1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallSite.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DIBuilder.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/Cloning.h"
65 #include "llvm/Transforms/Utils/ValueMapper.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <limits>
71 #include <string>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 static cl::opt<bool>
79 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
80   cl::Hidden,
81   cl::desc("Convert noalias attributes to metadata during inlining."));
82 
83 static cl::opt<bool>
84 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
85   cl::init(true), cl::Hidden,
86   cl::desc("Convert align attributes to assumptions during inlining."));
87 
InlineFunction(CallInst * CI,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)88 llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
89                                         AAResults *CalleeAAR,
90                                         bool InsertLifetime) {
91   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
92 }
93 
InlineFunction(InvokeInst * II,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)94 llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
95                                         AAResults *CalleeAAR,
96                                         bool InsertLifetime) {
97   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
98 }
99 
100 namespace {
101 
102   /// A class for recording information about inlining a landing pad.
103   class LandingPadInliningInfo {
104     /// Destination of the invoke's unwind.
105     BasicBlock *OuterResumeDest;
106 
107     /// Destination for the callee's resume.
108     BasicBlock *InnerResumeDest = nullptr;
109 
110     /// LandingPadInst associated with the invoke.
111     LandingPadInst *CallerLPad = nullptr;
112 
113     /// PHI for EH values from landingpad insts.
114     PHINode *InnerEHValuesPHI = nullptr;
115 
116     SmallVector<Value*, 8> UnwindDestPHIValues;
117 
118   public:
LandingPadInliningInfo(InvokeInst * II)119     LandingPadInliningInfo(InvokeInst *II)
120         : OuterResumeDest(II->getUnwindDest()) {
121       // If there are PHI nodes in the unwind destination block, we need to keep
122       // track of which values came into them from the invoke before removing
123       // the edge from this block.
124       BasicBlock *InvokeBB = II->getParent();
125       BasicBlock::iterator I = OuterResumeDest->begin();
126       for (; isa<PHINode>(I); ++I) {
127         // Save the value to use for this edge.
128         PHINode *PHI = cast<PHINode>(I);
129         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
130       }
131 
132       CallerLPad = cast<LandingPadInst>(I);
133     }
134 
135     /// The outer unwind destination is the target of
136     /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const137     BasicBlock *getOuterResumeDest() const {
138       return OuterResumeDest;
139     }
140 
141     BasicBlock *getInnerResumeDest();
142 
getLandingPadInst() const143     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
144 
145     /// Forward the 'resume' instruction to the caller's landing pad block.
146     /// When the landing pad block has only one predecessor, this is
147     /// a simple branch. When there is more than one predecessor, we need to
148     /// split the landing pad block after the landingpad instruction and jump
149     /// to there.
150     void forwardResume(ResumeInst *RI,
151                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
152 
153     /// Add incoming-PHI values to the unwind destination block for the given
154     /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const155     void addIncomingPHIValuesFor(BasicBlock *BB) const {
156       addIncomingPHIValuesForInto(BB, OuterResumeDest);
157     }
158 
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const159     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
160       BasicBlock::iterator I = dest->begin();
161       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
162         PHINode *phi = cast<PHINode>(I);
163         phi->addIncoming(UnwindDestPHIValues[i], src);
164       }
165     }
166   };
167 
168 } // end anonymous namespace
169 
170 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()171 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
172   if (InnerResumeDest) return InnerResumeDest;
173 
174   // Split the landing pad.
175   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
176   InnerResumeDest =
177     OuterResumeDest->splitBasicBlock(SplitPoint,
178                                      OuterResumeDest->getName() + ".body");
179 
180   // The number of incoming edges we expect to the inner landing pad.
181   const unsigned PHICapacity = 2;
182 
183   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
184   Instruction *InsertPoint = &InnerResumeDest->front();
185   BasicBlock::iterator I = OuterResumeDest->begin();
186   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
187     PHINode *OuterPHI = cast<PHINode>(I);
188     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
189                                         OuterPHI->getName() + ".lpad-body",
190                                         InsertPoint);
191     OuterPHI->replaceAllUsesWith(InnerPHI);
192     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
193   }
194 
195   // Create a PHI for the exception values.
196   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
197                                      "eh.lpad-body", InsertPoint);
198   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
199   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
200 
201   // All done.
202   return InnerResumeDest;
203 }
204 
205 /// Forward the 'resume' instruction to the caller's landing pad block.
206 /// When the landing pad block has only one predecessor, this is a simple
207 /// branch. When there is more than one predecessor, we need to split the
208 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)209 void LandingPadInliningInfo::forwardResume(
210     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
211   BasicBlock *Dest = getInnerResumeDest();
212   BasicBlock *Src = RI->getParent();
213 
214   BranchInst::Create(Dest, Src);
215 
216   // Update the PHIs in the destination. They were inserted in an order which
217   // makes this work.
218   addIncomingPHIValuesForInto(Src, Dest);
219 
220   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
221   RI->eraseFromParent();
222 }
223 
224 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)225 static Value *getParentPad(Value *EHPad) {
226   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
227     return FPI->getParentPad();
228   return cast<CatchSwitchInst>(EHPad)->getParentPad();
229 }
230 
231 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
232 
233 /// Helper for getUnwindDestToken that does the descendant-ward part of
234 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)235 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
236                                        UnwindDestMemoTy &MemoMap) {
237   SmallVector<Instruction *, 8> Worklist(1, EHPad);
238 
239   while (!Worklist.empty()) {
240     Instruction *CurrentPad = Worklist.pop_back_val();
241     // We only put pads on the worklist that aren't in the MemoMap.  When
242     // we find an unwind dest for a pad we may update its ancestors, but
243     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
244     // so they should never get updated while queued on the worklist.
245     assert(!MemoMap.count(CurrentPad));
246     Value *UnwindDestToken = nullptr;
247     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
248       if (CatchSwitch->hasUnwindDest()) {
249         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
250       } else {
251         // Catchswitch doesn't have a 'nounwind' variant, and one might be
252         // annotated as "unwinds to caller" when really it's nounwind (see
253         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
254         // parent's unwind dest from this.  We can check its catchpads'
255         // descendants, since they might include a cleanuppad with an
256         // "unwinds to caller" cleanupret, which can be trusted.
257         for (auto HI = CatchSwitch->handler_begin(),
258                   HE = CatchSwitch->handler_end();
259              HI != HE && !UnwindDestToken; ++HI) {
260           BasicBlock *HandlerBlock = *HI;
261           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
262           for (User *Child : CatchPad->users()) {
263             // Intentionally ignore invokes here -- since the catchswitch is
264             // marked "unwind to caller", it would be a verifier error if it
265             // contained an invoke which unwinds out of it, so any invoke we'd
266             // encounter must unwind to some child of the catch.
267             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
268               continue;
269 
270             Instruction *ChildPad = cast<Instruction>(Child);
271             auto Memo = MemoMap.find(ChildPad);
272             if (Memo == MemoMap.end()) {
273               // Haven't figured out this child pad yet; queue it.
274               Worklist.push_back(ChildPad);
275               continue;
276             }
277             // We've already checked this child, but might have found that
278             // it offers no proof either way.
279             Value *ChildUnwindDestToken = Memo->second;
280             if (!ChildUnwindDestToken)
281               continue;
282             // We already know the child's unwind dest, which can either
283             // be ConstantTokenNone to indicate unwind to caller, or can
284             // be another child of the catchpad.  Only the former indicates
285             // the unwind dest of the catchswitch.
286             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
287               UnwindDestToken = ChildUnwindDestToken;
288               break;
289             }
290             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
291           }
292         }
293       }
294     } else {
295       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
296       for (User *U : CleanupPad->users()) {
297         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
298           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
299             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
300           else
301             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
302           break;
303         }
304         Value *ChildUnwindDestToken;
305         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
306           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
307         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
308           Instruction *ChildPad = cast<Instruction>(U);
309           auto Memo = MemoMap.find(ChildPad);
310           if (Memo == MemoMap.end()) {
311             // Haven't resolved this child yet; queue it and keep searching.
312             Worklist.push_back(ChildPad);
313             continue;
314           }
315           // We've checked this child, but still need to ignore it if it
316           // had no proof either way.
317           ChildUnwindDestToken = Memo->second;
318           if (!ChildUnwindDestToken)
319             continue;
320         } else {
321           // Not a relevant user of the cleanuppad
322           continue;
323         }
324         // In a well-formed program, the child/invoke must either unwind to
325         // an(other) child of the cleanup, or exit the cleanup.  In the
326         // first case, continue searching.
327         if (isa<Instruction>(ChildUnwindDestToken) &&
328             getParentPad(ChildUnwindDestToken) == CleanupPad)
329           continue;
330         UnwindDestToken = ChildUnwindDestToken;
331         break;
332       }
333     }
334     // If we haven't found an unwind dest for CurrentPad, we may have queued its
335     // children, so move on to the next in the worklist.
336     if (!UnwindDestToken)
337       continue;
338 
339     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
340     // any ancestors of CurrentPad up to but not including UnwindDestToken's
341     // parent pad.  Record this in the memo map, and check to see if the
342     // original EHPad being queried is one of the ones exited.
343     Value *UnwindParent;
344     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
345       UnwindParent = getParentPad(UnwindPad);
346     else
347       UnwindParent = nullptr;
348     bool ExitedOriginalPad = false;
349     for (Instruction *ExitedPad = CurrentPad;
350          ExitedPad && ExitedPad != UnwindParent;
351          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
352       // Skip over catchpads since they just follow their catchswitches.
353       if (isa<CatchPadInst>(ExitedPad))
354         continue;
355       MemoMap[ExitedPad] = UnwindDestToken;
356       ExitedOriginalPad |= (ExitedPad == EHPad);
357     }
358 
359     if (ExitedOriginalPad)
360       return UnwindDestToken;
361 
362     // Continue the search.
363   }
364 
365   // No definitive information is contained within this funclet.
366   return nullptr;
367 }
368 
369 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
370 /// return that pad instruction.  If it unwinds to caller, return
371 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
372 /// return nullptr.
373 ///
374 /// This routine gets invoked for calls in funclets in inlinees when inlining
375 /// an invoke.  Since many funclets don't have calls inside them, it's queried
376 /// on-demand rather than building a map of pads to unwind dests up front.
377 /// Determining a funclet's unwind dest may require recursively searching its
378 /// descendants, and also ancestors and cousins if the descendants don't provide
379 /// an answer.  Since most funclets will have their unwind dest immediately
380 /// available as the unwind dest of a catchswitch or cleanupret, this routine
381 /// searches top-down from the given pad and then up. To avoid worst-case
382 /// quadratic run-time given that approach, it uses a memo map to avoid
383 /// re-processing funclet trees.  The callers that rewrite the IR as they go
384 /// take advantage of this, for correctness, by checking/forcing rewritten
385 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)386 static Value *getUnwindDestToken(Instruction *EHPad,
387                                  UnwindDestMemoTy &MemoMap) {
388   // Catchpads unwind to the same place as their catchswitch;
389   // redirct any queries on catchpads so the code below can
390   // deal with just catchswitches and cleanuppads.
391   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
392     EHPad = CPI->getCatchSwitch();
393 
394   // Check if we've already determined the unwind dest for this pad.
395   auto Memo = MemoMap.find(EHPad);
396   if (Memo != MemoMap.end())
397     return Memo->second;
398 
399   // Search EHPad and, if necessary, its descendants.
400   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
401   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
402   if (UnwindDestToken)
403     return UnwindDestToken;
404 
405   // No information is available for this EHPad from itself or any of its
406   // descendants.  An unwind all the way out to a pad in the caller would
407   // need also to agree with the unwind dest of the parent funclet, so
408   // search up the chain to try to find a funclet with information.  Put
409   // null entries in the memo map to avoid re-processing as we go up.
410   MemoMap[EHPad] = nullptr;
411 #ifndef NDEBUG
412   SmallPtrSet<Instruction *, 4> TempMemos;
413   TempMemos.insert(EHPad);
414 #endif
415   Instruction *LastUselessPad = EHPad;
416   Value *AncestorToken;
417   for (AncestorToken = getParentPad(EHPad);
418        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
419        AncestorToken = getParentPad(AncestorToken)) {
420     // Skip over catchpads since they just follow their catchswitches.
421     if (isa<CatchPadInst>(AncestorPad))
422       continue;
423     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
424     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
425     // call to getUnwindDestToken, that would mean that AncestorPad had no
426     // information in itself, its descendants, or its ancestors.  If that
427     // were the case, then we should also have recorded the lack of information
428     // for the descendant that we're coming from.  So assert that we don't
429     // find a null entry in the MemoMap for AncestorPad.
430     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
431     auto AncestorMemo = MemoMap.find(AncestorPad);
432     if (AncestorMemo == MemoMap.end()) {
433       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
434     } else {
435       UnwindDestToken = AncestorMemo->second;
436     }
437     if (UnwindDestToken)
438       break;
439     LastUselessPad = AncestorPad;
440     MemoMap[LastUselessPad] = nullptr;
441 #ifndef NDEBUG
442     TempMemos.insert(LastUselessPad);
443 #endif
444   }
445 
446   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
447   // returned nullptr (and likewise for EHPad and any of its ancestors up to
448   // LastUselessPad), so LastUselessPad has no information from below.  Since
449   // getUnwindDestTokenHelper must investigate all downward paths through
450   // no-information nodes to prove that a node has no information like this,
451   // and since any time it finds information it records it in the MemoMap for
452   // not just the immediately-containing funclet but also any ancestors also
453   // exited, it must be the case that, walking downward from LastUselessPad,
454   // visiting just those nodes which have not been mapped to an unwind dest
455   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
456   // they are just used to keep getUnwindDestTokenHelper from repeating work),
457   // any node visited must have been exhaustively searched with no information
458   // for it found.
459   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
460   while (!Worklist.empty()) {
461     Instruction *UselessPad = Worklist.pop_back_val();
462     auto Memo = MemoMap.find(UselessPad);
463     if (Memo != MemoMap.end() && Memo->second) {
464       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
465       // that it is a funclet that does have information about unwinding to
466       // a particular destination; its parent was a useless pad.
467       // Since its parent has no information, the unwind edge must not escape
468       // the parent, and must target a sibling of this pad.  This local unwind
469       // gives us no information about EHPad.  Leave it and the subtree rooted
470       // at it alone.
471       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
472       continue;
473     }
474     // We know we don't have information for UselesPad.  If it has an entry in
475     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
476     // added on this invocation of getUnwindDestToken; if a previous invocation
477     // recorded nullptr, it would have had to prove that the ancestors of
478     // UselessPad, which include LastUselessPad, had no information, and that
479     // in turn would have required proving that the descendants of
480     // LastUselesPad, which include EHPad, have no information about
481     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
482     // the MemoMap on that invocation, which isn't the case if we got here.
483     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
484     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
485     // information that we'd be contradicting by making a map entry for it
486     // (which is something that getUnwindDestTokenHelper must have proved for
487     // us to get here).  Just assert on is direct users here; the checks in
488     // this downward walk at its descendants will verify that they don't have
489     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
490     // unwind edges or unwind to a sibling).
491     MemoMap[UselessPad] = UnwindDestToken;
492     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
493       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
494       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
495         auto *CatchPad = HandlerBlock->getFirstNonPHI();
496         for (User *U : CatchPad->users()) {
497           assert(
498               (!isa<InvokeInst>(U) ||
499                (getParentPad(
500                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
501                 CatchPad)) &&
502               "Expected useless pad");
503           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
504             Worklist.push_back(cast<Instruction>(U));
505         }
506       }
507     } else {
508       assert(isa<CleanupPadInst>(UselessPad));
509       for (User *U : UselessPad->users()) {
510         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
511         assert((!isa<InvokeInst>(U) ||
512                 (getParentPad(
513                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
514                  UselessPad)) &&
515                "Expected useless pad");
516         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
517           Worklist.push_back(cast<Instruction>(U));
518       }
519     }
520   }
521 
522   return UnwindDestToken;
523 }
524 
525 /// When we inline a basic block into an invoke,
526 /// we have to turn all of the calls that can throw into invokes.
527 /// This function analyze BB to see if there are any calls, and if so,
528 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
529 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)530 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
531     BasicBlock *BB, BasicBlock *UnwindEdge,
532     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
533   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
534     Instruction *I = &*BBI++;
535 
536     // We only need to check for function calls: inlined invoke
537     // instructions require no special handling.
538     CallInst *CI = dyn_cast<CallInst>(I);
539 
540     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
541       continue;
542 
543     // We do not need to (and in fact, cannot) convert possibly throwing calls
544     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
545     // invokes.  The caller's "segment" of the deoptimization continuation
546     // attached to the newly inlined @llvm.experimental_deoptimize
547     // (resp. @llvm.experimental.guard) call should contain the exception
548     // handling logic, if any.
549     if (auto *F = CI->getCalledFunction())
550       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
551           F->getIntrinsicID() == Intrinsic::experimental_guard)
552         continue;
553 
554     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
555       // This call is nested inside a funclet.  If that funclet has an unwind
556       // destination within the inlinee, then unwinding out of this call would
557       // be UB.  Rewriting this call to an invoke which targets the inlined
558       // invoke's unwind dest would give the call's parent funclet multiple
559       // unwind destinations, which is something that subsequent EH table
560       // generation can't handle and that the veirifer rejects.  So when we
561       // see such a call, leave it as a call.
562       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
563       Value *UnwindDestToken =
564           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
565       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
566         continue;
567 #ifndef NDEBUG
568       Instruction *MemoKey;
569       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
570         MemoKey = CatchPad->getCatchSwitch();
571       else
572         MemoKey = FuncletPad;
573       assert(FuncletUnwindMap->count(MemoKey) &&
574              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
575              "must get memoized to avoid confusing later searches");
576 #endif // NDEBUG
577     }
578 
579     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
580     return BB;
581   }
582   return nullptr;
583 }
584 
585 /// If we inlined an invoke site, we need to convert calls
586 /// in the body of the inlined function into invokes.
587 ///
588 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
589 /// block of the inlined code (the last block is the end of the function),
590 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)591 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
592                                     ClonedCodeInfo &InlinedCodeInfo) {
593   BasicBlock *InvokeDest = II->getUnwindDest();
594 
595   Function *Caller = FirstNewBlock->getParent();
596 
597   // The inlined code is currently at the end of the function, scan from the
598   // start of the inlined code to its end, checking for stuff we need to
599   // rewrite.
600   LandingPadInliningInfo Invoke(II);
601 
602   // Get all of the inlined landing pad instructions.
603   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
604   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
605        I != E; ++I)
606     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
607       InlinedLPads.insert(II->getLandingPadInst());
608 
609   // Append the clauses from the outer landing pad instruction into the inlined
610   // landing pad instructions.
611   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
612   for (LandingPadInst *InlinedLPad : InlinedLPads) {
613     unsigned OuterNum = OuterLPad->getNumClauses();
614     InlinedLPad->reserveClauses(OuterNum);
615     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
616       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
617     if (OuterLPad->isCleanup())
618       InlinedLPad->setCleanup(true);
619   }
620 
621   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
622        BB != E; ++BB) {
623     if (InlinedCodeInfo.ContainsCalls)
624       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
625               &*BB, Invoke.getOuterResumeDest()))
626         // Update any PHI nodes in the exceptional block to indicate that there
627         // is now a new entry in them.
628         Invoke.addIncomingPHIValuesFor(NewBB);
629 
630     // Forward any resumes that are remaining here.
631     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
632       Invoke.forwardResume(RI, InlinedLPads);
633   }
634 
635   // Now that everything is happy, we have one final detail.  The PHI nodes in
636   // the exception destination block still have entries due to the original
637   // invoke instruction. Eliminate these entries (which might even delete the
638   // PHI node) now.
639   InvokeDest->removePredecessor(II->getParent());
640 }
641 
642 /// If we inlined an invoke site, we need to convert calls
643 /// in the body of the inlined function into invokes.
644 ///
645 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
646 /// block of the inlined code (the last block is the end of the function),
647 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)648 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
649                                ClonedCodeInfo &InlinedCodeInfo) {
650   BasicBlock *UnwindDest = II->getUnwindDest();
651   Function *Caller = FirstNewBlock->getParent();
652 
653   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
654 
655   // If there are PHI nodes in the unwind destination block, we need to keep
656   // track of which values came into them from the invoke before removing the
657   // edge from this block.
658   SmallVector<Value *, 8> UnwindDestPHIValues;
659   BasicBlock *InvokeBB = II->getParent();
660   for (Instruction &I : *UnwindDest) {
661     // Save the value to use for this edge.
662     PHINode *PHI = dyn_cast<PHINode>(&I);
663     if (!PHI)
664       break;
665     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
666   }
667 
668   // Add incoming-PHI values to the unwind destination block for the given basic
669   // block, using the values for the original invoke's source block.
670   auto UpdatePHINodes = [&](BasicBlock *Src) {
671     BasicBlock::iterator I = UnwindDest->begin();
672     for (Value *V : UnwindDestPHIValues) {
673       PHINode *PHI = cast<PHINode>(I);
674       PHI->addIncoming(V, Src);
675       ++I;
676     }
677   };
678 
679   // This connects all the instructions which 'unwind to caller' to the invoke
680   // destination.
681   UnwindDestMemoTy FuncletUnwindMap;
682   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
683        BB != E; ++BB) {
684     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
685       if (CRI->unwindsToCaller()) {
686         auto *CleanupPad = CRI->getCleanupPad();
687         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
688         CRI->eraseFromParent();
689         UpdatePHINodes(&*BB);
690         // Finding a cleanupret with an unwind destination would confuse
691         // subsequent calls to getUnwindDestToken, so map the cleanuppad
692         // to short-circuit any such calls and recognize this as an "unwind
693         // to caller" cleanup.
694         assert(!FuncletUnwindMap.count(CleanupPad) ||
695                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
696         FuncletUnwindMap[CleanupPad] =
697             ConstantTokenNone::get(Caller->getContext());
698       }
699     }
700 
701     Instruction *I = BB->getFirstNonPHI();
702     if (!I->isEHPad())
703       continue;
704 
705     Instruction *Replacement = nullptr;
706     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
707       if (CatchSwitch->unwindsToCaller()) {
708         Value *UnwindDestToken;
709         if (auto *ParentPad =
710                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
711           // This catchswitch is nested inside another funclet.  If that
712           // funclet has an unwind destination within the inlinee, then
713           // unwinding out of this catchswitch would be UB.  Rewriting this
714           // catchswitch to unwind to the inlined invoke's unwind dest would
715           // give the parent funclet multiple unwind destinations, which is
716           // something that subsequent EH table generation can't handle and
717           // that the veirifer rejects.  So when we see such a call, leave it
718           // as "unwind to caller".
719           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
720           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
721             continue;
722         } else {
723           // This catchswitch has no parent to inherit constraints from, and
724           // none of its descendants can have an unwind edge that exits it and
725           // targets another funclet in the inlinee.  It may or may not have a
726           // descendant that definitively has an unwind to caller.  In either
727           // case, we'll have to assume that any unwinds out of it may need to
728           // be routed to the caller, so treat it as though it has a definitive
729           // unwind to caller.
730           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
731         }
732         auto *NewCatchSwitch = CatchSwitchInst::Create(
733             CatchSwitch->getParentPad(), UnwindDest,
734             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
735             CatchSwitch);
736         for (BasicBlock *PadBB : CatchSwitch->handlers())
737           NewCatchSwitch->addHandler(PadBB);
738         // Propagate info for the old catchswitch over to the new one in
739         // the unwind map.  This also serves to short-circuit any subsequent
740         // checks for the unwind dest of this catchswitch, which would get
741         // confused if they found the outer handler in the callee.
742         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
743         Replacement = NewCatchSwitch;
744       }
745     } else if (!isa<FuncletPadInst>(I)) {
746       llvm_unreachable("unexpected EHPad!");
747     }
748 
749     if (Replacement) {
750       Replacement->takeName(I);
751       I->replaceAllUsesWith(Replacement);
752       I->eraseFromParent();
753       UpdatePHINodes(&*BB);
754     }
755   }
756 
757   if (InlinedCodeInfo.ContainsCalls)
758     for (Function::iterator BB = FirstNewBlock->getIterator(),
759                             E = Caller->end();
760          BB != E; ++BB)
761       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
762               &*BB, UnwindDest, &FuncletUnwindMap))
763         // Update any PHI nodes in the exceptional block to indicate that there
764         // is now a new entry in them.
765         UpdatePHINodes(NewBB);
766 
767   // Now that everything is happy, we have one final detail.  The PHI nodes in
768   // the exception destination block still have entries due to the original
769   // invoke instruction. Eliminate these entries (which might even delete the
770   // PHI node) now.
771   UnwindDest->removePredecessor(InvokeBB);
772 }
773 
774 /// When inlining a call site that has !llvm.mem.parallel_loop_access or
775 /// llvm.access.group metadata, that metadata should be propagated to all
776 /// memory-accessing cloned instructions.
PropagateParallelLoopAccessMetadata(CallSite CS,ValueToValueMapTy & VMap)777 static void PropagateParallelLoopAccessMetadata(CallSite CS,
778                                                 ValueToValueMapTy &VMap) {
779   MDNode *M =
780     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
781   MDNode *CallAccessGroup =
782       CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
783   if (!M && !CallAccessGroup)
784     return;
785 
786   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
787        VMI != VMIE; ++VMI) {
788     if (!VMI->second)
789       continue;
790 
791     Instruction *NI = dyn_cast<Instruction>(VMI->second);
792     if (!NI)
793       continue;
794 
795     if (M) {
796       if (MDNode *PM =
797               NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
798         M = MDNode::concatenate(PM, M);
799       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
800       } else if (NI->mayReadOrWriteMemory()) {
801         NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
802       }
803     }
804 
805     if (NI->mayReadOrWriteMemory()) {
806       MDNode *UnitedAccGroups = uniteAccessGroups(
807           NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
808       NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
809     }
810   }
811 }
812 
813 /// When inlining a function that contains noalias scope metadata,
814 /// this metadata needs to be cloned so that the inlined blocks
815 /// have different "unique scopes" at every call site. Were this not done, then
816 /// aliasing scopes from a function inlined into a caller multiple times could
817 /// not be differentiated (and this would lead to miscompiles because the
818 /// non-aliasing property communicated by the metadata could have
819 /// call-site-specific control dependencies).
CloneAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap)820 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
821   const Function *CalledFunc = CS.getCalledFunction();
822   SetVector<const MDNode *> MD;
823 
824   // Note: We could only clone the metadata if it is already used in the
825   // caller. I'm omitting that check here because it might confuse
826   // inter-procedural alias analysis passes. We can revisit this if it becomes
827   // an efficiency or overhead problem.
828 
829   for (const BasicBlock &I : *CalledFunc)
830     for (const Instruction &J : I) {
831       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
832         MD.insert(M);
833       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
834         MD.insert(M);
835     }
836 
837   if (MD.empty())
838     return;
839 
840   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
841   // the set.
842   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
843   while (!Queue.empty()) {
844     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
845     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
846       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
847         if (MD.insert(M1))
848           Queue.push_back(M1);
849   }
850 
851   // Now we have a complete set of all metadata in the chains used to specify
852   // the noalias scopes and the lists of those scopes.
853   SmallVector<TempMDTuple, 16> DummyNodes;
854   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
855   for (const MDNode *I : MD) {
856     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
857     MDMap[I].reset(DummyNodes.back().get());
858   }
859 
860   // Create new metadata nodes to replace the dummy nodes, replacing old
861   // metadata references with either a dummy node or an already-created new
862   // node.
863   for (const MDNode *I : MD) {
864     SmallVector<Metadata *, 4> NewOps;
865     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
866       const Metadata *V = I->getOperand(i);
867       if (const MDNode *M = dyn_cast<MDNode>(V))
868         NewOps.push_back(MDMap[M]);
869       else
870         NewOps.push_back(const_cast<Metadata *>(V));
871     }
872 
873     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
874     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
875     assert(TempM->isTemporary() && "Expected temporary node");
876 
877     TempM->replaceAllUsesWith(NewM);
878   }
879 
880   // Now replace the metadata in the new inlined instructions with the
881   // repacements from the map.
882   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
883        VMI != VMIE; ++VMI) {
884     if (!VMI->second)
885       continue;
886 
887     Instruction *NI = dyn_cast<Instruction>(VMI->second);
888     if (!NI)
889       continue;
890 
891     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
892       MDNode *NewMD = MDMap[M];
893       // If the call site also had alias scope metadata (a list of scopes to
894       // which instructions inside it might belong), propagate those scopes to
895       // the inlined instructions.
896       if (MDNode *CSM =
897               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
898         NewMD = MDNode::concatenate(NewMD, CSM);
899       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
900     } else if (NI->mayReadOrWriteMemory()) {
901       if (MDNode *M =
902               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
903         NI->setMetadata(LLVMContext::MD_alias_scope, M);
904     }
905 
906     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
907       MDNode *NewMD = MDMap[M];
908       // If the call site also had noalias metadata (a list of scopes with
909       // which instructions inside it don't alias), propagate those scopes to
910       // the inlined instructions.
911       if (MDNode *CSM =
912               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
913         NewMD = MDNode::concatenate(NewMD, CSM);
914       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
915     } else if (NI->mayReadOrWriteMemory()) {
916       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
917         NI->setMetadata(LLVMContext::MD_noalias, M);
918     }
919   }
920 }
921 
922 /// If the inlined function has noalias arguments,
923 /// then add new alias scopes for each noalias argument, tag the mapped noalias
924 /// parameters with noalias metadata specifying the new scope, and tag all
925 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR)926 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
927                                   const DataLayout &DL, AAResults *CalleeAAR) {
928   if (!EnableNoAliasConversion)
929     return;
930 
931   const Function *CalledFunc = CS.getCalledFunction();
932   SmallVector<const Argument *, 4> NoAliasArgs;
933 
934   for (const Argument &Arg : CalledFunc->args())
935     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
936       NoAliasArgs.push_back(&Arg);
937 
938   if (NoAliasArgs.empty())
939     return;
940 
941   // To do a good job, if a noalias variable is captured, we need to know if
942   // the capture point dominates the particular use we're considering.
943   DominatorTree DT;
944   DT.recalculate(const_cast<Function&>(*CalledFunc));
945 
946   // noalias indicates that pointer values based on the argument do not alias
947   // pointer values which are not based on it. So we add a new "scope" for each
948   // noalias function argument. Accesses using pointers based on that argument
949   // become part of that alias scope, accesses using pointers not based on that
950   // argument are tagged as noalias with that scope.
951 
952   DenseMap<const Argument *, MDNode *> NewScopes;
953   MDBuilder MDB(CalledFunc->getContext());
954 
955   // Create a new scope domain for this function.
956   MDNode *NewDomain =
957     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
958   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
959     const Argument *A = NoAliasArgs[i];
960 
961     std::string Name = CalledFunc->getName();
962     if (A->hasName()) {
963       Name += ": %";
964       Name += A->getName();
965     } else {
966       Name += ": argument ";
967       Name += utostr(i);
968     }
969 
970     // Note: We always create a new anonymous root here. This is true regardless
971     // of the linkage of the callee because the aliasing "scope" is not just a
972     // property of the callee, but also all control dependencies in the caller.
973     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
974     NewScopes.insert(std::make_pair(A, NewScope));
975   }
976 
977   // Iterate over all new instructions in the map; for all memory-access
978   // instructions, add the alias scope metadata.
979   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
980        VMI != VMIE; ++VMI) {
981     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
982       if (!VMI->second)
983         continue;
984 
985       Instruction *NI = dyn_cast<Instruction>(VMI->second);
986       if (!NI)
987         continue;
988 
989       bool IsArgMemOnlyCall = false, IsFuncCall = false;
990       SmallVector<const Value *, 2> PtrArgs;
991 
992       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
993         PtrArgs.push_back(LI->getPointerOperand());
994       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
995         PtrArgs.push_back(SI->getPointerOperand());
996       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
997         PtrArgs.push_back(VAAI->getPointerOperand());
998       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
999         PtrArgs.push_back(CXI->getPointerOperand());
1000       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1001         PtrArgs.push_back(RMWI->getPointerOperand());
1002       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1003         // If we know that the call does not access memory, then we'll still
1004         // know that about the inlined clone of this call site, and we don't
1005         // need to add metadata.
1006         if (Call->doesNotAccessMemory())
1007           continue;
1008 
1009         IsFuncCall = true;
1010         if (CalleeAAR) {
1011           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1012           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
1013               MRB == FMRB_OnlyReadsArgumentPointees)
1014             IsArgMemOnlyCall = true;
1015         }
1016 
1017         for (Value *Arg : Call->args()) {
1018           // We need to check the underlying objects of all arguments, not just
1019           // the pointer arguments, because we might be passing pointers as
1020           // integers, etc.
1021           // However, if we know that the call only accesses pointer arguments,
1022           // then we only need to check the pointer arguments.
1023           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1024             continue;
1025 
1026           PtrArgs.push_back(Arg);
1027         }
1028       }
1029 
1030       // If we found no pointers, then this instruction is not suitable for
1031       // pairing with an instruction to receive aliasing metadata.
1032       // However, if this is a call, this we might just alias with none of the
1033       // noalias arguments.
1034       if (PtrArgs.empty() && !IsFuncCall)
1035         continue;
1036 
1037       // It is possible that there is only one underlying object, but you
1038       // need to go through several PHIs to see it, and thus could be
1039       // repeated in the Objects list.
1040       SmallPtrSet<const Value *, 4> ObjSet;
1041       SmallVector<Metadata *, 4> Scopes, NoAliases;
1042 
1043       SmallSetVector<const Argument *, 4> NAPtrArgs;
1044       for (const Value *V : PtrArgs) {
1045         SmallVector<Value *, 4> Objects;
1046         GetUnderlyingObjects(const_cast<Value*>(V),
1047                              Objects, DL, /* LI = */ nullptr);
1048 
1049         for (Value *O : Objects)
1050           ObjSet.insert(O);
1051       }
1052 
1053       // Figure out if we're derived from anything that is not a noalias
1054       // argument.
1055       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1056       for (const Value *V : ObjSet) {
1057         // Is this value a constant that cannot be derived from any pointer
1058         // value (we need to exclude constant expressions, for example, that
1059         // are formed from arithmetic on global symbols).
1060         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1061                              isa<ConstantPointerNull>(V) ||
1062                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1063         if (IsNonPtrConst)
1064           continue;
1065 
1066         // If this is anything other than a noalias argument, then we cannot
1067         // completely describe the aliasing properties using alias.scope
1068         // metadata (and, thus, won't add any).
1069         if (const Argument *A = dyn_cast<Argument>(V)) {
1070           if (!A->hasNoAliasAttr())
1071             UsesAliasingPtr = true;
1072         } else {
1073           UsesAliasingPtr = true;
1074         }
1075 
1076         // If this is not some identified function-local object (which cannot
1077         // directly alias a noalias argument), or some other argument (which,
1078         // by definition, also cannot alias a noalias argument), then we could
1079         // alias a noalias argument that has been captured).
1080         if (!isa<Argument>(V) &&
1081             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1082           CanDeriveViaCapture = true;
1083       }
1084 
1085       // A function call can always get captured noalias pointers (via other
1086       // parameters, globals, etc.).
1087       if (IsFuncCall && !IsArgMemOnlyCall)
1088         CanDeriveViaCapture = true;
1089 
1090       // First, we want to figure out all of the sets with which we definitely
1091       // don't alias. Iterate over all noalias set, and add those for which:
1092       //   1. The noalias argument is not in the set of objects from which we
1093       //      definitely derive.
1094       //   2. The noalias argument has not yet been captured.
1095       // An arbitrary function that might load pointers could see captured
1096       // noalias arguments via other noalias arguments or globals, and so we
1097       // must always check for prior capture.
1098       for (const Argument *A : NoAliasArgs) {
1099         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1100                                  // It might be tempting to skip the
1101                                  // PointerMayBeCapturedBefore check if
1102                                  // A->hasNoCaptureAttr() is true, but this is
1103                                  // incorrect because nocapture only guarantees
1104                                  // that no copies outlive the function, not
1105                                  // that the value cannot be locally captured.
1106                                  !PointerMayBeCapturedBefore(A,
1107                                    /* ReturnCaptures */ false,
1108                                    /* StoreCaptures */ false, I, &DT)))
1109           NoAliases.push_back(NewScopes[A]);
1110       }
1111 
1112       if (!NoAliases.empty())
1113         NI->setMetadata(LLVMContext::MD_noalias,
1114                         MDNode::concatenate(
1115                             NI->getMetadata(LLVMContext::MD_noalias),
1116                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1117 
1118       // Next, we want to figure out all of the sets to which we might belong.
1119       // We might belong to a set if the noalias argument is in the set of
1120       // underlying objects. If there is some non-noalias argument in our list
1121       // of underlying objects, then we cannot add a scope because the fact
1122       // that some access does not alias with any set of our noalias arguments
1123       // cannot itself guarantee that it does not alias with this access
1124       // (because there is some pointer of unknown origin involved and the
1125       // other access might also depend on this pointer). We also cannot add
1126       // scopes to arbitrary functions unless we know they don't access any
1127       // non-parameter pointer-values.
1128       bool CanAddScopes = !UsesAliasingPtr;
1129       if (CanAddScopes && IsFuncCall)
1130         CanAddScopes = IsArgMemOnlyCall;
1131 
1132       if (CanAddScopes)
1133         for (const Argument *A : NoAliasArgs) {
1134           if (ObjSet.count(A))
1135             Scopes.push_back(NewScopes[A]);
1136         }
1137 
1138       if (!Scopes.empty())
1139         NI->setMetadata(
1140             LLVMContext::MD_alias_scope,
1141             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1142                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1143     }
1144   }
1145 }
1146 
1147 /// If the inlined function has non-byval align arguments, then
1148 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallSite CS,InlineFunctionInfo & IFI)1149 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1150   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1151     return;
1152 
1153   AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1154   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1155 
1156   // To avoid inserting redundant assumptions, we should check for assumptions
1157   // already in the caller. To do this, we might need a DT of the caller.
1158   DominatorTree DT;
1159   bool DTCalculated = false;
1160 
1161   Function *CalledFunc = CS.getCalledFunction();
1162   for (Argument &Arg : CalledFunc->args()) {
1163     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1164     if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1165       if (!DTCalculated) {
1166         DT.recalculate(*CS.getCaller());
1167         DTCalculated = true;
1168       }
1169 
1170       // If we can already prove the asserted alignment in the context of the
1171       // caller, then don't bother inserting the assumption.
1172       Value *ArgVal = CS.getArgument(Arg.getArgNo());
1173       if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1174         continue;
1175 
1176       CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1177                               .CreateAlignmentAssumption(DL, ArgVal, Align);
1178       AC->registerAssumption(NewAsmp);
1179     }
1180   }
1181 }
1182 
1183 /// Once we have cloned code over from a callee into the caller,
1184 /// update the specified callgraph to reflect the changes we made.
1185 /// Note that it's possible that not all code was copied over, so only
1186 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallSite CS,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1187 static void UpdateCallGraphAfterInlining(CallSite CS,
1188                                          Function::iterator FirstNewBlock,
1189                                          ValueToValueMapTy &VMap,
1190                                          InlineFunctionInfo &IFI) {
1191   CallGraph &CG = *IFI.CG;
1192   const Function *Caller = CS.getCaller();
1193   const Function *Callee = CS.getCalledFunction();
1194   CallGraphNode *CalleeNode = CG[Callee];
1195   CallGraphNode *CallerNode = CG[Caller];
1196 
1197   // Since we inlined some uninlined call sites in the callee into the caller,
1198   // add edges from the caller to all of the callees of the callee.
1199   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1200 
1201   // Consider the case where CalleeNode == CallerNode.
1202   CallGraphNode::CalledFunctionsVector CallCache;
1203   if (CalleeNode == CallerNode) {
1204     CallCache.assign(I, E);
1205     I = CallCache.begin();
1206     E = CallCache.end();
1207   }
1208 
1209   for (; I != E; ++I) {
1210     const Value *OrigCall = I->first;
1211 
1212     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1213     // Only copy the edge if the call was inlined!
1214     if (VMI == VMap.end() || VMI->second == nullptr)
1215       continue;
1216 
1217     // If the call was inlined, but then constant folded, there is no edge to
1218     // add.  Check for this case.
1219     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1220     if (!NewCall)
1221       continue;
1222 
1223     // We do not treat intrinsic calls like real function calls because we
1224     // expect them to become inline code; do not add an edge for an intrinsic.
1225     CallSite CS = CallSite(NewCall);
1226     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1227       continue;
1228 
1229     // Remember that this call site got inlined for the client of
1230     // InlineFunction.
1231     IFI.InlinedCalls.push_back(NewCall);
1232 
1233     // It's possible that inlining the callsite will cause it to go from an
1234     // indirect to a direct call by resolving a function pointer.  If this
1235     // happens, set the callee of the new call site to a more precise
1236     // destination.  This can also happen if the call graph node of the caller
1237     // was just unnecessarily imprecise.
1238     if (!I->second->getFunction())
1239       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1240         // Indirect call site resolved to direct call.
1241         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1242 
1243         continue;
1244       }
1245 
1246     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1247   }
1248 
1249   // Update the call graph by deleting the edge from Callee to Caller.  We must
1250   // do this after the loop above in case Caller and Callee are the same.
1251   CallerNode->removeCallEdgeFor(CS);
1252 }
1253 
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1254 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1255                                     BasicBlock *InsertBlock,
1256                                     InlineFunctionInfo &IFI) {
1257   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1258   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1259 
1260   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1261 
1262   // Always generate a memcpy of alignment 1 here because we don't know
1263   // the alignment of the src pointer.  Other optimizations can infer
1264   // better alignment.
1265   Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
1266 }
1267 
1268 /// When inlining a call site that has a byval argument,
1269 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)1270 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1271                                   const Function *CalledFunc,
1272                                   InlineFunctionInfo &IFI,
1273                                   unsigned ByValAlignment) {
1274   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1275   Type *AggTy = ArgTy->getElementType();
1276 
1277   Function *Caller = TheCall->getFunction();
1278   const DataLayout &DL = Caller->getParent()->getDataLayout();
1279 
1280   // If the called function is readonly, then it could not mutate the caller's
1281   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1282   // temporary.
1283   if (CalledFunc->onlyReadsMemory()) {
1284     // If the byval argument has a specified alignment that is greater than the
1285     // passed in pointer, then we either have to round up the input pointer or
1286     // give up on this transformation.
1287     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1288       return Arg;
1289 
1290     AssumptionCache *AC =
1291         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1292 
1293     // If the pointer is already known to be sufficiently aligned, or if we can
1294     // round it up to a larger alignment, then we don't need a temporary.
1295     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1296         ByValAlignment)
1297       return Arg;
1298 
1299     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1300     // for code quality, but rarely happens and is required for correctness.
1301   }
1302 
1303   // Create the alloca.  If we have DataLayout, use nice alignment.
1304   unsigned Align = DL.getPrefTypeAlignment(AggTy);
1305 
1306   // If the byval had an alignment specified, we *must* use at least that
1307   // alignment, as it is required by the byval argument (and uses of the
1308   // pointer inside the callee).
1309   Align = std::max(Align, ByValAlignment);
1310 
1311   Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
1312                                     nullptr, Align, Arg->getName(),
1313                                     &*Caller->begin()->begin());
1314   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1315 
1316   // Uses of the argument in the function should use our new alloca
1317   // instead.
1318   return NewAlloca;
1319 }
1320 
1321 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1322 static bool isUsedByLifetimeMarker(Value *V) {
1323   for (User *U : V->users())
1324     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1325       if (II->isLifetimeStartOrEnd())
1326         return true;
1327   return false;
1328 }
1329 
1330 // Check whether the given alloca already has
1331 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1332 static bool hasLifetimeMarkers(AllocaInst *AI) {
1333   Type *Ty = AI->getType();
1334   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1335                                        Ty->getPointerAddressSpace());
1336   if (Ty == Int8PtrTy)
1337     return isUsedByLifetimeMarker(AI);
1338 
1339   // Do a scan to find all the casts to i8*.
1340   for (User *U : AI->users()) {
1341     if (U->getType() != Int8PtrTy) continue;
1342     if (U->stripPointerCasts() != AI) continue;
1343     if (isUsedByLifetimeMarker(U))
1344       return true;
1345   }
1346   return false;
1347 }
1348 
1349 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1350 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1351 /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)1352 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1353   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1354 }
1355 
1356 /// Update inlined instructions' line numbers to
1357 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)1358 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1359                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1360   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1361   if (!TheCallDL)
1362     return;
1363 
1364   auto &Ctx = Fn->getContext();
1365   DILocation *InlinedAtNode = TheCallDL;
1366 
1367   // Create a unique call site, not to be confused with any other call from the
1368   // same location.
1369   InlinedAtNode = DILocation::getDistinct(
1370       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1371       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1372 
1373   // Cache the inlined-at nodes as they're built so they are reused, without
1374   // this every instruction's inlined-at chain would become distinct from each
1375   // other.
1376   DenseMap<const MDNode *, MDNode *> IANodes;
1377 
1378   for (; FI != Fn->end(); ++FI) {
1379     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1380          BI != BE; ++BI) {
1381       if (DebugLoc DL = BI->getDebugLoc()) {
1382         auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
1383                                             IANodes);
1384         auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
1385         BI->setDebugLoc(IDL);
1386         continue;
1387       }
1388 
1389       if (CalleeHasDebugInfo)
1390         continue;
1391 
1392       // If the inlined instruction has no line number, make it look as if it
1393       // originates from the call location. This is important for
1394       // ((__always_inline__, __nodebug__)) functions which must use caller
1395       // location for all instructions in their function body.
1396 
1397       // Don't update static allocas, as they may get moved later.
1398       if (auto *AI = dyn_cast<AllocaInst>(BI))
1399         if (allocaWouldBeStaticInEntry(AI))
1400           continue;
1401 
1402       BI->setDebugLoc(TheCallDL);
1403     }
1404   }
1405 }
1406 
1407 /// Update the block frequencies of the caller after a callee has been inlined.
1408 ///
1409 /// Each block cloned into the caller has its block frequency scaled by the
1410 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1411 /// callee's entry block gets the same frequency as the callsite block and the
1412 /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)1413 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1414                             const ValueToValueMapTy &VMap,
1415                             BlockFrequencyInfo *CallerBFI,
1416                             BlockFrequencyInfo *CalleeBFI,
1417                             const BasicBlock &CalleeEntryBlock) {
1418   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1419   for (auto const &Entry : VMap) {
1420     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1421       continue;
1422     auto *OrigBB = cast<BasicBlock>(Entry.first);
1423     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1424     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1425     if (!ClonedBBs.insert(ClonedBB).second) {
1426       // Multiple blocks in the callee might get mapped to one cloned block in
1427       // the caller since we prune the callee as we clone it. When that happens,
1428       // we want to use the maximum among the original blocks' frequencies.
1429       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1430       if (NewFreq > Freq)
1431         Freq = NewFreq;
1432     }
1433     CallerBFI->setBlockFreq(ClonedBB, Freq);
1434   }
1435   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1436   CallerBFI->setBlockFreqAndScale(
1437       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1438       ClonedBBs);
1439 }
1440 
1441 /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const Instruction * TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)1442 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1443                               const ProfileCount &CalleeEntryCount,
1444                               const Instruction *TheCall,
1445                               ProfileSummaryInfo *PSI,
1446                               BlockFrequencyInfo *CallerBFI) {
1447   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1448       CalleeEntryCount.getCount() < 1)
1449     return;
1450   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1451   uint64_t CallCount =
1452       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1453                CalleeEntryCount.getCount());
1454 
1455   for (auto const &Entry : VMap)
1456     if (isa<CallInst>(Entry.first))
1457       if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1458         CI->updateProfWeight(CallCount, CalleeEntryCount.getCount());
1459   for (BasicBlock &BB : *Callee)
1460     // No need to update the callsite if it is pruned during inlining.
1461     if (VMap.count(&BB))
1462       for (Instruction &I : BB)
1463         if (CallInst *CI = dyn_cast<CallInst>(&I))
1464           CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount,
1465                                CalleeEntryCount.getCount());
1466 }
1467 
1468 /// Update the entry count of callee after inlining.
1469 ///
1470 /// The callsite's block count is subtracted from the callee's function entry
1471 /// count.
updateCalleeCount(BlockFrequencyInfo * CallerBFI,BasicBlock * CallBB,Instruction * CallInst,Function * Callee,ProfileSummaryInfo * PSI)1472 static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
1473                               Instruction *CallInst, Function *Callee,
1474                               ProfileSummaryInfo *PSI) {
1475   // If the callee has a original count of N, and the estimated count of
1476   // callsite is M, the new callee count is set to N - M. M is estimated from
1477   // the caller's entry count, its entry block frequency and the block frequency
1478   // of the callsite.
1479   auto CalleeCount = Callee->getEntryCount();
1480   if (!CalleeCount.hasValue() || !PSI)
1481     return;
1482   auto CallCount = PSI->getProfileCount(CallInst, CallerBFI);
1483   if (!CallCount.hasValue())
1484     return;
1485   // Since CallSiteCount is an estimate, it could exceed the original callee
1486   // count and has to be set to 0.
1487   if (CallCount.getValue() > CalleeCount.getCount())
1488     CalleeCount.setCount(0);
1489   else
1490     CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue());
1491   Callee->setEntryCount(CalleeCount);
1492 }
1493 
1494 /// This function inlines the called function into the basic block of the
1495 /// caller. This returns false if it is not possible to inline this call.
1496 /// The program is still in a well defined state if this occurs though.
1497 ///
1498 /// Note that this only does one level of inlining.  For example, if the
1499 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1500 /// exists in the instruction stream.  Similarly this will inline a recursive
1501 /// function by one level.
InlineFunction(CallSite CS,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)1502 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1503                                         AAResults *CalleeAAR,
1504                                         bool InsertLifetime,
1505                                         Function *ForwardVarArgsTo) {
1506   Instruction *TheCall = CS.getInstruction();
1507   assert(TheCall->getParent() && TheCall->getFunction()
1508          && "Instruction not in function!");
1509 
1510   // If IFI has any state in it, zap it before we fill it in.
1511   IFI.reset();
1512 
1513   Function *CalledFunc = CS.getCalledFunction();
1514   if (!CalledFunc ||               // Can't inline external function or indirect
1515       CalledFunc->isDeclaration()) // call!
1516     return "external or indirect";
1517 
1518   // The inliner does not know how to inline through calls with operand bundles
1519   // in general ...
1520   if (CS.hasOperandBundles()) {
1521     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1522       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1523       // ... but it knows how to inline through "deopt" operand bundles ...
1524       if (Tag == LLVMContext::OB_deopt)
1525         continue;
1526       // ... and "funclet" operand bundles.
1527       if (Tag == LLVMContext::OB_funclet)
1528         continue;
1529 
1530       return "unsupported operand bundle";
1531     }
1532   }
1533 
1534   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1535   // calls that we inline.
1536   bool MarkNoUnwind = CS.doesNotThrow();
1537 
1538   BasicBlock *OrigBB = TheCall->getParent();
1539   Function *Caller = OrigBB->getParent();
1540 
1541   // GC poses two hazards to inlining, which only occur when the callee has GC:
1542   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1543   //     caller.
1544   //  2. If the caller has a differing GC, it is invalid to inline.
1545   if (CalledFunc->hasGC()) {
1546     if (!Caller->hasGC())
1547       Caller->setGC(CalledFunc->getGC());
1548     else if (CalledFunc->getGC() != Caller->getGC())
1549       return "incompatible GC";
1550   }
1551 
1552   // Get the personality function from the callee if it contains a landing pad.
1553   Constant *CalledPersonality =
1554       CalledFunc->hasPersonalityFn()
1555           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1556           : nullptr;
1557 
1558   // Find the personality function used by the landing pads of the caller. If it
1559   // exists, then check to see that it matches the personality function used in
1560   // the callee.
1561   Constant *CallerPersonality =
1562       Caller->hasPersonalityFn()
1563           ? Caller->getPersonalityFn()->stripPointerCasts()
1564           : nullptr;
1565   if (CalledPersonality) {
1566     if (!CallerPersonality)
1567       Caller->setPersonalityFn(CalledPersonality);
1568     // If the personality functions match, then we can perform the
1569     // inlining. Otherwise, we can't inline.
1570     // TODO: This isn't 100% true. Some personality functions are proper
1571     //       supersets of others and can be used in place of the other.
1572     else if (CalledPersonality != CallerPersonality)
1573       return "incompatible personality";
1574   }
1575 
1576   // We need to figure out which funclet the callsite was in so that we may
1577   // properly nest the callee.
1578   Instruction *CallSiteEHPad = nullptr;
1579   if (CallerPersonality) {
1580     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1581     if (isScopedEHPersonality(Personality)) {
1582       Optional<OperandBundleUse> ParentFunclet =
1583           CS.getOperandBundle(LLVMContext::OB_funclet);
1584       if (ParentFunclet)
1585         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1586 
1587       // OK, the inlining site is legal.  What about the target function?
1588 
1589       if (CallSiteEHPad) {
1590         if (Personality == EHPersonality::MSVC_CXX) {
1591           // The MSVC personality cannot tolerate catches getting inlined into
1592           // cleanup funclets.
1593           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1594             // Ok, the call site is within a cleanuppad.  Let's check the callee
1595             // for catchpads.
1596             for (const BasicBlock &CalledBB : *CalledFunc) {
1597               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1598                 return "catch in cleanup funclet";
1599             }
1600           }
1601         } else if (isAsynchronousEHPersonality(Personality)) {
1602           // SEH is even less tolerant, there may not be any sort of exceptional
1603           // funclet in the callee.
1604           for (const BasicBlock &CalledBB : *CalledFunc) {
1605             if (CalledBB.isEHPad())
1606               return "SEH in cleanup funclet";
1607           }
1608         }
1609       }
1610     }
1611   }
1612 
1613   // Determine if we are dealing with a call in an EHPad which does not unwind
1614   // to caller.
1615   bool EHPadForCallUnwindsLocally = false;
1616   if (CallSiteEHPad && CS.isCall()) {
1617     UnwindDestMemoTy FuncletUnwindMap;
1618     Value *CallSiteUnwindDestToken =
1619         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1620 
1621     EHPadForCallUnwindsLocally =
1622         CallSiteUnwindDestToken &&
1623         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1624   }
1625 
1626   // Get an iterator to the last basic block in the function, which will have
1627   // the new function inlined after it.
1628   Function::iterator LastBlock = --Caller->end();
1629 
1630   // Make sure to capture all of the return instructions from the cloned
1631   // function.
1632   SmallVector<ReturnInst*, 8> Returns;
1633   ClonedCodeInfo InlinedFunctionInfo;
1634   Function::iterator FirstNewBlock;
1635 
1636   { // Scope to destroy VMap after cloning.
1637     ValueToValueMapTy VMap;
1638     // Keep a list of pair (dst, src) to emit byval initializations.
1639     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1640 
1641     auto &DL = Caller->getParent()->getDataLayout();
1642 
1643     // Calculate the vector of arguments to pass into the function cloner, which
1644     // matches up the formal to the actual argument values.
1645     CallSite::arg_iterator AI = CS.arg_begin();
1646     unsigned ArgNo = 0;
1647     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1648          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1649       Value *ActualArg = *AI;
1650 
1651       // When byval arguments actually inlined, we need to make the copy implied
1652       // by them explicit.  However, we don't do this if the callee is readonly
1653       // or readnone, because the copy would be unneeded: the callee doesn't
1654       // modify the struct.
1655       if (CS.isByValArgument(ArgNo)) {
1656         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1657                                         CalledFunc->getParamAlignment(ArgNo));
1658         if (ActualArg != *AI)
1659           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1660       }
1661 
1662       VMap[&*I] = ActualArg;
1663     }
1664 
1665     // Add alignment assumptions if necessary. We do this before the inlined
1666     // instructions are actually cloned into the caller so that we can easily
1667     // check what will be known at the start of the inlined code.
1668     AddAlignmentAssumptions(CS, IFI);
1669 
1670     // We want the inliner to prune the code as it copies.  We would LOVE to
1671     // have no dead or constant instructions leftover after inlining occurs
1672     // (which can happen, e.g., because an argument was constant), but we'll be
1673     // happy with whatever the cloner can do.
1674     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1675                               /*ModuleLevelChanges=*/false, Returns, ".i",
1676                               &InlinedFunctionInfo, TheCall);
1677     // Remember the first block that is newly cloned over.
1678     FirstNewBlock = LastBlock; ++FirstNewBlock;
1679 
1680     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1681       // Update the BFI of blocks cloned into the caller.
1682       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1683                       CalledFunc->front());
1684 
1685     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1686                       IFI.PSI, IFI.CallerBFI);
1687     // Update the profile count of callee.
1688     updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);
1689 
1690     // Inject byval arguments initialization.
1691     for (std::pair<Value*, Value*> &Init : ByValInit)
1692       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1693                               &*FirstNewBlock, IFI);
1694 
1695     Optional<OperandBundleUse> ParentDeopt =
1696         CS.getOperandBundle(LLVMContext::OB_deopt);
1697     if (ParentDeopt) {
1698       SmallVector<OperandBundleDef, 2> OpDefs;
1699 
1700       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1701         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1702         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1703 
1704         OpDefs.clear();
1705 
1706         CallSite ICS(I);
1707         OpDefs.reserve(ICS.getNumOperandBundles());
1708 
1709         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1710           auto ChildOB = ICS.getOperandBundleAt(i);
1711           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1712             // If the inlined call has other operand bundles, let them be
1713             OpDefs.emplace_back(ChildOB);
1714             continue;
1715           }
1716 
1717           // It may be useful to separate this logic (of handling operand
1718           // bundles) out to a separate "policy" component if this gets crowded.
1719           // Prepend the parent's deoptimization continuation to the newly
1720           // inlined call's deoptimization continuation.
1721           std::vector<Value *> MergedDeoptArgs;
1722           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1723                                   ChildOB.Inputs.size());
1724 
1725           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1726                                  ParentDeopt->Inputs.begin(),
1727                                  ParentDeopt->Inputs.end());
1728           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1729                                  ChildOB.Inputs.end());
1730 
1731           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1732         }
1733 
1734         Instruction *NewI = nullptr;
1735         if (isa<CallInst>(I))
1736           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1737         else
1738           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1739 
1740         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1741         // this even if the call returns void.
1742         I->replaceAllUsesWith(NewI);
1743 
1744         VH = nullptr;
1745         I->eraseFromParent();
1746       }
1747     }
1748 
1749     // Update the callgraph if requested.
1750     if (IFI.CG)
1751       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1752 
1753     // For 'nodebug' functions, the associated DISubprogram is always null.
1754     // Conservatively avoid propagating the callsite debug location to
1755     // instructions inlined from a function whose DISubprogram is not null.
1756     fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1757                      CalledFunc->getSubprogram() != nullptr);
1758 
1759     // Clone existing noalias metadata if necessary.
1760     CloneAliasScopeMetadata(CS, VMap);
1761 
1762     // Add noalias metadata if necessary.
1763     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1764 
1765     // Propagate llvm.mem.parallel_loop_access if necessary.
1766     PropagateParallelLoopAccessMetadata(CS, VMap);
1767 
1768     // Register any cloned assumptions.
1769     if (IFI.GetAssumptionCache)
1770       for (BasicBlock &NewBlock :
1771            make_range(FirstNewBlock->getIterator(), Caller->end()))
1772         for (Instruction &I : NewBlock) {
1773           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1774             if (II->getIntrinsicID() == Intrinsic::assume)
1775               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1776         }
1777   }
1778 
1779   // If there are any alloca instructions in the block that used to be the entry
1780   // block for the callee, move them to the entry block of the caller.  First
1781   // calculate which instruction they should be inserted before.  We insert the
1782   // instructions at the end of the current alloca list.
1783   {
1784     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1785     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1786          E = FirstNewBlock->end(); I != E; ) {
1787       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1788       if (!AI) continue;
1789 
1790       // If the alloca is now dead, remove it.  This often occurs due to code
1791       // specialization.
1792       if (AI->use_empty()) {
1793         AI->eraseFromParent();
1794         continue;
1795       }
1796 
1797       if (!allocaWouldBeStaticInEntry(AI))
1798         continue;
1799 
1800       // Keep track of the static allocas that we inline into the caller.
1801       IFI.StaticAllocas.push_back(AI);
1802 
1803       // Scan for the block of allocas that we can move over, and move them
1804       // all at once.
1805       while (isa<AllocaInst>(I) &&
1806              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1807         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1808         ++I;
1809       }
1810 
1811       // Transfer all of the allocas over in a block.  Using splice means
1812       // that the instructions aren't removed from the symbol table, then
1813       // reinserted.
1814       Caller->getEntryBlock().getInstList().splice(
1815           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1816     }
1817     // Move any dbg.declares describing the allocas into the entry basic block.
1818     DIBuilder DIB(*Caller->getParent());
1819     for (auto &AI : IFI.StaticAllocas)
1820       replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0,
1821                                  DIExpression::NoDeref);
1822   }
1823 
1824   SmallVector<Value*,4> VarArgsToForward;
1825   SmallVector<AttributeSet, 4> VarArgsAttrs;
1826   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1827        i < CS.getNumArgOperands(); i++) {
1828     VarArgsToForward.push_back(CS.getArgOperand(i));
1829     VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
1830   }
1831 
1832   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1833   if (InlinedFunctionInfo.ContainsCalls) {
1834     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1835     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1836       CallSiteTailKind = CI->getTailCallKind();
1837 
1838     // For inlining purposes, the "notail" marker is the same as no marker.
1839     if (CallSiteTailKind == CallInst::TCK_NoTail)
1840       CallSiteTailKind = CallInst::TCK_None;
1841 
1842     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1843          ++BB) {
1844       for (auto II = BB->begin(); II != BB->end();) {
1845         Instruction &I = *II++;
1846         CallInst *CI = dyn_cast<CallInst>(&I);
1847         if (!CI)
1848           continue;
1849 
1850         // Forward varargs from inlined call site to calls to the
1851         // ForwardVarArgsTo function, if requested, and to musttail calls.
1852         if (!VarArgsToForward.empty() &&
1853             ((ForwardVarArgsTo &&
1854               CI->getCalledFunction() == ForwardVarArgsTo) ||
1855              CI->isMustTailCall())) {
1856           // Collect attributes for non-vararg parameters.
1857           AttributeList Attrs = CI->getAttributes();
1858           SmallVector<AttributeSet, 8> ArgAttrs;
1859           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
1860             for (unsigned ArgNo = 0;
1861                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
1862               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
1863           }
1864 
1865           // Add VarArg attributes.
1866           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
1867           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
1868                                      Attrs.getRetAttributes(), ArgAttrs);
1869           // Add VarArgs to existing parameters.
1870           SmallVector<Value *, 6> Params(CI->arg_operands());
1871           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
1872           CallInst *NewCI =
1873               CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction()
1874                                                        : CI->getCalledValue(),
1875                                Params, "", CI);
1876           NewCI->setDebugLoc(CI->getDebugLoc());
1877           NewCI->setAttributes(Attrs);
1878           NewCI->setCallingConv(CI->getCallingConv());
1879           CI->replaceAllUsesWith(NewCI);
1880           CI->eraseFromParent();
1881           CI = NewCI;
1882         }
1883 
1884         if (Function *F = CI->getCalledFunction())
1885           InlinedDeoptimizeCalls |=
1886               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1887 
1888         // We need to reduce the strength of any inlined tail calls.  For
1889         // musttail, we have to avoid introducing potential unbounded stack
1890         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1891         // with musttail, we can inline 'g' into 'f' so long as we preserve
1892         // musttail on the cloned call to 'f'.  If either the inlined call site
1893         // or the cloned call site is *not* musttail, the program already has
1894         // one frame of stack growth, so it's safe to remove musttail.  Here is
1895         // a table of example transformations:
1896         //
1897         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1898         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1899         //    f ->          g -> musttail f  ==>  f ->          f
1900         //    f ->          g ->     tail f  ==>  f ->          f
1901         //
1902         // Inlined notail calls should remain notail calls.
1903         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1904         if (ChildTCK != CallInst::TCK_NoTail)
1905           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1906         CI->setTailCallKind(ChildTCK);
1907         InlinedMustTailCalls |= CI->isMustTailCall();
1908 
1909         // Calls inlined through a 'nounwind' call site should be marked
1910         // 'nounwind'.
1911         if (MarkNoUnwind)
1912           CI->setDoesNotThrow();
1913       }
1914     }
1915   }
1916 
1917   // Leave lifetime markers for the static alloca's, scoping them to the
1918   // function we just inlined.
1919   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1920     IRBuilder<> builder(&FirstNewBlock->front());
1921     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1922       AllocaInst *AI = IFI.StaticAllocas[ai];
1923       // Don't mark swifterror allocas. They can't have bitcast uses.
1924       if (AI->isSwiftError())
1925         continue;
1926 
1927       // If the alloca is already scoped to something smaller than the whole
1928       // function then there's no need to add redundant, less accurate markers.
1929       if (hasLifetimeMarkers(AI))
1930         continue;
1931 
1932       // Try to determine the size of the allocation.
1933       ConstantInt *AllocaSize = nullptr;
1934       if (ConstantInt *AIArraySize =
1935           dyn_cast<ConstantInt>(AI->getArraySize())) {
1936         auto &DL = Caller->getParent()->getDataLayout();
1937         Type *AllocaType = AI->getAllocatedType();
1938         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1939         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1940 
1941         // Don't add markers for zero-sized allocas.
1942         if (AllocaArraySize == 0)
1943           continue;
1944 
1945         // Check that array size doesn't saturate uint64_t and doesn't
1946         // overflow when it's multiplied by type size.
1947         if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
1948             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
1949                 AllocaTypeSize) {
1950           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1951                                         AllocaArraySize * AllocaTypeSize);
1952         }
1953       }
1954 
1955       builder.CreateLifetimeStart(AI, AllocaSize);
1956       for (ReturnInst *RI : Returns) {
1957         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1958         // call and a return.  The return kills all local allocas.
1959         if (InlinedMustTailCalls &&
1960             RI->getParent()->getTerminatingMustTailCall())
1961           continue;
1962         if (InlinedDeoptimizeCalls &&
1963             RI->getParent()->getTerminatingDeoptimizeCall())
1964           continue;
1965         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1966       }
1967     }
1968   }
1969 
1970   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1971   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1972   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1973     Module *M = Caller->getParent();
1974     // Get the two intrinsics we care about.
1975     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1976     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1977 
1978     // Insert the llvm.stacksave.
1979     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1980                              .CreateCall(StackSave, {}, "savedstack");
1981 
1982     // Insert a call to llvm.stackrestore before any return instructions in the
1983     // inlined function.
1984     for (ReturnInst *RI : Returns) {
1985       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1986       // call and a return.  The return will restore the stack pointer.
1987       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1988         continue;
1989       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1990         continue;
1991       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1992     }
1993   }
1994 
1995   // If we are inlining for an invoke instruction, we must make sure to rewrite
1996   // any call instructions into invoke instructions.  This is sensitive to which
1997   // funclet pads were top-level in the inlinee, so must be done before
1998   // rewriting the "parent pad" links.
1999   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
2000     BasicBlock *UnwindDest = II->getUnwindDest();
2001     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2002     if (isa<LandingPadInst>(FirstNonPHI)) {
2003       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2004     } else {
2005       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2006     }
2007   }
2008 
2009   // Update the lexical scopes of the new funclets and callsites.
2010   // Anything that had 'none' as its parent is now nested inside the callsite's
2011   // EHPad.
2012 
2013   if (CallSiteEHPad) {
2014     for (Function::iterator BB = FirstNewBlock->getIterator(),
2015                             E = Caller->end();
2016          BB != E; ++BB) {
2017       // Add bundle operands to any top-level call sites.
2018       SmallVector<OperandBundleDef, 1> OpBundles;
2019       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2020         Instruction *I = &*BBI++;
2021         CallSite CS(I);
2022         if (!CS)
2023           continue;
2024 
2025         // Skip call sites which are nounwind intrinsics.
2026         auto *CalledFn =
2027             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2028         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
2029           continue;
2030 
2031         // Skip call sites which already have a "funclet" bundle.
2032         if (CS.getOperandBundle(LLVMContext::OB_funclet))
2033           continue;
2034 
2035         CS.getOperandBundlesAsDefs(OpBundles);
2036         OpBundles.emplace_back("funclet", CallSiteEHPad);
2037 
2038         Instruction *NewInst;
2039         if (CS.isCall())
2040           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
2041         else
2042           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
2043         NewInst->takeName(I);
2044         I->replaceAllUsesWith(NewInst);
2045         I->eraseFromParent();
2046 
2047         OpBundles.clear();
2048       }
2049 
2050       // It is problematic if the inlinee has a cleanupret which unwinds to
2051       // caller and we inline it into a call site which doesn't unwind but into
2052       // an EH pad that does.  Such an edge must be dynamically unreachable.
2053       // As such, we replace the cleanupret with unreachable.
2054       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2055         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2056           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2057 
2058       Instruction *I = BB->getFirstNonPHI();
2059       if (!I->isEHPad())
2060         continue;
2061 
2062       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2063         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2064           CatchSwitch->setParentPad(CallSiteEHPad);
2065       } else {
2066         auto *FPI = cast<FuncletPadInst>(I);
2067         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2068           FPI->setParentPad(CallSiteEHPad);
2069       }
2070     }
2071   }
2072 
2073   if (InlinedDeoptimizeCalls) {
2074     // We need to at least remove the deoptimizing returns from the Return set,
2075     // so that the control flow from those returns does not get merged into the
2076     // caller (but terminate it instead).  If the caller's return type does not
2077     // match the callee's return type, we also need to change the return type of
2078     // the intrinsic.
2079     if (Caller->getReturnType() == TheCall->getType()) {
2080       auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
2081         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2082       });
2083       Returns.erase(NewEnd, Returns.end());
2084     } else {
2085       SmallVector<ReturnInst *, 8> NormalReturns;
2086       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2087           Caller->getParent(), Intrinsic::experimental_deoptimize,
2088           {Caller->getReturnType()});
2089 
2090       for (ReturnInst *RI : Returns) {
2091         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2092         if (!DeoptCall) {
2093           NormalReturns.push_back(RI);
2094           continue;
2095         }
2096 
2097         // The calling convention on the deoptimize call itself may be bogus,
2098         // since the code we're inlining may have undefined behavior (and may
2099         // never actually execute at runtime); but all
2100         // @llvm.experimental.deoptimize declarations have to have the same
2101         // calling convention in a well-formed module.
2102         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2103         NewDeoptIntrinsic->setCallingConv(CallingConv);
2104         auto *CurBB = RI->getParent();
2105         RI->eraseFromParent();
2106 
2107         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2108                                          DeoptCall->arg_end());
2109 
2110         SmallVector<OperandBundleDef, 1> OpBundles;
2111         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2112         DeoptCall->eraseFromParent();
2113         assert(!OpBundles.empty() &&
2114                "Expected at least the deopt operand bundle");
2115 
2116         IRBuilder<> Builder(CurBB);
2117         CallInst *NewDeoptCall =
2118             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2119         NewDeoptCall->setCallingConv(CallingConv);
2120         if (NewDeoptCall->getType()->isVoidTy())
2121           Builder.CreateRetVoid();
2122         else
2123           Builder.CreateRet(NewDeoptCall);
2124       }
2125 
2126       // Leave behind the normal returns so we can merge control flow.
2127       std::swap(Returns, NormalReturns);
2128     }
2129   }
2130 
2131   // Handle any inlined musttail call sites.  In order for a new call site to be
2132   // musttail, the source of the clone and the inlined call site must have been
2133   // musttail.  Therefore it's safe to return without merging control into the
2134   // phi below.
2135   if (InlinedMustTailCalls) {
2136     // Check if we need to bitcast the result of any musttail calls.
2137     Type *NewRetTy = Caller->getReturnType();
2138     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2139 
2140     // Handle the returns preceded by musttail calls separately.
2141     SmallVector<ReturnInst *, 8> NormalReturns;
2142     for (ReturnInst *RI : Returns) {
2143       CallInst *ReturnedMustTail =
2144           RI->getParent()->getTerminatingMustTailCall();
2145       if (!ReturnedMustTail) {
2146         NormalReturns.push_back(RI);
2147         continue;
2148       }
2149       if (!NeedBitCast)
2150         continue;
2151 
2152       // Delete the old return and any preceding bitcast.
2153       BasicBlock *CurBB = RI->getParent();
2154       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2155       RI->eraseFromParent();
2156       if (OldCast)
2157         OldCast->eraseFromParent();
2158 
2159       // Insert a new bitcast and return with the right type.
2160       IRBuilder<> Builder(CurBB);
2161       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2162     }
2163 
2164     // Leave behind the normal returns so we can merge control flow.
2165     std::swap(Returns, NormalReturns);
2166   }
2167 
2168   // Now that all of the transforms on the inlined code have taken place but
2169   // before we splice the inlined code into the CFG and lose track of which
2170   // blocks were actually inlined, collect the call sites. We only do this if
2171   // call graph updates weren't requested, as those provide value handle based
2172   // tracking of inlined call sites instead.
2173   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2174     // Otherwise just collect the raw call sites that were inlined.
2175     for (BasicBlock &NewBB :
2176          make_range(FirstNewBlock->getIterator(), Caller->end()))
2177       for (Instruction &I : NewBB)
2178         if (auto CS = CallSite(&I))
2179           IFI.InlinedCallSites.push_back(CS);
2180   }
2181 
2182   // If we cloned in _exactly one_ basic block, and if that block ends in a
2183   // return instruction, we splice the body of the inlined callee directly into
2184   // the calling basic block.
2185   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2186     // Move all of the instructions right before the call.
2187     OrigBB->getInstList().splice(TheCall->getIterator(),
2188                                  FirstNewBlock->getInstList(),
2189                                  FirstNewBlock->begin(), FirstNewBlock->end());
2190     // Remove the cloned basic block.
2191     Caller->getBasicBlockList().pop_back();
2192 
2193     // If the call site was an invoke instruction, add a branch to the normal
2194     // destination.
2195     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2196       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2197       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2198     }
2199 
2200     // If the return instruction returned a value, replace uses of the call with
2201     // uses of the returned value.
2202     if (!TheCall->use_empty()) {
2203       ReturnInst *R = Returns[0];
2204       if (TheCall == R->getReturnValue())
2205         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2206       else
2207         TheCall->replaceAllUsesWith(R->getReturnValue());
2208     }
2209     // Since we are now done with the Call/Invoke, we can delete it.
2210     TheCall->eraseFromParent();
2211 
2212     // Since we are now done with the return instruction, delete it also.
2213     Returns[0]->eraseFromParent();
2214 
2215     // We are now done with the inlining.
2216     return true;
2217   }
2218 
2219   // Otherwise, we have the normal case, of more than one block to inline or
2220   // multiple return sites.
2221 
2222   // We want to clone the entire callee function into the hole between the
2223   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2224   // this is an invoke instruction or a call instruction.
2225   BasicBlock *AfterCallBB;
2226   BranchInst *CreatedBranchToNormalDest = nullptr;
2227   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2228 
2229     // Add an unconditional branch to make this look like the CallInst case...
2230     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2231 
2232     // Split the basic block.  This guarantees that no PHI nodes will have to be
2233     // updated due to new incoming edges, and make the invoke case more
2234     // symmetric to the call case.
2235     AfterCallBB =
2236         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2237                                 CalledFunc->getName() + ".exit");
2238 
2239   } else {  // It's a call
2240     // If this is a call instruction, we need to split the basic block that
2241     // the call lives in.
2242     //
2243     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2244                                           CalledFunc->getName() + ".exit");
2245   }
2246 
2247   if (IFI.CallerBFI) {
2248     // Copy original BB's block frequency to AfterCallBB
2249     IFI.CallerBFI->setBlockFreq(
2250         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2251   }
2252 
2253   // Change the branch that used to go to AfterCallBB to branch to the first
2254   // basic block of the inlined function.
2255   //
2256   Instruction *Br = OrigBB->getTerminator();
2257   assert(Br && Br->getOpcode() == Instruction::Br &&
2258          "splitBasicBlock broken!");
2259   Br->setOperand(0, &*FirstNewBlock);
2260 
2261   // Now that the function is correct, make it a little bit nicer.  In
2262   // particular, move the basic blocks inserted from the end of the function
2263   // into the space made by splitting the source basic block.
2264   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2265                                      Caller->getBasicBlockList(), FirstNewBlock,
2266                                      Caller->end());
2267 
2268   // Handle all of the return instructions that we just cloned in, and eliminate
2269   // any users of the original call/invoke instruction.
2270   Type *RTy = CalledFunc->getReturnType();
2271 
2272   PHINode *PHI = nullptr;
2273   if (Returns.size() > 1) {
2274     // The PHI node should go at the front of the new basic block to merge all
2275     // possible incoming values.
2276     if (!TheCall->use_empty()) {
2277       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2278                             &AfterCallBB->front());
2279       // Anything that used the result of the function call should now use the
2280       // PHI node as their operand.
2281       TheCall->replaceAllUsesWith(PHI);
2282     }
2283 
2284     // Loop over all of the return instructions adding entries to the PHI node
2285     // as appropriate.
2286     if (PHI) {
2287       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2288         ReturnInst *RI = Returns[i];
2289         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2290                "Ret value not consistent in function!");
2291         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2292       }
2293     }
2294 
2295     // Add a branch to the merge points and remove return instructions.
2296     DebugLoc Loc;
2297     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2298       ReturnInst *RI = Returns[i];
2299       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2300       Loc = RI->getDebugLoc();
2301       BI->setDebugLoc(Loc);
2302       RI->eraseFromParent();
2303     }
2304     // We need to set the debug location to *somewhere* inside the
2305     // inlined function. The line number may be nonsensical, but the
2306     // instruction will at least be associated with the right
2307     // function.
2308     if (CreatedBranchToNormalDest)
2309       CreatedBranchToNormalDest->setDebugLoc(Loc);
2310   } else if (!Returns.empty()) {
2311     // Otherwise, if there is exactly one return value, just replace anything
2312     // using the return value of the call with the computed value.
2313     if (!TheCall->use_empty()) {
2314       if (TheCall == Returns[0]->getReturnValue())
2315         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2316       else
2317         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2318     }
2319 
2320     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2321     BasicBlock *ReturnBB = Returns[0]->getParent();
2322     ReturnBB->replaceAllUsesWith(AfterCallBB);
2323 
2324     // Splice the code from the return block into the block that it will return
2325     // to, which contains the code that was after the call.
2326     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2327                                       ReturnBB->getInstList());
2328 
2329     if (CreatedBranchToNormalDest)
2330       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2331 
2332     // Delete the return instruction now and empty ReturnBB now.
2333     Returns[0]->eraseFromParent();
2334     ReturnBB->eraseFromParent();
2335   } else if (!TheCall->use_empty()) {
2336     // No returns, but something is using the return value of the call.  Just
2337     // nuke the result.
2338     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2339   }
2340 
2341   // Since we are now done with the Call/Invoke, we can delete it.
2342   TheCall->eraseFromParent();
2343 
2344   // If we inlined any musttail calls and the original return is now
2345   // unreachable, delete it.  It can only contain a bitcast and ret.
2346   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2347     AfterCallBB->eraseFromParent();
2348 
2349   // We should always be able to fold the entry block of the function into the
2350   // single predecessor of the block...
2351   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2352   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2353 
2354   // Splice the code entry block into calling block, right before the
2355   // unconditional branch.
2356   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2357   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2358 
2359   // Remove the unconditional branch.
2360   OrigBB->getInstList().erase(Br);
2361 
2362   // Now we can remove the CalleeEntry block, which is now empty.
2363   Caller->getBasicBlockList().erase(CalleeEntry);
2364 
2365   // If we inserted a phi node, check to see if it has a single value (e.g. all
2366   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2367   // block other optimizations.
2368   if (PHI) {
2369     AssumptionCache *AC =
2370         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2371     auto &DL = Caller->getParent()->getDataLayout();
2372     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2373       PHI->replaceAllUsesWith(V);
2374       PHI->eraseFromParent();
2375     }
2376   }
2377 
2378   return true;
2379 }
2380