1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the PredicateInfo class. 11 // 12 //===----------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/PredicateInfo.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/DebugCounter.h" 36 #include "llvm/Support/FormattedStream.h" 37 #include "llvm/Transforms/Utils.h" 38 #include <algorithm> 39 #define DEBUG_TYPE "predicateinfo" 40 using namespace llvm; 41 using namespace PatternMatch; 42 using namespace llvm::PredicateInfoClasses; 43 44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 45 "PredicateInfo Printer", false, false) 46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 49 "PredicateInfo Printer", false, false) 50 static cl::opt<bool> VerifyPredicateInfo( 51 "verify-predicateinfo", cl::init(false), cl::Hidden, 52 cl::desc("Verify PredicateInfo in legacy printer pass.")); 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo"); 55 56 namespace { 57 // Given a predicate info that is a type of branching terminator, get the 58 // branching block. 59 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 60 assert(isa<PredicateWithEdge>(PB) && 61 "Only branches and switches should have PHIOnly defs that " 62 "require branch blocks."); 63 return cast<PredicateWithEdge>(PB)->From; 64 } 65 66 // Given a predicate info that is a type of branching terminator, get the 67 // branching terminator. 68 static Instruction *getBranchTerminator(const PredicateBase *PB) { 69 assert(isa<PredicateWithEdge>(PB) && 70 "Not a predicate info type we know how to get a terminator from."); 71 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 72 } 73 74 // Given a predicate info that is a type of branching terminator, get the 75 // edge this predicate info represents 76 const std::pair<BasicBlock *, BasicBlock *> 77 getBlockEdge(const PredicateBase *PB) { 78 assert(isa<PredicateWithEdge>(PB) && 79 "Not a predicate info type we know how to get an edge from."); 80 const auto *PEdge = cast<PredicateWithEdge>(PB); 81 return std::make_pair(PEdge->From, PEdge->To); 82 } 83 } 84 85 namespace llvm { 86 namespace PredicateInfoClasses { 87 enum LocalNum { 88 // Operations that must appear first in the block. 89 LN_First, 90 // Operations that are somewhere in the middle of the block, and are sorted on 91 // demand. 92 LN_Middle, 93 // Operations that must appear last in a block, like successor phi node uses. 94 LN_Last 95 }; 96 97 // Associate global and local DFS info with defs and uses, so we can sort them 98 // into a global domination ordering. 99 struct ValueDFS { 100 int DFSIn = 0; 101 int DFSOut = 0; 102 unsigned int LocalNum = LN_Middle; 103 // Only one of Def or Use will be set. 104 Value *Def = nullptr; 105 Use *U = nullptr; 106 // Neither PInfo nor EdgeOnly participate in the ordering 107 PredicateBase *PInfo = nullptr; 108 bool EdgeOnly = false; 109 }; 110 111 // Perform a strict weak ordering on instructions and arguments. 112 static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 113 const Value *B) { 114 auto *ArgA = dyn_cast_or_null<Argument>(A); 115 auto *ArgB = dyn_cast_or_null<Argument>(B); 116 if (ArgA && !ArgB) 117 return true; 118 if (ArgB && !ArgA) 119 return false; 120 if (ArgA && ArgB) 121 return ArgA->getArgNo() < ArgB->getArgNo(); 122 return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B)); 123 } 124 125 // This compares ValueDFS structures, creating OrderedBasicBlocks where 126 // necessary to compare uses/defs in the same block. Doing so allows us to walk 127 // the minimum number of instructions necessary to compute our def/use ordering. 128 struct ValueDFS_Compare { 129 OrderedInstructions &OI; 130 ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {} 131 132 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 133 if (&A == &B) 134 return false; 135 // The only case we can't directly compare them is when they in the same 136 // block, and both have localnum == middle. In that case, we have to use 137 // comesbefore to see what the real ordering is, because they are in the 138 // same basic block. 139 140 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 141 142 // We want to put the def that will get used for a given set of phi uses, 143 // before those phi uses. 144 // So we sort by edge, then by def. 145 // Note that only phi nodes uses and defs can come last. 146 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 147 return comparePHIRelated(A, B); 148 149 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 150 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 151 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 152 return localComesBefore(A, B); 153 } 154 155 // For a phi use, or a non-materialized def, return the edge it represents. 156 const std::pair<BasicBlock *, BasicBlock *> 157 getBlockEdge(const ValueDFS &VD) const { 158 if (!VD.Def && VD.U) { 159 auto *PHI = cast<PHINode>(VD.U->getUser()); 160 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 161 } 162 // This is really a non-materialized def. 163 return ::getBlockEdge(VD.PInfo); 164 } 165 166 // For two phi related values, return the ordering. 167 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 168 auto &ABlockEdge = getBlockEdge(A); 169 auto &BBlockEdge = getBlockEdge(B); 170 // Now sort by block edge and then defs before uses. 171 return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); 172 } 173 174 // Get the definition of an instruction that occurs in the middle of a block. 175 Value *getMiddleDef(const ValueDFS &VD) const { 176 if (VD.Def) 177 return VD.Def; 178 // It's possible for the defs and uses to be null. For branches, the local 179 // numbering will say the placed predicaeinfos should go first (IE 180 // LN_beginning), so we won't be in this function. For assumes, we will end 181 // up here, beause we need to order the def we will place relative to the 182 // assume. So for the purpose of ordering, we pretend the def is the assume 183 // because that is where we will insert the info. 184 if (!VD.U) { 185 assert(VD.PInfo && 186 "No def, no use, and no predicateinfo should not occur"); 187 assert(isa<PredicateAssume>(VD.PInfo) && 188 "Middle of block should only occur for assumes"); 189 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 190 } 191 return nullptr; 192 } 193 194 // Return either the Def, if it's not null, or the user of the Use, if the def 195 // is null. 196 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 197 if (Def) 198 return cast<Instruction>(Def); 199 return cast<Instruction>(U->getUser()); 200 } 201 202 // This performs the necessary local basic block ordering checks to tell 203 // whether A comes before B, where both are in the same basic block. 204 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 205 auto *ADef = getMiddleDef(A); 206 auto *BDef = getMiddleDef(B); 207 208 // See if we have real values or uses. If we have real values, we are 209 // guaranteed they are instructions or arguments. No matter what, we are 210 // guaranteed they are in the same block if they are instructions. 211 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 212 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 213 214 if (ArgA || ArgB) 215 return valueComesBefore(OI, ArgA, ArgB); 216 217 auto *AInst = getDefOrUser(ADef, A.U); 218 auto *BInst = getDefOrUser(BDef, B.U); 219 return valueComesBefore(OI, AInst, BInst); 220 } 221 }; 222 223 } // namespace PredicateInfoClasses 224 225 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 226 const ValueDFS &VDUse) const { 227 if (Stack.empty()) 228 return false; 229 // If it's a phi only use, make sure it's for this phi node edge, and that the 230 // use is in a phi node. If it's anything else, and the top of the stack is 231 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 232 // the defs they must go with so that we can know it's time to pop the stack 233 // when we hit the end of the phi uses for a given def. 234 if (Stack.back().EdgeOnly) { 235 if (!VDUse.U) 236 return false; 237 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 238 if (!PHI) 239 return false; 240 // Check edge 241 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 242 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 243 return false; 244 245 // Use dominates, which knows how to handle edge dominance. 246 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 247 } 248 249 return (VDUse.DFSIn >= Stack.back().DFSIn && 250 VDUse.DFSOut <= Stack.back().DFSOut); 251 } 252 253 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 254 const ValueDFS &VD) { 255 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 256 Stack.pop_back(); 257 } 258 259 // Convert the uses of Op into a vector of uses, associating global and local 260 // DFS info with each one. 261 void PredicateInfo::convertUsesToDFSOrdered( 262 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 263 for (auto &U : Op->uses()) { 264 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 265 ValueDFS VD; 266 // Put the phi node uses in the incoming block. 267 BasicBlock *IBlock; 268 if (auto *PN = dyn_cast<PHINode>(I)) { 269 IBlock = PN->getIncomingBlock(U); 270 // Make phi node users appear last in the incoming block 271 // they are from. 272 VD.LocalNum = LN_Last; 273 } else { 274 // If it's not a phi node use, it is somewhere in the middle of the 275 // block. 276 IBlock = I->getParent(); 277 VD.LocalNum = LN_Middle; 278 } 279 DomTreeNode *DomNode = DT.getNode(IBlock); 280 // It's possible our use is in an unreachable block. Skip it if so. 281 if (!DomNode) 282 continue; 283 VD.DFSIn = DomNode->getDFSNumIn(); 284 VD.DFSOut = DomNode->getDFSNumOut(); 285 VD.U = &U; 286 DFSOrderedSet.push_back(VD); 287 } 288 } 289 } 290 291 // Collect relevant operations from Comparison that we may want to insert copies 292 // for. 293 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 294 auto *Op0 = Comparison->getOperand(0); 295 auto *Op1 = Comparison->getOperand(1); 296 if (Op0 == Op1) 297 return; 298 CmpOperands.push_back(Comparison); 299 // Only want real values, not constants. Additionally, operands with one use 300 // are only being used in the comparison, which means they will not be useful 301 // for us to consider for predicateinfo. 302 // 303 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 304 CmpOperands.push_back(Op0); 305 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 306 CmpOperands.push_back(Op1); 307 } 308 309 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 310 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op, 311 PredicateBase *PB) { 312 OpsToRename.insert(Op); 313 auto &OperandInfo = getOrCreateValueInfo(Op); 314 AllInfos.push_back(PB); 315 OperandInfo.Infos.push_back(PB); 316 } 317 318 // Process an assume instruction and place relevant operations we want to rename 319 // into OpsToRename. 320 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 321 SmallPtrSetImpl<Value *> &OpsToRename) { 322 // See if we have a comparison we support 323 SmallVector<Value *, 8> CmpOperands; 324 SmallVector<Value *, 2> ConditionsToProcess; 325 CmpInst::Predicate Pred; 326 Value *Operand = II->getOperand(0); 327 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 328 m_Cmp(Pred, m_Value(), m_Value())) 329 .match(II->getOperand(0))) { 330 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 331 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 332 ConditionsToProcess.push_back(Operand); 333 } else if (isa<CmpInst>(Operand)) { 334 335 ConditionsToProcess.push_back(Operand); 336 } 337 for (auto Cond : ConditionsToProcess) { 338 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 339 collectCmpOps(Cmp, CmpOperands); 340 // Now add our copy infos for our operands 341 for (auto *Op : CmpOperands) { 342 auto *PA = new PredicateAssume(Op, II, Cmp); 343 addInfoFor(OpsToRename, Op, PA); 344 } 345 CmpOperands.clear(); 346 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 347 // Otherwise, it should be an AND. 348 assert(BinOp->getOpcode() == Instruction::And && 349 "Should have been an AND"); 350 auto *PA = new PredicateAssume(BinOp, II, BinOp); 351 addInfoFor(OpsToRename, BinOp, PA); 352 } else { 353 llvm_unreachable("Unknown type of condition"); 354 } 355 } 356 } 357 358 // Process a block terminating branch, and place relevant operations to be 359 // renamed into OpsToRename. 360 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 361 SmallPtrSetImpl<Value *> &OpsToRename) { 362 BasicBlock *FirstBB = BI->getSuccessor(0); 363 BasicBlock *SecondBB = BI->getSuccessor(1); 364 SmallVector<BasicBlock *, 2> SuccsToProcess; 365 SuccsToProcess.push_back(FirstBB); 366 SuccsToProcess.push_back(SecondBB); 367 SmallVector<Value *, 2> ConditionsToProcess; 368 369 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 370 for (auto *Succ : SuccsToProcess) { 371 // Don't try to insert on a self-edge. This is mainly because we will 372 // eliminate during renaming anyway. 373 if (Succ == BranchBB) 374 continue; 375 bool TakenEdge = (Succ == FirstBB); 376 // For and, only insert on the true edge 377 // For or, only insert on the false edge 378 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 379 continue; 380 PredicateBase *PB = 381 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 382 addInfoFor(OpsToRename, Op, PB); 383 if (!Succ->getSinglePredecessor()) 384 EdgeUsesOnly.insert({BranchBB, Succ}); 385 } 386 }; 387 388 // Match combinations of conditions. 389 CmpInst::Predicate Pred; 390 bool isAnd = false; 391 bool isOr = false; 392 SmallVector<Value *, 8> CmpOperands; 393 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 394 m_Cmp(Pred, m_Value(), m_Value()))) || 395 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 396 m_Cmp(Pred, m_Value(), m_Value())))) { 397 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 398 if (BinOp->getOpcode() == Instruction::And) 399 isAnd = true; 400 else if (BinOp->getOpcode() == Instruction::Or) 401 isOr = true; 402 ConditionsToProcess.push_back(BinOp->getOperand(0)); 403 ConditionsToProcess.push_back(BinOp->getOperand(1)); 404 ConditionsToProcess.push_back(BI->getCondition()); 405 } else if (isa<CmpInst>(BI->getCondition())) { 406 ConditionsToProcess.push_back(BI->getCondition()); 407 } 408 for (auto Cond : ConditionsToProcess) { 409 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 410 collectCmpOps(Cmp, CmpOperands); 411 // Now add our copy infos for our operands 412 for (auto *Op : CmpOperands) 413 InsertHelper(Op, isAnd, isOr, Cmp); 414 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 415 // This must be an AND or an OR. 416 assert((BinOp->getOpcode() == Instruction::And || 417 BinOp->getOpcode() == Instruction::Or) && 418 "Should have been an AND or an OR"); 419 // The actual value of the binop is not subject to the same restrictions 420 // as the comparison. It's either true or false on the true/false branch. 421 InsertHelper(BinOp, false, false, BinOp); 422 } else { 423 llvm_unreachable("Unknown type of condition"); 424 } 425 CmpOperands.clear(); 426 } 427 } 428 // Process a block terminating switch, and place relevant operations to be 429 // renamed into OpsToRename. 430 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 431 SmallPtrSetImpl<Value *> &OpsToRename) { 432 Value *Op = SI->getCondition(); 433 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 434 return; 435 436 // Remember how many outgoing edges there are to every successor. 437 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 438 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 439 BasicBlock *TargetBlock = SI->getSuccessor(i); 440 ++SwitchEdges[TargetBlock]; 441 } 442 443 // Now propagate info for each case value 444 for (auto C : SI->cases()) { 445 BasicBlock *TargetBlock = C.getCaseSuccessor(); 446 if (SwitchEdges.lookup(TargetBlock) == 1) { 447 PredicateSwitch *PS = new PredicateSwitch( 448 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 449 addInfoFor(OpsToRename, Op, PS); 450 if (!TargetBlock->getSinglePredecessor()) 451 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 452 } 453 } 454 } 455 456 // Build predicate info for our function 457 void PredicateInfo::buildPredicateInfo() { 458 DT.updateDFSNumbers(); 459 // Collect operands to rename from all conditional branch terminators, as well 460 // as assume statements. 461 SmallPtrSet<Value *, 8> OpsToRename; 462 for (auto DTN : depth_first(DT.getRootNode())) { 463 BasicBlock *BranchBB = DTN->getBlock(); 464 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 465 if (!BI->isConditional()) 466 continue; 467 // Can't insert conditional information if they all go to the same place. 468 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 469 continue; 470 processBranch(BI, BranchBB, OpsToRename); 471 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 472 processSwitch(SI, BranchBB, OpsToRename); 473 } 474 } 475 for (auto &Assume : AC.assumptions()) { 476 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 477 processAssume(II, II->getParent(), OpsToRename); 478 } 479 // Now rename all our operations. 480 renameUses(OpsToRename); 481 } 482 483 // Create a ssa_copy declaration with custom mangling, because 484 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 485 // all unnamed types get mangled to the same string. We use the pointer 486 // to the type as name here, as it guarantees unique names for different 487 // types and we remove the declarations when destroying PredicateInfo. 488 // It is a workaround for PR38117, because solving it in a fully general way is 489 // tricky (FIXME). 490 static Function *getCopyDeclaration(Module *M, Type *Ty) { 491 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 492 return cast<Function>(M->getOrInsertFunction( 493 Name, getType(M->getContext(), Intrinsic::ssa_copy, Ty))); 494 } 495 496 // Given the renaming stack, make all the operands currently on the stack real 497 // by inserting them into the IR. Return the last operation's value. 498 Value *PredicateInfo::materializeStack(unsigned int &Counter, 499 ValueDFSStack &RenameStack, 500 Value *OrigOp) { 501 // Find the first thing we have to materialize 502 auto RevIter = RenameStack.rbegin(); 503 for (; RevIter != RenameStack.rend(); ++RevIter) 504 if (RevIter->Def) 505 break; 506 507 size_t Start = RevIter - RenameStack.rbegin(); 508 // The maximum number of things we should be trying to materialize at once 509 // right now is 4, depending on if we had an assume, a branch, and both used 510 // and of conditions. 511 for (auto RenameIter = RenameStack.end() - Start; 512 RenameIter != RenameStack.end(); ++RenameIter) { 513 auto *Op = 514 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 515 ValueDFS &Result = *RenameIter; 516 auto *ValInfo = Result.PInfo; 517 // For edge predicates, we can just place the operand in the block before 518 // the terminator. For assume, we have to place it right before the assume 519 // to ensure we dominate all of our uses. Always insert right before the 520 // relevant instruction (terminator, assume), so that we insert in proper 521 // order in the case of multiple predicateinfo in the same block. 522 if (isa<PredicateWithEdge>(ValInfo)) { 523 IRBuilder<> B(getBranchTerminator(ValInfo)); 524 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 525 if (empty(IF->users())) 526 CreatedDeclarations.insert(IF); 527 CallInst *PIC = 528 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 529 PredicateMap.insert({PIC, ValInfo}); 530 Result.Def = PIC; 531 } else { 532 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 533 assert(PAssume && 534 "Should not have gotten here without it being an assume"); 535 IRBuilder<> B(PAssume->AssumeInst); 536 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 537 if (empty(IF->users())) 538 CreatedDeclarations.insert(IF); 539 CallInst *PIC = B.CreateCall(IF, Op); 540 PredicateMap.insert({PIC, ValInfo}); 541 Result.Def = PIC; 542 } 543 } 544 return RenameStack.back().Def; 545 } 546 547 // Instead of the standard SSA renaming algorithm, which is O(Number of 548 // instructions), and walks the entire dominator tree, we walk only the defs + 549 // uses. The standard SSA renaming algorithm does not really rely on the 550 // dominator tree except to order the stack push/pops of the renaming stacks, so 551 // that defs end up getting pushed before hitting the correct uses. This does 552 // not require the dominator tree, only the *order* of the dominator tree. The 553 // complete and correct ordering of the defs and uses, in dominator tree is 554 // contained in the DFS numbering of the dominator tree. So we sort the defs and 555 // uses into the DFS ordering, and then just use the renaming stack as per 556 // normal, pushing when we hit a def (which is a predicateinfo instruction), 557 // popping when we are out of the dfs scope for that def, and replacing any uses 558 // with top of stack if it exists. In order to handle liveness without 559 // propagating liveness info, we don't actually insert the predicateinfo 560 // instruction def until we see a use that it would dominate. Once we see such 561 // a use, we materialize the predicateinfo instruction in the right place and 562 // use it. 563 // 564 // TODO: Use this algorithm to perform fast single-variable renaming in 565 // promotememtoreg and memoryssa. 566 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) { 567 // Sort OpsToRename since we are going to iterate it. 568 SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end()); 569 auto Comparator = [&](const Value *A, const Value *B) { 570 return valueComesBefore(OI, A, B); 571 }; 572 llvm::sort(OpsToRename, Comparator); 573 ValueDFS_Compare Compare(OI); 574 // Compute liveness, and rename in O(uses) per Op. 575 for (auto *Op : OpsToRename) { 576 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 577 unsigned Counter = 0; 578 SmallVector<ValueDFS, 16> OrderedUses; 579 const auto &ValueInfo = getValueInfo(Op); 580 // Insert the possible copies into the def/use list. 581 // They will become real copies if we find a real use for them, and never 582 // created otherwise. 583 for (auto &PossibleCopy : ValueInfo.Infos) { 584 ValueDFS VD; 585 // Determine where we are going to place the copy by the copy type. 586 // The predicate info for branches always come first, they will get 587 // materialized in the split block at the top of the block. 588 // The predicate info for assumes will be somewhere in the middle, 589 // it will get materialized in front of the assume. 590 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 591 VD.LocalNum = LN_Middle; 592 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 593 if (!DomNode) 594 continue; 595 VD.DFSIn = DomNode->getDFSNumIn(); 596 VD.DFSOut = DomNode->getDFSNumOut(); 597 VD.PInfo = PossibleCopy; 598 OrderedUses.push_back(VD); 599 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 600 // If we can only do phi uses, we treat it like it's in the branch 601 // block, and handle it specially. We know that it goes last, and only 602 // dominate phi uses. 603 auto BlockEdge = getBlockEdge(PossibleCopy); 604 if (EdgeUsesOnly.count(BlockEdge)) { 605 VD.LocalNum = LN_Last; 606 auto *DomNode = DT.getNode(BlockEdge.first); 607 if (DomNode) { 608 VD.DFSIn = DomNode->getDFSNumIn(); 609 VD.DFSOut = DomNode->getDFSNumOut(); 610 VD.PInfo = PossibleCopy; 611 VD.EdgeOnly = true; 612 OrderedUses.push_back(VD); 613 } 614 } else { 615 // Otherwise, we are in the split block (even though we perform 616 // insertion in the branch block). 617 // Insert a possible copy at the split block and before the branch. 618 VD.LocalNum = LN_First; 619 auto *DomNode = DT.getNode(BlockEdge.second); 620 if (DomNode) { 621 VD.DFSIn = DomNode->getDFSNumIn(); 622 VD.DFSOut = DomNode->getDFSNumOut(); 623 VD.PInfo = PossibleCopy; 624 OrderedUses.push_back(VD); 625 } 626 } 627 } 628 } 629 630 convertUsesToDFSOrdered(Op, OrderedUses); 631 // Here we require a stable sort because we do not bother to try to 632 // assign an order to the operands the uses represent. Thus, two 633 // uses in the same instruction do not have a strict sort order 634 // currently and will be considered equal. We could get rid of the 635 // stable sort by creating one if we wanted. 636 std::stable_sort(OrderedUses.begin(), OrderedUses.end(), Compare); 637 SmallVector<ValueDFS, 8> RenameStack; 638 // For each use, sorted into dfs order, push values and replaces uses with 639 // top of stack, which will represent the reaching def. 640 for (auto &VD : OrderedUses) { 641 // We currently do not materialize copy over copy, but we should decide if 642 // we want to. 643 bool PossibleCopy = VD.PInfo != nullptr; 644 if (RenameStack.empty()) { 645 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 646 } else { 647 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 648 << RenameStack.back().DFSIn << "," 649 << RenameStack.back().DFSOut << ")\n"); 650 } 651 652 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 653 << VD.DFSOut << ")\n"); 654 655 bool ShouldPush = (VD.Def || PossibleCopy); 656 bool OutOfScope = !stackIsInScope(RenameStack, VD); 657 if (OutOfScope || ShouldPush) { 658 // Sync to our current scope. 659 popStackUntilDFSScope(RenameStack, VD); 660 if (ShouldPush) { 661 RenameStack.push_back(VD); 662 } 663 } 664 // If we get to this point, and the stack is empty we must have a use 665 // with no renaming needed, just skip it. 666 if (RenameStack.empty()) 667 continue; 668 // Skip values, only want to rename the uses 669 if (VD.Def || PossibleCopy) 670 continue; 671 if (!DebugCounter::shouldExecute(RenameCounter)) { 672 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 673 continue; 674 } 675 ValueDFS &Result = RenameStack.back(); 676 677 // If the possible copy dominates something, materialize our stack up to 678 // this point. This ensures every comparison that affects our operation 679 // ends up with predicateinfo. 680 if (!Result.Def) 681 Result.Def = materializeStack(Counter, RenameStack, Op); 682 683 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 684 << *VD.U->get() << " in " << *(VD.U->getUser()) 685 << "\n"); 686 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 687 "Predicateinfo def should have dominated this use"); 688 VD.U->set(Result.Def); 689 } 690 } 691 } 692 693 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 694 auto OIN = ValueInfoNums.find(Operand); 695 if (OIN == ValueInfoNums.end()) { 696 // This will grow it 697 ValueInfos.resize(ValueInfos.size() + 1); 698 // This will use the new size and give us a 0 based number of the info 699 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 700 assert(InsertResult.second && "Value info number already existed?"); 701 return ValueInfos[InsertResult.first->second]; 702 } 703 return ValueInfos[OIN->second]; 704 } 705 706 const PredicateInfo::ValueInfo & 707 PredicateInfo::getValueInfo(Value *Operand) const { 708 auto OINI = ValueInfoNums.lookup(Operand); 709 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 710 assert(OINI < ValueInfos.size() && 711 "Value Info Number greater than size of Value Info Table"); 712 return ValueInfos[OINI]; 713 } 714 715 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 716 AssumptionCache &AC) 717 : F(F), DT(DT), AC(AC), OI(&DT) { 718 // Push an empty operand info so that we can detect 0 as not finding one 719 ValueInfos.resize(1); 720 buildPredicateInfo(); 721 } 722 723 // Remove all declarations we created . The PredicateInfo consumers are 724 // responsible for remove the ssa_copy calls created. 725 PredicateInfo::~PredicateInfo() { 726 // Collect function pointers in set first, as SmallSet uses a SmallVector 727 // internally and we have to remove the asserting value handles first. 728 SmallPtrSet<Function *, 20> FunctionPtrs; 729 for (auto &F : CreatedDeclarations) 730 FunctionPtrs.insert(&*F); 731 CreatedDeclarations.clear(); 732 733 for (Function *F : FunctionPtrs) { 734 assert(F->user_begin() == F->user_end() && 735 "PredicateInfo consumer did not remove all SSA copies."); 736 F->eraseFromParent(); 737 } 738 } 739 740 void PredicateInfo::verifyPredicateInfo() const {} 741 742 char PredicateInfoPrinterLegacyPass::ID = 0; 743 744 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 745 : FunctionPass(ID) { 746 initializePredicateInfoPrinterLegacyPassPass( 747 *PassRegistry::getPassRegistry()); 748 } 749 750 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 751 AU.setPreservesAll(); 752 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 753 AU.addRequired<AssumptionCacheTracker>(); 754 } 755 756 // Replace ssa_copy calls created by PredicateInfo with their operand. 757 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 758 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 759 Instruction *Inst = &*I++; 760 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 761 auto *II = dyn_cast<IntrinsicInst>(Inst); 762 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 763 continue; 764 765 Inst->replaceAllUsesWith(II->getOperand(0)); 766 Inst->eraseFromParent(); 767 } 768 } 769 770 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 771 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 772 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 773 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 774 PredInfo->print(dbgs()); 775 if (VerifyPredicateInfo) 776 PredInfo->verifyPredicateInfo(); 777 778 replaceCreatedSSACopys(*PredInfo, F); 779 return false; 780 } 781 782 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 783 FunctionAnalysisManager &AM) { 784 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 785 auto &AC = AM.getResult<AssumptionAnalysis>(F); 786 OS << "PredicateInfo for function: " << F.getName() << "\n"; 787 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 788 PredInfo->print(OS); 789 790 replaceCreatedSSACopys(*PredInfo, F); 791 return PreservedAnalyses::all(); 792 } 793 794 /// An assembly annotator class to print PredicateInfo information in 795 /// comments. 796 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 797 friend class PredicateInfo; 798 const PredicateInfo *PredInfo; 799 800 public: 801 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 802 803 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 804 formatted_raw_ostream &OS) {} 805 806 virtual void emitInstructionAnnot(const Instruction *I, 807 formatted_raw_ostream &OS) { 808 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 809 OS << "; Has predicate info\n"; 810 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 811 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 812 << " Comparison:" << *PB->Condition << " Edge: ["; 813 PB->From->printAsOperand(OS); 814 OS << ","; 815 PB->To->printAsOperand(OS); 816 OS << "] }\n"; 817 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 818 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 819 << " Switch:" << *PS->Switch << " Edge: ["; 820 PS->From->printAsOperand(OS); 821 OS << ","; 822 PS->To->printAsOperand(OS); 823 OS << "] }\n"; 824 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 825 OS << "; assume predicate info {" 826 << " Comparison:" << *PA->Condition << " }\n"; 827 } 828 } 829 } 830 }; 831 832 void PredicateInfo::print(raw_ostream &OS) const { 833 PredicateInfoAnnotatedWriter Writer(this); 834 F.print(OS, &Writer); 835 } 836 837 void PredicateInfo::dump() const { 838 PredicateInfoAnnotatedWriter Writer(this); 839 F.print(dbgs(), &Writer); 840 } 841 842 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 843 FunctionAnalysisManager &AM) { 844 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 845 auto &AC = AM.getResult<AssumptionAnalysis>(F); 846 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 847 848 return PreservedAnalyses::all(); 849 } 850 } 851