1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to multiple loops. For example, it turns the left into the right code:
12 //
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AssumptionCache.h"
34 #include "llvm/Analysis/CodeMetrics.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopIterator.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/MemorySSA.h"
41 #include "llvm/Analysis/MemorySSAUpdater.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/ValueHandle.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Scalar/LoopPassManager.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84
85 #define DEBUG_TYPE "loop-unswitch"
86
87 STATISTIC(NumBranches, "Number of branches unswitched");
88 STATISTIC(NumSwitches, "Number of switches unswitched");
89 STATISTIC(NumGuards, "Number of guards unswitched");
90 STATISTIC(NumSelects , "Number of selects unswitched");
91 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
92 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
93 STATISTIC(TotalInsts, "Total number of instructions analyzed");
94
95 // The specific value of 100 here was chosen based only on intuition and a
96 // few specific examples.
97 static cl::opt<unsigned>
98 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
99 cl::init(100), cl::Hidden);
100
101 namespace {
102
103 class LUAnalysisCache {
104 using UnswitchedValsMap =
105 DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
106 using UnswitchedValsIt = UnswitchedValsMap::iterator;
107
108 struct LoopProperties {
109 unsigned CanBeUnswitchedCount;
110 unsigned WasUnswitchedCount;
111 unsigned SizeEstimation;
112 UnswitchedValsMap UnswitchedVals;
113 };
114
115 // Here we use std::map instead of DenseMap, since we need to keep valid
116 // LoopProperties pointer for current loop for better performance.
117 using LoopPropsMap = std::map<const Loop *, LoopProperties>;
118 using LoopPropsMapIt = LoopPropsMap::iterator;
119
120 LoopPropsMap LoopsProperties;
121 UnswitchedValsMap *CurLoopInstructions = nullptr;
122 LoopProperties *CurrentLoopProperties = nullptr;
123
124 // A loop unswitching with an estimated cost above this threshold
125 // is not performed. MaxSize is turned into unswitching quota for
126 // the current loop, and reduced correspondingly, though note that
127 // the quota is returned by releaseMemory() when the loop has been
128 // processed, so that MaxSize will return to its previous
129 // value. So in most cases MaxSize will equal the Threshold flag
130 // when a new loop is processed. An exception to that is that
131 // MaxSize will have a smaller value while processing nested loops
132 // that were introduced due to loop unswitching of an outer loop.
133 //
134 // FIXME: The way that MaxSize works is subtle and depends on the
135 // pass manager processing loops and calling releaseMemory() in a
136 // specific order. It would be good to find a more straightforward
137 // way of doing what MaxSize does.
138 unsigned MaxSize;
139
140 public:
LUAnalysisCache()141 LUAnalysisCache() : MaxSize(Threshold) {}
142
143 // Analyze loop. Check its size, calculate is it possible to unswitch
144 // it. Returns true if we can unswitch this loop.
145 bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
146 AssumptionCache *AC);
147
148 // Clean all data related to given loop.
149 void forgetLoop(const Loop *L);
150
151 // Mark case value as unswitched.
152 // Since SI instruction can be partly unswitched, in order to avoid
153 // extra unswitching in cloned loops keep track all unswitched values.
154 void setUnswitched(const SwitchInst *SI, const Value *V);
155
156 // Check was this case value unswitched before or not.
157 bool isUnswitched(const SwitchInst *SI, const Value *V);
158
159 // Returns true if another unswitching could be done within the cost
160 // threshold.
161 bool CostAllowsUnswitching();
162
163 // Clone all loop-unswitch related loop properties.
164 // Redistribute unswitching quotas.
165 // Note, that new loop data is stored inside the VMap.
166 void cloneData(const Loop *NewLoop, const Loop *OldLoop,
167 const ValueToValueMapTy &VMap);
168 };
169
170 class LoopUnswitch : public LoopPass {
171 LoopInfo *LI; // Loop information
172 LPPassManager *LPM;
173 AssumptionCache *AC;
174
175 // Used to check if second loop needs processing after
176 // RewriteLoopBodyWithConditionConstant rewrites first loop.
177 std::vector<Loop*> LoopProcessWorklist;
178
179 LUAnalysisCache BranchesInfo;
180
181 bool OptimizeForSize;
182 bool redoLoop = false;
183
184 Loop *currentLoop = nullptr;
185 DominatorTree *DT = nullptr;
186 MemorySSA *MSSA = nullptr;
187 std::unique_ptr<MemorySSAUpdater> MSSAU;
188 BasicBlock *loopHeader = nullptr;
189 BasicBlock *loopPreheader = nullptr;
190
191 bool SanitizeMemory;
192 SimpleLoopSafetyInfo SafetyInfo;
193
194 // LoopBlocks contains all of the basic blocks of the loop, including the
195 // preheader of the loop, the body of the loop, and the exit blocks of the
196 // loop, in that order.
197 std::vector<BasicBlock*> LoopBlocks;
198 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
199 std::vector<BasicBlock*> NewBlocks;
200
201 bool hasBranchDivergence;
202
203 public:
204 static char ID; // Pass ID, replacement for typeid
205
LoopUnswitch(bool Os=false,bool hasBranchDivergence=false)206 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
207 : LoopPass(ID), OptimizeForSize(Os),
208 hasBranchDivergence(hasBranchDivergence) {
209 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
210 }
211
212 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
213 bool processCurrentLoop();
214 bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
215
216 /// This transformation requires natural loop information & requires that
217 /// loop preheaders be inserted into the CFG.
218 ///
getAnalysisUsage(AnalysisUsage & AU) const219 void getAnalysisUsage(AnalysisUsage &AU) const override {
220 AU.addRequired<AssumptionCacheTracker>();
221 AU.addRequired<TargetTransformInfoWrapperPass>();
222 if (EnableMSSALoopDependency) {
223 AU.addRequired<MemorySSAWrapperPass>();
224 AU.addPreserved<MemorySSAWrapperPass>();
225 }
226 if (hasBranchDivergence)
227 AU.addRequired<LegacyDivergenceAnalysis>();
228 getLoopAnalysisUsage(AU);
229 }
230
231 private:
releaseMemory()232 void releaseMemory() override {
233 BranchesInfo.forgetLoop(currentLoop);
234 }
235
initLoopData()236 void initLoopData() {
237 loopHeader = currentLoop->getHeader();
238 loopPreheader = currentLoop->getLoopPreheader();
239 }
240
241 /// Split all of the edges from inside the loop to their exit blocks.
242 /// Update the appropriate Phi nodes as we do so.
243 void SplitExitEdges(Loop *L,
244 const SmallVectorImpl<BasicBlock *> &ExitBlocks);
245
246 bool TryTrivialLoopUnswitch(bool &Changed);
247
248 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
249 Instruction *TI = nullptr);
250 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
251 BasicBlock *ExitBlock, Instruction *TI);
252 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
253 Instruction *TI);
254
255 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
256 Constant *Val, bool isEqual);
257
258 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
259 BasicBlock *TrueDest,
260 BasicBlock *FalseDest,
261 BranchInst *OldBranch, Instruction *TI);
262
263 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
264
265 /// Given that the Invariant is not equal to Val. Simplify instructions
266 /// in the loop.
267 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
268 Constant *Val);
269 };
270
271 } // end anonymous namespace
272
273 // Analyze loop. Check its size, calculate is it possible to unswitch
274 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)275 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
276 AssumptionCache *AC) {
277 LoopPropsMapIt PropsIt;
278 bool Inserted;
279 std::tie(PropsIt, Inserted) =
280 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
281
282 LoopProperties &Props = PropsIt->second;
283
284 if (Inserted) {
285 // New loop.
286
287 // Limit the number of instructions to avoid causing significant code
288 // expansion, and the number of basic blocks, to avoid loops with
289 // large numbers of branches which cause loop unswitching to go crazy.
290 // This is a very ad-hoc heuristic.
291
292 SmallPtrSet<const Value *, 32> EphValues;
293 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
294
295 // FIXME: This is overly conservative because it does not take into
296 // consideration code simplification opportunities and code that can
297 // be shared by the resultant unswitched loops.
298 CodeMetrics Metrics;
299 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
300 ++I)
301 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
302
303 Props.SizeEstimation = Metrics.NumInsts;
304 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
305 Props.WasUnswitchedCount = 0;
306 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
307
308 if (Metrics.notDuplicatable) {
309 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
310 << ", contents cannot be "
311 << "duplicated!\n");
312 return false;
313 }
314 }
315
316 // Be careful. This links are good only before new loop addition.
317 CurrentLoopProperties = &Props;
318 CurLoopInstructions = &Props.UnswitchedVals;
319
320 return true;
321 }
322
323 // Clean all data related to given loop.
forgetLoop(const Loop * L)324 void LUAnalysisCache::forgetLoop(const Loop *L) {
325 LoopPropsMapIt LIt = LoopsProperties.find(L);
326
327 if (LIt != LoopsProperties.end()) {
328 LoopProperties &Props = LIt->second;
329 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
330 Props.SizeEstimation;
331 LoopsProperties.erase(LIt);
332 }
333
334 CurrentLoopProperties = nullptr;
335 CurLoopInstructions = nullptr;
336 }
337
338 // Mark case value as unswitched.
339 // Since SI instruction can be partly unswitched, in order to avoid
340 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)341 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
342 (*CurLoopInstructions)[SI].insert(V);
343 }
344
345 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)346 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
347 return (*CurLoopInstructions)[SI].count(V);
348 }
349
CostAllowsUnswitching()350 bool LUAnalysisCache::CostAllowsUnswitching() {
351 return CurrentLoopProperties->CanBeUnswitchedCount > 0;
352 }
353
354 // Clone all loop-unswitch related loop properties.
355 // Redistribute unswitching quotas.
356 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)357 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
358 const ValueToValueMapTy &VMap) {
359 LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
360 LoopProperties &OldLoopProps = *CurrentLoopProperties;
361 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
362
363 // Reallocate "can-be-unswitched quota"
364
365 --OldLoopProps.CanBeUnswitchedCount;
366 ++OldLoopProps.WasUnswitchedCount;
367 NewLoopProps.WasUnswitchedCount = 0;
368 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
369 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
370 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
371
372 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
373
374 // Clone unswitched values info:
375 // for new loop switches we clone info about values that was
376 // already unswitched and has redundant successors.
377 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
378 const SwitchInst *OldInst = I->first;
379 Value *NewI = VMap.lookup(OldInst);
380 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
381 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
382
383 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
384 }
385 }
386
387 char LoopUnswitch::ID = 0;
388
389 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
390 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)391 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
392 INITIALIZE_PASS_DEPENDENCY(LoopPass)
393 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
394 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
395 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
396 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
397 false, false)
398
399 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
400 return new LoopUnswitch(Os, hasBranchDivergence);
401 }
402
403 /// Operator chain lattice.
404 enum OperatorChain {
405 OC_OpChainNone, ///< There is no operator.
406 OC_OpChainOr, ///< There are only ORs.
407 OC_OpChainAnd, ///< There are only ANDs.
408 OC_OpChainMixed ///< There are ANDs and ORs.
409 };
410
411 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
412 /// an invariant piece, return the invariant. Otherwise, return null.
413 //
414 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
415 /// mixed operator chain, as we can not reliably find a value which will simplify
416 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
417 /// to simplify the chain.
418 ///
419 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
420 /// simplify the condition itself to a loop variant condition, but at the
421 /// cost of creating an entirely new loop.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,OperatorChain & ParentChain,DenseMap<Value *,Value * > & Cache)422 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
423 OperatorChain &ParentChain,
424 DenseMap<Value *, Value *> &Cache) {
425 auto CacheIt = Cache.find(Cond);
426 if (CacheIt != Cache.end())
427 return CacheIt->second;
428
429 // We started analyze new instruction, increment scanned instructions counter.
430 ++TotalInsts;
431
432 // We can never unswitch on vector conditions.
433 if (Cond->getType()->isVectorTy())
434 return nullptr;
435
436 // Constants should be folded, not unswitched on!
437 if (isa<Constant>(Cond)) return nullptr;
438
439 // TODO: Handle: br (VARIANT|INVARIANT).
440
441 // Hoist simple values out.
442 if (L->makeLoopInvariant(Cond, Changed)) {
443 Cache[Cond] = Cond;
444 return Cond;
445 }
446
447 // Walk up the operator chain to find partial invariant conditions.
448 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
449 if (BO->getOpcode() == Instruction::And ||
450 BO->getOpcode() == Instruction::Or) {
451 // Given the previous operator, compute the current operator chain status.
452 OperatorChain NewChain;
453 switch (ParentChain) {
454 case OC_OpChainNone:
455 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
456 OC_OpChainOr;
457 break;
458 case OC_OpChainOr:
459 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
460 OC_OpChainMixed;
461 break;
462 case OC_OpChainAnd:
463 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
464 OC_OpChainMixed;
465 break;
466 case OC_OpChainMixed:
467 NewChain = OC_OpChainMixed;
468 break;
469 }
470
471 // If we reach a Mixed state, we do not want to keep walking up as we can not
472 // reliably find a value that will simplify the chain. With this check, we
473 // will return null on the first sight of mixed chain and the caller will
474 // either backtrack to find partial LIV in other operand or return null.
475 if (NewChain != OC_OpChainMixed) {
476 // Update the current operator chain type before we search up the chain.
477 ParentChain = NewChain;
478 // If either the left or right side is invariant, we can unswitch on this,
479 // which will cause the branch to go away in one loop and the condition to
480 // simplify in the other one.
481 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
482 ParentChain, Cache)) {
483 Cache[Cond] = LHS;
484 return LHS;
485 }
486 // We did not manage to find a partial LIV in operand(0). Backtrack and try
487 // operand(1).
488 ParentChain = NewChain;
489 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
490 ParentChain, Cache)) {
491 Cache[Cond] = RHS;
492 return RHS;
493 }
494 }
495 }
496
497 Cache[Cond] = nullptr;
498 return nullptr;
499 }
500
501 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
502 /// an invariant piece, return the invariant along with the operator chain type.
503 /// Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)504 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
505 Loop *L,
506 bool &Changed) {
507 DenseMap<Value *, Value *> Cache;
508 OperatorChain OpChain = OC_OpChainNone;
509 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
510
511 // In case we do find a LIV, it can not be obtained by walking up a mixed
512 // operator chain.
513 assert((!FCond || OpChain != OC_OpChainMixed) &&
514 "Do not expect a partial LIV with mixed operator chain");
515 return {FCond, OpChain};
516 }
517
runOnLoop(Loop * L,LPPassManager & LPM_Ref)518 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
519 if (skipLoop(L))
520 return false;
521
522 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
523 *L->getHeader()->getParent());
524 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
525 LPM = &LPM_Ref;
526 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
527 if (EnableMSSALoopDependency) {
528 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
529 MSSAU = make_unique<MemorySSAUpdater>(MSSA);
530 assert(DT && "Cannot update MemorySSA without a valid DomTree.");
531 }
532 currentLoop = L;
533 Function *F = currentLoop->getHeader()->getParent();
534
535 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
536 if (SanitizeMemory)
537 SafetyInfo.computeLoopSafetyInfo(L);
538
539 if (MSSA && VerifyMemorySSA)
540 MSSA->verifyMemorySSA();
541
542 bool Changed = false;
543 do {
544 assert(currentLoop->isLCSSAForm(*DT));
545 if (MSSA && VerifyMemorySSA)
546 MSSA->verifyMemorySSA();
547 redoLoop = false;
548 Changed |= processCurrentLoop();
549 } while(redoLoop);
550
551 if (MSSA && VerifyMemorySSA)
552 MSSA->verifyMemorySSA();
553
554 return Changed;
555 }
556
557 // Return true if the BasicBlock BB is unreachable from the loop header.
558 // Return false, otherwise.
isUnreachableDueToPreviousUnswitching(BasicBlock * BB)559 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
560 auto *Node = DT->getNode(BB)->getIDom();
561 BasicBlock *DomBB = Node->getBlock();
562 while (currentLoop->contains(DomBB)) {
563 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
564
565 Node = DT->getNode(DomBB)->getIDom();
566 DomBB = Node->getBlock();
567
568 if (!BInst || !BInst->isConditional())
569 continue;
570
571 Value *Cond = BInst->getCondition();
572 if (!isa<ConstantInt>(Cond))
573 continue;
574
575 BasicBlock *UnreachableSucc =
576 Cond == ConstantInt::getTrue(Cond->getContext())
577 ? BInst->getSuccessor(1)
578 : BInst->getSuccessor(0);
579
580 if (DT->dominates(UnreachableSucc, BB))
581 return true;
582 }
583 return false;
584 }
585
586 /// FIXME: Remove this workaround when freeze related patches are done.
587 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
588 /// whether branch on undef/poison has undefine behavior. Here it is to
589 /// rule out some common cases that we found such discrepancy already
590 /// causing problems. Detail could be found in PR31652. Note if the
591 /// func returns true, it is unsafe. But if it is false, it doesn't mean
592 /// it is necessarily safe.
EqualityPropUnSafe(Value & LoopCond)593 static bool EqualityPropUnSafe(Value &LoopCond) {
594 ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
595 if (!CI || !CI->isEquality())
596 return false;
597
598 Value *LHS = CI->getOperand(0);
599 Value *RHS = CI->getOperand(1);
600 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
601 return true;
602
603 auto hasUndefInPHI = [](PHINode &PN) {
604 for (Value *Opd : PN.incoming_values()) {
605 if (isa<UndefValue>(Opd))
606 return true;
607 }
608 return false;
609 };
610 PHINode *LPHI = dyn_cast<PHINode>(LHS);
611 PHINode *RPHI = dyn_cast<PHINode>(RHS);
612 if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
613 return true;
614
615 auto hasUndefInSelect = [](SelectInst &SI) {
616 if (isa<UndefValue>(SI.getTrueValue()) ||
617 isa<UndefValue>(SI.getFalseValue()))
618 return true;
619 return false;
620 };
621 SelectInst *LSI = dyn_cast<SelectInst>(LHS);
622 SelectInst *RSI = dyn_cast<SelectInst>(RHS);
623 if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
624 return true;
625 return false;
626 }
627
628 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()629 bool LoopUnswitch::processCurrentLoop() {
630 bool Changed = false;
631
632 initLoopData();
633
634 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
635 if (!loopPreheader)
636 return false;
637
638 // Loops with indirectbr cannot be cloned.
639 if (!currentLoop->isSafeToClone())
640 return false;
641
642 // Without dedicated exits, splitting the exit edge may fail.
643 if (!currentLoop->hasDedicatedExits())
644 return false;
645
646 LLVMContext &Context = loopHeader->getContext();
647
648 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
649 if (!BranchesInfo.countLoop(
650 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
651 *currentLoop->getHeader()->getParent()),
652 AC))
653 return false;
654
655 // Try trivial unswitch first before loop over other basic blocks in the loop.
656 if (TryTrivialLoopUnswitch(Changed)) {
657 return true;
658 }
659
660 // Do not do non-trivial unswitch while optimizing for size.
661 // FIXME: Use Function::optForSize().
662 if (OptimizeForSize ||
663 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
664 return false;
665
666 // Run through the instructions in the loop, keeping track of three things:
667 //
668 // - That we do not unswitch loops containing convergent operations, as we
669 // might be making them control dependent on the unswitch value when they
670 // were not before.
671 // FIXME: This could be refined to only bail if the convergent operation is
672 // not already control-dependent on the unswitch value.
673 //
674 // - That basic blocks in the loop contain invokes whose predecessor edges we
675 // cannot split.
676 //
677 // - The set of guard intrinsics encountered (these are non terminator
678 // instructions that are also profitable to be unswitched).
679
680 SmallVector<IntrinsicInst *, 4> Guards;
681
682 for (const auto BB : currentLoop->blocks()) {
683 for (auto &I : *BB) {
684 auto CS = CallSite(&I);
685 if (!CS) continue;
686 if (CS.hasFnAttr(Attribute::Convergent))
687 return false;
688 if (auto *II = dyn_cast<InvokeInst>(&I))
689 if (!II->getUnwindDest()->canSplitPredecessors())
690 return false;
691 if (auto *II = dyn_cast<IntrinsicInst>(&I))
692 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
693 Guards.push_back(II);
694 }
695 }
696
697 for (IntrinsicInst *Guard : Guards) {
698 Value *LoopCond =
699 FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
700 if (LoopCond &&
701 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
702 // NB! Unswitching (if successful) could have erased some of the
703 // instructions in Guards leaving dangling pointers there. This is fine
704 // because we're returning now, and won't look at Guards again.
705 ++NumGuards;
706 return true;
707 }
708 }
709
710 // Loop over all of the basic blocks in the loop. If we find an interior
711 // block that is branching on a loop-invariant condition, we can unswitch this
712 // loop.
713 for (Loop::block_iterator I = currentLoop->block_begin(),
714 E = currentLoop->block_end(); I != E; ++I) {
715 Instruction *TI = (*I)->getTerminator();
716
717 // Unswitching on a potentially uninitialized predicate is not
718 // MSan-friendly. Limit this to the cases when the original predicate is
719 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
720 // in the code that did not have one.
721 // This is a workaround for the discrepancy between LLVM IR and MSan
722 // semantics. See PR28054 for more details.
723 if (SanitizeMemory &&
724 !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
725 continue;
726
727 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
728 // Some branches may be rendered unreachable because of previous
729 // unswitching.
730 // Unswitch only those branches that are reachable.
731 if (isUnreachableDueToPreviousUnswitching(*I))
732 continue;
733
734 // If this isn't branching on an invariant condition, we can't unswitch
735 // it.
736 if (BI->isConditional()) {
737 // See if this, or some part of it, is loop invariant. If so, we can
738 // unswitch on it if we desire.
739 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
740 currentLoop, Changed).first;
741 if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
742 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
743 ++NumBranches;
744 return true;
745 }
746 }
747 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
748 Value *SC = SI->getCondition();
749 Value *LoopCond;
750 OperatorChain OpChain;
751 std::tie(LoopCond, OpChain) =
752 FindLIVLoopCondition(SC, currentLoop, Changed);
753
754 unsigned NumCases = SI->getNumCases();
755 if (LoopCond && NumCases) {
756 // Find a value to unswitch on:
757 // FIXME: this should chose the most expensive case!
758 // FIXME: scan for a case with a non-critical edge?
759 Constant *UnswitchVal = nullptr;
760 // Find a case value such that at least one case value is unswitched
761 // out.
762 if (OpChain == OC_OpChainAnd) {
763 // If the chain only has ANDs and the switch has a case value of 0.
764 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
765 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
766 if (BranchesInfo.isUnswitched(SI, AllZero))
767 continue;
768 // We are unswitching 0 out.
769 UnswitchVal = AllZero;
770 } else if (OpChain == OC_OpChainOr) {
771 // If the chain only has ORs and the switch has a case value of ~0.
772 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
773 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
774 if (BranchesInfo.isUnswitched(SI, AllOne))
775 continue;
776 // We are unswitching ~0 out.
777 UnswitchVal = AllOne;
778 } else {
779 assert(OpChain == OC_OpChainNone &&
780 "Expect to unswitch on trivial chain");
781 // Do not process same value again and again.
782 // At this point we have some cases already unswitched and
783 // some not yet unswitched. Let's find the first not yet unswitched one.
784 for (auto Case : SI->cases()) {
785 Constant *UnswitchValCandidate = Case.getCaseValue();
786 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
787 UnswitchVal = UnswitchValCandidate;
788 break;
789 }
790 }
791 }
792
793 if (!UnswitchVal)
794 continue;
795
796 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
797 ++NumSwitches;
798 // In case of a full LIV, UnswitchVal is the value we unswitched out.
799 // In case of a partial LIV, we only unswitch when its an AND-chain
800 // or OR-chain. In both cases switch input value simplifies to
801 // UnswitchVal.
802 BranchesInfo.setUnswitched(SI, UnswitchVal);
803 return true;
804 }
805 }
806 }
807
808 // Scan the instructions to check for unswitchable values.
809 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
810 BBI != E; ++BBI)
811 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
812 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
813 currentLoop, Changed).first;
814 if (LoopCond && UnswitchIfProfitable(LoopCond,
815 ConstantInt::getTrue(Context))) {
816 ++NumSelects;
817 return true;
818 }
819 }
820 }
821 return Changed;
822 }
823
824 /// Check to see if all paths from BB exit the loop with no side effects
825 /// (including infinite loops).
826 ///
827 /// If true, we return true and set ExitBB to the block we
828 /// exit through.
829 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)830 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
831 BasicBlock *&ExitBB,
832 std::set<BasicBlock*> &Visited) {
833 if (!Visited.insert(BB).second) {
834 // Already visited. Without more analysis, this could indicate an infinite
835 // loop.
836 return false;
837 }
838 if (!L->contains(BB)) {
839 // Otherwise, this is a loop exit, this is fine so long as this is the
840 // first exit.
841 if (ExitBB) return false;
842 ExitBB = BB;
843 return true;
844 }
845
846 // Otherwise, this is an unvisited intra-loop node. Check all successors.
847 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
848 // Check to see if the successor is a trivial loop exit.
849 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
850 return false;
851 }
852
853 // Okay, everything after this looks good, check to make sure that this block
854 // doesn't include any side effects.
855 for (Instruction &I : *BB)
856 if (I.mayHaveSideEffects())
857 return false;
858
859 return true;
860 }
861
862 /// Return true if the specified block unconditionally leads to an exit from
863 /// the specified loop, and has no side-effects in the process. If so, return
864 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)865 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
866 std::set<BasicBlock*> Visited;
867 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
868 BasicBlock *ExitBB = nullptr;
869 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
870 return ExitBB;
871 return nullptr;
872 }
873
874 /// We have found that we can unswitch currentLoop when LoopCond == Val to
875 /// simplify the loop. If we decide that this is profitable,
876 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val,Instruction * TI)877 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
878 Instruction *TI) {
879 // Check to see if it would be profitable to unswitch current loop.
880 if (!BranchesInfo.CostAllowsUnswitching()) {
881 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
882 << currentLoop->getHeader()->getName()
883 << " at non-trivial condition '" << *Val
884 << "' == " << *LoopCond << "\n"
885 << ". Cost too high.\n");
886 return false;
887 }
888 if (hasBranchDivergence &&
889 getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
890 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
891 << currentLoop->getHeader()->getName()
892 << " at non-trivial condition '" << *Val
893 << "' == " << *LoopCond << "\n"
894 << ". Condition is divergent.\n");
895 return false;
896 }
897
898 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
899 return true;
900 }
901
902 /// Recursively clone the specified loop and all of its children,
903 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)904 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
905 LoopInfo *LI, LPPassManager *LPM) {
906 Loop &New = *LI->AllocateLoop();
907 if (PL)
908 PL->addChildLoop(&New);
909 else
910 LI->addTopLevelLoop(&New);
911 LPM->addLoop(New);
912
913 // Add all of the blocks in L to the new loop.
914 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
915 I != E; ++I)
916 if (LI->getLoopFor(*I) == L)
917 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
918
919 // Add all of the subloops to the new loop.
920 for (Loop *I : *L)
921 CloneLoop(I, &New, VM, LI, LPM);
922
923 return &New;
924 }
925
926 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
927 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
928 /// and remove (but not erase!) it from the function.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,BranchInst * OldBranch,Instruction * TI)929 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
930 BasicBlock *TrueDest,
931 BasicBlock *FalseDest,
932 BranchInst *OldBranch,
933 Instruction *TI) {
934 assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
935 assert(TrueDest != FalseDest && "Branch targets should be different");
936 // Insert a conditional branch on LIC to the two preheaders. The original
937 // code is the true version and the new code is the false version.
938 Value *BranchVal = LIC;
939 bool Swapped = false;
940 if (!isa<ConstantInt>(Val) ||
941 Val->getType() != Type::getInt1Ty(LIC->getContext()))
942 BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
943 else if (Val != ConstantInt::getTrue(Val->getContext())) {
944 // We want to enter the new loop when the condition is true.
945 std::swap(TrueDest, FalseDest);
946 Swapped = true;
947 }
948
949 // Old branch will be removed, so save its parent and successor to update the
950 // DomTree.
951 auto *OldBranchSucc = OldBranch->getSuccessor(0);
952 auto *OldBranchParent = OldBranch->getParent();
953
954 // Insert the new branch.
955 BranchInst *BI =
956 IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
957 if (Swapped)
958 BI->swapProfMetadata();
959
960 // Remove the old branch so there is only one branch at the end. This is
961 // needed to perform DomTree's internal DFS walk on the function's CFG.
962 OldBranch->removeFromParent();
963
964 // Inform the DT about the new branch.
965 if (DT) {
966 // First, add both successors.
967 SmallVector<DominatorTree::UpdateType, 3> Updates;
968 if (TrueDest != OldBranchSucc)
969 Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
970 if (FalseDest != OldBranchSucc)
971 Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
972 // If both of the new successors are different from the old one, inform the
973 // DT that the edge was deleted.
974 if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
975 Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
976 }
977 DT->applyUpdates(Updates);
978
979 if (MSSAU)
980 MSSAU->applyUpdates(Updates, *DT);
981 }
982
983 // If either edge is critical, split it. This helps preserve LoopSimplify
984 // form for enclosing loops.
985 auto Options =
986 CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
987 SplitCriticalEdge(BI, 0, Options);
988 SplitCriticalEdge(BI, 1, Options);
989 }
990
991 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
992 /// from its header block to its latch block, where the path through the loop
993 /// that doesn't execute its body has no side-effects), unswitch it. This
994 /// doesn't involve any code duplication, just moving the conditional branch
995 /// outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,Instruction * TI)996 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
997 BasicBlock *ExitBlock,
998 Instruction *TI) {
999 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
1000 << loopHeader->getName() << " [" << L->getBlocks().size()
1001 << " blocks] in Function "
1002 << L->getHeader()->getParent()->getName()
1003 << " on cond: " << *Val << " == " << *Cond << "\n");
1004 // We are going to make essential changes to CFG. This may invalidate cached
1005 // information for L or one of its parent loops in SCEV.
1006 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1007 SEWP->getSE().forgetTopmostLoop(L);
1008
1009 // First step, split the preheader, so that we know that there is a safe place
1010 // to insert the conditional branch. We will change loopPreheader to have a
1011 // conditional branch on Cond.
1012 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1013
1014 // Now that we have a place to insert the conditional branch, create a place
1015 // to branch to: this is the exit block out of the loop that we should
1016 // short-circuit to.
1017
1018 // Split this block now, so that the loop maintains its exit block, and so
1019 // that the jump from the preheader can execute the contents of the exit block
1020 // without actually branching to it (the exit block should be dominated by the
1021 // loop header, not the preheader).
1022 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
1023 BasicBlock *NewExit =
1024 SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
1025
1026 // Okay, now we have a position to branch from and a position to branch to,
1027 // insert the new conditional branch.
1028 auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
1029 assert(OldBranch && "Failed to split the preheader");
1030 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1031 LPM->deleteSimpleAnalysisValue(OldBranch, L);
1032
1033 // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1034 // Delete it, as it is no longer needed.
1035 delete OldBranch;
1036
1037 // We need to reprocess this loop, it could be unswitched again.
1038 redoLoop = true;
1039
1040 // Now that we know that the loop is never entered when this condition is a
1041 // particular value, rewrite the loop with this info. We know that this will
1042 // at least eliminate the old branch.
1043 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
1044
1045 ++NumTrivial;
1046 }
1047
1048 /// Check if the first non-constant condition starting from the loop header is
1049 /// a trivial unswitch condition: that is, a condition controls whether or not
1050 /// the loop does anything at all. If it is a trivial condition, unswitching
1051 /// produces no code duplications (equivalently, it produces a simpler loop and
1052 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1053 /// condition.
TryTrivialLoopUnswitch(bool & Changed)1054 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
1055 BasicBlock *CurrentBB = currentLoop->getHeader();
1056 Instruction *CurrentTerm = CurrentBB->getTerminator();
1057 LLVMContext &Context = CurrentBB->getContext();
1058
1059 // If loop header has only one reachable successor (currently via an
1060 // unconditional branch or constant foldable conditional branch, but
1061 // should also consider adding constant foldable switch instruction in
1062 // future), we should keep looking for trivial condition candidates in
1063 // the successor as well. An alternative is to constant fold conditions
1064 // and merge successors into loop header (then we only need to check header's
1065 // terminator). The reason for not doing this in LoopUnswitch pass is that
1066 // it could potentially break LoopPassManager's invariants. Folding dead
1067 // branches could either eliminate the current loop or make other loops
1068 // unreachable. LCSSA form might also not be preserved after deleting
1069 // branches. The following code keeps traversing loop header's successors
1070 // until it finds the trivial condition candidate (condition that is not a
1071 // constant). Since unswitching generates branches with constant conditions,
1072 // this scenario could be very common in practice.
1073 SmallPtrSet<BasicBlock*, 8> Visited;
1074
1075 while (true) {
1076 // If we exit loop or reach a previous visited block, then
1077 // we can not reach any trivial condition candidates (unfoldable
1078 // branch instructions or switch instructions) and no unswitch
1079 // can happen. Exit and return false.
1080 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1081 return false;
1082
1083 // Check if this loop will execute any side-effecting instructions (e.g.
1084 // stores, calls, volatile loads) in the part of the loop that the code
1085 // *would* execute. Check the header first.
1086 for (Instruction &I : *CurrentBB)
1087 if (I.mayHaveSideEffects())
1088 return false;
1089
1090 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1091 if (BI->isUnconditional()) {
1092 CurrentBB = BI->getSuccessor(0);
1093 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1094 CurrentBB = BI->getSuccessor(0);
1095 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1096 CurrentBB = BI->getSuccessor(1);
1097 } else {
1098 // Found a trivial condition candidate: non-foldable conditional branch.
1099 break;
1100 }
1101 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1102 // At this point, any constant-foldable instructions should have probably
1103 // been folded.
1104 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1105 if (!Cond)
1106 break;
1107 // Find the target block we are definitely going to.
1108 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1109 } else {
1110 // We do not understand these terminator instructions.
1111 break;
1112 }
1113
1114 CurrentTerm = CurrentBB->getTerminator();
1115 }
1116
1117 // CondVal is the condition that controls the trivial condition.
1118 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1119 Constant *CondVal = nullptr;
1120 BasicBlock *LoopExitBB = nullptr;
1121
1122 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1123 // If this isn't branching on an invariant condition, we can't unswitch it.
1124 if (!BI->isConditional())
1125 return false;
1126
1127 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
1128 currentLoop, Changed).first;
1129
1130 // Unswitch only if the trivial condition itself is an LIV (not
1131 // partial LIV which could occur in and/or)
1132 if (!LoopCond || LoopCond != BI->getCondition())
1133 return false;
1134
1135 // Check to see if a successor of the branch is guaranteed to
1136 // exit through a unique exit block without having any
1137 // side-effects. If so, determine the value of Cond that causes
1138 // it to do this.
1139 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1140 BI->getSuccessor(0)))) {
1141 CondVal = ConstantInt::getTrue(Context);
1142 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1143 BI->getSuccessor(1)))) {
1144 CondVal = ConstantInt::getFalse(Context);
1145 }
1146
1147 // If we didn't find a single unique LoopExit block, or if the loop exit
1148 // block contains phi nodes, this isn't trivial.
1149 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1150 return false; // Can't handle this.
1151
1152 if (EqualityPropUnSafe(*LoopCond))
1153 return false;
1154
1155 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1156 CurrentTerm);
1157 ++NumBranches;
1158 return true;
1159 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1160 // If this isn't switching on an invariant condition, we can't unswitch it.
1161 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
1162 currentLoop, Changed).first;
1163
1164 // Unswitch only if the trivial condition itself is an LIV (not
1165 // partial LIV which could occur in and/or)
1166 if (!LoopCond || LoopCond != SI->getCondition())
1167 return false;
1168
1169 // Check to see if a successor of the switch is guaranteed to go to the
1170 // latch block or exit through a one exit block without having any
1171 // side-effects. If so, determine the value of Cond that causes it to do
1172 // this.
1173 // Note that we can't trivially unswitch on the default case or
1174 // on already unswitched cases.
1175 for (auto Case : SI->cases()) {
1176 BasicBlock *LoopExitCandidate;
1177 if ((LoopExitCandidate =
1178 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
1179 // Okay, we found a trivial case, remember the value that is trivial.
1180 ConstantInt *CaseVal = Case.getCaseValue();
1181
1182 // Check that it was not unswitched before, since already unswitched
1183 // trivial vals are looks trivial too.
1184 if (BranchesInfo.isUnswitched(SI, CaseVal))
1185 continue;
1186 LoopExitBB = LoopExitCandidate;
1187 CondVal = CaseVal;
1188 break;
1189 }
1190 }
1191
1192 // If we didn't find a single unique LoopExit block, or if the loop exit
1193 // block contains phi nodes, this isn't trivial.
1194 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1195 return false; // Can't handle this.
1196
1197 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1198 nullptr);
1199
1200 // We are only unswitching full LIV.
1201 BranchesInfo.setUnswitched(SI, CondVal);
1202 ++NumSwitches;
1203 return true;
1204 }
1205 return false;
1206 }
1207
1208 /// Split all of the edges from inside the loop to their exit blocks.
1209 /// Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1210 void LoopUnswitch::SplitExitEdges(Loop *L,
1211 const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1212
1213 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1214 BasicBlock *ExitBlock = ExitBlocks[i];
1215 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1216 pred_end(ExitBlock));
1217
1218 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1219 // general, if we call it on all predecessors of all exits then it does.
1220 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
1221 /*PreserveLCSSA*/ true);
1222 }
1223 }
1224
1225 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1226 /// Split it into loop versions and test the condition outside of either loop.
1227 /// Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,Instruction * TI)1228 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1229 Loop *L, Instruction *TI) {
1230 Function *F = loopHeader->getParent();
1231 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1232 << loopHeader->getName() << " [" << L->getBlocks().size()
1233 << " blocks] in Function " << F->getName() << " when '"
1234 << *Val << "' == " << *LIC << "\n");
1235
1236 // We are going to make essential changes to CFG. This may invalidate cached
1237 // information for L or one of its parent loops in SCEV.
1238 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1239 SEWP->getSE().forgetTopmostLoop(L);
1240
1241 LoopBlocks.clear();
1242 NewBlocks.clear();
1243
1244 // First step, split the preheader and exit blocks, and add these blocks to
1245 // the LoopBlocks list.
1246 BasicBlock *NewPreheader =
1247 SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1248 LoopBlocks.push_back(NewPreheader);
1249
1250 // We want the loop to come after the preheader, but before the exit blocks.
1251 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1252
1253 SmallVector<BasicBlock*, 8> ExitBlocks;
1254 L->getUniqueExitBlocks(ExitBlocks);
1255
1256 // Split all of the edges from inside the loop to their exit blocks. Update
1257 // the appropriate Phi nodes as we do so.
1258 SplitExitEdges(L, ExitBlocks);
1259
1260 // The exit blocks may have been changed due to edge splitting, recompute.
1261 ExitBlocks.clear();
1262 L->getUniqueExitBlocks(ExitBlocks);
1263
1264 // Add exit blocks to the loop blocks.
1265 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1266
1267 // Next step, clone all of the basic blocks that make up the loop (including
1268 // the loop preheader and exit blocks), keeping track of the mapping between
1269 // the instructions and blocks.
1270 NewBlocks.reserve(LoopBlocks.size());
1271 ValueToValueMapTy VMap;
1272 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1273 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1274
1275 NewBlocks.push_back(NewBB);
1276 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
1277 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1278 }
1279
1280 // Splice the newly inserted blocks into the function right before the
1281 // original preheader.
1282 F->getBasicBlockList().splice(NewPreheader->getIterator(),
1283 F->getBasicBlockList(),
1284 NewBlocks[0]->getIterator(), F->end());
1285
1286 // Now we create the new Loop object for the versioned loop.
1287 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1288
1289 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1290 // Probably clone more loop-unswitch related loop properties.
1291 BranchesInfo.cloneData(NewLoop, L, VMap);
1292
1293 Loop *ParentLoop = L->getParentLoop();
1294 if (ParentLoop) {
1295 // Make sure to add the cloned preheader and exit blocks to the parent loop
1296 // as well.
1297 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1298 }
1299
1300 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1301 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1302 // The new exit block should be in the same loop as the old one.
1303 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1304 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1305
1306 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1307 "Exit block should have been split to have one successor!");
1308 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1309
1310 // If the successor of the exit block had PHI nodes, add an entry for
1311 // NewExit.
1312 for (PHINode &PN : ExitSucc->phis()) {
1313 Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
1314 ValueToValueMapTy::iterator It = VMap.find(V);
1315 if (It != VMap.end()) V = It->second;
1316 PN.addIncoming(V, NewExit);
1317 }
1318
1319 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1320 PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1321 &*ExitSucc->getFirstInsertionPt());
1322
1323 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1324 I != E; ++I) {
1325 BasicBlock *BB = *I;
1326 LandingPadInst *LPI = BB->getLandingPadInst();
1327 LPI->replaceAllUsesWith(PN);
1328 PN->addIncoming(LPI, BB);
1329 }
1330 }
1331 }
1332
1333 // Rewrite the code to refer to itself.
1334 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1335 for (Instruction &I : *NewBlocks[i]) {
1336 RemapInstruction(&I, VMap,
1337 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1338 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1339 if (II->getIntrinsicID() == Intrinsic::assume)
1340 AC->registerAssumption(II);
1341 }
1342 }
1343
1344 // Rewrite the original preheader to select between versions of the loop.
1345 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1346 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1347 "Preheader splitting did not work correctly!");
1348
1349 if (MSSAU) {
1350 // Update MemorySSA after cloning, and before splitting to unreachables,
1351 // since that invalidates the 1:1 mapping of clones in VMap.
1352 LoopBlocksRPO LBRPO(L);
1353 LBRPO.perform(LI);
1354 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
1355 }
1356
1357 // Emit the new branch that selects between the two versions of this loop.
1358 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1359 TI);
1360 LPM->deleteSimpleAnalysisValue(OldBR, L);
1361 if (MSSAU) {
1362 // Update MemoryPhis in Exit blocks.
1363 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
1364 if (VerifyMemorySSA)
1365 MSSA->verifyMemorySSA();
1366 }
1367
1368 // The OldBr was replaced by a new one and removed (but not erased) by
1369 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1370 delete OldBR;
1371
1372 LoopProcessWorklist.push_back(NewLoop);
1373 redoLoop = true;
1374
1375 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1376 // RewriteLoopBody
1377 // deletes the instruction (for example by simplifying a PHI that feeds into
1378 // the condition that we're unswitching on), we don't rewrite the second
1379 // iteration.
1380 WeakTrackingVH LICHandle(LIC);
1381
1382 // Now we rewrite the original code to know that the condition is true and the
1383 // new code to know that the condition is false.
1384 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1385
1386 // It's possible that simplifying one loop could cause the other to be
1387 // changed to another value or a constant. If its a constant, don't simplify
1388 // it.
1389 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1390 LICHandle && !isa<Constant>(LICHandle))
1391 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1392
1393 if (MSSA && VerifyMemorySSA)
1394 MSSA->verifyMemorySSA();
1395 }
1396
1397 /// Remove all instances of I from the worklist vector specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1398 static void RemoveFromWorklist(Instruction *I,
1399 std::vector<Instruction*> &Worklist) {
1400
1401 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1402 Worklist.end());
1403 }
1404
1405 /// When we find that I really equals V, remove I from the
1406 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)1407 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1408 std::vector<Instruction*> &Worklist,
1409 Loop *L, LPPassManager *LPM) {
1410 LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1411
1412 // Add uses to the worklist, which may be dead now.
1413 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1414 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1415 Worklist.push_back(Use);
1416
1417 // Add users to the worklist which may be simplified now.
1418 for (User *U : I->users())
1419 Worklist.push_back(cast<Instruction>(U));
1420 LPM->deleteSimpleAnalysisValue(I, L);
1421 RemoveFromWorklist(I, Worklist);
1422 I->replaceAllUsesWith(V);
1423 if (!I->mayHaveSideEffects())
1424 I->eraseFromParent();
1425 ++NumSimplify;
1426 }
1427
1428 /// We know either that the value LIC has the value specified by Val in the
1429 /// specified loop, or we know it does NOT have that value.
1430 /// Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1431 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1432 Constant *Val,
1433 bool IsEqual) {
1434 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1435
1436 // FIXME: Support correlated properties, like:
1437 // for (...)
1438 // if (li1 < li2)
1439 // ...
1440 // if (li1 > li2)
1441 // ...
1442
1443 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1444 // selects, switches.
1445 std::vector<Instruction*> Worklist;
1446 LLVMContext &Context = Val->getContext();
1447
1448 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1449 // in the loop with the appropriate one directly.
1450 if (IsEqual || (isa<ConstantInt>(Val) &&
1451 Val->getType()->isIntegerTy(1))) {
1452 Value *Replacement;
1453 if (IsEqual)
1454 Replacement = Val;
1455 else
1456 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1457 !cast<ConstantInt>(Val)->getZExtValue());
1458
1459 for (User *U : LIC->users()) {
1460 Instruction *UI = dyn_cast<Instruction>(U);
1461 if (!UI || !L->contains(UI))
1462 continue;
1463 Worklist.push_back(UI);
1464 }
1465
1466 for (Instruction *UI : Worklist)
1467 UI->replaceUsesOfWith(LIC, Replacement);
1468
1469 SimplifyCode(Worklist, L);
1470 return;
1471 }
1472
1473 // Otherwise, we don't know the precise value of LIC, but we do know that it
1474 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1475 // can. This case occurs when we unswitch switch statements.
1476 for (User *U : LIC->users()) {
1477 Instruction *UI = dyn_cast<Instruction>(U);
1478 if (!UI || !L->contains(UI))
1479 continue;
1480
1481 // At this point, we know LIC is definitely not Val. Try to use some simple
1482 // logic to simplify the user w.r.t. to the context.
1483 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
1484 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1485 // This in-loop instruction has been simplified w.r.t. its context,
1486 // i.e. LIC != Val, make sure we propagate its replacement value to
1487 // all its users.
1488 //
1489 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1490 // the LIC->users() iterator !. However, we can make this instruction
1491 // dead by replacing all its users and push it onto the worklist so that
1492 // it can be properly deleted and its operands simplified.
1493 UI->replaceAllUsesWith(Replacement);
1494 }
1495 }
1496
1497 // This is a LIC user, push it into the worklist so that SimplifyCode can
1498 // attempt to simplify it.
1499 Worklist.push_back(UI);
1500
1501 // If we know that LIC is not Val, use this info to simplify code.
1502 SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1503 if (!SI || !isa<ConstantInt>(Val)) continue;
1504
1505 // NOTE: if a case value for the switch is unswitched out, we record it
1506 // after the unswitch finishes. We can not record it here as the switch
1507 // is not a direct user of the partial LIV.
1508 SwitchInst::CaseHandle DeadCase =
1509 *SI->findCaseValue(cast<ConstantInt>(Val));
1510 // Default case is live for multiple values.
1511 if (DeadCase == *SI->case_default())
1512 continue;
1513
1514 // Found a dead case value. Don't remove PHI nodes in the
1515 // successor if they become single-entry, those PHI nodes may
1516 // be in the Users list.
1517
1518 BasicBlock *Switch = SI->getParent();
1519 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1520 BasicBlock *Latch = L->getLoopLatch();
1521
1522 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1523 // If the DeadCase successor dominates the loop latch, then the
1524 // transformation isn't safe since it will delete the sole predecessor edge
1525 // to the latch.
1526 if (Latch && DT->dominates(SISucc, Latch))
1527 continue;
1528
1529 // FIXME: This is a hack. We need to keep the successor around
1530 // and hooked up so as to preserve the loop structure, because
1531 // trying to update it is complicated. So instead we preserve the
1532 // loop structure and put the block on a dead code path.
1533 SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
1534 // Compute the successors instead of relying on the return value
1535 // of SplitEdge, since it may have split the switch successor
1536 // after PHI nodes.
1537 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1538 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1539 // Create an "unreachable" destination.
1540 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1541 Switch->getParent(),
1542 OldSISucc);
1543 new UnreachableInst(Context, Abort);
1544 // Force the new case destination to branch to the "unreachable"
1545 // block while maintaining a (dead) CFG edge to the old block.
1546 NewSISucc->getTerminator()->eraseFromParent();
1547 BranchInst::Create(Abort, OldSISucc,
1548 ConstantInt::getTrue(Context), NewSISucc);
1549 // Release the PHI operands for this edge.
1550 for (PHINode &PN : NewSISucc->phis())
1551 PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
1552 UndefValue::get(PN.getType()));
1553 // Tell the domtree about the new block. We don't fully update the
1554 // domtree here -- instead we force it to do a full recomputation
1555 // after the pass is complete -- but we do need to inform it of
1556 // new blocks.
1557 DT->addNewBlock(Abort, NewSISucc);
1558 }
1559
1560 SimplifyCode(Worklist, L);
1561 }
1562
1563 /// Now that we have simplified some instructions in the loop, walk over it and
1564 /// constant prop, dce, and fold control flow where possible. Note that this is
1565 /// effectively a very simple loop-structure-aware optimizer. During processing
1566 /// of this loop, L could very well be deleted, so it must not be used.
1567 ///
1568 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1569 /// pass.
1570 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1571 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1572 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1573 while (!Worklist.empty()) {
1574 Instruction *I = Worklist.back();
1575 Worklist.pop_back();
1576
1577 // Simple DCE.
1578 if (isInstructionTriviallyDead(I)) {
1579 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1580
1581 // Add uses to the worklist, which may be dead now.
1582 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1583 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1584 Worklist.push_back(Use);
1585 LPM->deleteSimpleAnalysisValue(I, L);
1586 RemoveFromWorklist(I, Worklist);
1587 if (MSSAU)
1588 MSSAU->removeMemoryAccess(I);
1589 I->eraseFromParent();
1590 ++NumSimplify;
1591 continue;
1592 }
1593
1594 // See if instruction simplification can hack this up. This is common for
1595 // things like "select false, X, Y" after unswitching made the condition be
1596 // 'false'. TODO: update the domtree properly so we can pass it here.
1597 if (Value *V = SimplifyInstruction(I, DL))
1598 if (LI->replacementPreservesLCSSAForm(I, V)) {
1599 ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1600 continue;
1601 }
1602
1603 // Special case hacks that appear commonly in unswitched code.
1604 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1605 if (BI->isUnconditional()) {
1606 // If BI's parent is the only pred of the successor, fold the two blocks
1607 // together.
1608 BasicBlock *Pred = BI->getParent();
1609 BasicBlock *Succ = BI->getSuccessor(0);
1610 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1611 if (!SinglePred) continue; // Nothing to do.
1612 assert(SinglePred == Pred && "CFG broken");
1613
1614 LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1615 << Succ->getName() << "\n");
1616
1617 // Resolve any single entry PHI nodes in Succ.
1618 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1619 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1620
1621 // If Succ has any successors with PHI nodes, update them to have
1622 // entries coming from Pred instead of Succ.
1623 Succ->replaceAllUsesWith(Pred);
1624
1625 // Move all of the successor contents from Succ to Pred.
1626 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1627 Succ->begin(), Succ->end());
1628 if (MSSAU)
1629 MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI);
1630 LPM->deleteSimpleAnalysisValue(BI, L);
1631 RemoveFromWorklist(BI, Worklist);
1632 BI->eraseFromParent();
1633
1634 // Remove Succ from the loop tree.
1635 LI->removeBlock(Succ);
1636 LPM->deleteSimpleAnalysisValue(Succ, L);
1637 Succ->eraseFromParent();
1638 ++NumSimplify;
1639 continue;
1640 }
1641
1642 continue;
1643 }
1644 }
1645 }
1646
1647 /// Simple simplifications we can do given the information that Cond is
1648 /// definitely not equal to Val.
SimplifyInstructionWithNotEqual(Instruction * Inst,Value * Invariant,Constant * Val)1649 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
1650 Value *Invariant,
1651 Constant *Val) {
1652 // icmp eq cond, val -> false
1653 ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1654 if (CI && CI->isEquality()) {
1655 Value *Op0 = CI->getOperand(0);
1656 Value *Op1 = CI->getOperand(1);
1657 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1658 LLVMContext &Ctx = Inst->getContext();
1659 if (CI->getPredicate() == CmpInst::ICMP_EQ)
1660 return ConstantInt::getFalse(Ctx);
1661 else
1662 return ConstantInt::getTrue(Ctx);
1663 }
1664 }
1665
1666 // FIXME: there may be other opportunities, e.g. comparison with floating
1667 // point, or Invariant - Val != 0, etc.
1668 return nullptr;
1669 }
1670