1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/DomTreeUpdater.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44
45 #define DEBUG_TYPE "loop-utils"
46
47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
48
formDedicatedExitBlocks(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
50 bool PreserveLCSSA) {
51 bool Changed = false;
52
53 // We re-use a vector for the in-loop predecesosrs.
54 SmallVector<BasicBlock *, 4> InLoopPredecessors;
55
56 auto RewriteExit = [&](BasicBlock *BB) {
57 assert(InLoopPredecessors.empty() &&
58 "Must start with an empty predecessors list!");
59 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
60
61 // See if there are any non-loop predecessors of this exit block and
62 // keep track of the in-loop predecessors.
63 bool IsDedicatedExit = true;
64 for (auto *PredBB : predecessors(BB))
65 if (L->contains(PredBB)) {
66 if (isa<IndirectBrInst>(PredBB->getTerminator()))
67 // We cannot rewrite exiting edges from an indirectbr.
68 return false;
69
70 InLoopPredecessors.push_back(PredBB);
71 } else {
72 IsDedicatedExit = false;
73 }
74
75 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
76
77 // Nothing to do if this is already a dedicated exit.
78 if (IsDedicatedExit)
79 return false;
80
81 auto *NewExitBB = SplitBlockPredecessors(
82 BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
83
84 if (!NewExitBB)
85 LLVM_DEBUG(
86 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
87 << *L << "\n");
88 else
89 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
90 << NewExitBB->getName() << "\n");
91 return true;
92 };
93
94 // Walk the exit blocks directly rather than building up a data structure for
95 // them, but only visit each one once.
96 SmallPtrSet<BasicBlock *, 4> Visited;
97 for (auto *BB : L->blocks())
98 for (auto *SuccBB : successors(BB)) {
99 // We're looking for exit blocks so skip in-loop successors.
100 if (L->contains(SuccBB))
101 continue;
102
103 // Visit each exit block exactly once.
104 if (!Visited.insert(SuccBB).second)
105 continue;
106
107 Changed |= RewriteExit(SuccBB);
108 }
109
110 return Changed;
111 }
112
113 /// Returns the instructions that use values defined in the loop.
findDefsUsedOutsideOfLoop(Loop * L)114 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
115 SmallVector<Instruction *, 8> UsedOutside;
116
117 for (auto *Block : L->getBlocks())
118 // FIXME: I believe that this could use copy_if if the Inst reference could
119 // be adapted into a pointer.
120 for (auto &Inst : *Block) {
121 auto Users = Inst.users();
122 if (any_of(Users, [&](User *U) {
123 auto *Use = cast<Instruction>(U);
124 return !L->contains(Use->getParent());
125 }))
126 UsedOutside.push_back(&Inst);
127 }
128
129 return UsedOutside;
130 }
131
getLoopAnalysisUsage(AnalysisUsage & AU)132 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
133 // By definition, all loop passes need the LoopInfo analysis and the
134 // Dominator tree it depends on. Because they all participate in the loop
135 // pass manager, they must also preserve these.
136 AU.addRequired<DominatorTreeWrapperPass>();
137 AU.addPreserved<DominatorTreeWrapperPass>();
138 AU.addRequired<LoopInfoWrapperPass>();
139 AU.addPreserved<LoopInfoWrapperPass>();
140
141 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
142 // here because users shouldn't directly get them from this header.
143 extern char &LoopSimplifyID;
144 extern char &LCSSAID;
145 AU.addRequiredID(LoopSimplifyID);
146 AU.addPreservedID(LoopSimplifyID);
147 AU.addRequiredID(LCSSAID);
148 AU.addPreservedID(LCSSAID);
149 // This is used in the LPPassManager to perform LCSSA verification on passes
150 // which preserve lcssa form
151 AU.addRequired<LCSSAVerificationPass>();
152 AU.addPreserved<LCSSAVerificationPass>();
153
154 // Loop passes are designed to run inside of a loop pass manager which means
155 // that any function analyses they require must be required by the first loop
156 // pass in the manager (so that it is computed before the loop pass manager
157 // runs) and preserved by all loop pasess in the manager. To make this
158 // reasonably robust, the set needed for most loop passes is maintained here.
159 // If your loop pass requires an analysis not listed here, you will need to
160 // carefully audit the loop pass manager nesting structure that results.
161 AU.addRequired<AAResultsWrapperPass>();
162 AU.addPreserved<AAResultsWrapperPass>();
163 AU.addPreserved<BasicAAWrapperPass>();
164 AU.addPreserved<GlobalsAAWrapperPass>();
165 AU.addPreserved<SCEVAAWrapperPass>();
166 AU.addRequired<ScalarEvolutionWrapperPass>();
167 AU.addPreserved<ScalarEvolutionWrapperPass>();
168 }
169
170 /// Manually defined generic "LoopPass" dependency initialization. This is used
171 /// to initialize the exact set of passes from above in \c
172 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
173 /// with:
174 ///
175 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
176 ///
177 /// As-if "LoopPass" were a pass.
initializeLoopPassPass(PassRegistry & Registry)178 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
179 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
180 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
181 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
182 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
183 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
184 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
185 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
186 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
187 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
188 }
189
190 /// Find string metadata for loop
191 ///
192 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
193 /// operand or null otherwise. If the string metadata is not found return
194 /// Optional's not-a-value.
findStringMetadataForLoop(const Loop * TheLoop,StringRef Name)195 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
196 StringRef Name) {
197 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
198 if (!MD)
199 return None;
200 switch (MD->getNumOperands()) {
201 case 1:
202 return nullptr;
203 case 2:
204 return &MD->getOperand(1);
205 default:
206 llvm_unreachable("loop metadata has 0 or 1 operand");
207 }
208 }
209
getOptionalBoolLoopAttribute(const Loop * TheLoop,StringRef Name)210 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
211 StringRef Name) {
212 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
213 if (!MD)
214 return None;
215 switch (MD->getNumOperands()) {
216 case 1:
217 // When the value is absent it is interpreted as 'attribute set'.
218 return true;
219 case 2:
220 if (ConstantInt *IntMD =
221 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
222 return IntMD->getZExtValue();
223 return true;
224 }
225 llvm_unreachable("unexpected number of options");
226 }
227
getBooleanLoopAttribute(const Loop * TheLoop,StringRef Name)228 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
229 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
230 }
231
getOptionalIntLoopAttribute(Loop * TheLoop,StringRef Name)232 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
233 StringRef Name) {
234 const MDOperand *AttrMD =
235 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
236 if (!AttrMD)
237 return None;
238
239 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
240 if (!IntMD)
241 return None;
242
243 return IntMD->getSExtValue();
244 }
245
makeFollowupLoopID(MDNode * OrigLoopID,ArrayRef<StringRef> FollowupOptions,const char * InheritOptionsExceptPrefix,bool AlwaysNew)246 Optional<MDNode *> llvm::makeFollowupLoopID(
247 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
248 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
249 if (!OrigLoopID) {
250 if (AlwaysNew)
251 return nullptr;
252 return None;
253 }
254
255 assert(OrigLoopID->getOperand(0) == OrigLoopID);
256
257 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
258 bool InheritSomeAttrs =
259 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
260 SmallVector<Metadata *, 8> MDs;
261 MDs.push_back(nullptr);
262
263 bool Changed = false;
264 if (InheritAllAttrs || InheritSomeAttrs) {
265 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
266 MDNode *Op = cast<MDNode>(Existing.get());
267
268 auto InheritThisAttribute = [InheritSomeAttrs,
269 InheritOptionsExceptPrefix](MDNode *Op) {
270 if (!InheritSomeAttrs)
271 return false;
272
273 // Skip malformatted attribute metadata nodes.
274 if (Op->getNumOperands() == 0)
275 return true;
276 Metadata *NameMD = Op->getOperand(0).get();
277 if (!isa<MDString>(NameMD))
278 return true;
279 StringRef AttrName = cast<MDString>(NameMD)->getString();
280
281 // Do not inherit excluded attributes.
282 return !AttrName.startswith(InheritOptionsExceptPrefix);
283 };
284
285 if (InheritThisAttribute(Op))
286 MDs.push_back(Op);
287 else
288 Changed = true;
289 }
290 } else {
291 // Modified if we dropped at least one attribute.
292 Changed = OrigLoopID->getNumOperands() > 1;
293 }
294
295 bool HasAnyFollowup = false;
296 for (StringRef OptionName : FollowupOptions) {
297 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
298 if (!FollowupNode)
299 continue;
300
301 HasAnyFollowup = true;
302 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
303 MDs.push_back(Option.get());
304 Changed = true;
305 }
306 }
307
308 // Attributes of the followup loop not specified explicity, so signal to the
309 // transformation pass to add suitable attributes.
310 if (!AlwaysNew && !HasAnyFollowup)
311 return None;
312
313 // If no attributes were added or remove, the previous loop Id can be reused.
314 if (!AlwaysNew && !Changed)
315 return OrigLoopID;
316
317 // No attributes is equivalent to having no !llvm.loop metadata at all.
318 if (MDs.size() == 1)
319 return nullptr;
320
321 // Build the new loop ID.
322 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
323 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
324 return FollowupLoopID;
325 }
326
hasDisableAllTransformsHint(const Loop * L)327 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
328 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
329 }
330
hasUnrollTransformation(Loop * L)331 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
332 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
333 return TM_SuppressedByUser;
334
335 Optional<int> Count =
336 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
337 if (Count.hasValue())
338 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
339
340 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
341 return TM_ForcedByUser;
342
343 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
344 return TM_ForcedByUser;
345
346 if (hasDisableAllTransformsHint(L))
347 return TM_Disable;
348
349 return TM_Unspecified;
350 }
351
hasUnrollAndJamTransformation(Loop * L)352 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
354 return TM_SuppressedByUser;
355
356 Optional<int> Count =
357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
358 if (Count.hasValue())
359 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
360
361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
362 return TM_ForcedByUser;
363
364 if (hasDisableAllTransformsHint(L))
365 return TM_Disable;
366
367 return TM_Unspecified;
368 }
369
hasVectorizeTransformation(Loop * L)370 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
371 Optional<bool> Enable =
372 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
373
374 if (Enable == false)
375 return TM_SuppressedByUser;
376
377 Optional<int> VectorizeWidth =
378 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
379 Optional<int> InterleaveCount =
380 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
381
382 // 'Forcing' vector width and interleave count to one effectively disables
383 // this tranformation.
384 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
385 return TM_SuppressedByUser;
386
387 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
388 return TM_Disable;
389
390 if (Enable == true)
391 return TM_ForcedByUser;
392
393 if (VectorizeWidth == 1 && InterleaveCount == 1)
394 return TM_Disable;
395
396 if (VectorizeWidth > 1 || InterleaveCount > 1)
397 return TM_Enable;
398
399 if (hasDisableAllTransformsHint(L))
400 return TM_Disable;
401
402 return TM_Unspecified;
403 }
404
hasDistributeTransformation(Loop * L)405 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
406 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
407 return TM_ForcedByUser;
408
409 if (hasDisableAllTransformsHint(L))
410 return TM_Disable;
411
412 return TM_Unspecified;
413 }
414
hasLICMVersioningTransformation(Loop * L)415 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
416 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
417 return TM_SuppressedByUser;
418
419 if (hasDisableAllTransformsHint(L))
420 return TM_Disable;
421
422 return TM_Unspecified;
423 }
424
425 /// Does a BFS from a given node to all of its children inside a given loop.
426 /// The returned vector of nodes includes the starting point.
427 SmallVector<DomTreeNode *, 16>
collectChildrenInLoop(DomTreeNode * N,const Loop * CurLoop)428 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
429 SmallVector<DomTreeNode *, 16> Worklist;
430 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
431 // Only include subregions in the top level loop.
432 BasicBlock *BB = DTN->getBlock();
433 if (CurLoop->contains(BB))
434 Worklist.push_back(DTN);
435 };
436
437 AddRegionToWorklist(N);
438
439 for (size_t I = 0; I < Worklist.size(); I++)
440 for (DomTreeNode *Child : Worklist[I]->getChildren())
441 AddRegionToWorklist(Child);
442
443 return Worklist;
444 }
445
deleteDeadLoop(Loop * L,DominatorTree * DT=nullptr,ScalarEvolution * SE=nullptr,LoopInfo * LI=nullptr)446 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
447 ScalarEvolution *SE = nullptr,
448 LoopInfo *LI = nullptr) {
449 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
450 auto *Preheader = L->getLoopPreheader();
451 assert(Preheader && "Preheader should exist!");
452
453 // Now that we know the removal is safe, remove the loop by changing the
454 // branch from the preheader to go to the single exit block.
455 //
456 // Because we're deleting a large chunk of code at once, the sequence in which
457 // we remove things is very important to avoid invalidation issues.
458
459 // Tell ScalarEvolution that the loop is deleted. Do this before
460 // deleting the loop so that ScalarEvolution can look at the loop
461 // to determine what it needs to clean up.
462 if (SE)
463 SE->forgetLoop(L);
464
465 auto *ExitBlock = L->getUniqueExitBlock();
466 assert(ExitBlock && "Should have a unique exit block!");
467 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
468
469 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
470 assert(OldBr && "Preheader must end with a branch");
471 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
472 // Connect the preheader to the exit block. Keep the old edge to the header
473 // around to perform the dominator tree update in two separate steps
474 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
475 // preheader -> header.
476 //
477 //
478 // 0. Preheader 1. Preheader 2. Preheader
479 // | | | |
480 // V | V |
481 // Header <--\ | Header <--\ | Header <--\
482 // | | | | | | | | | | |
483 // | V | | | V | | | V |
484 // | Body --/ | | Body --/ | | Body --/
485 // V V V V V
486 // Exit Exit Exit
487 //
488 // By doing this is two separate steps we can perform the dominator tree
489 // update without using the batch update API.
490 //
491 // Even when the loop is never executed, we cannot remove the edge from the
492 // source block to the exit block. Consider the case where the unexecuted loop
493 // branches back to an outer loop. If we deleted the loop and removed the edge
494 // coming to this inner loop, this will break the outer loop structure (by
495 // deleting the backedge of the outer loop). If the outer loop is indeed a
496 // non-loop, it will be deleted in a future iteration of loop deletion pass.
497 IRBuilder<> Builder(OldBr);
498 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
499 // Remove the old branch. The conditional branch becomes a new terminator.
500 OldBr->eraseFromParent();
501
502 // Rewrite phis in the exit block to get their inputs from the Preheader
503 // instead of the exiting block.
504 for (PHINode &P : ExitBlock->phis()) {
505 // Set the zero'th element of Phi to be from the preheader and remove all
506 // other incoming values. Given the loop has dedicated exits, all other
507 // incoming values must be from the exiting blocks.
508 int PredIndex = 0;
509 P.setIncomingBlock(PredIndex, Preheader);
510 // Removes all incoming values from all other exiting blocks (including
511 // duplicate values from an exiting block).
512 // Nuke all entries except the zero'th entry which is the preheader entry.
513 // NOTE! We need to remove Incoming Values in the reverse order as done
514 // below, to keep the indices valid for deletion (removeIncomingValues
515 // updates getNumIncomingValues and shifts all values down into the operand
516 // being deleted).
517 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
518 P.removeIncomingValue(e - i, false);
519
520 assert((P.getNumIncomingValues() == 1 &&
521 P.getIncomingBlock(PredIndex) == Preheader) &&
522 "Should have exactly one value and that's from the preheader!");
523 }
524
525 // Disconnect the loop body by branching directly to its exit.
526 Builder.SetInsertPoint(Preheader->getTerminator());
527 Builder.CreateBr(ExitBlock);
528 // Remove the old branch.
529 Preheader->getTerminator()->eraseFromParent();
530
531 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
532 if (DT) {
533 // Update the dominator tree by informing it about the new edge from the
534 // preheader to the exit.
535 DTU.insertEdge(Preheader, ExitBlock);
536 // Inform the dominator tree about the removed edge.
537 DTU.deleteEdge(Preheader, L->getHeader());
538 }
539
540 // Use a map to unique and a vector to guarantee deterministic ordering.
541 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
542 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
543
544 // Given LCSSA form is satisfied, we should not have users of instructions
545 // within the dead loop outside of the loop. However, LCSSA doesn't take
546 // unreachable uses into account. We handle them here.
547 // We could do it after drop all references (in this case all users in the
548 // loop will be already eliminated and we have less work to do but according
549 // to API doc of User::dropAllReferences only valid operation after dropping
550 // references, is deletion. So let's substitute all usages of
551 // instruction from the loop with undef value of corresponding type first.
552 for (auto *Block : L->blocks())
553 for (Instruction &I : *Block) {
554 auto *Undef = UndefValue::get(I.getType());
555 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
556 Use &U = *UI;
557 ++UI;
558 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
559 if (L->contains(Usr->getParent()))
560 continue;
561 // If we have a DT then we can check that uses outside a loop only in
562 // unreachable block.
563 if (DT)
564 assert(!DT->isReachableFromEntry(U) &&
565 "Unexpected user in reachable block");
566 U.set(Undef);
567 }
568 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
569 if (!DVI)
570 continue;
571 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
572 if (Key != DeadDebugSet.end())
573 continue;
574 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
575 DeadDebugInst.push_back(DVI);
576 }
577
578 // After the loop has been deleted all the values defined and modified
579 // inside the loop are going to be unavailable.
580 // Since debug values in the loop have been deleted, inserting an undef
581 // dbg.value truncates the range of any dbg.value before the loop where the
582 // loop used to be. This is particularly important for constant values.
583 DIBuilder DIB(*ExitBlock->getModule());
584 for (auto *DVI : DeadDebugInst)
585 DIB.insertDbgValueIntrinsic(
586 UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
587 DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
588
589 // Remove the block from the reference counting scheme, so that we can
590 // delete it freely later.
591 for (auto *Block : L->blocks())
592 Block->dropAllReferences();
593
594 if (LI) {
595 // Erase the instructions and the blocks without having to worry
596 // about ordering because we already dropped the references.
597 // NOTE: This iteration is safe because erasing the block does not remove
598 // its entry from the loop's block list. We do that in the next section.
599 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
600 LpI != LpE; ++LpI)
601 (*LpI)->eraseFromParent();
602
603 // Finally, the blocks from loopinfo. This has to happen late because
604 // otherwise our loop iterators won't work.
605
606 SmallPtrSet<BasicBlock *, 8> blocks;
607 blocks.insert(L->block_begin(), L->block_end());
608 for (BasicBlock *BB : blocks)
609 LI->removeBlock(BB);
610
611 // The last step is to update LoopInfo now that we've eliminated this loop.
612 LI->erase(L);
613 }
614 }
615
getLoopEstimatedTripCount(Loop * L)616 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
617 // Only support loops with a unique exiting block, and a latch.
618 if (!L->getExitingBlock())
619 return None;
620
621 // Get the branch weights for the loop's backedge.
622 BranchInst *LatchBR =
623 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
624 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
625 return None;
626
627 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
628 LatchBR->getSuccessor(1) == L->getHeader()) &&
629 "At least one edge out of the latch must go to the header");
630
631 // To estimate the number of times the loop body was executed, we want to
632 // know the number of times the backedge was taken, vs. the number of times
633 // we exited the loop.
634 uint64_t TrueVal, FalseVal;
635 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
636 return None;
637
638 if (!TrueVal || !FalseVal)
639 return 0;
640
641 // Divide the count of the backedge by the count of the edge exiting the loop,
642 // rounding to nearest.
643 if (LatchBR->getSuccessor(0) == L->getHeader())
644 return (TrueVal + (FalseVal / 2)) / FalseVal;
645 else
646 return (FalseVal + (TrueVal / 2)) / TrueVal;
647 }
648
hasIterationCountInvariantInParent(Loop * InnerLoop,ScalarEvolution & SE)649 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
650 ScalarEvolution &SE) {
651 Loop *OuterL = InnerLoop->getParentLoop();
652 if (!OuterL)
653 return true;
654
655 // Get the backedge taken count for the inner loop
656 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
657 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
658 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
659 !InnerLoopBECountSC->getType()->isIntegerTy())
660 return false;
661
662 // Get whether count is invariant to the outer loop
663 ScalarEvolution::LoopDisposition LD =
664 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
665 if (LD != ScalarEvolution::LoopInvariant)
666 return false;
667
668 return true;
669 }
670
671 /// Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)672 static Value *addFastMathFlag(Value *V) {
673 if (isa<FPMathOperator>(V)) {
674 FastMathFlags Flags;
675 Flags.setFast();
676 cast<Instruction>(V)->setFastMathFlags(Flags);
677 }
678 return V;
679 }
680
createMinMaxOp(IRBuilder<> & Builder,RecurrenceDescriptor::MinMaxRecurrenceKind RK,Value * Left,Value * Right)681 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
682 RecurrenceDescriptor::MinMaxRecurrenceKind RK,
683 Value *Left, Value *Right) {
684 CmpInst::Predicate P = CmpInst::ICMP_NE;
685 switch (RK) {
686 default:
687 llvm_unreachable("Unknown min/max recurrence kind");
688 case RecurrenceDescriptor::MRK_UIntMin:
689 P = CmpInst::ICMP_ULT;
690 break;
691 case RecurrenceDescriptor::MRK_UIntMax:
692 P = CmpInst::ICMP_UGT;
693 break;
694 case RecurrenceDescriptor::MRK_SIntMin:
695 P = CmpInst::ICMP_SLT;
696 break;
697 case RecurrenceDescriptor::MRK_SIntMax:
698 P = CmpInst::ICMP_SGT;
699 break;
700 case RecurrenceDescriptor::MRK_FloatMin:
701 P = CmpInst::FCMP_OLT;
702 break;
703 case RecurrenceDescriptor::MRK_FloatMax:
704 P = CmpInst::FCMP_OGT;
705 break;
706 }
707
708 // We only match FP sequences that are 'fast', so we can unconditionally
709 // set it on any generated instructions.
710 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
711 FastMathFlags FMF;
712 FMF.setFast();
713 Builder.setFastMathFlags(FMF);
714
715 Value *Cmp;
716 if (RK == RecurrenceDescriptor::MRK_FloatMin ||
717 RK == RecurrenceDescriptor::MRK_FloatMax)
718 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
719 else
720 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
721
722 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
723 return Select;
724 }
725
726 // Helper to generate an ordered reduction.
727 Value *
getOrderedReduction(IRBuilder<> & Builder,Value * Acc,Value * Src,unsigned Op,RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,ArrayRef<Value * > RedOps)728 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
729 unsigned Op,
730 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
731 ArrayRef<Value *> RedOps) {
732 unsigned VF = Src->getType()->getVectorNumElements();
733
734 // Extract and apply reduction ops in ascending order:
735 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
736 Value *Result = Acc;
737 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
738 Value *Ext =
739 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
740
741 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
742 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
743 "bin.rdx");
744 } else {
745 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
746 "Invalid min/max");
747 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
748 }
749
750 if (!RedOps.empty())
751 propagateIRFlags(Result, RedOps);
752 }
753
754 return Result;
755 }
756
757 // Helper to generate a log2 shuffle reduction.
758 Value *
getShuffleReduction(IRBuilder<> & Builder,Value * Src,unsigned Op,RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,ArrayRef<Value * > RedOps)759 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
760 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
761 ArrayRef<Value *> RedOps) {
762 unsigned VF = Src->getType()->getVectorNumElements();
763 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
764 // and vector ops, reducing the set of values being computed by half each
765 // round.
766 assert(isPowerOf2_32(VF) &&
767 "Reduction emission only supported for pow2 vectors!");
768 Value *TmpVec = Src;
769 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
770 for (unsigned i = VF; i != 1; i >>= 1) {
771 // Move the upper half of the vector to the lower half.
772 for (unsigned j = 0; j != i / 2; ++j)
773 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
774
775 // Fill the rest of the mask with undef.
776 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
777 UndefValue::get(Builder.getInt32Ty()));
778
779 Value *Shuf = Builder.CreateShuffleVector(
780 TmpVec, UndefValue::get(TmpVec->getType()),
781 ConstantVector::get(ShuffleMask), "rdx.shuf");
782
783 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
784 // Floating point operations had to be 'fast' to enable the reduction.
785 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
786 TmpVec, Shuf, "bin.rdx"));
787 } else {
788 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
789 "Invalid min/max");
790 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
791 }
792 if (!RedOps.empty())
793 propagateIRFlags(TmpVec, RedOps);
794 }
795 // The result is in the first element of the vector.
796 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
797 }
798
799 /// Create a simple vector reduction specified by an opcode and some
800 /// flags (if generating min/max reductions).
createSimpleTargetReduction(IRBuilder<> & Builder,const TargetTransformInfo * TTI,unsigned Opcode,Value * Src,TargetTransformInfo::ReductionFlags Flags,ArrayRef<Value * > RedOps)801 Value *llvm::createSimpleTargetReduction(
802 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
803 Value *Src, TargetTransformInfo::ReductionFlags Flags,
804 ArrayRef<Value *> RedOps) {
805 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
806
807 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
808 std::function<Value *()> BuildFunc;
809 using RD = RecurrenceDescriptor;
810 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
811 // TODO: Support creating ordered reductions.
812 FastMathFlags FMFFast;
813 FMFFast.setFast();
814
815 switch (Opcode) {
816 case Instruction::Add:
817 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
818 break;
819 case Instruction::Mul:
820 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
821 break;
822 case Instruction::And:
823 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
824 break;
825 case Instruction::Or:
826 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
827 break;
828 case Instruction::Xor:
829 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
830 break;
831 case Instruction::FAdd:
832 BuildFunc = [&]() {
833 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
834 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
835 return Rdx;
836 };
837 break;
838 case Instruction::FMul:
839 BuildFunc = [&]() {
840 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
841 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
842 return Rdx;
843 };
844 break;
845 case Instruction::ICmp:
846 if (Flags.IsMaxOp) {
847 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
848 BuildFunc = [&]() {
849 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
850 };
851 } else {
852 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
853 BuildFunc = [&]() {
854 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
855 };
856 }
857 break;
858 case Instruction::FCmp:
859 if (Flags.IsMaxOp) {
860 MinMaxKind = RD::MRK_FloatMax;
861 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
862 } else {
863 MinMaxKind = RD::MRK_FloatMin;
864 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
865 }
866 break;
867 default:
868 llvm_unreachable("Unhandled opcode");
869 break;
870 }
871 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
872 return BuildFunc();
873 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
874 }
875
876 /// Create a vector reduction using a given recurrence descriptor.
createTargetReduction(IRBuilder<> & B,const TargetTransformInfo * TTI,RecurrenceDescriptor & Desc,Value * Src,bool NoNaN)877 Value *llvm::createTargetReduction(IRBuilder<> &B,
878 const TargetTransformInfo *TTI,
879 RecurrenceDescriptor &Desc, Value *Src,
880 bool NoNaN) {
881 // TODO: Support in-order reductions based on the recurrence descriptor.
882 using RD = RecurrenceDescriptor;
883 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
884 TargetTransformInfo::ReductionFlags Flags;
885 Flags.NoNaN = NoNaN;
886 switch (RecKind) {
887 case RD::RK_FloatAdd:
888 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
889 case RD::RK_FloatMult:
890 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
891 case RD::RK_IntegerAdd:
892 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
893 case RD::RK_IntegerMult:
894 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
895 case RD::RK_IntegerAnd:
896 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
897 case RD::RK_IntegerOr:
898 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
899 case RD::RK_IntegerXor:
900 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
901 case RD::RK_IntegerMinMax: {
902 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
903 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
904 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
905 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
906 }
907 case RD::RK_FloatMinMax: {
908 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
909 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
910 }
911 default:
912 llvm_unreachable("Unhandled RecKind");
913 }
914 }
915
propagateIRFlags(Value * I,ArrayRef<Value * > VL,Value * OpValue)916 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
917 auto *VecOp = dyn_cast<Instruction>(I);
918 if (!VecOp)
919 return;
920 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
921 : dyn_cast<Instruction>(OpValue);
922 if (!Intersection)
923 return;
924 const unsigned Opcode = Intersection->getOpcode();
925 VecOp->copyIRFlags(Intersection);
926 for (auto *V : VL) {
927 auto *Instr = dyn_cast<Instruction>(V);
928 if (!Instr)
929 continue;
930 if (OpValue == nullptr || Opcode == Instr->getOpcode())
931 VecOp->andIRFlags(V);
932 }
933 }
934
isKnownNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)935 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
936 ScalarEvolution &SE) {
937 const SCEV *Zero = SE.getZero(S->getType());
938 return SE.isAvailableAtLoopEntry(S, L) &&
939 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
940 }
941
isKnownNonNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)942 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
943 ScalarEvolution &SE) {
944 const SCEV *Zero = SE.getZero(S->getType());
945 return SE.isAvailableAtLoopEntry(S, L) &&
946 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
947 }
948
cannotBeMinInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)949 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
950 bool Signed) {
951 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
952 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
953 APInt::getMinValue(BitWidth);
954 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
955 return SE.isAvailableAtLoopEntry(S, L) &&
956 SE.isLoopEntryGuardedByCond(L, Predicate, S,
957 SE.getConstant(Min));
958 }
959
cannotBeMaxInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)960 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
961 bool Signed) {
962 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
963 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
964 APInt::getMaxValue(BitWidth);
965 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
966 return SE.isAvailableAtLoopEntry(S, L) &&
967 SE.isLoopEntryGuardedByCond(L, Predicate, S,
968 SE.getConstant(Max));
969 }
970