1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
shouldEmitLifetimeMarkers(const CodeGenOptions & CGOpts,const LangOptions & LangOpts)46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94 }
95 
~CodeGenFunction()96 CodeGenFunction::~CodeGenFunction() {
97   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
98 
99   // If there are any unclaimed block infos, go ahead and destroy them
100   // now.  This can happen if IR-gen gets clever and skips evaluating
101   // something.
102   if (FirstBlockInfo)
103     destroyBlockInfos(FirstBlockInfo);
104 
105   if (getLangOpts().OpenMP && CurFn)
106     CGM.getOpenMPRuntime().functionFinished(*this);
107 }
108 
getNaturalPointeeTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)109 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
110                                                     LValueBaseInfo *BaseInfo,
111                                                     TBAAAccessInfo *TBAAInfo) {
112   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
113                                  /* forPointeeType= */ true);
114 }
115 
getNaturalTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo,bool forPointeeType)116 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
117                                                    LValueBaseInfo *BaseInfo,
118                                                    TBAAAccessInfo *TBAAInfo,
119                                                    bool forPointeeType) {
120   if (TBAAInfo)
121     *TBAAInfo = CGM.getTBAAAccessInfo(T);
122 
123   // Honor alignment typedef attributes even on incomplete types.
124   // We also honor them straight for C++ class types, even as pointees;
125   // there's an expressivity gap here.
126   if (auto TT = T->getAs<TypedefType>()) {
127     if (auto Align = TT->getDecl()->getMaxAlignment()) {
128       if (BaseInfo)
129         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
130       return getContext().toCharUnitsFromBits(Align);
131     }
132   }
133 
134   if (BaseInfo)
135     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
136 
137   CharUnits Alignment;
138   if (T->isIncompleteType()) {
139     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
140   } else {
141     // For C++ class pointees, we don't know whether we're pointing at a
142     // base or a complete object, so we generally need to use the
143     // non-virtual alignment.
144     const CXXRecordDecl *RD;
145     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
146       Alignment = CGM.getClassPointerAlignment(RD);
147     } else {
148       Alignment = getContext().getTypeAlignInChars(T);
149       if (T.getQualifiers().hasUnaligned())
150         Alignment = CharUnits::One();
151     }
152 
153     // Cap to the global maximum type alignment unless the alignment
154     // was somehow explicit on the type.
155     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
156       if (Alignment.getQuantity() > MaxAlign &&
157           !getContext().isAlignmentRequired(T))
158         Alignment = CharUnits::fromQuantity(MaxAlign);
159     }
160   }
161   return Alignment;
162 }
163 
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)164 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
165   LValueBaseInfo BaseInfo;
166   TBAAAccessInfo TBAAInfo;
167   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
168   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
169                           TBAAInfo);
170 }
171 
172 /// Given a value of type T* that may not be to a complete object,
173 /// construct an l-value with the natural pointee alignment of T.
174 LValue
MakeNaturalAlignPointeeAddrLValue(llvm::Value * V,QualType T)175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
176   LValueBaseInfo BaseInfo;
177   TBAAAccessInfo TBAAInfo;
178   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
179                                             /* forPointeeType= */ true);
180   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
181 }
182 
183 
ConvertTypeForMem(QualType T)184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
185   return CGM.getTypes().ConvertTypeForMem(T);
186 }
187 
ConvertType(QualType T)188 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
189   return CGM.getTypes().ConvertType(T);
190 }
191 
getEvaluationKind(QualType type)192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
193   type = type.getCanonicalType();
194   while (true) {
195     switch (type->getTypeClass()) {
196 #define TYPE(name, parent)
197 #define ABSTRACT_TYPE(name, parent)
198 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
199 #define DEPENDENT_TYPE(name, parent) case Type::name:
200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
201 #include "clang/AST/TypeNodes.def"
202       llvm_unreachable("non-canonical or dependent type in IR-generation");
203 
204     case Type::Auto:
205     case Type::DeducedTemplateSpecialization:
206       llvm_unreachable("undeduced type in IR-generation");
207 
208     // Various scalar types.
209     case Type::Builtin:
210     case Type::Pointer:
211     case Type::BlockPointer:
212     case Type::LValueReference:
213     case Type::RValueReference:
214     case Type::MemberPointer:
215     case Type::Vector:
216     case Type::ExtVector:
217     case Type::FunctionProto:
218     case Type::FunctionNoProto:
219     case Type::Enum:
220     case Type::ObjCObjectPointer:
221     case Type::Pipe:
222       return TEK_Scalar;
223 
224     // Complexes.
225     case Type::Complex:
226       return TEK_Complex;
227 
228     // Arrays, records, and Objective-C objects.
229     case Type::ConstantArray:
230     case Type::IncompleteArray:
231     case Type::VariableArray:
232     case Type::Record:
233     case Type::ObjCObject:
234     case Type::ObjCInterface:
235       return TEK_Aggregate;
236 
237     // We operate on atomic values according to their underlying type.
238     case Type::Atomic:
239       type = cast<AtomicType>(type)->getValueType();
240       continue;
241     }
242     llvm_unreachable("unknown type kind!");
243   }
244 }
245 
EmitReturnBlock()246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
247   // For cleanliness, we try to avoid emitting the return block for
248   // simple cases.
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   if (CurBB) {
252     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
253 
254     // We have a valid insert point, reuse it if it is empty or there are no
255     // explicit jumps to the return block.
256     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
257       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
258       delete ReturnBlock.getBlock();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       return Loc;
279     }
280   }
281 
282   // FIXME: We are at an unreachable point, there is no reason to emit the block
283   // unless it has uses. However, we still need a place to put the debug
284   // region.end for now.
285 
286   EmitBlock(ReturnBlock.getBlock());
287   return llvm::DebugLoc();
288 }
289 
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
291   if (!BB) return;
292   if (!BB->use_empty())
293     return CGF.CurFn->getBasicBlockList().push_back(BB);
294   delete BB;
295 }
296 
FinishFunction(SourceLocation EndLoc)297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
298   assert(BreakContinueStack.empty() &&
299          "mismatched push/pop in break/continue stack!");
300 
301   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
302     && NumSimpleReturnExprs == NumReturnExprs
303     && ReturnBlock.getBlock()->use_empty();
304   // Usually the return expression is evaluated before the cleanup
305   // code.  If the function contains only a simple return statement,
306   // such as a constant, the location before the cleanup code becomes
307   // the last useful breakpoint in the function, because the simple
308   // return expression will be evaluated after the cleanup code. To be
309   // safe, set the debug location for cleanup code to the location of
310   // the return statement.  Otherwise the cleanup code should be at the
311   // end of the function's lexical scope.
312   //
313   // If there are multiple branches to the return block, the branch
314   // instructions will get the location of the return statements and
315   // all will be fine.
316   if (CGDebugInfo *DI = getDebugInfo()) {
317     if (OnlySimpleReturnStmts)
318       DI->EmitLocation(Builder, LastStopPoint);
319     else
320       DI->EmitLocation(Builder, EndLoc);
321   }
322 
323   // Pop any cleanups that might have been associated with the
324   // parameters.  Do this in whatever block we're currently in; it's
325   // important to do this before we enter the return block or return
326   // edges will be *really* confused.
327   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
328   bool HasOnlyLifetimeMarkers =
329       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
330   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
331   if (HasCleanups) {
332     // Make sure the line table doesn't jump back into the body for
333     // the ret after it's been at EndLoc.
334     if (CGDebugInfo *DI = getDebugInfo())
335       if (OnlySimpleReturnStmts)
336         DI->EmitLocation(Builder, EndLoc);
337 
338     PopCleanupBlocks(PrologueCleanupDepth);
339   }
340 
341   // Emit function epilog (to return).
342   llvm::DebugLoc Loc = EmitReturnBlock();
343 
344   if (ShouldInstrumentFunction()) {
345     if (CGM.getCodeGenOpts().InstrumentFunctions)
346       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
347     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
348       CurFn->addFnAttr("instrument-function-exit-inlined",
349                        "__cyg_profile_func_exit");
350   }
351 
352   // Emit debug descriptor for function end.
353   if (CGDebugInfo *DI = getDebugInfo())
354     DI->EmitFunctionEnd(Builder, CurFn);
355 
356   // Reset the debug location to that of the simple 'return' expression, if any
357   // rather than that of the end of the function's scope '}'.
358   ApplyDebugLocation AL(*this, Loc);
359   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
360   EmitEndEHSpec(CurCodeDecl);
361 
362   assert(EHStack.empty() &&
363          "did not remove all scopes from cleanup stack!");
364 
365   // If someone did an indirect goto, emit the indirect goto block at the end of
366   // the function.
367   if (IndirectBranch) {
368     EmitBlock(IndirectBranch->getParent());
369     Builder.ClearInsertionPoint();
370   }
371 
372   // If some of our locals escaped, insert a call to llvm.localescape in the
373   // entry block.
374   if (!EscapedLocals.empty()) {
375     // Invert the map from local to index into a simple vector. There should be
376     // no holes.
377     SmallVector<llvm::Value *, 4> EscapeArgs;
378     EscapeArgs.resize(EscapedLocals.size());
379     for (auto &Pair : EscapedLocals)
380       EscapeArgs[Pair.second] = Pair.first;
381     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
382         &CGM.getModule(), llvm::Intrinsic::localescape);
383     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
384   }
385 
386   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
387   llvm::Instruction *Ptr = AllocaInsertPt;
388   AllocaInsertPt = nullptr;
389   Ptr->eraseFromParent();
390 
391   // If someone took the address of a label but never did an indirect goto, we
392   // made a zero entry PHI node, which is illegal, zap it now.
393   if (IndirectBranch) {
394     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
395     if (PN->getNumIncomingValues() == 0) {
396       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
397       PN->eraseFromParent();
398     }
399   }
400 
401   EmitIfUsed(*this, EHResumeBlock);
402   EmitIfUsed(*this, TerminateLandingPad);
403   EmitIfUsed(*this, TerminateHandler);
404   EmitIfUsed(*this, UnreachableBlock);
405 
406   for (const auto &FuncletAndParent : TerminateFunclets)
407     EmitIfUsed(*this, FuncletAndParent.second);
408 
409   if (CGM.getCodeGenOpts().EmitDeclMetadata)
410     EmitDeclMetadata();
411 
412   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
413            I = DeferredReplacements.begin(),
414            E = DeferredReplacements.end();
415        I != E; ++I) {
416     I->first->replaceAllUsesWith(I->second);
417     I->first->eraseFromParent();
418   }
419 
420   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
421   // PHIs if the current function is a coroutine. We don't do it for all
422   // functions as it may result in slight increase in numbers of instructions
423   // if compiled with no optimizations. We do it for coroutine as the lifetime
424   // of CleanupDestSlot alloca make correct coroutine frame building very
425   // difficult.
426   if (NormalCleanupDest.isValid() && isCoroutine()) {
427     llvm::DominatorTree DT(*CurFn);
428     llvm::PromoteMemToReg(
429         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
430     NormalCleanupDest = Address::invalid();
431   }
432 
433   // Scan function arguments for vector width.
434   for (llvm::Argument &A : CurFn->args())
435     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
436       LargestVectorWidth = std::max(LargestVectorWidth,
437                                     VT->getPrimitiveSizeInBits());
438 
439   // Update vector width based on return type.
440   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
441     LargestVectorWidth = std::max(LargestVectorWidth,
442                                   VT->getPrimitiveSizeInBits());
443 
444   // Add the required-vector-width attribute. This contains the max width from:
445   // 1. min-vector-width attribute used in the source program.
446   // 2. Any builtins used that have a vector width specified.
447   // 3. Values passed in and out of inline assembly.
448   // 4. Width of vector arguments and return types for this function.
449   // 5. Width of vector aguments and return types for functions called by this
450   //    function.
451   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
452 }
453 
454 /// ShouldInstrumentFunction - Return true if the current function should be
455 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()456 bool CodeGenFunction::ShouldInstrumentFunction() {
457   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
458       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
459       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
460     return false;
461   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
462     return false;
463   return true;
464 }
465 
466 /// ShouldXRayInstrument - Return true if the current function should be
467 /// instrumented with XRay nop sleds.
ShouldXRayInstrumentFunction() const468 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
469   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
470 }
471 
472 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
473 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
AlwaysEmitXRayCustomEvents() const474 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
475   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
476          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
477           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
478               XRayInstrKind::Custom);
479 }
480 
AlwaysEmitXRayTypedEvents() const481 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
482   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
483          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
484           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
485               XRayInstrKind::Typed);
486 }
487 
488 llvm::Constant *
EncodeAddrForUseInPrologue(llvm::Function * F,llvm::Constant * Addr)489 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
490                                             llvm::Constant *Addr) {
491   // Addresses stored in prologue data can't require run-time fixups and must
492   // be PC-relative. Run-time fixups are undesirable because they necessitate
493   // writable text segments, which are unsafe. And absolute addresses are
494   // undesirable because they break PIE mode.
495 
496   // Add a layer of indirection through a private global. Taking its address
497   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
498   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
499                                       /*isConstant=*/true,
500                                       llvm::GlobalValue::PrivateLinkage, Addr);
501 
502   // Create a PC-relative address.
503   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
504   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
505   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
506   return (IntPtrTy == Int32Ty)
507              ? PCRelAsInt
508              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
509 }
510 
511 llvm::Value *
DecodeAddrUsedInPrologue(llvm::Value * F,llvm::Value * EncodedAddr)512 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
513                                           llvm::Value *EncodedAddr) {
514   // Reconstruct the address of the global.
515   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
516   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
517   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
518   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
519 
520   // Load the original pointer through the global.
521   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
522                             "decoded_addr");
523 }
524 
removeImageAccessQualifier(std::string & TyName)525 static void removeImageAccessQualifier(std::string& TyName) {
526   std::string ReadOnlyQual("__read_only");
527   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
528   if (ReadOnlyPos != std::string::npos)
529     // "+ 1" for the space after access qualifier.
530     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
531   else {
532     std::string WriteOnlyQual("__write_only");
533     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
534     if (WriteOnlyPos != std::string::npos)
535       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
536     else {
537       std::string ReadWriteQual("__read_write");
538       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
539       if (ReadWritePos != std::string::npos)
540         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
541     }
542   }
543 }
544 
545 // Returns the address space id that should be produced to the
546 // kernel_arg_addr_space metadata. This is always fixed to the ids
547 // as specified in the SPIR 2.0 specification in order to differentiate
548 // for example in clGetKernelArgInfo() implementation between the address
549 // spaces with targets without unique mapping to the OpenCL address spaces
550 // (basically all single AS CPUs).
ArgInfoAddressSpace(LangAS AS)551 static unsigned ArgInfoAddressSpace(LangAS AS) {
552   switch (AS) {
553   case LangAS::opencl_global:   return 1;
554   case LangAS::opencl_constant: return 2;
555   case LangAS::opencl_local:    return 3;
556   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
557   default:
558     return 0; // Assume private.
559   }
560 }
561 
562 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
563 // information in the program executable. The argument information stored
564 // includes the argument name, its type, the address and access qualifiers used.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,CGBuilderTy & Builder,ASTContext & ASTCtx)565 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
566                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
567                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
568   // Create MDNodes that represent the kernel arg metadata.
569   // Each MDNode is a list in the form of "key", N number of values which is
570   // the same number of values as their are kernel arguments.
571 
572   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
573 
574   // MDNode for the kernel argument address space qualifiers.
575   SmallVector<llvm::Metadata *, 8> addressQuals;
576 
577   // MDNode for the kernel argument access qualifiers (images only).
578   SmallVector<llvm::Metadata *, 8> accessQuals;
579 
580   // MDNode for the kernel argument type names.
581   SmallVector<llvm::Metadata *, 8> argTypeNames;
582 
583   // MDNode for the kernel argument base type names.
584   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
585 
586   // MDNode for the kernel argument type qualifiers.
587   SmallVector<llvm::Metadata *, 8> argTypeQuals;
588 
589   // MDNode for the kernel argument names.
590   SmallVector<llvm::Metadata *, 8> argNames;
591 
592   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
593     const ParmVarDecl *parm = FD->getParamDecl(i);
594     QualType ty = parm->getType();
595     std::string typeQuals;
596 
597     if (ty->isPointerType()) {
598       QualType pointeeTy = ty->getPointeeType();
599 
600       // Get address qualifier.
601       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
602         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
603 
604       // Get argument type name.
605       std::string typeName =
606           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
607 
608       // Turn "unsigned type" to "utype"
609       std::string::size_type pos = typeName.find("unsigned");
610       if (pointeeTy.isCanonical() && pos != std::string::npos)
611         typeName.erase(pos+1, 8);
612 
613       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
614 
615       std::string baseTypeName =
616           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
617               Policy) +
618           "*";
619 
620       // Turn "unsigned type" to "utype"
621       pos = baseTypeName.find("unsigned");
622       if (pos != std::string::npos)
623         baseTypeName.erase(pos+1, 8);
624 
625       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
626 
627       // Get argument type qualifiers:
628       if (ty.isRestrictQualified())
629         typeQuals = "restrict";
630       if (pointeeTy.isConstQualified() ||
631           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
632         typeQuals += typeQuals.empty() ? "const" : " const";
633       if (pointeeTy.isVolatileQualified())
634         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
635     } else {
636       uint32_t AddrSpc = 0;
637       bool isPipe = ty->isPipeType();
638       if (ty->isImageType() || isPipe)
639         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
640 
641       addressQuals.push_back(
642           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
643 
644       // Get argument type name.
645       std::string typeName;
646       if (isPipe)
647         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
648                      .getAsString(Policy);
649       else
650         typeName = ty.getUnqualifiedType().getAsString(Policy);
651 
652       // Turn "unsigned type" to "utype"
653       std::string::size_type pos = typeName.find("unsigned");
654       if (ty.isCanonical() && pos != std::string::npos)
655         typeName.erase(pos+1, 8);
656 
657       std::string baseTypeName;
658       if (isPipe)
659         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
660                           ->getElementType().getCanonicalType()
661                           .getAsString(Policy);
662       else
663         baseTypeName =
664           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
665 
666       // Remove access qualifiers on images
667       // (as they are inseparable from type in clang implementation,
668       // but OpenCL spec provides a special query to get access qualifier
669       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
670       if (ty->isImageType()) {
671         removeImageAccessQualifier(typeName);
672         removeImageAccessQualifier(baseTypeName);
673       }
674 
675       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
676 
677       // Turn "unsigned type" to "utype"
678       pos = baseTypeName.find("unsigned");
679       if (pos != std::string::npos)
680         baseTypeName.erase(pos+1, 8);
681 
682       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
683 
684       if (isPipe)
685         typeQuals = "pipe";
686     }
687 
688     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
689 
690     // Get image and pipe access qualifier:
691     if (ty->isImageType()|| ty->isPipeType()) {
692       const Decl *PDecl = parm;
693       if (auto *TD = dyn_cast<TypedefType>(ty))
694         PDecl = TD->getDecl();
695       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
696       if (A && A->isWriteOnly())
697         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
698       else if (A && A->isReadWrite())
699         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
700       else
701         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
702     } else
703       accessQuals.push_back(llvm::MDString::get(Context, "none"));
704 
705     // Get argument name.
706     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
707   }
708 
709   Fn->setMetadata("kernel_arg_addr_space",
710                   llvm::MDNode::get(Context, addressQuals));
711   Fn->setMetadata("kernel_arg_access_qual",
712                   llvm::MDNode::get(Context, accessQuals));
713   Fn->setMetadata("kernel_arg_type",
714                   llvm::MDNode::get(Context, argTypeNames));
715   Fn->setMetadata("kernel_arg_base_type",
716                   llvm::MDNode::get(Context, argBaseTypeNames));
717   Fn->setMetadata("kernel_arg_type_qual",
718                   llvm::MDNode::get(Context, argTypeQuals));
719   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
720     Fn->setMetadata("kernel_arg_name",
721                     llvm::MDNode::get(Context, argNames));
722 }
723 
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)724 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
725                                                llvm::Function *Fn)
726 {
727   if (!FD->hasAttr<OpenCLKernelAttr>())
728     return;
729 
730   llvm::LLVMContext &Context = getLLVMContext();
731 
732   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
733 
734   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
735     QualType HintQTy = A->getTypeHint();
736     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
737     bool IsSignedInteger =
738         HintQTy->isSignedIntegerType() ||
739         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
740     llvm::Metadata *AttrMDArgs[] = {
741         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
742             CGM.getTypes().ConvertType(A->getTypeHint()))),
743         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
744             llvm::IntegerType::get(Context, 32),
745             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
746     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
747   }
748 
749   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
750     llvm::Metadata *AttrMDArgs[] = {
751         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
752         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
753         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
754     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
755   }
756 
757   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
758     llvm::Metadata *AttrMDArgs[] = {
759         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
760         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
761         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
762     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
763   }
764 
765   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
766           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
767     llvm::Metadata *AttrMDArgs[] = {
768         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
769     Fn->setMetadata("intel_reqd_sub_group_size",
770                     llvm::MDNode::get(Context, AttrMDArgs));
771   }
772 }
773 
774 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)775 static bool endsWithReturn(const Decl* F) {
776   const Stmt *Body = nullptr;
777   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
778     Body = FD->getBody();
779   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
780     Body = OMD->getBody();
781 
782   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
783     auto LastStmt = CS->body_rbegin();
784     if (LastStmt != CS->body_rend())
785       return isa<ReturnStmt>(*LastStmt);
786   }
787   return false;
788 }
789 
markAsIgnoreThreadCheckingAtRuntime(llvm::Function * Fn)790 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
791   if (SanOpts.has(SanitizerKind::Thread)) {
792     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
793     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
794   }
795 }
796 
matchesStlAllocatorFn(const Decl * D,const ASTContext & Ctx)797 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
798   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
799   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
800       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
801       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
802     return false;
803 
804   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
805     return false;
806 
807   if (MD->getNumParams() == 2) {
808     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
809     if (!PT || !PT->isVoidPointerType() ||
810         !PT->getPointeeType().isConstQualified())
811       return false;
812   }
813 
814   return true;
815 }
816 
817 /// Return the UBSan prologue signature for \p FD if one is available.
getPrologueSignature(CodeGenModule & CGM,const FunctionDecl * FD)818 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
819                                             const FunctionDecl *FD) {
820   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
821     if (!MD->isStatic())
822       return nullptr;
823   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
824 }
825 
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)826 void CodeGenFunction::StartFunction(GlobalDecl GD,
827                                     QualType RetTy,
828                                     llvm::Function *Fn,
829                                     const CGFunctionInfo &FnInfo,
830                                     const FunctionArgList &Args,
831                                     SourceLocation Loc,
832                                     SourceLocation StartLoc) {
833   assert(!CurFn &&
834          "Do not use a CodeGenFunction object for more than one function");
835 
836   const Decl *D = GD.getDecl();
837 
838   DidCallStackSave = false;
839   CurCodeDecl = D;
840   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
841     if (FD->usesSEHTry())
842       CurSEHParent = FD;
843   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
844   FnRetTy = RetTy;
845   CurFn = Fn;
846   CurFnInfo = &FnInfo;
847   assert(CurFn->isDeclaration() && "Function already has body?");
848 
849   // If this function has been blacklisted for any of the enabled sanitizers,
850   // disable the sanitizer for the function.
851   do {
852 #define SANITIZER(NAME, ID)                                                    \
853   if (SanOpts.empty())                                                         \
854     break;                                                                     \
855   if (SanOpts.has(SanitizerKind::ID))                                          \
856     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
857       SanOpts.set(SanitizerKind::ID, false);
858 
859 #include "clang/Basic/Sanitizers.def"
860 #undef SANITIZER
861   } while (0);
862 
863   if (D) {
864     // Apply the no_sanitize* attributes to SanOpts.
865     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
866       SanitizerMask mask = Attr->getMask();
867       SanOpts.Mask &= ~mask;
868       if (mask & SanitizerKind::Address)
869         SanOpts.set(SanitizerKind::KernelAddress, false);
870       if (mask & SanitizerKind::KernelAddress)
871         SanOpts.set(SanitizerKind::Address, false);
872       if (mask & SanitizerKind::HWAddress)
873         SanOpts.set(SanitizerKind::KernelHWAddress, false);
874       if (mask & SanitizerKind::KernelHWAddress)
875         SanOpts.set(SanitizerKind::HWAddress, false);
876     }
877   }
878 
879   // Apply sanitizer attributes to the function.
880   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
881     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
882   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
883     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
884   if (SanOpts.has(SanitizerKind::Thread))
885     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
886   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
887     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
888   if (SanOpts.has(SanitizerKind::SafeStack))
889     Fn->addFnAttr(llvm::Attribute::SafeStack);
890   if (SanOpts.has(SanitizerKind::ShadowCallStack))
891     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
892 
893   // Apply fuzzing attribute to the function.
894   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
895     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
896 
897   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
898   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
899   if (SanOpts.has(SanitizerKind::Thread)) {
900     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
901       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
902       if (OMD->getMethodFamily() == OMF_dealloc ||
903           OMD->getMethodFamily() == OMF_initialize ||
904           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
905         markAsIgnoreThreadCheckingAtRuntime(Fn);
906       }
907     }
908   }
909 
910   // Ignore unrelated casts in STL allocate() since the allocator must cast
911   // from void* to T* before object initialization completes. Don't match on the
912   // namespace because not all allocators are in std::
913   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
914     if (matchesStlAllocatorFn(D, getContext()))
915       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
916   }
917 
918   // Apply xray attributes to the function (as a string, for now)
919   if (D) {
920     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
921       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
922               XRayInstrKind::Function)) {
923         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
924           Fn->addFnAttr("function-instrument", "xray-always");
925         if (XRayAttr->neverXRayInstrument())
926           Fn->addFnAttr("function-instrument", "xray-never");
927         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
928           if (ShouldXRayInstrumentFunction())
929             Fn->addFnAttr("xray-log-args",
930                           llvm::utostr(LogArgs->getArgumentCount()));
931       }
932     } else {
933       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
934         Fn->addFnAttr(
935             "xray-instruction-threshold",
936             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
937     }
938   }
939 
940   // Add no-jump-tables value.
941   Fn->addFnAttr("no-jump-tables",
942                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
943 
944   // Add profile-sample-accurate value.
945   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
946     Fn->addFnAttr("profile-sample-accurate");
947 
948   if (getLangOpts().OpenCL) {
949     // Add metadata for a kernel function.
950     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
951       EmitOpenCLKernelMetadata(FD, Fn);
952   }
953 
954   // If we are checking function types, emit a function type signature as
955   // prologue data.
956   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
957     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
958       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
959         // Remove any (C++17) exception specifications, to allow calling e.g. a
960         // noexcept function through a non-noexcept pointer.
961         auto ProtoTy =
962           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
963                                                         EST_None);
964         llvm::Constant *FTRTTIConst =
965             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
966         llvm::Constant *FTRTTIConstEncoded =
967             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
968         llvm::Constant *PrologueStructElems[] = {PrologueSig,
969                                                  FTRTTIConstEncoded};
970         llvm::Constant *PrologueStructConst =
971             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
972         Fn->setPrologueData(PrologueStructConst);
973       }
974     }
975   }
976 
977   // If we're checking nullability, we need to know whether we can check the
978   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
979   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
980     auto Nullability = FnRetTy->getNullability(getContext());
981     if (Nullability && *Nullability == NullabilityKind::NonNull) {
982       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
983             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
984         RetValNullabilityPrecondition =
985             llvm::ConstantInt::getTrue(getLLVMContext());
986     }
987   }
988 
989   // If we're in C++ mode and the function name is "main", it is guaranteed
990   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
991   // used within a program").
992   if (getLangOpts().CPlusPlus)
993     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
994       if (FD->isMain())
995         Fn->addFnAttr(llvm::Attribute::NoRecurse);
996 
997   // If a custom alignment is used, force realigning to this alignment on
998   // any main function which certainly will need it.
999   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
1000     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1001         CGM.getCodeGenOpts().StackAlignment)
1002       Fn->addFnAttr("stackrealign");
1003 
1004   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1005 
1006   // Create a marker to make it easy to insert allocas into the entryblock
1007   // later.  Don't create this with the builder, because we don't want it
1008   // folded.
1009   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1010   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1011 
1012   ReturnBlock = getJumpDestInCurrentScope("return");
1013 
1014   Builder.SetInsertPoint(EntryBB);
1015 
1016   // If we're checking the return value, allocate space for a pointer to a
1017   // precise source location of the checked return statement.
1018   if (requiresReturnValueCheck()) {
1019     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1020     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
1021   }
1022 
1023   // Emit subprogram debug descriptor.
1024   if (CGDebugInfo *DI = getDebugInfo()) {
1025     // Reconstruct the type from the argument list so that implicit parameters,
1026     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1027     // convention.
1028     CallingConv CC = CallingConv::CC_C;
1029     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
1030       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1031         CC = SrcFnTy->getCallConv();
1032     SmallVector<QualType, 16> ArgTypes;
1033     for (const VarDecl *VD : Args)
1034       ArgTypes.push_back(VD->getType());
1035     QualType FnType = getContext().getFunctionType(
1036         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1037     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
1038                           Builder);
1039   }
1040 
1041   if (ShouldInstrumentFunction()) {
1042     if (CGM.getCodeGenOpts().InstrumentFunctions)
1043       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1044     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1045       CurFn->addFnAttr("instrument-function-entry-inlined",
1046                        "__cyg_profile_func_enter");
1047     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1048       CurFn->addFnAttr("instrument-function-entry-inlined",
1049                        "__cyg_profile_func_enter_bare");
1050   }
1051 
1052   // Since emitting the mcount call here impacts optimizations such as function
1053   // inlining, we just add an attribute to insert a mcount call in backend.
1054   // The attribute "counting-function" is set to mcount function name which is
1055   // architecture dependent.
1056   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1057     // Calls to fentry/mcount should not be generated if function has
1058     // the no_instrument_function attribute.
1059     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1060       if (CGM.getCodeGenOpts().CallFEntry)
1061         Fn->addFnAttr("fentry-call", "true");
1062       else {
1063         Fn->addFnAttr("instrument-function-entry-inlined",
1064                       getTarget().getMCountName());
1065       }
1066     }
1067   }
1068 
1069   if (RetTy->isVoidType()) {
1070     // Void type; nothing to return.
1071     ReturnValue = Address::invalid();
1072 
1073     // Count the implicit return.
1074     if (!endsWithReturn(D))
1075       ++NumReturnExprs;
1076   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1077     // Indirect return; emit returned value directly into sret slot.
1078     // This reduces code size, and affects correctness in C++.
1079     auto AI = CurFn->arg_begin();
1080     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1081       ++AI;
1082     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1083   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1084              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1085     // Load the sret pointer from the argument struct and return into that.
1086     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1087     llvm::Function::arg_iterator EI = CurFn->arg_end();
1088     --EI;
1089     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1090     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1091     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1092   } else {
1093     ReturnValue = CreateIRTemp(RetTy, "retval");
1094 
1095     // Tell the epilog emitter to autorelease the result.  We do this
1096     // now so that various specialized functions can suppress it
1097     // during their IR-generation.
1098     if (getLangOpts().ObjCAutoRefCount &&
1099         !CurFnInfo->isReturnsRetained() &&
1100         RetTy->isObjCRetainableType())
1101       AutoreleaseResult = true;
1102   }
1103 
1104   EmitStartEHSpec(CurCodeDecl);
1105 
1106   PrologueCleanupDepth = EHStack.stable_begin();
1107 
1108   // Emit OpenMP specific initialization of the device functions.
1109   if (getLangOpts().OpenMP && CurCodeDecl)
1110     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1111 
1112   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1113 
1114   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1115     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1116     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1117     if (MD->getParent()->isLambda() &&
1118         MD->getOverloadedOperator() == OO_Call) {
1119       // We're in a lambda; figure out the captures.
1120       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1121                                         LambdaThisCaptureField);
1122       if (LambdaThisCaptureField) {
1123         // If the lambda captures the object referred to by '*this' - either by
1124         // value or by reference, make sure CXXThisValue points to the correct
1125         // object.
1126 
1127         // Get the lvalue for the field (which is a copy of the enclosing object
1128         // or contains the address of the enclosing object).
1129         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1130         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1131           // If the enclosing object was captured by value, just use its address.
1132           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1133         } else {
1134           // Load the lvalue pointed to by the field, since '*this' was captured
1135           // by reference.
1136           CXXThisValue =
1137               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1138         }
1139       }
1140       for (auto *FD : MD->getParent()->fields()) {
1141         if (FD->hasCapturedVLAType()) {
1142           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1143                                            SourceLocation()).getScalarVal();
1144           auto VAT = FD->getCapturedVLAType();
1145           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1146         }
1147       }
1148     } else {
1149       // Not in a lambda; just use 'this' from the method.
1150       // FIXME: Should we generate a new load for each use of 'this'?  The
1151       // fast register allocator would be happier...
1152       CXXThisValue = CXXABIThisValue;
1153     }
1154 
1155     // Check the 'this' pointer once per function, if it's available.
1156     if (CXXABIThisValue) {
1157       SanitizerSet SkippedChecks;
1158       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1159       QualType ThisTy = MD->getThisType();
1160 
1161       // If this is the call operator of a lambda with no capture-default, it
1162       // may have a static invoker function, which may call this operator with
1163       // a null 'this' pointer.
1164       if (isLambdaCallOperator(MD) &&
1165           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1166         SkippedChecks.set(SanitizerKind::Null, true);
1167 
1168       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1169                                                 : TCK_MemberCall,
1170                     Loc, CXXABIThisValue, ThisTy,
1171                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1172                     SkippedChecks);
1173     }
1174   }
1175 
1176   // If any of the arguments have a variably modified type, make sure to
1177   // emit the type size.
1178   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1179        i != e; ++i) {
1180     const VarDecl *VD = *i;
1181 
1182     // Dig out the type as written from ParmVarDecls; it's unclear whether
1183     // the standard (C99 6.9.1p10) requires this, but we're following the
1184     // precedent set by gcc.
1185     QualType Ty;
1186     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1187       Ty = PVD->getOriginalType();
1188     else
1189       Ty = VD->getType();
1190 
1191     if (Ty->isVariablyModifiedType())
1192       EmitVariablyModifiedType(Ty);
1193   }
1194   // Emit a location at the end of the prologue.
1195   if (CGDebugInfo *DI = getDebugInfo())
1196     DI->EmitLocation(Builder, StartLoc);
1197 
1198   // TODO: Do we need to handle this in two places like we do with
1199   // target-features/target-cpu?
1200   if (CurFuncDecl)
1201     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1202       LargestVectorWidth = VecWidth->getVectorWidth();
1203 }
1204 
EmitFunctionBody(const Stmt * Body)1205 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1206   incrementProfileCounter(Body);
1207   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1208     EmitCompoundStmtWithoutScope(*S);
1209   else
1210     EmitStmt(Body);
1211 }
1212 
1213 /// When instrumenting to collect profile data, the counts for some blocks
1214 /// such as switch cases need to not include the fall-through counts, so
1215 /// emit a branch around the instrumentation code. When not instrumenting,
1216 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,const Stmt * S)1217 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1218                                                const Stmt *S) {
1219   llvm::BasicBlock *SkipCountBB = nullptr;
1220   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1221     // When instrumenting for profiling, the fallthrough to certain
1222     // statements needs to skip over the instrumentation code so that we
1223     // get an accurate count.
1224     SkipCountBB = createBasicBlock("skipcount");
1225     EmitBranch(SkipCountBB);
1226   }
1227   EmitBlock(BB);
1228   uint64_t CurrentCount = getCurrentProfileCount();
1229   incrementProfileCounter(S);
1230   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1231   if (SkipCountBB)
1232     EmitBlock(SkipCountBB);
1233 }
1234 
1235 /// Tries to mark the given function nounwind based on the
1236 /// non-existence of any throwing calls within it.  We believe this is
1237 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)1238 static void TryMarkNoThrow(llvm::Function *F) {
1239   // LLVM treats 'nounwind' on a function as part of the type, so we
1240   // can't do this on functions that can be overwritten.
1241   if (F->isInterposable()) return;
1242 
1243   for (llvm::BasicBlock &BB : *F)
1244     for (llvm::Instruction &I : BB)
1245       if (I.mayThrow())
1246         return;
1247 
1248   F->setDoesNotThrow();
1249 }
1250 
BuildFunctionArgList(GlobalDecl GD,FunctionArgList & Args)1251 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1252                                                FunctionArgList &Args) {
1253   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1254   QualType ResTy = FD->getReturnType();
1255 
1256   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1257   if (MD && MD->isInstance()) {
1258     if (CGM.getCXXABI().HasThisReturn(GD))
1259       ResTy = MD->getThisType();
1260     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1261       ResTy = CGM.getContext().VoidPtrTy;
1262     CGM.getCXXABI().buildThisParam(*this, Args);
1263   }
1264 
1265   // The base version of an inheriting constructor whose constructed base is a
1266   // virtual base is not passed any arguments (because it doesn't actually call
1267   // the inherited constructor).
1268   bool PassedParams = true;
1269   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1270     if (auto Inherited = CD->getInheritedConstructor())
1271       PassedParams =
1272           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1273 
1274   if (PassedParams) {
1275     for (auto *Param : FD->parameters()) {
1276       Args.push_back(Param);
1277       if (!Param->hasAttr<PassObjectSizeAttr>())
1278         continue;
1279 
1280       auto *Implicit = ImplicitParamDecl::Create(
1281           getContext(), Param->getDeclContext(), Param->getLocation(),
1282           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1283       SizeArguments[Param] = Implicit;
1284       Args.push_back(Implicit);
1285     }
1286   }
1287 
1288   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1289     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1290 
1291   return ResTy;
1292 }
1293 
1294 static bool
shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl * FD,const ASTContext & Context)1295 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1296                                              const ASTContext &Context) {
1297   QualType T = FD->getReturnType();
1298   // Avoid the optimization for functions that return a record type with a
1299   // trivial destructor or another trivially copyable type.
1300   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1301     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1302       return !ClassDecl->hasTrivialDestructor();
1303   }
1304   return !T.isTriviallyCopyableType(Context);
1305 }
1306 
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)1307 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1308                                    const CGFunctionInfo &FnInfo) {
1309   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1310   CurGD = GD;
1311 
1312   FunctionArgList Args;
1313   QualType ResTy = BuildFunctionArgList(GD, Args);
1314 
1315   // Check if we should generate debug info for this function.
1316   if (FD->hasAttr<NoDebugAttr>())
1317     DebugInfo = nullptr; // disable debug info indefinitely for this function
1318 
1319   // The function might not have a body if we're generating thunks for a
1320   // function declaration.
1321   SourceRange BodyRange;
1322   if (Stmt *Body = FD->getBody())
1323     BodyRange = Body->getSourceRange();
1324   else
1325     BodyRange = FD->getLocation();
1326   CurEHLocation = BodyRange.getEnd();
1327 
1328   // Use the location of the start of the function to determine where
1329   // the function definition is located. By default use the location
1330   // of the declaration as the location for the subprogram. A function
1331   // may lack a declaration in the source code if it is created by code
1332   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1333   SourceLocation Loc = FD->getLocation();
1334 
1335   // If this is a function specialization then use the pattern body
1336   // as the location for the function.
1337   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1338     if (SpecDecl->hasBody(SpecDecl))
1339       Loc = SpecDecl->getLocation();
1340 
1341   Stmt *Body = FD->getBody();
1342 
1343   // Initialize helper which will detect jumps which can cause invalid lifetime
1344   // markers.
1345   if (Body && ShouldEmitLifetimeMarkers)
1346     Bypasses.Init(Body);
1347 
1348   // Emit the standard function prologue.
1349   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1350 
1351   // Generate the body of the function.
1352   PGO.assignRegionCounters(GD, CurFn);
1353   if (isa<CXXDestructorDecl>(FD))
1354     EmitDestructorBody(Args);
1355   else if (isa<CXXConstructorDecl>(FD))
1356     EmitConstructorBody(Args);
1357   else if (getLangOpts().CUDA &&
1358            !getLangOpts().CUDAIsDevice &&
1359            FD->hasAttr<CUDAGlobalAttr>())
1360     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1361   else if (isa<CXXMethodDecl>(FD) &&
1362            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1363     // The lambda static invoker function is special, because it forwards or
1364     // clones the body of the function call operator (but is actually static).
1365     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1366   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1367              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1368               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1369     // Implicit copy-assignment gets the same special treatment as implicit
1370     // copy-constructors.
1371     emitImplicitAssignmentOperatorBody(Args);
1372   } else if (Body) {
1373     EmitFunctionBody(Body);
1374   } else
1375     llvm_unreachable("no definition for emitted function");
1376 
1377   // C++11 [stmt.return]p2:
1378   //   Flowing off the end of a function [...] results in undefined behavior in
1379   //   a value-returning function.
1380   // C11 6.9.1p12:
1381   //   If the '}' that terminates a function is reached, and the value of the
1382   //   function call is used by the caller, the behavior is undefined.
1383   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1384       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1385     bool ShouldEmitUnreachable =
1386         CGM.getCodeGenOpts().StrictReturn ||
1387         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1388     if (SanOpts.has(SanitizerKind::Return)) {
1389       SanitizerScope SanScope(this);
1390       llvm::Value *IsFalse = Builder.getFalse();
1391       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1392                 SanitizerHandler::MissingReturn,
1393                 EmitCheckSourceLocation(FD->getLocation()), None);
1394     } else if (ShouldEmitUnreachable) {
1395       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1396         EmitTrapCall(llvm::Intrinsic::trap);
1397     }
1398     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1399       Builder.CreateUnreachable();
1400       Builder.ClearInsertionPoint();
1401     }
1402   }
1403 
1404   // Emit the standard function epilogue.
1405   FinishFunction(BodyRange.getEnd());
1406 
1407   // If we haven't marked the function nothrow through other means, do
1408   // a quick pass now to see if we can.
1409   if (!CurFn->doesNotThrow())
1410     TryMarkNoThrow(CurFn);
1411 }
1412 
1413 /// ContainsLabel - Return true if the statement contains a label in it.  If
1414 /// this statement is not executed normally, it not containing a label means
1415 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)1416 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1417   // Null statement, not a label!
1418   if (!S) return false;
1419 
1420   // If this is a label, we have to emit the code, consider something like:
1421   // if (0) {  ...  foo:  bar(); }  goto foo;
1422   //
1423   // TODO: If anyone cared, we could track __label__'s, since we know that you
1424   // can't jump to one from outside their declared region.
1425   if (isa<LabelStmt>(S))
1426     return true;
1427 
1428   // If this is a case/default statement, and we haven't seen a switch, we have
1429   // to emit the code.
1430   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1431     return true;
1432 
1433   // If this is a switch statement, we want to ignore cases below it.
1434   if (isa<SwitchStmt>(S))
1435     IgnoreCaseStmts = true;
1436 
1437   // Scan subexpressions for verboten labels.
1438   for (const Stmt *SubStmt : S->children())
1439     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1440       return true;
1441 
1442   return false;
1443 }
1444 
1445 /// containsBreak - Return true if the statement contains a break out of it.
1446 /// If the statement (recursively) contains a switch or loop with a break
1447 /// inside of it, this is fine.
containsBreak(const Stmt * S)1448 bool CodeGenFunction::containsBreak(const Stmt *S) {
1449   // Null statement, not a label!
1450   if (!S) return false;
1451 
1452   // If this is a switch or loop that defines its own break scope, then we can
1453   // include it and anything inside of it.
1454   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1455       isa<ForStmt>(S))
1456     return false;
1457 
1458   if (isa<BreakStmt>(S))
1459     return true;
1460 
1461   // Scan subexpressions for verboten breaks.
1462   for (const Stmt *SubStmt : S->children())
1463     if (containsBreak(SubStmt))
1464       return true;
1465 
1466   return false;
1467 }
1468 
mightAddDeclToScope(const Stmt * S)1469 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1470   if (!S) return false;
1471 
1472   // Some statement kinds add a scope and thus never add a decl to the current
1473   // scope. Note, this list is longer than the list of statements that might
1474   // have an unscoped decl nested within them, but this way is conservatively
1475   // correct even if more statement kinds are added.
1476   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1477       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1478       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1479       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1480     return false;
1481 
1482   if (isa<DeclStmt>(S))
1483     return true;
1484 
1485   for (const Stmt *SubStmt : S->children())
1486     if (mightAddDeclToScope(SubStmt))
1487       return true;
1488 
1489   return false;
1490 }
1491 
1492 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1493 /// to a constant, or if it does but contains a label, return false.  If it
1494 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool,bool AllowLabels)1495 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1496                                                    bool &ResultBool,
1497                                                    bool AllowLabels) {
1498   llvm::APSInt ResultInt;
1499   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1500     return false;
1501 
1502   ResultBool = ResultInt.getBoolValue();
1503   return true;
1504 }
1505 
1506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1507 /// to a constant, or if it does but contains a label, return false.  If it
1508 /// constant folds return true and set the folded value.
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt,bool AllowLabels)1509 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1510                                                    llvm::APSInt &ResultInt,
1511                                                    bool AllowLabels) {
1512   // FIXME: Rename and handle conversion of other evaluatable things
1513   // to bool.
1514   Expr::EvalResult Result;
1515   if (!Cond->EvaluateAsInt(Result, getContext()))
1516     return false;  // Not foldable, not integer or not fully evaluatable.
1517 
1518   llvm::APSInt Int = Result.Val.getInt();
1519   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1520     return false;  // Contains a label.
1521 
1522   ResultInt = Int;
1523   return true;
1524 }
1525 
1526 
1527 
1528 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1529 /// statement) to the specified blocks.  Based on the condition, this might try
1530 /// to simplify the codegen of the conditional based on the branch.
1531 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount)1532 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1533                                            llvm::BasicBlock *TrueBlock,
1534                                            llvm::BasicBlock *FalseBlock,
1535                                            uint64_t TrueCount) {
1536   Cond = Cond->IgnoreParens();
1537 
1538   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1539 
1540     // Handle X && Y in a condition.
1541     if (CondBOp->getOpcode() == BO_LAnd) {
1542       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1543       // folded if the case was simple enough.
1544       bool ConstantBool = false;
1545       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1546           ConstantBool) {
1547         // br(1 && X) -> br(X).
1548         incrementProfileCounter(CondBOp);
1549         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1550                                     TrueCount);
1551       }
1552 
1553       // If we have "X && 1", simplify the code to use an uncond branch.
1554       // "X && 0" would have been constant folded to 0.
1555       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1556           ConstantBool) {
1557         // br(X && 1) -> br(X).
1558         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1559                                     TrueCount);
1560       }
1561 
1562       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1563       // want to jump to the FalseBlock.
1564       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1565       // The counter tells us how often we evaluate RHS, and all of TrueCount
1566       // can be propagated to that branch.
1567       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1568 
1569       ConditionalEvaluation eval(*this);
1570       {
1571         ApplyDebugLocation DL(*this, Cond);
1572         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1573         EmitBlock(LHSTrue);
1574       }
1575 
1576       incrementProfileCounter(CondBOp);
1577       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1578 
1579       // Any temporaries created here are conditional.
1580       eval.begin(*this);
1581       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1582       eval.end(*this);
1583 
1584       return;
1585     }
1586 
1587     if (CondBOp->getOpcode() == BO_LOr) {
1588       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1589       // folded if the case was simple enough.
1590       bool ConstantBool = false;
1591       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1592           !ConstantBool) {
1593         // br(0 || X) -> br(X).
1594         incrementProfileCounter(CondBOp);
1595         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1596                                     TrueCount);
1597       }
1598 
1599       // If we have "X || 0", simplify the code to use an uncond branch.
1600       // "X || 1" would have been constant folded to 1.
1601       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1602           !ConstantBool) {
1603         // br(X || 0) -> br(X).
1604         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1605                                     TrueCount);
1606       }
1607 
1608       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1609       // want to jump to the TrueBlock.
1610       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1611       // We have the count for entry to the RHS and for the whole expression
1612       // being true, so we can divy up True count between the short circuit and
1613       // the RHS.
1614       uint64_t LHSCount =
1615           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1616       uint64_t RHSCount = TrueCount - LHSCount;
1617 
1618       ConditionalEvaluation eval(*this);
1619       {
1620         ApplyDebugLocation DL(*this, Cond);
1621         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1622         EmitBlock(LHSFalse);
1623       }
1624 
1625       incrementProfileCounter(CondBOp);
1626       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1627 
1628       // Any temporaries created here are conditional.
1629       eval.begin(*this);
1630       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1631 
1632       eval.end(*this);
1633 
1634       return;
1635     }
1636   }
1637 
1638   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1639     // br(!x, t, f) -> br(x, f, t)
1640     if (CondUOp->getOpcode() == UO_LNot) {
1641       // Negate the count.
1642       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1643       // Negate the condition and swap the destination blocks.
1644       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1645                                   FalseCount);
1646     }
1647   }
1648 
1649   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1650     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1651     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1652     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1653 
1654     ConditionalEvaluation cond(*this);
1655     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1656                          getProfileCount(CondOp));
1657 
1658     // When computing PGO branch weights, we only know the overall count for
1659     // the true block. This code is essentially doing tail duplication of the
1660     // naive code-gen, introducing new edges for which counts are not
1661     // available. Divide the counts proportionally between the LHS and RHS of
1662     // the conditional operator.
1663     uint64_t LHSScaledTrueCount = 0;
1664     if (TrueCount) {
1665       double LHSRatio =
1666           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1667       LHSScaledTrueCount = TrueCount * LHSRatio;
1668     }
1669 
1670     cond.begin(*this);
1671     EmitBlock(LHSBlock);
1672     incrementProfileCounter(CondOp);
1673     {
1674       ApplyDebugLocation DL(*this, Cond);
1675       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1676                            LHSScaledTrueCount);
1677     }
1678     cond.end(*this);
1679 
1680     cond.begin(*this);
1681     EmitBlock(RHSBlock);
1682     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1683                          TrueCount - LHSScaledTrueCount);
1684     cond.end(*this);
1685 
1686     return;
1687   }
1688 
1689   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1690     // Conditional operator handling can give us a throw expression as a
1691     // condition for a case like:
1692     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1693     // Fold this to:
1694     //   br(c, throw x, br(y, t, f))
1695     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1696     return;
1697   }
1698 
1699   // If the branch has a condition wrapped by __builtin_unpredictable,
1700   // create metadata that specifies that the branch is unpredictable.
1701   // Don't bother if not optimizing because that metadata would not be used.
1702   llvm::MDNode *Unpredictable = nullptr;
1703   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1704   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1705     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1706     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1707       llvm::MDBuilder MDHelper(getLLVMContext());
1708       Unpredictable = MDHelper.createUnpredictable();
1709     }
1710   }
1711 
1712   // Create branch weights based on the number of times we get here and the
1713   // number of times the condition should be true.
1714   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1715   llvm::MDNode *Weights =
1716       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1717 
1718   // Emit the code with the fully general case.
1719   llvm::Value *CondV;
1720   {
1721     ApplyDebugLocation DL(*this, Cond);
1722     CondV = EvaluateExprAsBool(Cond);
1723   }
1724   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1725 }
1726 
1727 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1728 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1729 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1730   CGM.ErrorUnsupported(S, Type);
1731 }
1732 
1733 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1734 /// variable-length array whose elements have a non-zero bit-pattern.
1735 ///
1736 /// \param baseType the inner-most element type of the array
1737 /// \param src - a char* pointing to the bit-pattern for a single
1738 /// base element of the array
1739 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,Address dest,Address src,llvm::Value * sizeInChars)1740 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1741                                Address dest, Address src,
1742                                llvm::Value *sizeInChars) {
1743   CGBuilderTy &Builder = CGF.Builder;
1744 
1745   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1746   llvm::Value *baseSizeInChars
1747     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1748 
1749   Address begin =
1750     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1751   llvm::Value *end =
1752     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1753 
1754   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1755   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1756   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1757 
1758   // Make a loop over the VLA.  C99 guarantees that the VLA element
1759   // count must be nonzero.
1760   CGF.EmitBlock(loopBB);
1761 
1762   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1763   cur->addIncoming(begin.getPointer(), originBB);
1764 
1765   CharUnits curAlign =
1766     dest.getAlignment().alignmentOfArrayElement(baseSize);
1767 
1768   // memcpy the individual element bit-pattern.
1769   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1770                        /*volatile*/ false);
1771 
1772   // Go to the next element.
1773   llvm::Value *next =
1774     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1775 
1776   // Leave if that's the end of the VLA.
1777   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1778   Builder.CreateCondBr(done, contBB, loopBB);
1779   cur->addIncoming(next, loopBB);
1780 
1781   CGF.EmitBlock(contBB);
1782 }
1783 
1784 void
EmitNullInitialization(Address DestPtr,QualType Ty)1785 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1786   // Ignore empty classes in C++.
1787   if (getLangOpts().CPlusPlus) {
1788     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1789       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1790         return;
1791     }
1792   }
1793 
1794   // Cast the dest ptr to the appropriate i8 pointer type.
1795   if (DestPtr.getElementType() != Int8Ty)
1796     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1797 
1798   // Get size and alignment info for this aggregate.
1799   CharUnits size = getContext().getTypeSizeInChars(Ty);
1800 
1801   llvm::Value *SizeVal;
1802   const VariableArrayType *vla;
1803 
1804   // Don't bother emitting a zero-byte memset.
1805   if (size.isZero()) {
1806     // But note that getTypeInfo returns 0 for a VLA.
1807     if (const VariableArrayType *vlaType =
1808           dyn_cast_or_null<VariableArrayType>(
1809                                           getContext().getAsArrayType(Ty))) {
1810       auto VlaSize = getVLASize(vlaType);
1811       SizeVal = VlaSize.NumElts;
1812       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1813       if (!eltSize.isOne())
1814         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1815       vla = vlaType;
1816     } else {
1817       return;
1818     }
1819   } else {
1820     SizeVal = CGM.getSize(size);
1821     vla = nullptr;
1822   }
1823 
1824   // If the type contains a pointer to data member we can't memset it to zero.
1825   // Instead, create a null constant and copy it to the destination.
1826   // TODO: there are other patterns besides zero that we can usefully memset,
1827   // like -1, which happens to be the pattern used by member-pointers.
1828   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1829     // For a VLA, emit a single element, then splat that over the VLA.
1830     if (vla) Ty = getContext().getBaseElementType(vla);
1831 
1832     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1833 
1834     llvm::GlobalVariable *NullVariable =
1835       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1836                                /*isConstant=*/true,
1837                                llvm::GlobalVariable::PrivateLinkage,
1838                                NullConstant, Twine());
1839     CharUnits NullAlign = DestPtr.getAlignment();
1840     NullVariable->setAlignment(NullAlign.getQuantity());
1841     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1842                    NullAlign);
1843 
1844     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1845 
1846     // Get and call the appropriate llvm.memcpy overload.
1847     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1848     return;
1849   }
1850 
1851   // Otherwise, just memset the whole thing to zero.  This is legal
1852   // because in LLVM, all default initializers (other than the ones we just
1853   // handled above) are guaranteed to have a bit pattern of all zeros.
1854   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1855 }
1856 
GetAddrOfLabel(const LabelDecl * L)1857 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1858   // Make sure that there is a block for the indirect goto.
1859   if (!IndirectBranch)
1860     GetIndirectGotoBlock();
1861 
1862   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1863 
1864   // Make sure the indirect branch includes all of the address-taken blocks.
1865   IndirectBranch->addDestination(BB);
1866   return llvm::BlockAddress::get(CurFn, BB);
1867 }
1868 
GetIndirectGotoBlock()1869 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1870   // If we already made the indirect branch for indirect goto, return its block.
1871   if (IndirectBranch) return IndirectBranch->getParent();
1872 
1873   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1874 
1875   // Create the PHI node that indirect gotos will add entries to.
1876   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1877                                               "indirect.goto.dest");
1878 
1879   // Create the indirect branch instruction.
1880   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1881   return IndirectBranch->getParent();
1882 }
1883 
1884 /// Computes the length of an array in elements, as well as the base
1885 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,Address & addr)1886 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1887                                               QualType &baseType,
1888                                               Address &addr) {
1889   const ArrayType *arrayType = origArrayType;
1890 
1891   // If it's a VLA, we have to load the stored size.  Note that
1892   // this is the size of the VLA in bytes, not its size in elements.
1893   llvm::Value *numVLAElements = nullptr;
1894   if (isa<VariableArrayType>(arrayType)) {
1895     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1896 
1897     // Walk into all VLAs.  This doesn't require changes to addr,
1898     // which has type T* where T is the first non-VLA element type.
1899     do {
1900       QualType elementType = arrayType->getElementType();
1901       arrayType = getContext().getAsArrayType(elementType);
1902 
1903       // If we only have VLA components, 'addr' requires no adjustment.
1904       if (!arrayType) {
1905         baseType = elementType;
1906         return numVLAElements;
1907       }
1908     } while (isa<VariableArrayType>(arrayType));
1909 
1910     // We get out here only if we find a constant array type
1911     // inside the VLA.
1912   }
1913 
1914   // We have some number of constant-length arrays, so addr should
1915   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1916   // down to the first element of addr.
1917   SmallVector<llvm::Value*, 8> gepIndices;
1918 
1919   // GEP down to the array type.
1920   llvm::ConstantInt *zero = Builder.getInt32(0);
1921   gepIndices.push_back(zero);
1922 
1923   uint64_t countFromCLAs = 1;
1924   QualType eltType;
1925 
1926   llvm::ArrayType *llvmArrayType =
1927     dyn_cast<llvm::ArrayType>(addr.getElementType());
1928   while (llvmArrayType) {
1929     assert(isa<ConstantArrayType>(arrayType));
1930     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1931              == llvmArrayType->getNumElements());
1932 
1933     gepIndices.push_back(zero);
1934     countFromCLAs *= llvmArrayType->getNumElements();
1935     eltType = arrayType->getElementType();
1936 
1937     llvmArrayType =
1938       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1939     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1940     assert((!llvmArrayType || arrayType) &&
1941            "LLVM and Clang types are out-of-synch");
1942   }
1943 
1944   if (arrayType) {
1945     // From this point onwards, the Clang array type has been emitted
1946     // as some other type (probably a packed struct). Compute the array
1947     // size, and just emit the 'begin' expression as a bitcast.
1948     while (arrayType) {
1949       countFromCLAs *=
1950           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1951       eltType = arrayType->getElementType();
1952       arrayType = getContext().getAsArrayType(eltType);
1953     }
1954 
1955     llvm::Type *baseType = ConvertType(eltType);
1956     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1957   } else {
1958     // Create the actual GEP.
1959     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1960                                              gepIndices, "array.begin"),
1961                    addr.getAlignment());
1962   }
1963 
1964   baseType = eltType;
1965 
1966   llvm::Value *numElements
1967     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1968 
1969   // If we had any VLA dimensions, factor them in.
1970   if (numVLAElements)
1971     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1972 
1973   return numElements;
1974 }
1975 
getVLASize(QualType type)1976 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1977   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1978   assert(vla && "type was not a variable array type!");
1979   return getVLASize(vla);
1980 }
1981 
1982 CodeGenFunction::VlaSizePair
getVLASize(const VariableArrayType * type)1983 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1984   // The number of elements so far; always size_t.
1985   llvm::Value *numElements = nullptr;
1986 
1987   QualType elementType;
1988   do {
1989     elementType = type->getElementType();
1990     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1991     assert(vlaSize && "no size for VLA!");
1992     assert(vlaSize->getType() == SizeTy);
1993 
1994     if (!numElements) {
1995       numElements = vlaSize;
1996     } else {
1997       // It's undefined behavior if this wraps around, so mark it that way.
1998       // FIXME: Teach -fsanitize=undefined to trap this.
1999       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2000     }
2001   } while ((type = getContext().getAsVariableArrayType(elementType)));
2002 
2003   return { numElements, elementType };
2004 }
2005 
2006 CodeGenFunction::VlaSizePair
getVLAElements1D(QualType type)2007 CodeGenFunction::getVLAElements1D(QualType type) {
2008   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2009   assert(vla && "type was not a variable array type!");
2010   return getVLAElements1D(vla);
2011 }
2012 
2013 CodeGenFunction::VlaSizePair
getVLAElements1D(const VariableArrayType * Vla)2014 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2015   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2016   assert(VlaSize && "no size for VLA!");
2017   assert(VlaSize->getType() == SizeTy);
2018   return { VlaSize, Vla->getElementType() };
2019 }
2020 
EmitVariablyModifiedType(QualType type)2021 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2022   assert(type->isVariablyModifiedType() &&
2023          "Must pass variably modified type to EmitVLASizes!");
2024 
2025   EnsureInsertPoint();
2026 
2027   // We're going to walk down into the type and look for VLA
2028   // expressions.
2029   do {
2030     assert(type->isVariablyModifiedType());
2031 
2032     const Type *ty = type.getTypePtr();
2033     switch (ty->getTypeClass()) {
2034 
2035 #define TYPE(Class, Base)
2036 #define ABSTRACT_TYPE(Class, Base)
2037 #define NON_CANONICAL_TYPE(Class, Base)
2038 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2039 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2040 #include "clang/AST/TypeNodes.def"
2041       llvm_unreachable("unexpected dependent type!");
2042 
2043     // These types are never variably-modified.
2044     case Type::Builtin:
2045     case Type::Complex:
2046     case Type::Vector:
2047     case Type::ExtVector:
2048     case Type::Record:
2049     case Type::Enum:
2050     case Type::Elaborated:
2051     case Type::TemplateSpecialization:
2052     case Type::ObjCTypeParam:
2053     case Type::ObjCObject:
2054     case Type::ObjCInterface:
2055     case Type::ObjCObjectPointer:
2056       llvm_unreachable("type class is never variably-modified!");
2057 
2058     case Type::Adjusted:
2059       type = cast<AdjustedType>(ty)->getAdjustedType();
2060       break;
2061 
2062     case Type::Decayed:
2063       type = cast<DecayedType>(ty)->getPointeeType();
2064       break;
2065 
2066     case Type::Pointer:
2067       type = cast<PointerType>(ty)->getPointeeType();
2068       break;
2069 
2070     case Type::BlockPointer:
2071       type = cast<BlockPointerType>(ty)->getPointeeType();
2072       break;
2073 
2074     case Type::LValueReference:
2075     case Type::RValueReference:
2076       type = cast<ReferenceType>(ty)->getPointeeType();
2077       break;
2078 
2079     case Type::MemberPointer:
2080       type = cast<MemberPointerType>(ty)->getPointeeType();
2081       break;
2082 
2083     case Type::ConstantArray:
2084     case Type::IncompleteArray:
2085       // Losing element qualification here is fine.
2086       type = cast<ArrayType>(ty)->getElementType();
2087       break;
2088 
2089     case Type::VariableArray: {
2090       // Losing element qualification here is fine.
2091       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2092 
2093       // Unknown size indication requires no size computation.
2094       // Otherwise, evaluate and record it.
2095       if (const Expr *size = vat->getSizeExpr()) {
2096         // It's possible that we might have emitted this already,
2097         // e.g. with a typedef and a pointer to it.
2098         llvm::Value *&entry = VLASizeMap[size];
2099         if (!entry) {
2100           llvm::Value *Size = EmitScalarExpr(size);
2101 
2102           // C11 6.7.6.2p5:
2103           //   If the size is an expression that is not an integer constant
2104           //   expression [...] each time it is evaluated it shall have a value
2105           //   greater than zero.
2106           if (SanOpts.has(SanitizerKind::VLABound) &&
2107               size->getType()->isSignedIntegerType()) {
2108             SanitizerScope SanScope(this);
2109             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2110             llvm::Constant *StaticArgs[] = {
2111                 EmitCheckSourceLocation(size->getBeginLoc()),
2112                 EmitCheckTypeDescriptor(size->getType())};
2113             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2114                                      SanitizerKind::VLABound),
2115                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2116           }
2117 
2118           // Always zexting here would be wrong if it weren't
2119           // undefined behavior to have a negative bound.
2120           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2121         }
2122       }
2123       type = vat->getElementType();
2124       break;
2125     }
2126 
2127     case Type::FunctionProto:
2128     case Type::FunctionNoProto:
2129       type = cast<FunctionType>(ty)->getReturnType();
2130       break;
2131 
2132     case Type::Paren:
2133     case Type::TypeOf:
2134     case Type::UnaryTransform:
2135     case Type::Attributed:
2136     case Type::SubstTemplateTypeParm:
2137     case Type::PackExpansion:
2138       // Keep walking after single level desugaring.
2139       type = type.getSingleStepDesugaredType(getContext());
2140       break;
2141 
2142     case Type::Typedef:
2143     case Type::Decltype:
2144     case Type::Auto:
2145     case Type::DeducedTemplateSpecialization:
2146       // Stop walking: nothing to do.
2147       return;
2148 
2149     case Type::TypeOfExpr:
2150       // Stop walking: emit typeof expression.
2151       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2152       return;
2153 
2154     case Type::Atomic:
2155       type = cast<AtomicType>(ty)->getValueType();
2156       break;
2157 
2158     case Type::Pipe:
2159       type = cast<PipeType>(ty)->getElementType();
2160       break;
2161     }
2162   } while (type->isVariablyModifiedType());
2163 }
2164 
EmitVAListRef(const Expr * E)2165 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2166   if (getContext().getBuiltinVaListType()->isArrayType())
2167     return EmitPointerWithAlignment(E);
2168   return EmitLValue(E).getAddress();
2169 }
2170 
EmitMSVAListRef(const Expr * E)2171 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2172   return EmitLValue(E).getAddress();
2173 }
2174 
EmitDeclRefExprDbgValue(const DeclRefExpr * E,const APValue & Init)2175 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2176                                               const APValue &Init) {
2177   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2178   if (CGDebugInfo *Dbg = getDebugInfo())
2179     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2180       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2181 }
2182 
2183 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)2184 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2185   // At the moment, the only aggressive peephole we do in IR gen
2186   // is trunc(zext) folding, but if we add more, we can easily
2187   // extend this protection.
2188 
2189   if (!rvalue.isScalar()) return PeepholeProtection();
2190   llvm::Value *value = rvalue.getScalarVal();
2191   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2192 
2193   // Just make an extra bitcast.
2194   assert(HaveInsertPoint());
2195   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2196                                                   Builder.GetInsertBlock());
2197 
2198   PeepholeProtection protection;
2199   protection.Inst = inst;
2200   return protection;
2201 }
2202 
unprotectFromPeepholes(PeepholeProtection protection)2203 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2204   if (!protection.Inst) return;
2205 
2206   // In theory, we could try to duplicate the peepholes now, but whatever.
2207   protection.Inst->eraseFromParent();
2208 }
2209 
EmitAlignmentAssumption(llvm::Value * PtrValue,QualType Ty,SourceLocation Loc,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2210 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2211                                               QualType Ty, SourceLocation Loc,
2212                                               SourceLocation AssumptionLoc,
2213                                               llvm::Value *Alignment,
2214                                               llvm::Value *OffsetValue) {
2215   llvm::Value *TheCheck;
2216   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2217       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2218   if (SanOpts.has(SanitizerKind::Alignment)) {
2219     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2220                                  OffsetValue, TheCheck, Assumption);
2221   }
2222 }
2223 
EmitAlignmentAssumption(llvm::Value * PtrValue,QualType Ty,SourceLocation Loc,SourceLocation AssumptionLoc,unsigned Alignment,llvm::Value * OffsetValue)2224 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2225                                               QualType Ty, SourceLocation Loc,
2226                                               SourceLocation AssumptionLoc,
2227                                               unsigned Alignment,
2228                                               llvm::Value *OffsetValue) {
2229   llvm::Value *TheCheck;
2230   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2231       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2232   if (SanOpts.has(SanitizerKind::Alignment)) {
2233     llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment);
2234     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal,
2235                                  OffsetValue, TheCheck, Assumption);
2236   }
2237 }
2238 
EmitAlignmentAssumption(llvm::Value * PtrValue,const Expr * E,SourceLocation AssumptionLoc,unsigned Alignment,llvm::Value * OffsetValue)2239 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2240                                               const Expr *E,
2241                                               SourceLocation AssumptionLoc,
2242                                               unsigned Alignment,
2243                                               llvm::Value *OffsetValue) {
2244   if (auto *CE = dyn_cast<CastExpr>(E))
2245     E = CE->getSubExprAsWritten();
2246   QualType Ty = E->getType();
2247   SourceLocation Loc = E->getExprLoc();
2248 
2249   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2250                           OffsetValue);
2251 }
2252 
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)2253 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2254                                                  llvm::Value *AnnotatedVal,
2255                                                  StringRef AnnotationStr,
2256                                                  SourceLocation Location) {
2257   llvm::Value *Args[4] = {
2258     AnnotatedVal,
2259     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2260     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2261     CGM.EmitAnnotationLineNo(Location)
2262   };
2263   return Builder.CreateCall(AnnotationFn, Args);
2264 }
2265 
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)2266 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2267   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2268   // FIXME We create a new bitcast for every annotation because that's what
2269   // llvm-gcc was doing.
2270   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2271     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2272                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2273                        I->getAnnotation(), D->getLocation());
2274 }
2275 
EmitFieldAnnotations(const FieldDecl * D,Address Addr)2276 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2277                                               Address Addr) {
2278   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2279   llvm::Value *V = Addr.getPointer();
2280   llvm::Type *VTy = V->getType();
2281   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2282                                     CGM.Int8PtrTy);
2283 
2284   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2285     // FIXME Always emit the cast inst so we can differentiate between
2286     // annotation on the first field of a struct and annotation on the struct
2287     // itself.
2288     if (VTy != CGM.Int8PtrTy)
2289       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2290     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2291     V = Builder.CreateBitCast(V, VTy);
2292   }
2293 
2294   return Address(V, Addr.getAlignment());
2295 }
2296 
~CGCapturedStmtInfo()2297 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2298 
SanitizerScope(CodeGenFunction * CGF)2299 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2300     : CGF(CGF) {
2301   assert(!CGF->IsSanitizerScope);
2302   CGF->IsSanitizerScope = true;
2303 }
2304 
~SanitizerScope()2305 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2306   CGF->IsSanitizerScope = false;
2307 }
2308 
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2309 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2310                                    const llvm::Twine &Name,
2311                                    llvm::BasicBlock *BB,
2312                                    llvm::BasicBlock::iterator InsertPt) const {
2313   LoopStack.InsertHelper(I);
2314   if (IsSanitizerScope)
2315     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2316 }
2317 
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2318 void CGBuilderInserter::InsertHelper(
2319     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2320     llvm::BasicBlock::iterator InsertPt) const {
2321   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2322   if (CGF)
2323     CGF->InsertHelper(I, Name, BB, InsertPt);
2324 }
2325 
hasRequiredFeatures(const SmallVectorImpl<StringRef> & ReqFeatures,CodeGenModule & CGM,const FunctionDecl * FD,std::string & FirstMissing)2326 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2327                                 CodeGenModule &CGM, const FunctionDecl *FD,
2328                                 std::string &FirstMissing) {
2329   // If there aren't any required features listed then go ahead and return.
2330   if (ReqFeatures.empty())
2331     return false;
2332 
2333   // Now build up the set of caller features and verify that all the required
2334   // features are there.
2335   llvm::StringMap<bool> CallerFeatureMap;
2336   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2337 
2338   // If we have at least one of the features in the feature list return
2339   // true, otherwise return false.
2340   return std::all_of(
2341       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2342         SmallVector<StringRef, 1> OrFeatures;
2343         Feature.split(OrFeatures, '|');
2344         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2345           if (!CallerFeatureMap.lookup(Feature)) {
2346             FirstMissing = Feature.str();
2347             return false;
2348           }
2349           return true;
2350         });
2351       });
2352 }
2353 
2354 // Emits an error if we don't have a valid set of target features for the
2355 // called function.
checkTargetFeatures(const CallExpr * E,const FunctionDecl * TargetDecl)2356 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2357                                           const FunctionDecl *TargetDecl) {
2358   // Early exit if this is an indirect call.
2359   if (!TargetDecl)
2360     return;
2361 
2362   // Get the current enclosing function if it exists. If it doesn't
2363   // we can't check the target features anyhow.
2364   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2365   if (!FD)
2366     return;
2367 
2368   // Grab the required features for the call. For a builtin this is listed in
2369   // the td file with the default cpu, for an always_inline function this is any
2370   // listed cpu and any listed features.
2371   unsigned BuiltinID = TargetDecl->getBuiltinID();
2372   std::string MissingFeature;
2373   if (BuiltinID) {
2374     SmallVector<StringRef, 1> ReqFeatures;
2375     const char *FeatureList =
2376         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2377     // Return if the builtin doesn't have any required features.
2378     if (!FeatureList || StringRef(FeatureList) == "")
2379       return;
2380     StringRef(FeatureList).split(ReqFeatures, ',');
2381     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2382       CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2383           << TargetDecl->getDeclName()
2384           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2385 
2386   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2387              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2388     // Get the required features for the callee.
2389 
2390     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2391     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2392 
2393     SmallVector<StringRef, 1> ReqFeatures;
2394     llvm::StringMap<bool> CalleeFeatureMap;
2395     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2396 
2397     for (const auto &F : ParsedAttr.Features) {
2398       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2399         ReqFeatures.push_back(StringRef(F).substr(1));
2400     }
2401 
2402     for (const auto &F : CalleeFeatureMap) {
2403       // Only positive features are "required".
2404       if (F.getValue())
2405         ReqFeatures.push_back(F.getKey());
2406     }
2407     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2408       CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature)
2409           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2410   }
2411 }
2412 
EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)2413 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2414   if (!CGM.getCodeGenOpts().SanitizeStats)
2415     return;
2416 
2417   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2418   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2419   CGM.getSanStats().create(IRB, SSK);
2420 }
2421 
2422 llvm::Value *
FormResolverCondition(const MultiVersionResolverOption & RO)2423 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2424   llvm::Value *Condition = nullptr;
2425 
2426   if (!RO.Conditions.Architecture.empty())
2427     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2428 
2429   if (!RO.Conditions.Features.empty()) {
2430     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2431     Condition =
2432         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2433   }
2434   return Condition;
2435 }
2436 
CreateMultiVersionResolverReturn(CodeGenModule & CGM,llvm::Function * Resolver,CGBuilderTy & Builder,llvm::Function * FuncToReturn,bool SupportsIFunc)2437 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2438                                              llvm::Function *Resolver,
2439                                              CGBuilderTy &Builder,
2440                                              llvm::Function *FuncToReturn,
2441                                              bool SupportsIFunc) {
2442   if (SupportsIFunc) {
2443     Builder.CreateRet(FuncToReturn);
2444     return;
2445   }
2446 
2447   llvm::SmallVector<llvm::Value *, 10> Args;
2448   llvm::for_each(Resolver->args(),
2449                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2450 
2451   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2452   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2453 
2454   if (Resolver->getReturnType()->isVoidTy())
2455     Builder.CreateRetVoid();
2456   else
2457     Builder.CreateRet(Result);
2458 }
2459 
EmitMultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2460 void CodeGenFunction::EmitMultiVersionResolver(
2461     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2462   assert((getContext().getTargetInfo().getTriple().getArch() ==
2463               llvm::Triple::x86 ||
2464           getContext().getTargetInfo().getTriple().getArch() ==
2465               llvm::Triple::x86_64) &&
2466          "Only implemented for x86 targets");
2467 
2468   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2469 
2470   // Main function's basic block.
2471   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2472   Builder.SetInsertPoint(CurBlock);
2473   EmitX86CpuInit();
2474 
2475   for (const MultiVersionResolverOption &RO : Options) {
2476     Builder.SetInsertPoint(CurBlock);
2477     llvm::Value *Condition = FormResolverCondition(RO);
2478 
2479     // The 'default' or 'generic' case.
2480     if (!Condition) {
2481       assert(&RO == Options.end() - 1 &&
2482              "Default or Generic case must be last");
2483       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2484                                        SupportsIFunc);
2485       return;
2486     }
2487 
2488     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2489     CGBuilderTy RetBuilder(*this, RetBlock);
2490     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2491                                      SupportsIFunc);
2492     CurBlock = createBasicBlock("resolver_else", Resolver);
2493     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2494   }
2495 
2496   // If no generic/default, emit an unreachable.
2497   Builder.SetInsertPoint(CurBlock);
2498   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2499   TrapCall->setDoesNotReturn();
2500   TrapCall->setDoesNotThrow();
2501   Builder.CreateUnreachable();
2502   Builder.ClearInsertionPoint();
2503 }
2504 
2505 // Loc - where the diagnostic will point, where in the source code this
2506 //  alignment has failed.
2507 // SecondaryLoc - if present (will be present if sufficiently different from
2508 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2509 //  It should be the location where the __attribute__((assume_aligned))
2510 //  was written e.g.
EmitAlignmentAssumptionCheck(llvm::Value * Ptr,QualType Ty,SourceLocation Loc,SourceLocation SecondaryLoc,llvm::Value * Alignment,llvm::Value * OffsetValue,llvm::Value * TheCheck,llvm::Instruction * Assumption)2511 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2512     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2513     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2514     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2515     llvm::Instruction *Assumption) {
2516   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2517          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2518              llvm::Intrinsic::getDeclaration(
2519                  Builder.GetInsertBlock()->getParent()->getParent(),
2520                  llvm::Intrinsic::assume) &&
2521          "Assumption should be a call to llvm.assume().");
2522   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2523          "Assumption should be the last instruction of the basic block, "
2524          "since the basic block is still being generated.");
2525 
2526   if (!SanOpts.has(SanitizerKind::Alignment))
2527     return;
2528 
2529   // Don't check pointers to volatile data. The behavior here is implementation-
2530   // defined.
2531   if (Ty->getPointeeType().isVolatileQualified())
2532     return;
2533 
2534   // We need to temorairly remove the assumption so we can insert the
2535   // sanitizer check before it, else the check will be dropped by optimizations.
2536   Assumption->removeFromParent();
2537 
2538   {
2539     SanitizerScope SanScope(this);
2540 
2541     if (!OffsetValue)
2542       OffsetValue = Builder.getInt1(0); // no offset.
2543 
2544     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2545                                     EmitCheckSourceLocation(SecondaryLoc),
2546                                     EmitCheckTypeDescriptor(Ty)};
2547     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2548                                   EmitCheckValue(Alignment),
2549                                   EmitCheckValue(OffsetValue)};
2550     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2551               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2552   }
2553 
2554   // We are now in the (new, empty) "cont" basic block.
2555   // Reintroduce the assumption.
2556   Builder.Insert(Assumption);
2557   // FIXME: Assumption still has it's original basic block as it's Parent.
2558 }
2559 
SourceLocToDebugLoc(SourceLocation Location)2560 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2561   if (CGDebugInfo *DI = getDebugInfo())
2562     return DI->SourceLocToDebugLoc(Location);
2563 
2564   return llvm::DebugLoc();
2565 }
2566