *I = cast<Instruction>(V);
1322 switch (I->getOpcode()) {
1323 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1324 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1325 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1326 return true;
1327 case Instruction::And:
1328 case Instruction::Or:
1329 case Instruction::Xor:
1330 case Instruction::Add:
1331 case Instruction::Sub:
1332 case Instruction::Mul:
1333 // These operators can all arbitrarily be extended if their inputs can.
1334 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1335 canEvaluateSExtd(I->getOperand(1), Ty);
1336
1337 //case Instruction::Shl: TODO
1338 //case Instruction::LShr: TODO
1339
1340 case Instruction::Select:
1341 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1342 canEvaluateSExtd(I->getOperand(2), Ty);
1343
1344 case Instruction::PHI: {
1345 // We can change a phi if we can change all operands. Note that we never
1346 // get into trouble with cyclic PHIs here because we only consider
1347 // instructions with a single use.
1348 PHINode *PN = cast<PHINode>(I);
1349 for (Value *IncValue : PN->incoming_values())
1350 if (!canEvaluateSExtd(IncValue, Ty)) return false;
1351 return true;
1352 }
1353 default:
1354 // TODO: Can handle more cases here.
1355 break;
1356 }
1357
1358 return false;
1359 }
1360
visitSExt(SExtInst & CI)1361 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1362 // If this sign extend is only used by a truncate, let the truncate be
1363 // eliminated before we try to optimize this sext.
1364 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1365 return nullptr;
1366
1367 if (Instruction *I = commonCastTransforms(CI))
1368 return I;
1369
1370 Value *Src = CI.getOperand(0);
1371 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1372
1373 // If we know that the value being extended is positive, we can use a zext
1374 // instead.
1375 KnownBits Known = computeKnownBits(Src, 0, &CI);
1376 if (Known.isNonNegative()) {
1377 Value *ZExt = Builder.CreateZExt(Src, DestTy);
1378 return replaceInstUsesWith(CI, ZExt);
1379 }
1380
1381 // Try to extend the entire expression tree to the wide destination type.
1382 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1383 // Okay, we can transform this! Insert the new expression now.
1384 LLVM_DEBUG(
1385 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1386 " to avoid sign extend: "
1387 << CI << '\n');
1388 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1389 assert(Res->getType() == DestTy);
1390
1391 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1392 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1393
1394 // If the high bits are already filled with sign bit, just replace this
1395 // cast with the result.
1396 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1397 return replaceInstUsesWith(CI, Res);
1398
1399 // We need to emit a shl + ashr to do the sign extend.
1400 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1401 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1402 ShAmt);
1403 }
1404
1405 // If the input is a trunc from the destination type, then turn sext(trunc(x))
1406 // into shifts.
1407 Value *X;
1408 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1409 // sext(trunc(X)) --> ashr(shl(X, C), C)
1410 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1411 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1412 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1413 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1414 }
1415
1416 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1417 return transformSExtICmp(ICI, CI);
1418
1419 // If the input is a shl/ashr pair of a same constant, then this is a sign
1420 // extension from a smaller value. If we could trust arbitrary bitwidth
1421 // integers, we could turn this into a truncate to the smaller bit and then
1422 // use a sext for the whole extension. Since we don't, look deeper and check
1423 // for a truncate. If the source and dest are the same type, eliminate the
1424 // trunc and extend and just do shifts. For example, turn:
1425 // %a = trunc i32 %i to i8
1426 // %b = shl i8 %a, 6
1427 // %c = ashr i8 %b, 6
1428 // %d = sext i8 %c to i32
1429 // into:
1430 // %a = shl i32 %i, 30
1431 // %d = ashr i32 %a, 30
1432 Value *A = nullptr;
1433 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1434 ConstantInt *BA = nullptr, *CA = nullptr;
1435 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1436 m_ConstantInt(CA))) &&
1437 BA == CA && A->getType() == CI.getType()) {
1438 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1439 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1440 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1441 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1442 A = Builder.CreateShl(A, ShAmtV, CI.getName());
1443 return BinaryOperator::CreateAShr(A, ShAmtV);
1444 }
1445
1446 return nullptr;
1447 }
1448
1449
1450 /// Return a Constant* for the specified floating-point constant if it fits
1451 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1452 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1453 bool losesInfo;
1454 APFloat F = CFP->getValueAPF();
1455 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1456 return !losesInfo;
1457 }
1458
shrinkFPConstant(ConstantFP * CFP)1459 static Type *shrinkFPConstant(ConstantFP *CFP) {
1460 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1461 return nullptr; // No constant folding of this.
1462 // See if the value can be truncated to half and then reextended.
1463 if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1464 return Type::getHalfTy(CFP->getContext());
1465 // See if the value can be truncated to float and then reextended.
1466 if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1467 return Type::getFloatTy(CFP->getContext());
1468 if (CFP->getType()->isDoubleTy())
1469 return nullptr; // Won't shrink.
1470 if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1471 return Type::getDoubleTy(CFP->getContext());
1472 // Don't try to shrink to various long double types.
1473 return nullptr;
1474 }
1475
1476 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1477 // type we can safely truncate all elements to.
1478 // TODO: Make these support undef elements.
shrinkFPConstantVector(Value * V)1479 static Type *shrinkFPConstantVector(Value *V) {
1480 auto *CV = dyn_cast<Constant>(V);
1481 if (!CV || !CV->getType()->isVectorTy())
1482 return nullptr;
1483
1484 Type *MinType = nullptr;
1485
1486 unsigned NumElts = CV->getType()->getVectorNumElements();
1487 for (unsigned i = 0; i != NumElts; ++i) {
1488 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1489 if (!CFP)
1490 return nullptr;
1491
1492 Type *T = shrinkFPConstant(CFP);
1493 if (!T)
1494 return nullptr;
1495
1496 // If we haven't found a type yet or this type has a larger mantissa than
1497 // our previous type, this is our new minimal type.
1498 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1499 MinType = T;
1500 }
1501
1502 // Make a vector type from the minimal type.
1503 return VectorType::get(MinType, NumElts);
1504 }
1505
1506 /// Find the minimum FP type we can safely truncate to.
getMinimumFPType(Value * V)1507 static Type *getMinimumFPType(Value *V) {
1508 if (auto *FPExt = dyn_cast<FPExtInst>(V))
1509 return FPExt->getOperand(0)->getType();
1510
1511 // If this value is a constant, return the constant in the smallest FP type
1512 // that can accurately represent it. This allows us to turn
1513 // (float)((double)X+2.0) into x+2.0f.
1514 if (auto *CFP = dyn_cast<ConstantFP>(V))
1515 if (Type *T = shrinkFPConstant(CFP))
1516 return T;
1517
1518 // Try to shrink a vector of FP constants.
1519 if (Type *T = shrinkFPConstantVector(V))
1520 return T;
1521
1522 return V->getType();
1523 }
1524
visitFPTrunc(FPTruncInst & FPT)1525 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1526 if (Instruction *I = commonCastTransforms(FPT))
1527 return I;
1528
1529 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1530 // simplify this expression to avoid one or more of the trunc/extend
1531 // operations if we can do so without changing the numerical results.
1532 //
1533 // The exact manner in which the widths of the operands interact to limit
1534 // what we can and cannot do safely varies from operation to operation, and
1535 // is explained below in the various case statements.
1536 Type *Ty = FPT.getType();
1537 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1538 if (OpI && OpI->hasOneUse()) {
1539 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
1540 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
1541 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1542 unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1543 unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1544 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1545 unsigned DstWidth = Ty->getFPMantissaWidth();
1546 switch (OpI->getOpcode()) {
1547 default: break;
1548 case Instruction::FAdd:
1549 case Instruction::FSub:
1550 // For addition and subtraction, the infinitely precise result can
1551 // essentially be arbitrarily wide; proving that double rounding
1552 // will not occur because the result of OpI is exact (as we will for
1553 // FMul, for example) is hopeless. However, we *can* nonetheless
1554 // frequently know that double rounding cannot occur (or that it is
1555 // innocuous) by taking advantage of the specific structure of
1556 // infinitely-precise results that admit double rounding.
1557 //
1558 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1559 // to represent both sources, we can guarantee that the double
1560 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1561 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1562 // for proof of this fact).
1563 //
1564 // Note: Figueroa does not consider the case where DstFormat !=
1565 // SrcFormat. It's possible (likely even!) that this analysis
1566 // could be tightened for those cases, but they are rare (the main
1567 // case of interest here is (float)((double)float + float)).
1568 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1569 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1570 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1571 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1572 RI->copyFastMathFlags(OpI);
1573 return RI;
1574 }
1575 break;
1576 case Instruction::FMul:
1577 // For multiplication, the infinitely precise result has at most
1578 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1579 // that such a value can be exactly represented, then no double
1580 // rounding can possibly occur; we can safely perform the operation
1581 // in the destination format if it can represent both sources.
1582 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1583 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1584 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1585 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1586 }
1587 break;
1588 case Instruction::FDiv:
1589 // For division, we use again use the bound from Figueroa's
1590 // dissertation. I am entirely certain that this bound can be
1591 // tightened in the unbalanced operand case by an analysis based on
1592 // the diophantine rational approximation bound, but the well-known
1593 // condition used here is a good conservative first pass.
1594 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1595 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1596 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1597 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1598 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1599 }
1600 break;
1601 case Instruction::FRem: {
1602 // Remainder is straightforward. Remainder is always exact, so the
1603 // type of OpI doesn't enter into things at all. We simply evaluate
1604 // in whichever source type is larger, then convert to the
1605 // destination type.
1606 if (SrcWidth == OpWidth)
1607 break;
1608 Value *LHS, *RHS;
1609 if (LHSWidth == SrcWidth) {
1610 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1611 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1612 } else {
1613 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1614 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1615 }
1616
1617 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1618 return CastInst::CreateFPCast(ExactResult, Ty);
1619 }
1620 }
1621
1622 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1623 Value *X;
1624 if (match(OpI, m_FNeg(m_Value(X)))) {
1625 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1626 return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
1627 }
1628 }
1629
1630 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1631 switch (II->getIntrinsicID()) {
1632 default: break;
1633 case Intrinsic::ceil:
1634 case Intrinsic::fabs:
1635 case Intrinsic::floor:
1636 case Intrinsic::nearbyint:
1637 case Intrinsic::rint:
1638 case Intrinsic::round:
1639 case Intrinsic::trunc: {
1640 Value *Src = II->getArgOperand(0);
1641 if (!Src->hasOneUse())
1642 break;
1643
1644 // Except for fabs, this transformation requires the input of the unary FP
1645 // operation to be itself an fpext from the type to which we're
1646 // truncating.
1647 if (II->getIntrinsicID() != Intrinsic::fabs) {
1648 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1649 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1650 break;
1651 }
1652
1653 // Do unary FP operation on smaller type.
1654 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1655 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1656 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1657 II->getIntrinsicID(), Ty);
1658 SmallVector<OperandBundleDef, 1> OpBundles;
1659 II->getOperandBundlesAsDefs(OpBundles);
1660 CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
1661 II->getName());
1662 NewCI->copyFastMathFlags(II);
1663 return NewCI;
1664 }
1665 }
1666 }
1667
1668 if (Instruction *I = shrinkInsertElt(FPT, Builder))
1669 return I;
1670
1671 return nullptr;
1672 }
1673
visitFPExt(CastInst & CI)1674 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1675 return commonCastTransforms(CI);
1676 }
1677
1678 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1679 // This is safe if the intermediate type has enough bits in its mantissa to
1680 // accurately represent all values of X. For example, this won't work with
1681 // i64 -> float -> i64.
FoldItoFPtoI(Instruction & FI)1682 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1683 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1684 return nullptr;
1685 Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1686
1687 Value *SrcI = OpI->getOperand(0);
1688 Type *FITy = FI.getType();
1689 Type *OpITy = OpI->getType();
1690 Type *SrcTy = SrcI->getType();
1691 bool IsInputSigned = isa<SIToFPInst>(OpI);
1692 bool IsOutputSigned = isa<FPToSIInst>(FI);
1693
1694 // We can safely assume the conversion won't overflow the output range,
1695 // because (for example) (uint8_t)18293.f is undefined behavior.
1696
1697 // Since we can assume the conversion won't overflow, our decision as to
1698 // whether the input will fit in the float should depend on the minimum
1699 // of the input range and output range.
1700
1701 // This means this is also safe for a signed input and unsigned output, since
1702 // a negative input would lead to undefined behavior.
1703 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1704 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1705 int ActualSize = std::min(InputSize, OutputSize);
1706
1707 if (ActualSize <= OpITy->getFPMantissaWidth()) {
1708 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1709 if (IsInputSigned && IsOutputSigned)
1710 return new SExtInst(SrcI, FITy);
1711 return new ZExtInst(SrcI, FITy);
1712 }
1713 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1714 return new TruncInst(SrcI, FITy);
1715 if (SrcTy == FITy)
1716 return replaceInstUsesWith(FI, SrcI);
1717 return new BitCastInst(SrcI, FITy);
1718 }
1719 return nullptr;
1720 }
1721
visitFPToUI(FPToUIInst & FI)1722 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1723 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1724 if (!OpI)
1725 return commonCastTransforms(FI);
1726
1727 if (Instruction *I = FoldItoFPtoI(FI))
1728 return I;
1729
1730 return commonCastTransforms(FI);
1731 }
1732
visitFPToSI(FPToSIInst & FI)1733 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1734 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1735 if (!OpI)
1736 return commonCastTransforms(FI);
1737
1738 if (Instruction *I = FoldItoFPtoI(FI))
1739 return I;
1740
1741 return commonCastTransforms(FI);
1742 }
1743
visitUIToFP(CastInst & CI)1744 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1745 return commonCastTransforms(CI);
1746 }
1747
visitSIToFP(CastInst & CI)1748 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1749 return commonCastTransforms(CI);
1750 }
1751
visitIntToPtr(IntToPtrInst & CI)1752 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1753 // If the source integer type is not the intptr_t type for this target, do a
1754 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1755 // cast to be exposed to other transforms.
1756 unsigned AS = CI.getAddressSpace();
1757 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1758 DL.getPointerSizeInBits(AS)) {
1759 Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1760 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1761 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1762
1763 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1764 return new IntToPtrInst(P, CI.getType());
1765 }
1766
1767 if (Instruction *I = commonCastTransforms(CI))
1768 return I;
1769
1770 return nullptr;
1771 }
1772
1773 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1774 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1775 Value *Src = CI.getOperand(0);
1776
1777 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1778 // If casting the result of a getelementptr instruction with no offset, turn
1779 // this into a cast of the original pointer!
1780 if (GEP->hasAllZeroIndices() &&
1781 // If CI is an addrspacecast and GEP changes the poiner type, merging
1782 // GEP into CI would undo canonicalizing addrspacecast with different
1783 // pointer types, causing infinite loops.
1784 (!isa<AddrSpaceCastInst>(CI) ||
1785 GEP->getType() == GEP->getPointerOperandType())) {
1786 // Changing the cast operand is usually not a good idea but it is safe
1787 // here because the pointer operand is being replaced with another
1788 // pointer operand so the opcode doesn't need to change.
1789 Worklist.Add(GEP);
1790 CI.setOperand(0, GEP->getOperand(0));
1791 return &CI;
1792 }
1793 }
1794
1795 return commonCastTransforms(CI);
1796 }
1797
visitPtrToInt(PtrToIntInst & CI)1798 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1799 // If the destination integer type is not the intptr_t type for this target,
1800 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1801 // to be exposed to other transforms.
1802
1803 Type *Ty = CI.getType();
1804 unsigned AS = CI.getPointerAddressSpace();
1805
1806 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1807 return commonPointerCastTransforms(CI);
1808
1809 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1810 if (Ty->isVectorTy()) // Handle vectors of pointers.
1811 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1812
1813 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1814 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1815 }
1816
1817 /// This input value (which is known to have vector type) is being zero extended
1818 /// or truncated to the specified vector type.
1819 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1820 ///
1821 /// The source and destination vector types may have different element types.
optimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1822 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1823 InstCombiner &IC) {
1824 // We can only do this optimization if the output is a multiple of the input
1825 // element size, or the input is a multiple of the output element size.
1826 // Convert the input type to have the same element type as the output.
1827 VectorType *SrcTy = cast<VectorType>(InVal->getType());
1828
1829 if (SrcTy->getElementType() != DestTy->getElementType()) {
1830 // The input types don't need to be identical, but for now they must be the
1831 // same size. There is no specific reason we couldn't handle things like
1832 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1833 // there yet.
1834 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1835 DestTy->getElementType()->getPrimitiveSizeInBits())
1836 return nullptr;
1837
1838 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1839 InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1840 }
1841
1842 // Now that the element types match, get the shuffle mask and RHS of the
1843 // shuffle to use, which depends on whether we're increasing or decreasing the
1844 // size of the input.
1845 SmallVector<uint32_t, 16> ShuffleMask;
1846 Value *V2;
1847
1848 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1849 // If we're shrinking the number of elements, just shuffle in the low
1850 // elements from the input and use undef as the second shuffle input.
1851 V2 = UndefValue::get(SrcTy);
1852 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1853 ShuffleMask.push_back(i);
1854
1855 } else {
1856 // If we're increasing the number of elements, shuffle in all of the
1857 // elements from InVal and fill the rest of the result elements with zeros
1858 // from a constant zero.
1859 V2 = Constant::getNullValue(SrcTy);
1860 unsigned SrcElts = SrcTy->getNumElements();
1861 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1862 ShuffleMask.push_back(i);
1863
1864 // The excess elements reference the first element of the zero input.
1865 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1866 ShuffleMask.push_back(SrcElts);
1867 }
1868
1869 return new ShuffleVectorInst(InVal, V2,
1870 ConstantDataVector::get(V2->getContext(),
1871 ShuffleMask));
1872 }
1873
isMultipleOfTypeSize(unsigned Value,Type * Ty)1874 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1875 return Value % Ty->getPrimitiveSizeInBits() == 0;
1876 }
1877
getTypeSizeIndex(unsigned Value,Type * Ty)1878 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1879 return Value / Ty->getPrimitiveSizeInBits();
1880 }
1881
1882 /// V is a value which is inserted into a vector of VecEltTy.
1883 /// Look through the value to see if we can decompose it into
1884 /// insertions into the vector. See the example in the comment for
1885 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1886 /// The type of V is always a non-zero multiple of VecEltTy's size.
1887 /// Shift is the number of bits between the lsb of V and the lsb of
1888 /// the vector.
1889 ///
1890 /// This returns false if the pattern can't be matched or true if it can,
1891 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)1892 static bool collectInsertionElements(Value *V, unsigned Shift,
1893 SmallVectorImpl<Value *> &Elements,
1894 Type *VecEltTy, bool isBigEndian) {
1895 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1896 "Shift should be a multiple of the element type size");
1897
1898 // Undef values never contribute useful bits to the result.
1899 if (isa<UndefValue>(V)) return true;
1900
1901 // If we got down to a value of the right type, we win, try inserting into the
1902 // right element.
1903 if (V->getType() == VecEltTy) {
1904 // Inserting null doesn't actually insert any elements.
1905 if (Constant *C = dyn_cast<Constant>(V))
1906 if (C->isNullValue())
1907 return true;
1908
1909 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1910 if (isBigEndian)
1911 ElementIndex = Elements.size() - ElementIndex - 1;
1912
1913 // Fail if multiple elements are inserted into this slot.
1914 if (Elements[ElementIndex])
1915 return false;
1916
1917 Elements[ElementIndex] = V;
1918 return true;
1919 }
1920
1921 if (Constant *C = dyn_cast<Constant>(V)) {
1922 // Figure out the # elements this provides, and bitcast it or slice it up
1923 // as required.
1924 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1925 VecEltTy);
1926 // If the constant is the size of a vector element, we just need to bitcast
1927 // it to the right type so it gets properly inserted.
1928 if (NumElts == 1)
1929 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1930 Shift, Elements, VecEltTy, isBigEndian);
1931
1932 // Okay, this is a constant that covers multiple elements. Slice it up into
1933 // pieces and insert each element-sized piece into the vector.
1934 if (!isa<IntegerType>(C->getType()))
1935 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1936 C->getType()->getPrimitiveSizeInBits()));
1937 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1938 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1939
1940 for (unsigned i = 0; i != NumElts; ++i) {
1941 unsigned ShiftI = Shift+i*ElementSize;
1942 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1943 ShiftI));
1944 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1945 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1946 isBigEndian))
1947 return false;
1948 }
1949 return true;
1950 }
1951
1952 if (!V->hasOneUse()) return false;
1953
1954 Instruction *I = dyn_cast<Instruction>(V);
1955 if (!I) return false;
1956 switch (I->getOpcode()) {
1957 default: return false; // Unhandled case.
1958 case Instruction::BitCast:
1959 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1960 isBigEndian);
1961 case Instruction::ZExt:
1962 if (!isMultipleOfTypeSize(
1963 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1964 VecEltTy))
1965 return false;
1966 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1967 isBigEndian);
1968 case Instruction::Or:
1969 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1970 isBigEndian) &&
1971 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1972 isBigEndian);
1973 case Instruction::Shl: {
1974 // Must be shifting by a constant that is a multiple of the element size.
1975 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1976 if (!CI) return false;
1977 Shift += CI->getZExtValue();
1978 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1979 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1980 isBigEndian);
1981 }
1982
1983 }
1984 }
1985
1986
1987 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1988 /// assemble the elements of the vector manually.
1989 /// Try to rip the code out and replace it with insertelements. This is to
1990 /// optimize code like this:
1991 ///
1992 /// %tmp37 = bitcast float %inc to i32
1993 /// %tmp38 = zext i32 %tmp37 to i64
1994 /// %tmp31 = bitcast float %inc5 to i32
1995 /// %tmp32 = zext i32 %tmp31 to i64
1996 /// %tmp33 = shl i64 %tmp32, 32
1997 /// %ins35 = or i64 %tmp33, %tmp38
1998 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
1999 ///
2000 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)2001 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2002 InstCombiner &IC) {
2003 VectorType *DestVecTy = cast<VectorType>(CI.getType());
2004 Value *IntInput = CI.getOperand(0);
2005
2006 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2007 if (!collectInsertionElements(IntInput, 0, Elements,
2008 DestVecTy->getElementType(),
2009 IC.getDataLayout().isBigEndian()))
2010 return nullptr;
2011
2012 // If we succeeded, we know that all of the element are specified by Elements
2013 // or are zero if Elements has a null entry. Recast this as a set of
2014 // insertions.
2015 Value *Result = Constant::getNullValue(CI.getType());
2016 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2017 if (!Elements[i]) continue; // Unset element.
2018
2019 Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2020 IC.Builder.getInt32(i));
2021 }
2022
2023 return Result;
2024 }
2025
2026 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2027 /// vector followed by extract element. The backend tends to handle bitcasts of
2028 /// vectors better than bitcasts of scalars because vector registers are
2029 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombiner & IC)2030 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2031 InstCombiner &IC) {
2032 // TODO: Create and use a pattern matcher for ExtractElementInst.
2033 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2034 if (!ExtElt || !ExtElt->hasOneUse())
2035 return nullptr;
2036
2037 // The bitcast must be to a vectorizable type, otherwise we can't make a new
2038 // type to extract from.
2039 Type *DestType = BitCast.getType();
2040 if (!VectorType::isValidElementType(DestType))
2041 return nullptr;
2042
2043 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2044 auto *NewVecType = VectorType::get(DestType, NumElts);
2045 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2046 NewVecType, "bc");
2047 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2048 }
2049
2050 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
foldBitCastBitwiseLogic(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2051 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2052 InstCombiner::BuilderTy &Builder) {
2053 Type *DestTy = BitCast.getType();
2054 BinaryOperator *BO;
2055 if (!DestTy->isIntOrIntVectorTy() ||
2056 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2057 !BO->isBitwiseLogicOp())
2058 return nullptr;
2059
2060 // FIXME: This transform is restricted to vector types to avoid backend
2061 // problems caused by creating potentially illegal operations. If a fix-up is
2062 // added to handle that situation, we can remove this check.
2063 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2064 return nullptr;
2065
2066 Value *X;
2067 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2068 X->getType() == DestTy && !isa<Constant>(X)) {
2069 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2070 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2071 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2072 }
2073
2074 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2075 X->getType() == DestTy && !isa<Constant>(X)) {
2076 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2077 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2078 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2079 }
2080
2081 // Canonicalize vector bitcasts to come before vector bitwise logic with a
2082 // constant. This eases recognition of special constants for later ops.
2083 // Example:
2084 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2085 Constant *C;
2086 if (match(BO->getOperand(1), m_Constant(C))) {
2087 // bitcast (logic X, C) --> logic (bitcast X, C')
2088 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2089 Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2090 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2091 }
2092
2093 return nullptr;
2094 }
2095
2096 /// Change the type of a select if we can eliminate a bitcast.
foldBitCastSelect(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2097 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2098 InstCombiner::BuilderTy &Builder) {
2099 Value *Cond, *TVal, *FVal;
2100 if (!match(BitCast.getOperand(0),
2101 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2102 return nullptr;
2103
2104 // A vector select must maintain the same number of elements in its operands.
2105 Type *CondTy = Cond->getType();
2106 Type *DestTy = BitCast.getType();
2107 if (CondTy->isVectorTy()) {
2108 if (!DestTy->isVectorTy())
2109 return nullptr;
2110 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2111 return nullptr;
2112 }
2113
2114 // FIXME: This transform is restricted from changing the select between
2115 // scalars and vectors to avoid backend problems caused by creating
2116 // potentially illegal operations. If a fix-up is added to handle that
2117 // situation, we can remove this check.
2118 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2119 return nullptr;
2120
2121 auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2122 Value *X;
2123 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2124 !isa<Constant>(X)) {
2125 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2126 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2127 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2128 }
2129
2130 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2131 !isa<Constant>(X)) {
2132 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2133 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2134 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2135 }
2136
2137 return nullptr;
2138 }
2139
2140 /// Check if all users of CI are StoreInsts.
hasStoreUsersOnly(CastInst & CI)2141 static bool hasStoreUsersOnly(CastInst &CI) {
2142 for (User *U : CI.users()) {
2143 if (!isa<StoreInst>(U))
2144 return false;
2145 }
2146 return true;
2147 }
2148
2149 /// This function handles following case
2150 ///
2151 /// A -> B cast
2152 /// PHI
2153 /// B -> A cast
2154 ///
2155 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2156 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeBitCastFromPhi(CastInst & CI,PHINode * PN)2157 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2158 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2159 if (hasStoreUsersOnly(CI))
2160 return nullptr;
2161
2162 Value *Src = CI.getOperand(0);
2163 Type *SrcTy = Src->getType(); // Type B
2164 Type *DestTy = CI.getType(); // Type A
2165
2166 SmallVector<PHINode *, 4> PhiWorklist;
2167 SmallSetVector<PHINode *, 4> OldPhiNodes;
2168
2169 // Find all of the A->B casts and PHI nodes.
2170 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2171 // OldPhiNodes is used to track all known PHI nodes, before adding a new
2172 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2173 PhiWorklist.push_back(PN);
2174 OldPhiNodes.insert(PN);
2175 while (!PhiWorklist.empty()) {
2176 auto *OldPN = PhiWorklist.pop_back_val();
2177 for (Value *IncValue : OldPN->incoming_values()) {
2178 if (isa<Constant>(IncValue))
2179 continue;
2180
2181 if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2182 // If there is a sequence of one or more load instructions, each loaded
2183 // value is used as address of later load instruction, bitcast is
2184 // necessary to change the value type, don't optimize it. For
2185 // simplicity we give up if the load address comes from another load.
2186 Value *Addr = LI->getOperand(0);
2187 if (Addr == &CI || isa<LoadInst>(Addr))
2188 return nullptr;
2189 if (LI->hasOneUse() && LI->isSimple())
2190 continue;
2191 // If a LoadInst has more than one use, changing the type of loaded
2192 // value may create another bitcast.
2193 return nullptr;
2194 }
2195
2196 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2197 if (OldPhiNodes.insert(PNode))
2198 PhiWorklist.push_back(PNode);
2199 continue;
2200 }
2201
2202 auto *BCI = dyn_cast<BitCastInst>(IncValue);
2203 // We can't handle other instructions.
2204 if (!BCI)
2205 return nullptr;
2206
2207 // Verify it's a A->B cast.
2208 Type *TyA = BCI->getOperand(0)->getType();
2209 Type *TyB = BCI->getType();
2210 if (TyA != DestTy || TyB != SrcTy)
2211 return nullptr;
2212 }
2213 }
2214
2215 // For each old PHI node, create a corresponding new PHI node with a type A.
2216 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2217 for (auto *OldPN : OldPhiNodes) {
2218 Builder.SetInsertPoint(OldPN);
2219 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2220 NewPNodes[OldPN] = NewPN;
2221 }
2222
2223 // Fill in the operands of new PHI nodes.
2224 for (auto *OldPN : OldPhiNodes) {
2225 PHINode *NewPN = NewPNodes[OldPN];
2226 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2227 Value *V = OldPN->getOperand(j);
2228 Value *NewV = nullptr;
2229 if (auto *C = dyn_cast<Constant>(V)) {
2230 NewV = ConstantExpr::getBitCast(C, DestTy);
2231 } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2232 Builder.SetInsertPoint(LI->getNextNode());
2233 NewV = Builder.CreateBitCast(LI, DestTy);
2234 Worklist.Add(LI);
2235 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2236 NewV = BCI->getOperand(0);
2237 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2238 NewV = NewPNodes[PrevPN];
2239 }
2240 assert(NewV);
2241 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2242 }
2243 }
2244
2245 // If there is a store with type B, change it to type A.
2246 for (User *U : PN->users()) {
2247 auto *SI = dyn_cast<StoreInst>(U);
2248 if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2249 Builder.SetInsertPoint(SI);
2250 auto *NewBC =
2251 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2252 SI->setOperand(0, NewBC);
2253 Worklist.Add(SI);
2254 assert(hasStoreUsersOnly(*NewBC));
2255 }
2256 }
2257
2258 return replaceInstUsesWith(CI, NewPNodes[PN]);
2259 }
2260
visitBitCast(BitCastInst & CI)2261 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2262 // If the operands are integer typed then apply the integer transforms,
2263 // otherwise just apply the common ones.
2264 Value *Src = CI.getOperand(0);
2265 Type *SrcTy = Src->getType();
2266 Type *DestTy = CI.getType();
2267
2268 // Get rid of casts from one type to the same type. These are useless and can
2269 // be replaced by the operand.
2270 if (DestTy == Src->getType())
2271 return replaceInstUsesWith(CI, Src);
2272
2273 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2274 PointerType *SrcPTy = cast<PointerType>(SrcTy);
2275 Type *DstElTy = DstPTy->getElementType();
2276 Type *SrcElTy = SrcPTy->getElementType();
2277
2278 // Casting pointers between the same type, but with different address spaces
2279 // is an addrspace cast rather than a bitcast.
2280 if ((DstElTy == SrcElTy) &&
2281 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2282 return new AddrSpaceCastInst(Src, DestTy);
2283
2284 // If we are casting a alloca to a pointer to a type of the same
2285 // size, rewrite the allocation instruction to allocate the "right" type.
2286 // There is no need to modify malloc calls because it is their bitcast that
2287 // needs to be cleaned up.
2288 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2289 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2290 return V;
2291
2292 // When the type pointed to is not sized the cast cannot be
2293 // turned into a gep.
2294 Type *PointeeType =
2295 cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2296 if (!PointeeType->isSized())
2297 return nullptr;
2298
2299 // If the source and destination are pointers, and this cast is equivalent
2300 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
2301 // This can enhance SROA and other transforms that want type-safe pointers.
2302 unsigned NumZeros = 0;
2303 while (SrcElTy != DstElTy &&
2304 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2305 SrcElTy->getNumContainedTypes() /* not "{}" */) {
2306 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2307 ++NumZeros;
2308 }
2309
2310 // If we found a path from the src to dest, create the getelementptr now.
2311 if (SrcElTy == DstElTy) {
2312 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2313 return GetElementPtrInst::CreateInBounds(Src, Idxs);
2314 }
2315 }
2316
2317 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2318 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2319 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2320 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2321 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2322 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2323 }
2324
2325 if (isa<IntegerType>(SrcTy)) {
2326 // If this is a cast from an integer to vector, check to see if the input
2327 // is a trunc or zext of a bitcast from vector. If so, we can replace all
2328 // the casts with a shuffle and (potentially) a bitcast.
2329 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2330 CastInst *SrcCast = cast<CastInst>(Src);
2331 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2332 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2333 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2334 cast<VectorType>(DestTy), *this))
2335 return I;
2336 }
2337
2338 // If the input is an 'or' instruction, we may be doing shifts and ors to
2339 // assemble the elements of the vector manually. Try to rip the code out
2340 // and replace it with insertelements.
2341 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2342 return replaceInstUsesWith(CI, V);
2343 }
2344 }
2345
2346 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2347 if (SrcVTy->getNumElements() == 1) {
2348 // If our destination is not a vector, then make this a straight
2349 // scalar-scalar cast.
2350 if (!DestTy->isVectorTy()) {
2351 Value *Elem =
2352 Builder.CreateExtractElement(Src,
2353 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2354 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2355 }
2356
2357 // Otherwise, see if our source is an insert. If so, then use the scalar
2358 // component directly.
2359 if (InsertElementInst *IEI =
2360 dyn_cast<InsertElementInst>(CI.getOperand(0)))
2361 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2362 DestTy);
2363 }
2364 }
2365
2366 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2367 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
2368 // a bitcast to a vector with the same # elts.
2369 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2370 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2371 SVI->getType()->getNumElements() ==
2372 SVI->getOperand(0)->getType()->getVectorNumElements()) {
2373 BitCastInst *Tmp;
2374 // If either of the operands is a cast from CI.getType(), then
2375 // evaluating the shuffle in the casted destination's type will allow
2376 // us to eliminate at least one cast.
2377 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2378 Tmp->getOperand(0)->getType() == DestTy) ||
2379 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2380 Tmp->getOperand(0)->getType() == DestTy)) {
2381 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2382 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2383 // Return a new shuffle vector. Use the same element ID's, as we
2384 // know the vector types match #elts.
2385 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2386 }
2387 }
2388 }
2389
2390 // Handle the A->B->A cast, and there is an intervening PHI node.
2391 if (PHINode *PN = dyn_cast<PHINode>(Src))
2392 if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2393 return I;
2394
2395 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2396 return I;
2397
2398 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2399 return I;
2400
2401 if (Instruction *I = foldBitCastSelect(CI, Builder))
2402 return I;
2403
2404 if (SrcTy->isPointerTy())
2405 return commonPointerCastTransforms(CI);
2406 return commonCastTransforms(CI);
2407 }
2408
visitAddrSpaceCast(AddrSpaceCastInst & CI)2409 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2410 // If the destination pointer element type is not the same as the source's
2411 // first do a bitcast to the destination type, and then the addrspacecast.
2412 // This allows the cast to be exposed to other transforms.
2413 Value *Src = CI.getOperand(0);
2414 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2415 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2416
2417 Type *DestElemTy = DestTy->getElementType();
2418 if (SrcTy->getElementType() != DestElemTy) {
2419 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2420 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2421 // Handle vectors of pointers.
2422 MidTy = VectorType::get(MidTy, VT->getNumElements());
2423 }
2424
2425 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2426 return new AddrSpaceCastInst(NewBitCast, CI.getType());
2427 }
2428
2429 return commonPointerCastTransforms(CI);
2430 }
2431