1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/CommentDiagnostic.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35 #include "clang/Sema/CXXFieldCollector.h"
36 #include "clang/Sema/DeclSpec.h"
37 #include "clang/Sema/DelayedDiagnostic.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/ParsedTemplate.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
43 #include "clang/Sema/SemaInternal.h"
44 #include "clang/Sema/Template.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Triple.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using namespace sema;
53 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55   if (OwnedType) {
56     Decl *Group[2] = { OwnedType, Ptr };
57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58   }
59 
60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false,bool AllowNonTemplates=true)67    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68                         bool AllowTemplates = false,
69                         bool AllowNonTemplates = true)
70        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72      WantExpressionKeywords = false;
73      WantCXXNamedCasts = false;
74      WantRemainingKeywords = false;
75   }
76 
ValidateCandidate(const TypoCorrection & candidate)77   bool ValidateCandidate(const TypoCorrection &candidate) override {
78     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79       if (!AllowInvalidDecl && ND->isInvalidDecl())
80         return false;
81 
82       if (getAsTypeTemplateDecl(ND))
83         return AllowTemplates;
84 
85       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86       if (!IsType)
87         return false;
88 
89       if (AllowNonTemplates)
90         return true;
91 
92       // An injected-class-name of a class template (specialization) is valid
93       // as a template or as a non-template.
94       if (AllowTemplates) {
95         auto *RD = dyn_cast<CXXRecordDecl>(ND);
96         if (!RD || !RD->isInjectedClassName())
97           return false;
98         RD = cast<CXXRecordDecl>(RD->getDeclContext());
99         return RD->getDescribedClassTemplate() ||
100                isa<ClassTemplateSpecializationDecl>(RD);
101       }
102 
103       return false;
104     }
105 
106     return !WantClassName && candidate.isKeyword();
107   }
108 
109  private:
110   bool AllowInvalidDecl;
111   bool WantClassName;
112   bool AllowTemplates;
113   bool AllowNonTemplates;
114 };
115 
116 } // end anonymous namespace
117 
118 /// Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const119 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120   switch (Kind) {
121   // FIXME: Take into account the current language when deciding whether a
122   // token kind is a valid type specifier
123   case tok::kw_short:
124   case tok::kw_long:
125   case tok::kw___int64:
126   case tok::kw___int128:
127   case tok::kw_signed:
128   case tok::kw_unsigned:
129   case tok::kw_void:
130   case tok::kw_char:
131   case tok::kw_int:
132   case tok::kw_half:
133   case tok::kw_float:
134   case tok::kw_double:
135   case tok::kw__Float16:
136   case tok::kw___float128:
137   case tok::kw_wchar_t:
138   case tok::kw_bool:
139   case tok::kw___underlying_type:
140   case tok::kw___auto_type:
141     return true;
142 
143   case tok::annot_typename:
144   case tok::kw_char16_t:
145   case tok::kw_char32_t:
146   case tok::kw_typeof:
147   case tok::annot_decltype:
148   case tok::kw_decltype:
149     return getLangOpts().CPlusPlus;
150 
151   case tok::kw_char8_t:
152     return getLangOpts().Char8;
153 
154   default:
155     break;
156   }
157 
158   return false;
159 }
160 
161 namespace {
162 enum class UnqualifiedTypeNameLookupResult {
163   NotFound,
164   FoundNonType,
165   FoundType
166 };
167 } // end anonymous namespace
168 
169 /// Tries to perform unqualified lookup of the type decls in bases for
170 /// dependent class.
171 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
172 /// type decl, \a FoundType if only type decls are found.
173 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)174 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
175                                 SourceLocation NameLoc,
176                                 const CXXRecordDecl *RD) {
177   if (!RD->hasDefinition())
178     return UnqualifiedTypeNameLookupResult::NotFound;
179   // Look for type decls in base classes.
180   UnqualifiedTypeNameLookupResult FoundTypeDecl =
181       UnqualifiedTypeNameLookupResult::NotFound;
182   for (const auto &Base : RD->bases()) {
183     const CXXRecordDecl *BaseRD = nullptr;
184     if (auto *BaseTT = Base.getType()->getAs<TagType>())
185       BaseRD = BaseTT->getAsCXXRecordDecl();
186     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
187       // Look for type decls in dependent base classes that have known primary
188       // templates.
189       if (!TST || !TST->isDependentType())
190         continue;
191       auto *TD = TST->getTemplateName().getAsTemplateDecl();
192       if (!TD)
193         continue;
194       if (auto *BasePrimaryTemplate =
195           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
196         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
197           BaseRD = BasePrimaryTemplate;
198         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
199           if (const ClassTemplatePartialSpecializationDecl *PS =
200                   CTD->findPartialSpecialization(Base.getType()))
201             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
202               BaseRD = PS;
203         }
204       }
205     }
206     if (BaseRD) {
207       for (NamedDecl *ND : BaseRD->lookup(&II)) {
208         if (!isa<TypeDecl>(ND))
209           return UnqualifiedTypeNameLookupResult::FoundNonType;
210         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
211       }
212       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
213         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
214         case UnqualifiedTypeNameLookupResult::FoundNonType:
215           return UnqualifiedTypeNameLookupResult::FoundNonType;
216         case UnqualifiedTypeNameLookupResult::FoundType:
217           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218           break;
219         case UnqualifiedTypeNameLookupResult::NotFound:
220           break;
221         }
222       }
223     }
224   }
225 
226   return FoundTypeDecl;
227 }
228 
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)229 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
230                                                       const IdentifierInfo &II,
231                                                       SourceLocation NameLoc) {
232   // Lookup in the parent class template context, if any.
233   const CXXRecordDecl *RD = nullptr;
234   UnqualifiedTypeNameLookupResult FoundTypeDecl =
235       UnqualifiedTypeNameLookupResult::NotFound;
236   for (DeclContext *DC = S.CurContext;
237        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
238        DC = DC->getParent()) {
239     // Look for type decls in dependent base classes that have known primary
240     // templates.
241     RD = dyn_cast<CXXRecordDecl>(DC);
242     if (RD && RD->getDescribedClassTemplate())
243       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
244   }
245   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
246     return nullptr;
247 
248   // We found some types in dependent base classes.  Recover as if the user
249   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
250   // lookup during template instantiation.
251   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
252 
253   ASTContext &Context = S.Context;
254   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
255                                           cast<Type>(Context.getRecordType(RD)));
256   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
257 
258   CXXScopeSpec SS;
259   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
260 
261   TypeLocBuilder Builder;
262   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
263   DepTL.setNameLoc(NameLoc);
264   DepTL.setElaboratedKeywordLoc(SourceLocation());
265   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
266   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
267 }
268 
269 /// If the identifier refers to a type name within this scope,
270 /// return the declaration of that type.
271 ///
272 /// This routine performs ordinary name lookup of the identifier II
273 /// within the given scope, with optional C++ scope specifier SS, to
274 /// determine whether the name refers to a type. If so, returns an
275 /// opaque pointer (actually a QualType) corresponding to that
276 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,bool IsClassTemplateDeductionContext,IdentifierInfo ** CorrectedII)277 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
278                              Scope *S, CXXScopeSpec *SS,
279                              bool isClassName, bool HasTrailingDot,
280                              ParsedType ObjectTypePtr,
281                              bool IsCtorOrDtorName,
282                              bool WantNontrivialTypeSourceInfo,
283                              bool IsClassTemplateDeductionContext,
284                              IdentifierInfo **CorrectedII) {
285   // FIXME: Consider allowing this outside C++1z mode as an extension.
286   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
287                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
288                               !isClassName && !HasTrailingDot;
289 
290   // Determine where we will perform name lookup.
291   DeclContext *LookupCtx = nullptr;
292   if (ObjectTypePtr) {
293     QualType ObjectType = ObjectTypePtr.get();
294     if (ObjectType->isRecordType())
295       LookupCtx = computeDeclContext(ObjectType);
296   } else if (SS && SS->isNotEmpty()) {
297     LookupCtx = computeDeclContext(*SS, false);
298 
299     if (!LookupCtx) {
300       if (isDependentScopeSpecifier(*SS)) {
301         // C++ [temp.res]p3:
302         //   A qualified-id that refers to a type and in which the
303         //   nested-name-specifier depends on a template-parameter (14.6.2)
304         //   shall be prefixed by the keyword typename to indicate that the
305         //   qualified-id denotes a type, forming an
306         //   elaborated-type-specifier (7.1.5.3).
307         //
308         // We therefore do not perform any name lookup if the result would
309         // refer to a member of an unknown specialization.
310         if (!isClassName && !IsCtorOrDtorName)
311           return nullptr;
312 
313         // We know from the grammar that this name refers to a type,
314         // so build a dependent node to describe the type.
315         if (WantNontrivialTypeSourceInfo)
316           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
317 
318         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
319         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
320                                        II, NameLoc);
321         return ParsedType::make(T);
322       }
323 
324       return nullptr;
325     }
326 
327     if (!LookupCtx->isDependentContext() &&
328         RequireCompleteDeclContext(*SS, LookupCtx))
329       return nullptr;
330   }
331 
332   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
333   // lookup for class-names.
334   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
335                                       LookupOrdinaryName;
336   LookupResult Result(*this, &II, NameLoc, Kind);
337   if (LookupCtx) {
338     // Perform "qualified" name lookup into the declaration context we
339     // computed, which is either the type of the base of a member access
340     // expression or the declaration context associated with a prior
341     // nested-name-specifier.
342     LookupQualifiedName(Result, LookupCtx);
343 
344     if (ObjectTypePtr && Result.empty()) {
345       // C++ [basic.lookup.classref]p3:
346       //   If the unqualified-id is ~type-name, the type-name is looked up
347       //   in the context of the entire postfix-expression. If the type T of
348       //   the object expression is of a class type C, the type-name is also
349       //   looked up in the scope of class C. At least one of the lookups shall
350       //   find a name that refers to (possibly cv-qualified) T.
351       LookupName(Result, S);
352     }
353   } else {
354     // Perform unqualified name lookup.
355     LookupName(Result, S);
356 
357     // For unqualified lookup in a class template in MSVC mode, look into
358     // dependent base classes where the primary class template is known.
359     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
360       if (ParsedType TypeInBase =
361               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
362         return TypeInBase;
363     }
364   }
365 
366   NamedDecl *IIDecl = nullptr;
367   switch (Result.getResultKind()) {
368   case LookupResult::NotFound:
369   case LookupResult::NotFoundInCurrentInstantiation:
370     if (CorrectedII) {
371       TypoCorrection Correction =
372           CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
373                       llvm::make_unique<TypeNameValidatorCCC>(
374                           true, isClassName, AllowDeducedTemplate),
375                       CTK_ErrorRecovery);
376       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
377       TemplateTy Template;
378       bool MemberOfUnknownSpecialization;
379       UnqualifiedId TemplateName;
380       TemplateName.setIdentifier(NewII, NameLoc);
381       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
382       CXXScopeSpec NewSS, *NewSSPtr = SS;
383       if (SS && NNS) {
384         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
385         NewSSPtr = &NewSS;
386       }
387       if (Correction && (NNS || NewII != &II) &&
388           // Ignore a correction to a template type as the to-be-corrected
389           // identifier is not a template (typo correction for template names
390           // is handled elsewhere).
391           !(getLangOpts().CPlusPlus && NewSSPtr &&
392             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
393                            Template, MemberOfUnknownSpecialization))) {
394         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
395                                     isClassName, HasTrailingDot, ObjectTypePtr,
396                                     IsCtorOrDtorName,
397                                     WantNontrivialTypeSourceInfo,
398                                     IsClassTemplateDeductionContext);
399         if (Ty) {
400           diagnoseTypo(Correction,
401                        PDiag(diag::err_unknown_type_or_class_name_suggest)
402                          << Result.getLookupName() << isClassName);
403           if (SS && NNS)
404             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
405           *CorrectedII = NewII;
406           return Ty;
407         }
408       }
409     }
410     // If typo correction failed or was not performed, fall through
411     LLVM_FALLTHROUGH;
412   case LookupResult::FoundOverloaded:
413   case LookupResult::FoundUnresolvedValue:
414     Result.suppressDiagnostics();
415     return nullptr;
416 
417   case LookupResult::Ambiguous:
418     // Recover from type-hiding ambiguities by hiding the type.  We'll
419     // do the lookup again when looking for an object, and we can
420     // diagnose the error then.  If we don't do this, then the error
421     // about hiding the type will be immediately followed by an error
422     // that only makes sense if the identifier was treated like a type.
423     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
424       Result.suppressDiagnostics();
425       return nullptr;
426     }
427 
428     // Look to see if we have a type anywhere in the list of results.
429     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
430          Res != ResEnd; ++Res) {
431       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
432           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
433         if (!IIDecl ||
434             (*Res)->getLocation().getRawEncoding() <
435               IIDecl->getLocation().getRawEncoding())
436           IIDecl = *Res;
437       }
438     }
439 
440     if (!IIDecl) {
441       // None of the entities we found is a type, so there is no way
442       // to even assume that the result is a type. In this case, don't
443       // complain about the ambiguity. The parser will either try to
444       // perform this lookup again (e.g., as an object name), which
445       // will produce the ambiguity, or will complain that it expected
446       // a type name.
447       Result.suppressDiagnostics();
448       return nullptr;
449     }
450 
451     // We found a type within the ambiguous lookup; diagnose the
452     // ambiguity and then return that type. This might be the right
453     // answer, or it might not be, but it suppresses any attempt to
454     // perform the name lookup again.
455     break;
456 
457   case LookupResult::Found:
458     IIDecl = Result.getFoundDecl();
459     break;
460   }
461 
462   assert(IIDecl && "Didn't find decl");
463 
464   QualType T;
465   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
466     // C++ [class.qual]p2: A lookup that would find the injected-class-name
467     // instead names the constructors of the class, except when naming a class.
468     // This is ill-formed when we're not actually forming a ctor or dtor name.
469     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
470     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
471     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
472         FoundRD->isInjectedClassName() &&
473         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
474       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
475           << &II << /*Type*/1;
476 
477     DiagnoseUseOfDecl(IIDecl, NameLoc);
478 
479     T = Context.getTypeDeclType(TD);
480     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
481   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
482     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
483     if (!HasTrailingDot)
484       T = Context.getObjCInterfaceType(IDecl);
485   } else if (AllowDeducedTemplate) {
486     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
487       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
488                                                        QualType(), false);
489   }
490 
491   if (T.isNull()) {
492     // If it's not plausibly a type, suppress diagnostics.
493     Result.suppressDiagnostics();
494     return nullptr;
495   }
496 
497   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
498   // constructor or destructor name (in such a case, the scope specifier
499   // will be attached to the enclosing Expr or Decl node).
500   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
501       !isa<ObjCInterfaceDecl>(IIDecl)) {
502     if (WantNontrivialTypeSourceInfo) {
503       // Construct a type with type-source information.
504       TypeLocBuilder Builder;
505       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
506 
507       T = getElaboratedType(ETK_None, *SS, T);
508       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
509       ElabTL.setElaboratedKeywordLoc(SourceLocation());
510       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
511       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
512     } else {
513       T = getElaboratedType(ETK_None, *SS, T);
514     }
515   }
516 
517   return ParsedType::make(T);
518 }
519 
520 // Builds a fake NNS for the given decl context.
521 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)522 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
523   for (;; DC = DC->getLookupParent()) {
524     DC = DC->getPrimaryContext();
525     auto *ND = dyn_cast<NamespaceDecl>(DC);
526     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
527       return NestedNameSpecifier::Create(Context, nullptr, ND);
528     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
529       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
530                                          RD->getTypeForDecl());
531     else if (isa<TranslationUnitDecl>(DC))
532       return NestedNameSpecifier::GlobalSpecifier(Context);
533   }
534   llvm_unreachable("something isn't in TU scope?");
535 }
536 
537 /// Find the parent class with dependent bases of the innermost enclosing method
538 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
539 /// up allowing unqualified dependent type names at class-level, which MSVC
540 /// correctly rejects.
541 static const CXXRecordDecl *
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext * DC)542 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
543   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
544     DC = DC->getPrimaryContext();
545     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
546       if (MD->getParent()->hasAnyDependentBases())
547         return MD->getParent();
548   }
549   return nullptr;
550 }
551 
ActOnMSVCUnknownTypeName(const IdentifierInfo & II,SourceLocation NameLoc,bool IsTemplateTypeArg)552 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
553                                           SourceLocation NameLoc,
554                                           bool IsTemplateTypeArg) {
555   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
556 
557   NestedNameSpecifier *NNS = nullptr;
558   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
559     // If we weren't able to parse a default template argument, delay lookup
560     // until instantiation time by making a non-dependent DependentTypeName. We
561     // pretend we saw a NestedNameSpecifier referring to the current scope, and
562     // lookup is retried.
563     // FIXME: This hurts our diagnostic quality, since we get errors like "no
564     // type named 'Foo' in 'current_namespace'" when the user didn't write any
565     // name specifiers.
566     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
567     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
568   } else if (const CXXRecordDecl *RD =
569                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
570     // Build a DependentNameType that will perform lookup into RD at
571     // instantiation time.
572     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
573                                       RD->getTypeForDecl());
574 
575     // Diagnose that this identifier was undeclared, and retry the lookup during
576     // template instantiation.
577     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
578                                                                       << RD;
579   } else {
580     // This is not a situation that we should recover from.
581     return ParsedType();
582   }
583 
584   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
585 
586   // Build type location information.  We synthesized the qualifier, so we have
587   // to build a fake NestedNameSpecifierLoc.
588   NestedNameSpecifierLocBuilder NNSLocBuilder;
589   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
590   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
591 
592   TypeLocBuilder Builder;
593   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
594   DepTL.setNameLoc(NameLoc);
595   DepTL.setElaboratedKeywordLoc(SourceLocation());
596   DepTL.setQualifierLoc(QualifierLoc);
597   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
598 }
599 
600 /// isTagName() - This method is called *for error recovery purposes only*
601 /// to determine if the specified name is a valid tag name ("struct foo").  If
602 /// so, this returns the TST for the tag corresponding to it (TST_enum,
603 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
604 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)605 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
606   // Do a tag name lookup in this scope.
607   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
608   LookupName(R, S, false);
609   R.suppressDiagnostics();
610   if (R.getResultKind() == LookupResult::Found)
611     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
612       switch (TD->getTagKind()) {
613       case TTK_Struct: return DeclSpec::TST_struct;
614       case TTK_Interface: return DeclSpec::TST_interface;
615       case TTK_Union:  return DeclSpec::TST_union;
616       case TTK_Class:  return DeclSpec::TST_class;
617       case TTK_Enum:   return DeclSpec::TST_enum;
618       }
619     }
620 
621   return DeclSpec::TST_unspecified;
622 }
623 
624 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
625 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
626 /// then downgrade the missing typename error to a warning.
627 /// This is needed for MSVC compatibility; Example:
628 /// @code
629 /// template<class T> class A {
630 /// public:
631 ///   typedef int TYPE;
632 /// };
633 /// template<class T> class B : public A<T> {
634 /// public:
635 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
636 /// };
637 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)638 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
639   if (CurContext->isRecord()) {
640     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
641       return true;
642 
643     const Type *Ty = SS->getScopeRep()->getAsType();
644 
645     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
646     for (const auto &Base : RD->bases())
647       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
648         return true;
649     return S->isFunctionPrototypeScope();
650   }
651   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
652 }
653 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool IsTemplateName)654 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
655                                    SourceLocation IILoc,
656                                    Scope *S,
657                                    CXXScopeSpec *SS,
658                                    ParsedType &SuggestedType,
659                                    bool IsTemplateName) {
660   // Don't report typename errors for editor placeholders.
661   if (II->isEditorPlaceholder())
662     return;
663   // We don't have anything to suggest (yet).
664   SuggestedType = nullptr;
665 
666   // There may have been a typo in the name of the type. Look up typo
667   // results, in case we have something that we can suggest.
668   if (TypoCorrection Corrected =
669           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
670                       llvm::make_unique<TypeNameValidatorCCC>(
671                           false, false, IsTemplateName, !IsTemplateName),
672                       CTK_ErrorRecovery)) {
673     // FIXME: Support error recovery for the template-name case.
674     bool CanRecover = !IsTemplateName;
675     if (Corrected.isKeyword()) {
676       // We corrected to a keyword.
677       diagnoseTypo(Corrected,
678                    PDiag(IsTemplateName ? diag::err_no_template_suggest
679                                         : diag::err_unknown_typename_suggest)
680                        << II);
681       II = Corrected.getCorrectionAsIdentifierInfo();
682     } else {
683       // We found a similarly-named type or interface; suggest that.
684       if (!SS || !SS->isSet()) {
685         diagnoseTypo(Corrected,
686                      PDiag(IsTemplateName ? diag::err_no_template_suggest
687                                           : diag::err_unknown_typename_suggest)
688                          << II, CanRecover);
689       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
690         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
691         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
692                                 II->getName().equals(CorrectedStr);
693         diagnoseTypo(Corrected,
694                      PDiag(IsTemplateName
695                                ? diag::err_no_member_template_suggest
696                                : diag::err_unknown_nested_typename_suggest)
697                          << II << DC << DroppedSpecifier << SS->getRange(),
698                      CanRecover);
699       } else {
700         llvm_unreachable("could not have corrected a typo here");
701       }
702 
703       if (!CanRecover)
704         return;
705 
706       CXXScopeSpec tmpSS;
707       if (Corrected.getCorrectionSpecifier())
708         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
709                           SourceRange(IILoc));
710       // FIXME: Support class template argument deduction here.
711       SuggestedType =
712           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
713                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
714                       /*IsCtorOrDtorName=*/false,
715                       /*NonTrivialTypeSourceInfo=*/true);
716     }
717     return;
718   }
719 
720   if (getLangOpts().CPlusPlus && !IsTemplateName) {
721     // See if II is a class template that the user forgot to pass arguments to.
722     UnqualifiedId Name;
723     Name.setIdentifier(II, IILoc);
724     CXXScopeSpec EmptySS;
725     TemplateTy TemplateResult;
726     bool MemberOfUnknownSpecialization;
727     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
728                        Name, nullptr, true, TemplateResult,
729                        MemberOfUnknownSpecialization) == TNK_Type_template) {
730       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
731       return;
732     }
733   }
734 
735   // FIXME: Should we move the logic that tries to recover from a missing tag
736   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
737 
738   if (!SS || (!SS->isSet() && !SS->isInvalid()))
739     Diag(IILoc, IsTemplateName ? diag::err_no_template
740                                : diag::err_unknown_typename)
741         << II;
742   else if (DeclContext *DC = computeDeclContext(*SS, false))
743     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
744                                : diag::err_typename_nested_not_found)
745         << II << DC << SS->getRange();
746   else if (isDependentScopeSpecifier(*SS)) {
747     unsigned DiagID = diag::err_typename_missing;
748     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
749       DiagID = diag::ext_typename_missing;
750 
751     Diag(SS->getRange().getBegin(), DiagID)
752       << SS->getScopeRep() << II->getName()
753       << SourceRange(SS->getRange().getBegin(), IILoc)
754       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
755     SuggestedType = ActOnTypenameType(S, SourceLocation(),
756                                       *SS, *II, IILoc).get();
757   } else {
758     assert(SS && SS->isInvalid() &&
759            "Invalid scope specifier has already been diagnosed");
760   }
761 }
762 
763 /// Determine whether the given result set contains either a type name
764 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)765 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
766   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
767                        NextToken.is(tok::less);
768 
769   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
770     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
771       return true;
772 
773     if (CheckTemplate && isa<TemplateDecl>(*I))
774       return true;
775   }
776 
777   return false;
778 }
779 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)780 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
781                                     Scope *S, CXXScopeSpec &SS,
782                                     IdentifierInfo *&Name,
783                                     SourceLocation NameLoc) {
784   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
785   SemaRef.LookupParsedName(R, S, &SS);
786   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
787     StringRef FixItTagName;
788     switch (Tag->getTagKind()) {
789       case TTK_Class:
790         FixItTagName = "class ";
791         break;
792 
793       case TTK_Enum:
794         FixItTagName = "enum ";
795         break;
796 
797       case TTK_Struct:
798         FixItTagName = "struct ";
799         break;
800 
801       case TTK_Interface:
802         FixItTagName = "__interface ";
803         break;
804 
805       case TTK_Union:
806         FixItTagName = "union ";
807         break;
808     }
809 
810     StringRef TagName = FixItTagName.drop_back();
811     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
812       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
813       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
814 
815     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
816          I != IEnd; ++I)
817       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
818         << Name << TagName;
819 
820     // Replace lookup results with just the tag decl.
821     Result.clear(Sema::LookupTagName);
822     SemaRef.LookupParsedName(Result, S, &SS);
823     return true;
824   }
825 
826   return false;
827 }
828 
829 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)830 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
831                                   QualType T, SourceLocation NameLoc) {
832   ASTContext &Context = S.Context;
833 
834   TypeLocBuilder Builder;
835   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
836 
837   T = S.getElaboratedType(ETK_None, SS, T);
838   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
839   ElabTL.setElaboratedKeywordLoc(SourceLocation());
840   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
841   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
842 }
843 
844 Sema::NameClassification
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC)845 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
846                    SourceLocation NameLoc, const Token &NextToken,
847                    bool IsAddressOfOperand,
848                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
849   DeclarationNameInfo NameInfo(Name, NameLoc);
850   ObjCMethodDecl *CurMethod = getCurMethodDecl();
851 
852   if (NextToken.is(tok::coloncolon)) {
853     NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
854     BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
855   } else if (getLangOpts().CPlusPlus && SS.isSet() &&
856              isCurrentClassName(*Name, S, &SS)) {
857     // Per [class.qual]p2, this names the constructors of SS, not the
858     // injected-class-name. We don't have a classification for that.
859     // There's not much point caching this result, since the parser
860     // will reject it later.
861     return NameClassification::Unknown();
862   }
863 
864   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
865   LookupParsedName(Result, S, &SS, !CurMethod);
866 
867   // For unqualified lookup in a class template in MSVC mode, look into
868   // dependent base classes where the primary class template is known.
869   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
870     if (ParsedType TypeInBase =
871             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
872       return TypeInBase;
873   }
874 
875   // Perform lookup for Objective-C instance variables (including automatically
876   // synthesized instance variables), if we're in an Objective-C method.
877   // FIXME: This lookup really, really needs to be folded in to the normal
878   // unqualified lookup mechanism.
879   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
880     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
881     if (E.get() || E.isInvalid())
882       return E;
883   }
884 
885   bool SecondTry = false;
886   bool IsFilteredTemplateName = false;
887 
888 Corrected:
889   switch (Result.getResultKind()) {
890   case LookupResult::NotFound:
891     // If an unqualified-id is followed by a '(', then we have a function
892     // call.
893     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
894       // In C++, this is an ADL-only call.
895       // FIXME: Reference?
896       if (getLangOpts().CPlusPlus)
897         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
898 
899       // C90 6.3.2.2:
900       //   If the expression that precedes the parenthesized argument list in a
901       //   function call consists solely of an identifier, and if no
902       //   declaration is visible for this identifier, the identifier is
903       //   implicitly declared exactly as if, in the innermost block containing
904       //   the function call, the declaration
905       //
906       //     extern int identifier ();
907       //
908       //   appeared.
909       //
910       // We also allow this in C99 as an extension.
911       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
912         Result.addDecl(D);
913         Result.resolveKind();
914         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
915       }
916     }
917 
918     // In C, we first see whether there is a tag type by the same name, in
919     // which case it's likely that the user just forgot to write "enum",
920     // "struct", or "union".
921     if (!getLangOpts().CPlusPlus && !SecondTry &&
922         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
923       break;
924     }
925 
926     // Perform typo correction to determine if there is another name that is
927     // close to this name.
928     if (!SecondTry && CCC) {
929       SecondTry = true;
930       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
931                                                  Result.getLookupKind(), S,
932                                                  &SS, std::move(CCC),
933                                                  CTK_ErrorRecovery)) {
934         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
935         unsigned QualifiedDiag = diag::err_no_member_suggest;
936 
937         NamedDecl *FirstDecl = Corrected.getFoundDecl();
938         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
939         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
940             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
941           UnqualifiedDiag = diag::err_no_template_suggest;
942           QualifiedDiag = diag::err_no_member_template_suggest;
943         } else if (UnderlyingFirstDecl &&
944                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
945                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
946                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
947           UnqualifiedDiag = diag::err_unknown_typename_suggest;
948           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
949         }
950 
951         if (SS.isEmpty()) {
952           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
953         } else {// FIXME: is this even reachable? Test it.
954           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
955           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
956                                   Name->getName().equals(CorrectedStr);
957           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
958                                     << Name << computeDeclContext(SS, false)
959                                     << DroppedSpecifier << SS.getRange());
960         }
961 
962         // Update the name, so that the caller has the new name.
963         Name = Corrected.getCorrectionAsIdentifierInfo();
964 
965         // Typo correction corrected to a keyword.
966         if (Corrected.isKeyword())
967           return Name;
968 
969         // Also update the LookupResult...
970         // FIXME: This should probably go away at some point
971         Result.clear();
972         Result.setLookupName(Corrected.getCorrection());
973         if (FirstDecl)
974           Result.addDecl(FirstDecl);
975 
976         // If we found an Objective-C instance variable, let
977         // LookupInObjCMethod build the appropriate expression to
978         // reference the ivar.
979         // FIXME: This is a gross hack.
980         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
981           Result.clear();
982           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
983           return E;
984         }
985 
986         goto Corrected;
987       }
988     }
989 
990     // We failed to correct; just fall through and let the parser deal with it.
991     Result.suppressDiagnostics();
992     return NameClassification::Unknown();
993 
994   case LookupResult::NotFoundInCurrentInstantiation: {
995     // We performed name lookup into the current instantiation, and there were
996     // dependent bases, so we treat this result the same way as any other
997     // dependent nested-name-specifier.
998 
999     // C++ [temp.res]p2:
1000     //   A name used in a template declaration or definition and that is
1001     //   dependent on a template-parameter is assumed not to name a type
1002     //   unless the applicable name lookup finds a type name or the name is
1003     //   qualified by the keyword typename.
1004     //
1005     // FIXME: If the next token is '<', we might want to ask the parser to
1006     // perform some heroics to see if we actually have a
1007     // template-argument-list, which would indicate a missing 'template'
1008     // keyword here.
1009     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1010                                       NameInfo, IsAddressOfOperand,
1011                                       /*TemplateArgs=*/nullptr);
1012   }
1013 
1014   case LookupResult::Found:
1015   case LookupResult::FoundOverloaded:
1016   case LookupResult::FoundUnresolvedValue:
1017     break;
1018 
1019   case LookupResult::Ambiguous:
1020     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1021         hasAnyAcceptableTemplateNames(Result)) {
1022       // C++ [temp.local]p3:
1023       //   A lookup that finds an injected-class-name (10.2) can result in an
1024       //   ambiguity in certain cases (for example, if it is found in more than
1025       //   one base class). If all of the injected-class-names that are found
1026       //   refer to specializations of the same class template, and if the name
1027       //   is followed by a template-argument-list, the reference refers to the
1028       //   class template itself and not a specialization thereof, and is not
1029       //   ambiguous.
1030       //
1031       // This filtering can make an ambiguous result into an unambiguous one,
1032       // so try again after filtering out template names.
1033       FilterAcceptableTemplateNames(Result);
1034       if (!Result.isAmbiguous()) {
1035         IsFilteredTemplateName = true;
1036         break;
1037       }
1038     }
1039 
1040     // Diagnose the ambiguity and return an error.
1041     return NameClassification::Error();
1042   }
1043 
1044   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1045       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1046     // C++ [temp.names]p3:
1047     //   After name lookup (3.4) finds that a name is a template-name or that
1048     //   an operator-function-id or a literal- operator-id refers to a set of
1049     //   overloaded functions any member of which is a function template if
1050     //   this is followed by a <, the < is always taken as the delimiter of a
1051     //   template-argument-list and never as the less-than operator.
1052     if (!IsFilteredTemplateName)
1053       FilterAcceptableTemplateNames(Result);
1054 
1055     if (!Result.empty()) {
1056       bool IsFunctionTemplate;
1057       bool IsVarTemplate;
1058       TemplateName Template;
1059       if (Result.end() - Result.begin() > 1) {
1060         IsFunctionTemplate = true;
1061         Template = Context.getOverloadedTemplateName(Result.begin(),
1062                                                      Result.end());
1063       } else {
1064         TemplateDecl *TD
1065           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1066         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1067         IsVarTemplate = isa<VarTemplateDecl>(TD);
1068 
1069         if (SS.isSet() && !SS.isInvalid())
1070           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1071                                                     /*TemplateKeyword=*/false,
1072                                                       TD);
1073         else
1074           Template = TemplateName(TD);
1075       }
1076 
1077       if (IsFunctionTemplate) {
1078         // Function templates always go through overload resolution, at which
1079         // point we'll perform the various checks (e.g., accessibility) we need
1080         // to based on which function we selected.
1081         Result.suppressDiagnostics();
1082 
1083         return NameClassification::FunctionTemplate(Template);
1084       }
1085 
1086       return IsVarTemplate ? NameClassification::VarTemplate(Template)
1087                            : NameClassification::TypeTemplate(Template);
1088     }
1089   }
1090 
1091   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1092   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1093     DiagnoseUseOfDecl(Type, NameLoc);
1094     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1095     QualType T = Context.getTypeDeclType(Type);
1096     if (SS.isNotEmpty())
1097       return buildNestedType(*this, SS, T, NameLoc);
1098     return ParsedType::make(T);
1099   }
1100 
1101   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1102   if (!Class) {
1103     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1104     if (ObjCCompatibleAliasDecl *Alias =
1105             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1106       Class = Alias->getClassInterface();
1107   }
1108 
1109   if (Class) {
1110     DiagnoseUseOfDecl(Class, NameLoc);
1111 
1112     if (NextToken.is(tok::period)) {
1113       // Interface. <something> is parsed as a property reference expression.
1114       // Just return "unknown" as a fall-through for now.
1115       Result.suppressDiagnostics();
1116       return NameClassification::Unknown();
1117     }
1118 
1119     QualType T = Context.getObjCInterfaceType(Class);
1120     return ParsedType::make(T);
1121   }
1122 
1123   // We can have a type template here if we're classifying a template argument.
1124   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1125       !isa<VarTemplateDecl>(FirstDecl))
1126     return NameClassification::TypeTemplate(
1127         TemplateName(cast<TemplateDecl>(FirstDecl)));
1128 
1129   // Check for a tag type hidden by a non-type decl in a few cases where it
1130   // seems likely a type is wanted instead of the non-type that was found.
1131   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1132   if ((NextToken.is(tok::identifier) ||
1133        (NextIsOp &&
1134         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1135       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1136     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1137     DiagnoseUseOfDecl(Type, NameLoc);
1138     QualType T = Context.getTypeDeclType(Type);
1139     if (SS.isNotEmpty())
1140       return buildNestedType(*this, SS, T, NameLoc);
1141     return ParsedType::make(T);
1142   }
1143 
1144   if (FirstDecl->isCXXClassMember())
1145     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1146                                            nullptr, S);
1147 
1148   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1149   return BuildDeclarationNameExpr(SS, Result, ADL);
1150 }
1151 
1152 Sema::TemplateNameKindForDiagnostics
getTemplateNameKindForDiagnostics(TemplateName Name)1153 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1154   auto *TD = Name.getAsTemplateDecl();
1155   if (!TD)
1156     return TemplateNameKindForDiagnostics::DependentTemplate;
1157   if (isa<ClassTemplateDecl>(TD))
1158     return TemplateNameKindForDiagnostics::ClassTemplate;
1159   if (isa<FunctionTemplateDecl>(TD))
1160     return TemplateNameKindForDiagnostics::FunctionTemplate;
1161   if (isa<VarTemplateDecl>(TD))
1162     return TemplateNameKindForDiagnostics::VarTemplate;
1163   if (isa<TypeAliasTemplateDecl>(TD))
1164     return TemplateNameKindForDiagnostics::AliasTemplate;
1165   if (isa<TemplateTemplateParmDecl>(TD))
1166     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1167   return TemplateNameKindForDiagnostics::DependentTemplate;
1168 }
1169 
1170 // Determines the context to return to after temporarily entering a
1171 // context.  This depends in an unnecessarily complicated way on the
1172 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)1173 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1174 
1175   // Functions defined inline within classes aren't parsed until we've
1176   // finished parsing the top-level class, so the top-level class is
1177   // the context we'll need to return to.
1178   // A Lambda call operator whose parent is a class must not be treated
1179   // as an inline member function.  A Lambda can be used legally
1180   // either as an in-class member initializer or a default argument.  These
1181   // are parsed once the class has been marked complete and so the containing
1182   // context would be the nested class (when the lambda is defined in one);
1183   // If the class is not complete, then the lambda is being used in an
1184   // ill-formed fashion (such as to specify the width of a bit-field, or
1185   // in an array-bound) - in which case we still want to return the
1186   // lexically containing DC (which could be a nested class).
1187   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1188     DC = DC->getLexicalParent();
1189 
1190     // A function not defined within a class will always return to its
1191     // lexical context.
1192     if (!isa<CXXRecordDecl>(DC))
1193       return DC;
1194 
1195     // A C++ inline method/friend is parsed *after* the topmost class
1196     // it was declared in is fully parsed ("complete");  the topmost
1197     // class is the context we need to return to.
1198     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1199       DC = RD;
1200 
1201     // Return the declaration context of the topmost class the inline method is
1202     // declared in.
1203     return DC;
1204   }
1205 
1206   return DC->getLexicalParent();
1207 }
1208 
PushDeclContext(Scope * S,DeclContext * DC)1209 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1210   assert(getContainingDC(DC) == CurContext &&
1211       "The next DeclContext should be lexically contained in the current one.");
1212   CurContext = DC;
1213   S->setEntity(DC);
1214 }
1215 
PopDeclContext()1216 void Sema::PopDeclContext() {
1217   assert(CurContext && "DeclContext imbalance!");
1218 
1219   CurContext = getContainingDC(CurContext);
1220   assert(CurContext && "Popped translation unit!");
1221 }
1222 
ActOnTagStartSkippedDefinition(Scope * S,Decl * D)1223 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1224                                                                     Decl *D) {
1225   // Unlike PushDeclContext, the context to which we return is not necessarily
1226   // the containing DC of TD, because the new context will be some pre-existing
1227   // TagDecl definition instead of a fresh one.
1228   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1229   CurContext = cast<TagDecl>(D)->getDefinition();
1230   assert(CurContext && "skipping definition of undefined tag");
1231   // Start lookups from the parent of the current context; we don't want to look
1232   // into the pre-existing complete definition.
1233   S->setEntity(CurContext->getLookupParent());
1234   return Result;
1235 }
1236 
ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context)1237 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1238   CurContext = static_cast<decltype(CurContext)>(Context);
1239 }
1240 
1241 /// EnterDeclaratorContext - Used when we must lookup names in the context
1242 /// of a declarator's nested name specifier.
1243 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1244 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1245   // C++0x [basic.lookup.unqual]p13:
1246   //   A name used in the definition of a static data member of class
1247   //   X (after the qualified-id of the static member) is looked up as
1248   //   if the name was used in a member function of X.
1249   // C++0x [basic.lookup.unqual]p14:
1250   //   If a variable member of a namespace is defined outside of the
1251   //   scope of its namespace then any name used in the definition of
1252   //   the variable member (after the declarator-id) is looked up as
1253   //   if the definition of the variable member occurred in its
1254   //   namespace.
1255   // Both of these imply that we should push a scope whose context
1256   // is the semantic context of the declaration.  We can't use
1257   // PushDeclContext here because that context is not necessarily
1258   // lexically contained in the current context.  Fortunately,
1259   // the containing scope should have the appropriate information.
1260 
1261   assert(!S->getEntity() && "scope already has entity");
1262 
1263 #ifndef NDEBUG
1264   Scope *Ancestor = S->getParent();
1265   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1266   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1267 #endif
1268 
1269   CurContext = DC;
1270   S->setEntity(DC);
1271 }
1272 
ExitDeclaratorContext(Scope * S)1273 void Sema::ExitDeclaratorContext(Scope *S) {
1274   assert(S->getEntity() == CurContext && "Context imbalance!");
1275 
1276   // Switch back to the lexical context.  The safety of this is
1277   // enforced by an assert in EnterDeclaratorContext.
1278   Scope *Ancestor = S->getParent();
1279   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1280   CurContext = Ancestor->getEntity();
1281 
1282   // We don't need to do anything with the scope, which is going to
1283   // disappear.
1284 }
1285 
ActOnReenterFunctionContext(Scope * S,Decl * D)1286 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1287   // We assume that the caller has already called
1288   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1289   FunctionDecl *FD = D->getAsFunction();
1290   if (!FD)
1291     return;
1292 
1293   // Same implementation as PushDeclContext, but enters the context
1294   // from the lexical parent, rather than the top-level class.
1295   assert(CurContext == FD->getLexicalParent() &&
1296     "The next DeclContext should be lexically contained in the current one.");
1297   CurContext = FD;
1298   S->setEntity(CurContext);
1299 
1300   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1301     ParmVarDecl *Param = FD->getParamDecl(P);
1302     // If the parameter has an identifier, then add it to the scope
1303     if (Param->getIdentifier()) {
1304       S->AddDecl(Param);
1305       IdResolver.AddDecl(Param);
1306     }
1307   }
1308 }
1309 
ActOnExitFunctionContext()1310 void Sema::ActOnExitFunctionContext() {
1311   // Same implementation as PopDeclContext, but returns to the lexical parent,
1312   // rather than the top-level class.
1313   assert(CurContext && "DeclContext imbalance!");
1314   CurContext = CurContext->getLexicalParent();
1315   assert(CurContext && "Popped translation unit!");
1316 }
1317 
1318 /// Determine whether we allow overloading of the function
1319 /// PrevDecl with another declaration.
1320 ///
1321 /// This routine determines whether overloading is possible, not
1322 /// whether some new function is actually an overload. It will return
1323 /// true in C++ (where we can always provide overloads) or, as an
1324 /// extension, in C when the previous function is already an
1325 /// overloaded function declaration or has the "overloadable"
1326 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context,const FunctionDecl * New)1327 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1328                                        ASTContext &Context,
1329                                        const FunctionDecl *New) {
1330   if (Context.getLangOpts().CPlusPlus)
1331     return true;
1332 
1333   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1334     return true;
1335 
1336   return Previous.getResultKind() == LookupResult::Found &&
1337          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1338           New->hasAttr<OverloadableAttr>());
1339 }
1340 
1341 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1342 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1343   // Move up the scope chain until we find the nearest enclosing
1344   // non-transparent context. The declaration will be introduced into this
1345   // scope.
1346   while (S->getEntity() && S->getEntity()->isTransparentContext())
1347     S = S->getParent();
1348 
1349   // Add scoped declarations into their context, so that they can be
1350   // found later. Declarations without a context won't be inserted
1351   // into any context.
1352   if (AddToContext)
1353     CurContext->addDecl(D);
1354 
1355   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1356   // are function-local declarations.
1357   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1358       !D->getDeclContext()->getRedeclContext()->Equals(
1359         D->getLexicalDeclContext()->getRedeclContext()) &&
1360       !D->getLexicalDeclContext()->isFunctionOrMethod())
1361     return;
1362 
1363   // Template instantiations should also not be pushed into scope.
1364   if (isa<FunctionDecl>(D) &&
1365       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1366     return;
1367 
1368   // If this replaces anything in the current scope,
1369   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1370                                IEnd = IdResolver.end();
1371   for (; I != IEnd; ++I) {
1372     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1373       S->RemoveDecl(*I);
1374       IdResolver.RemoveDecl(*I);
1375 
1376       // Should only need to replace one decl.
1377       break;
1378     }
1379   }
1380 
1381   S->AddDecl(D);
1382 
1383   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1384     // Implicitly-generated labels may end up getting generated in an order that
1385     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1386     // the label at the appropriate place in the identifier chain.
1387     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1388       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1389       if (IDC == CurContext) {
1390         if (!S->isDeclScope(*I))
1391           continue;
1392       } else if (IDC->Encloses(CurContext))
1393         break;
1394     }
1395 
1396     IdResolver.InsertDeclAfter(I, D);
1397   } else {
1398     IdResolver.AddDecl(D);
1399   }
1400 }
1401 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1402 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1403   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1404     TUScope->AddDecl(D);
1405 }
1406 
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1407 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1408                          bool AllowInlineNamespace) {
1409   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1410 }
1411 
getScopeForDeclContext(Scope * S,DeclContext * DC)1412 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1413   DeclContext *TargetDC = DC->getPrimaryContext();
1414   do {
1415     if (DeclContext *ScopeDC = S->getEntity())
1416       if (ScopeDC->getPrimaryContext() == TargetDC)
1417         return S;
1418   } while ((S = S->getParent()));
1419 
1420   return nullptr;
1421 }
1422 
1423 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1424                                             DeclContext*,
1425                                             ASTContext&);
1426 
1427 /// Filters out lookup results that don't fall within the given scope
1428 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1429 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1430                                 bool ConsiderLinkage,
1431                                 bool AllowInlineNamespace) {
1432   LookupResult::Filter F = R.makeFilter();
1433   while (F.hasNext()) {
1434     NamedDecl *D = F.next();
1435 
1436     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1437       continue;
1438 
1439     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1440       continue;
1441 
1442     F.erase();
1443   }
1444 
1445   F.done();
1446 }
1447 
1448 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1449 /// have compatible owning modules.
CheckRedeclarationModuleOwnership(NamedDecl * New,NamedDecl * Old)1450 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1451   // FIXME: The Modules TS is not clear about how friend declarations are
1452   // to be treated. It's not meaningful to have different owning modules for
1453   // linkage in redeclarations of the same entity, so for now allow the
1454   // redeclaration and change the owning modules to match.
1455   if (New->getFriendObjectKind() &&
1456       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1457     New->setLocalOwningModule(Old->getOwningModule());
1458     makeMergedDefinitionVisible(New);
1459     return false;
1460   }
1461 
1462   Module *NewM = New->getOwningModule();
1463   Module *OldM = Old->getOwningModule();
1464   if (NewM == OldM)
1465     return false;
1466 
1467   // FIXME: Check proclaimed-ownership-declarations here too.
1468   bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1469   bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1470   if (NewIsModuleInterface || OldIsModuleInterface) {
1471     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1472     //   if a declaration of D [...] appears in the purview of a module, all
1473     //   other such declarations shall appear in the purview of the same module
1474     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1475       << New
1476       << NewIsModuleInterface
1477       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1478       << OldIsModuleInterface
1479       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1480     Diag(Old->getLocation(), diag::note_previous_declaration);
1481     New->setInvalidDecl();
1482     return true;
1483   }
1484 
1485   return false;
1486 }
1487 
isUsingDecl(NamedDecl * D)1488 static bool isUsingDecl(NamedDecl *D) {
1489   return isa<UsingShadowDecl>(D) ||
1490          isa<UnresolvedUsingTypenameDecl>(D) ||
1491          isa<UnresolvedUsingValueDecl>(D);
1492 }
1493 
1494 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1495 static void RemoveUsingDecls(LookupResult &R) {
1496   LookupResult::Filter F = R.makeFilter();
1497   while (F.hasNext())
1498     if (isUsingDecl(F.next()))
1499       F.erase();
1500 
1501   F.done();
1502 }
1503 
1504 /// Check for this common pattern:
1505 /// @code
1506 /// class S {
1507 ///   S(const S&); // DO NOT IMPLEMENT
1508 ///   void operator=(const S&); // DO NOT IMPLEMENT
1509 /// };
1510 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1511 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1512   // FIXME: Should check for private access too but access is set after we get
1513   // the decl here.
1514   if (D->doesThisDeclarationHaveABody())
1515     return false;
1516 
1517   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1518     return CD->isCopyConstructor();
1519   return D->isCopyAssignmentOperator();
1520 }
1521 
1522 // We need this to handle
1523 //
1524 // typedef struct {
1525 //   void *foo() { return 0; }
1526 // } A;
1527 //
1528 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1529 // for example. If 'A', foo will have external linkage. If we have '*A',
1530 // foo will have no linkage. Since we can't know until we get to the end
1531 // of the typedef, this function finds out if D might have non-external linkage.
1532 // Callers should verify at the end of the TU if it D has external linkage or
1533 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1534 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1535   const DeclContext *DC = D->getDeclContext();
1536   while (!DC->isTranslationUnit()) {
1537     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1538       if (!RD->hasNameForLinkage())
1539         return true;
1540     }
1541     DC = DC->getParent();
1542   }
1543 
1544   return !D->isExternallyVisible();
1545 }
1546 
1547 // FIXME: This needs to be refactored; some other isInMainFile users want
1548 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1549 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1550   if (S.TUKind != TU_Complete)
1551     return false;
1552   return S.SourceMgr.isInMainFile(Loc);
1553 }
1554 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1555 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1556   assert(D);
1557 
1558   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1559     return false;
1560 
1561   // Ignore all entities declared within templates, and out-of-line definitions
1562   // of members of class templates.
1563   if (D->getDeclContext()->isDependentContext() ||
1564       D->getLexicalDeclContext()->isDependentContext())
1565     return false;
1566 
1567   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1568     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1569       return false;
1570     // A non-out-of-line declaration of a member specialization was implicitly
1571     // instantiated; it's the out-of-line declaration that we're interested in.
1572     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1573         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1574       return false;
1575 
1576     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1577       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1578         return false;
1579     } else {
1580       // 'static inline' functions are defined in headers; don't warn.
1581       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1582         return false;
1583     }
1584 
1585     if (FD->doesThisDeclarationHaveABody() &&
1586         Context.DeclMustBeEmitted(FD))
1587       return false;
1588   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1589     // Constants and utility variables are defined in headers with internal
1590     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1591     // like "inline".)
1592     if (!isMainFileLoc(*this, VD->getLocation()))
1593       return false;
1594 
1595     if (Context.DeclMustBeEmitted(VD))
1596       return false;
1597 
1598     if (VD->isStaticDataMember() &&
1599         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1600       return false;
1601     if (VD->isStaticDataMember() &&
1602         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1603         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1604       return false;
1605 
1606     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1607       return false;
1608   } else {
1609     return false;
1610   }
1611 
1612   // Only warn for unused decls internal to the translation unit.
1613   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1614   // for inline functions defined in the main source file, for instance.
1615   return mightHaveNonExternalLinkage(D);
1616 }
1617 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1618 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1619   if (!D)
1620     return;
1621 
1622   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1623     const FunctionDecl *First = FD->getFirstDecl();
1624     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1625       return; // First should already be in the vector.
1626   }
1627 
1628   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1629     const VarDecl *First = VD->getFirstDecl();
1630     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1631       return; // First should already be in the vector.
1632   }
1633 
1634   if (ShouldWarnIfUnusedFileScopedDecl(D))
1635     UnusedFileScopedDecls.push_back(D);
1636 }
1637 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1638 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1639   if (D->isInvalidDecl())
1640     return false;
1641 
1642   bool Referenced = false;
1643   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1644     // For a decomposition declaration, warn if none of the bindings are
1645     // referenced, instead of if the variable itself is referenced (which
1646     // it is, by the bindings' expressions).
1647     for (auto *BD : DD->bindings()) {
1648       if (BD->isReferenced()) {
1649         Referenced = true;
1650         break;
1651       }
1652     }
1653   } else if (!D->getDeclName()) {
1654     return false;
1655   } else if (D->isReferenced() || D->isUsed()) {
1656     Referenced = true;
1657   }
1658 
1659   if (Referenced || D->hasAttr<UnusedAttr>() ||
1660       D->hasAttr<ObjCPreciseLifetimeAttr>())
1661     return false;
1662 
1663   if (isa<LabelDecl>(D))
1664     return true;
1665 
1666   // Except for labels, we only care about unused decls that are local to
1667   // functions.
1668   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1669   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1670     // For dependent types, the diagnostic is deferred.
1671     WithinFunction =
1672         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1673   if (!WithinFunction)
1674     return false;
1675 
1676   if (isa<TypedefNameDecl>(D))
1677     return true;
1678 
1679   // White-list anything that isn't a local variable.
1680   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1681     return false;
1682 
1683   // Types of valid local variables should be complete, so this should succeed.
1684   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1685 
1686     // White-list anything with an __attribute__((unused)) type.
1687     const auto *Ty = VD->getType().getTypePtr();
1688 
1689     // Only look at the outermost level of typedef.
1690     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1691       if (TT->getDecl()->hasAttr<UnusedAttr>())
1692         return false;
1693     }
1694 
1695     // If we failed to complete the type for some reason, or if the type is
1696     // dependent, don't diagnose the variable.
1697     if (Ty->isIncompleteType() || Ty->isDependentType())
1698       return false;
1699 
1700     // Look at the element type to ensure that the warning behaviour is
1701     // consistent for both scalars and arrays.
1702     Ty = Ty->getBaseElementTypeUnsafe();
1703 
1704     if (const TagType *TT = Ty->getAs<TagType>()) {
1705       const TagDecl *Tag = TT->getDecl();
1706       if (Tag->hasAttr<UnusedAttr>())
1707         return false;
1708 
1709       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1710         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1711           return false;
1712 
1713         if (const Expr *Init = VD->getInit()) {
1714           if (const ExprWithCleanups *Cleanups =
1715                   dyn_cast<ExprWithCleanups>(Init))
1716             Init = Cleanups->getSubExpr();
1717           const CXXConstructExpr *Construct =
1718             dyn_cast<CXXConstructExpr>(Init);
1719           if (Construct && !Construct->isElidable()) {
1720             CXXConstructorDecl *CD = Construct->getConstructor();
1721             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1722                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1723               return false;
1724           }
1725         }
1726       }
1727     }
1728 
1729     // TODO: __attribute__((unused)) templates?
1730   }
1731 
1732   return true;
1733 }
1734 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1735 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1736                                      FixItHint &Hint) {
1737   if (isa<LabelDecl>(D)) {
1738     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1739         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1740         true);
1741     if (AfterColon.isInvalid())
1742       return;
1743     Hint = FixItHint::CreateRemoval(
1744         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1745   }
1746 }
1747 
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1748 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1749   if (D->getTypeForDecl()->isDependentType())
1750     return;
1751 
1752   for (auto *TmpD : D->decls()) {
1753     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1754       DiagnoseUnusedDecl(T);
1755     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1756       DiagnoseUnusedNestedTypedefs(R);
1757   }
1758 }
1759 
1760 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1761 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1762 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1763   if (!ShouldDiagnoseUnusedDecl(D))
1764     return;
1765 
1766   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1767     // typedefs can be referenced later on, so the diagnostics are emitted
1768     // at end-of-translation-unit.
1769     UnusedLocalTypedefNameCandidates.insert(TD);
1770     return;
1771   }
1772 
1773   FixItHint Hint;
1774   GenerateFixForUnusedDecl(D, Context, Hint);
1775 
1776   unsigned DiagID;
1777   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1778     DiagID = diag::warn_unused_exception_param;
1779   else if (isa<LabelDecl>(D))
1780     DiagID = diag::warn_unused_label;
1781   else
1782     DiagID = diag::warn_unused_variable;
1783 
1784   Diag(D->getLocation(), DiagID) << D << Hint;
1785 }
1786 
CheckPoppedLabel(LabelDecl * L,Sema & S)1787 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1788   // Verify that we have no forward references left.  If so, there was a goto
1789   // or address of a label taken, but no definition of it.  Label fwd
1790   // definitions are indicated with a null substmt which is also not a resolved
1791   // MS inline assembly label name.
1792   bool Diagnose = false;
1793   if (L->isMSAsmLabel())
1794     Diagnose = !L->isResolvedMSAsmLabel();
1795   else
1796     Diagnose = L->getStmt() == nullptr;
1797   if (Diagnose)
1798     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1799 }
1800 
ActOnPopScope(SourceLocation Loc,Scope * S)1801 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1802   S->mergeNRVOIntoParent();
1803 
1804   if (S->decl_empty()) return;
1805   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1806          "Scope shouldn't contain decls!");
1807 
1808   for (auto *TmpD : S->decls()) {
1809     assert(TmpD && "This decl didn't get pushed??");
1810 
1811     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1812     NamedDecl *D = cast<NamedDecl>(TmpD);
1813 
1814     // Diagnose unused variables in this scope.
1815     if (!S->hasUnrecoverableErrorOccurred()) {
1816       DiagnoseUnusedDecl(D);
1817       if (const auto *RD = dyn_cast<RecordDecl>(D))
1818         DiagnoseUnusedNestedTypedefs(RD);
1819     }
1820 
1821     if (!D->getDeclName()) continue;
1822 
1823     // If this was a forward reference to a label, verify it was defined.
1824     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1825       CheckPoppedLabel(LD, *this);
1826 
1827     // Remove this name from our lexical scope, and warn on it if we haven't
1828     // already.
1829     IdResolver.RemoveDecl(D);
1830     auto ShadowI = ShadowingDecls.find(D);
1831     if (ShadowI != ShadowingDecls.end()) {
1832       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1833         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1834             << D << FD << FD->getParent();
1835         Diag(FD->getLocation(), diag::note_previous_declaration);
1836       }
1837       ShadowingDecls.erase(ShadowI);
1838     }
1839   }
1840 }
1841 
1842 /// Look for an Objective-C class in the translation unit.
1843 ///
1844 /// \param Id The name of the Objective-C class we're looking for. If
1845 /// typo-correction fixes this name, the Id will be updated
1846 /// to the fixed name.
1847 ///
1848 /// \param IdLoc The location of the name in the translation unit.
1849 ///
1850 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1851 /// if there is no class with the given name.
1852 ///
1853 /// \returns The declaration of the named Objective-C class, or NULL if the
1854 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1855 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1856                                               SourceLocation IdLoc,
1857                                               bool DoTypoCorrection) {
1858   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1859   // creation from this context.
1860   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1861 
1862   if (!IDecl && DoTypoCorrection) {
1863     // Perform typo correction at the given location, but only if we
1864     // find an Objective-C class name.
1865     if (TypoCorrection C = CorrectTypo(
1866             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1867             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1868             CTK_ErrorRecovery)) {
1869       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1870       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1871       Id = IDecl->getIdentifier();
1872     }
1873   }
1874   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1875   // This routine must always return a class definition, if any.
1876   if (Def && Def->getDefinition())
1877       Def = Def->getDefinition();
1878   return Def;
1879 }
1880 
1881 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1882 /// from S, where a non-field would be declared. This routine copes
1883 /// with the difference between C and C++ scoping rules in structs and
1884 /// unions. For example, the following code is well-formed in C but
1885 /// ill-formed in C++:
1886 /// @code
1887 /// struct S6 {
1888 ///   enum { BAR } e;
1889 /// };
1890 ///
1891 /// void test_S6() {
1892 ///   struct S6 a;
1893 ///   a.e = BAR;
1894 /// }
1895 /// @endcode
1896 /// For the declaration of BAR, this routine will return a different
1897 /// scope. The scope S will be the scope of the unnamed enumeration
1898 /// within S6. In C++, this routine will return the scope associated
1899 /// with S6, because the enumeration's scope is a transparent
1900 /// context but structures can contain non-field names. In C, this
1901 /// routine will return the translation unit scope, since the
1902 /// enumeration's scope is a transparent context and structures cannot
1903 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1904 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1905   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1906          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1907          (S->isClassScope() && !getLangOpts().CPlusPlus))
1908     S = S->getParent();
1909   return S;
1910 }
1911 
1912 /// Looks up the declaration of "struct objc_super" and
1913 /// saves it for later use in building builtin declaration of
1914 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1915 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1916 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1917                                         IdentifierInfo *II) {
1918   if (!II->isStr("objc_msgSendSuper"))
1919     return;
1920   ASTContext &Context = ThisSema.Context;
1921 
1922   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1923                       SourceLocation(), Sema::LookupTagName);
1924   ThisSema.LookupName(Result, S);
1925   if (Result.getResultKind() == LookupResult::Found)
1926     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1927       Context.setObjCSuperType(Context.getTagDeclType(TD));
1928 }
1929 
getHeaderName(ASTContext::GetBuiltinTypeError Error)1930 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1931   switch (Error) {
1932   case ASTContext::GE_None:
1933     return "";
1934   case ASTContext::GE_Missing_stdio:
1935     return "stdio.h";
1936   case ASTContext::GE_Missing_setjmp:
1937     return "setjmp.h";
1938   case ASTContext::GE_Missing_ucontext:
1939     return "ucontext.h";
1940   }
1941   llvm_unreachable("unhandled error kind");
1942 }
1943 
1944 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1945 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1946 /// if we're creating this built-in in anticipation of redeclaring the
1947 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)1948 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1949                                      Scope *S, bool ForRedeclaration,
1950                                      SourceLocation Loc) {
1951   LookupPredefedObjCSuperType(*this, S, II);
1952 
1953   ASTContext::GetBuiltinTypeError Error;
1954   QualType R = Context.GetBuiltinType(ID, Error);
1955   if (Error) {
1956     if (ForRedeclaration)
1957       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1958           << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1959     return nullptr;
1960   }
1961 
1962   if (!ForRedeclaration &&
1963       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1964        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1965     Diag(Loc, diag::ext_implicit_lib_function_decl)
1966         << Context.BuiltinInfo.getName(ID) << R;
1967     if (Context.BuiltinInfo.getHeaderName(ID) &&
1968         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1969       Diag(Loc, diag::note_include_header_or_declare)
1970           << Context.BuiltinInfo.getHeaderName(ID)
1971           << Context.BuiltinInfo.getName(ID);
1972   }
1973 
1974   if (R.isNull())
1975     return nullptr;
1976 
1977   DeclContext *Parent = Context.getTranslationUnitDecl();
1978   if (getLangOpts().CPlusPlus) {
1979     LinkageSpecDecl *CLinkageDecl =
1980         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1981                                 LinkageSpecDecl::lang_c, false);
1982     CLinkageDecl->setImplicit();
1983     Parent->addDecl(CLinkageDecl);
1984     Parent = CLinkageDecl;
1985   }
1986 
1987   FunctionDecl *New = FunctionDecl::Create(Context,
1988                                            Parent,
1989                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1990                                            SC_Extern,
1991                                            false,
1992                                            R->isFunctionProtoType());
1993   New->setImplicit();
1994 
1995   // Create Decl objects for each parameter, adding them to the
1996   // FunctionDecl.
1997   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1998     SmallVector<ParmVarDecl*, 16> Params;
1999     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2000       ParmVarDecl *parm =
2001           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2002                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2003                               SC_None, nullptr);
2004       parm->setScopeInfo(0, i);
2005       Params.push_back(parm);
2006     }
2007     New->setParams(Params);
2008   }
2009 
2010   AddKnownFunctionAttributes(New);
2011   RegisterLocallyScopedExternCDecl(New, S);
2012 
2013   // TUScope is the translation-unit scope to insert this function into.
2014   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2015   // relate Scopes to DeclContexts, and probably eliminate CurContext
2016   // entirely, but we're not there yet.
2017   DeclContext *SavedContext = CurContext;
2018   CurContext = Parent;
2019   PushOnScopeChains(New, TUScope);
2020   CurContext = SavedContext;
2021   return New;
2022 }
2023 
2024 /// Typedef declarations don't have linkage, but they still denote the same
2025 /// entity if their types are the same.
2026 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2027 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(Sema & S,TypedefNameDecl * Decl,LookupResult & Previous)2028 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2029                                                      TypedefNameDecl *Decl,
2030                                                      LookupResult &Previous) {
2031   // This is only interesting when modules are enabled.
2032   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2033     return;
2034 
2035   // Empty sets are uninteresting.
2036   if (Previous.empty())
2037     return;
2038 
2039   LookupResult::Filter Filter = Previous.makeFilter();
2040   while (Filter.hasNext()) {
2041     NamedDecl *Old = Filter.next();
2042 
2043     // Non-hidden declarations are never ignored.
2044     if (S.isVisible(Old))
2045       continue;
2046 
2047     // Declarations of the same entity are not ignored, even if they have
2048     // different linkages.
2049     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2050       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2051                                 Decl->getUnderlyingType()))
2052         continue;
2053 
2054       // If both declarations give a tag declaration a typedef name for linkage
2055       // purposes, then they declare the same entity.
2056       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2057           Decl->getAnonDeclWithTypedefName())
2058         continue;
2059     }
2060 
2061     Filter.erase();
2062   }
2063 
2064   Filter.done();
2065 }
2066 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)2067 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2068   QualType OldType;
2069   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2070     OldType = OldTypedef->getUnderlyingType();
2071   else
2072     OldType = Context.getTypeDeclType(Old);
2073   QualType NewType = New->getUnderlyingType();
2074 
2075   if (NewType->isVariablyModifiedType()) {
2076     // Must not redefine a typedef with a variably-modified type.
2077     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2078     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2079       << Kind << NewType;
2080     if (Old->getLocation().isValid())
2081       notePreviousDefinition(Old, New->getLocation());
2082     New->setInvalidDecl();
2083     return true;
2084   }
2085 
2086   if (OldType != NewType &&
2087       !OldType->isDependentType() &&
2088       !NewType->isDependentType() &&
2089       !Context.hasSameType(OldType, NewType)) {
2090     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2091     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2092       << Kind << NewType << OldType;
2093     if (Old->getLocation().isValid())
2094       notePreviousDefinition(Old, New->getLocation());
2095     New->setInvalidDecl();
2096     return true;
2097   }
2098   return false;
2099 }
2100 
2101 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2102 /// same name and scope as a previous declaration 'Old'.  Figure out
2103 /// how to resolve this situation, merging decls or emitting
2104 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2105 ///
MergeTypedefNameDecl(Scope * S,TypedefNameDecl * New,LookupResult & OldDecls)2106 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2107                                 LookupResult &OldDecls) {
2108   // If the new decl is known invalid already, don't bother doing any
2109   // merging checks.
2110   if (New->isInvalidDecl()) return;
2111 
2112   // Allow multiple definitions for ObjC built-in typedefs.
2113   // FIXME: Verify the underlying types are equivalent!
2114   if (getLangOpts().ObjC) {
2115     const IdentifierInfo *TypeID = New->getIdentifier();
2116     switch (TypeID->getLength()) {
2117     default: break;
2118     case 2:
2119       {
2120         if (!TypeID->isStr("id"))
2121           break;
2122         QualType T = New->getUnderlyingType();
2123         if (!T->isPointerType())
2124           break;
2125         if (!T->isVoidPointerType()) {
2126           QualType PT = T->getAs<PointerType>()->getPointeeType();
2127           if (!PT->isStructureType())
2128             break;
2129         }
2130         Context.setObjCIdRedefinitionType(T);
2131         // Install the built-in type for 'id', ignoring the current definition.
2132         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2133         return;
2134       }
2135     case 5:
2136       if (!TypeID->isStr("Class"))
2137         break;
2138       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2139       // Install the built-in type for 'Class', ignoring the current definition.
2140       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2141       return;
2142     case 3:
2143       if (!TypeID->isStr("SEL"))
2144         break;
2145       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2146       // Install the built-in type for 'SEL', ignoring the current definition.
2147       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2148       return;
2149     }
2150     // Fall through - the typedef name was not a builtin type.
2151   }
2152 
2153   // Verify the old decl was also a type.
2154   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2155   if (!Old) {
2156     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157       << New->getDeclName();
2158 
2159     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2160     if (OldD->getLocation().isValid())
2161       notePreviousDefinition(OldD, New->getLocation());
2162 
2163     return New->setInvalidDecl();
2164   }
2165 
2166   // If the old declaration is invalid, just give up here.
2167   if (Old->isInvalidDecl())
2168     return New->setInvalidDecl();
2169 
2170   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2171     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2172     auto *NewTag = New->getAnonDeclWithTypedefName();
2173     NamedDecl *Hidden = nullptr;
2174     if (OldTag && NewTag &&
2175         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2176         !hasVisibleDefinition(OldTag, &Hidden)) {
2177       // There is a definition of this tag, but it is not visible. Use it
2178       // instead of our tag.
2179       New->setTypeForDecl(OldTD->getTypeForDecl());
2180       if (OldTD->isModed())
2181         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2182                                     OldTD->getUnderlyingType());
2183       else
2184         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2185 
2186       // Make the old tag definition visible.
2187       makeMergedDefinitionVisible(Hidden);
2188 
2189       // If this was an unscoped enumeration, yank all of its enumerators
2190       // out of the scope.
2191       if (isa<EnumDecl>(NewTag)) {
2192         Scope *EnumScope = getNonFieldDeclScope(S);
2193         for (auto *D : NewTag->decls()) {
2194           auto *ED = cast<EnumConstantDecl>(D);
2195           assert(EnumScope->isDeclScope(ED));
2196           EnumScope->RemoveDecl(ED);
2197           IdResolver.RemoveDecl(ED);
2198           ED->getLexicalDeclContext()->removeDecl(ED);
2199         }
2200       }
2201     }
2202   }
2203 
2204   // If the typedef types are not identical, reject them in all languages and
2205   // with any extensions enabled.
2206   if (isIncompatibleTypedef(Old, New))
2207     return;
2208 
2209   // The types match.  Link up the redeclaration chain and merge attributes if
2210   // the old declaration was a typedef.
2211   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2212     New->setPreviousDecl(Typedef);
2213     mergeDeclAttributes(New, Old);
2214   }
2215 
2216   if (getLangOpts().MicrosoftExt)
2217     return;
2218 
2219   if (getLangOpts().CPlusPlus) {
2220     // C++ [dcl.typedef]p2:
2221     //   In a given non-class scope, a typedef specifier can be used to
2222     //   redefine the name of any type declared in that scope to refer
2223     //   to the type to which it already refers.
2224     if (!isa<CXXRecordDecl>(CurContext))
2225       return;
2226 
2227     // C++0x [dcl.typedef]p4:
2228     //   In a given class scope, a typedef specifier can be used to redefine
2229     //   any class-name declared in that scope that is not also a typedef-name
2230     //   to refer to the type to which it already refers.
2231     //
2232     // This wording came in via DR424, which was a correction to the
2233     // wording in DR56, which accidentally banned code like:
2234     //
2235     //   struct S {
2236     //     typedef struct A { } A;
2237     //   };
2238     //
2239     // in the C++03 standard. We implement the C++0x semantics, which
2240     // allow the above but disallow
2241     //
2242     //   struct S {
2243     //     typedef int I;
2244     //     typedef int I;
2245     //   };
2246     //
2247     // since that was the intent of DR56.
2248     if (!isa<TypedefNameDecl>(Old))
2249       return;
2250 
2251     Diag(New->getLocation(), diag::err_redefinition)
2252       << New->getDeclName();
2253     notePreviousDefinition(Old, New->getLocation());
2254     return New->setInvalidDecl();
2255   }
2256 
2257   // Modules always permit redefinition of typedefs, as does C11.
2258   if (getLangOpts().Modules || getLangOpts().C11)
2259     return;
2260 
2261   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2262   // is normally mapped to an error, but can be controlled with
2263   // -Wtypedef-redefinition.  If either the original or the redefinition is
2264   // in a system header, don't emit this for compatibility with GCC.
2265   if (getDiagnostics().getSuppressSystemWarnings() &&
2266       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2267       (Old->isImplicit() ||
2268        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2269        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2270     return;
2271 
2272   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2273     << New->getDeclName();
2274   notePreviousDefinition(Old, New->getLocation());
2275 }
2276 
2277 /// DeclhasAttr - returns true if decl Declaration already has the target
2278 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2279 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2280   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2281   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2282   for (const auto *i : D->attrs())
2283     if (i->getKind() == A->getKind()) {
2284       if (Ann) {
2285         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2286           return true;
2287         continue;
2288       }
2289       // FIXME: Don't hardcode this check
2290       if (OA && isa<OwnershipAttr>(i))
2291         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2292       return true;
2293     }
2294 
2295   return false;
2296 }
2297 
isAttributeTargetADefinition(Decl * D)2298 static bool isAttributeTargetADefinition(Decl *D) {
2299   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2300     return VD->isThisDeclarationADefinition();
2301   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2302     return TD->isCompleteDefinition() || TD->isBeingDefined();
2303   return true;
2304 }
2305 
2306 /// Merge alignment attributes from \p Old to \p New, taking into account the
2307 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2308 ///
2309 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2310 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2311   // Look for alignas attributes on Old, and pick out whichever attribute
2312   // specifies the strictest alignment requirement.
2313   AlignedAttr *OldAlignasAttr = nullptr;
2314   AlignedAttr *OldStrictestAlignAttr = nullptr;
2315   unsigned OldAlign = 0;
2316   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2317     // FIXME: We have no way of representing inherited dependent alignments
2318     // in a case like:
2319     //   template<int A, int B> struct alignas(A) X;
2320     //   template<int A, int B> struct alignas(B) X {};
2321     // For now, we just ignore any alignas attributes which are not on the
2322     // definition in such a case.
2323     if (I->isAlignmentDependent())
2324       return false;
2325 
2326     if (I->isAlignas())
2327       OldAlignasAttr = I;
2328 
2329     unsigned Align = I->getAlignment(S.Context);
2330     if (Align > OldAlign) {
2331       OldAlign = Align;
2332       OldStrictestAlignAttr = I;
2333     }
2334   }
2335 
2336   // Look for alignas attributes on New.
2337   AlignedAttr *NewAlignasAttr = nullptr;
2338   unsigned NewAlign = 0;
2339   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2340     if (I->isAlignmentDependent())
2341       return false;
2342 
2343     if (I->isAlignas())
2344       NewAlignasAttr = I;
2345 
2346     unsigned Align = I->getAlignment(S.Context);
2347     if (Align > NewAlign)
2348       NewAlign = Align;
2349   }
2350 
2351   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2352     // Both declarations have 'alignas' attributes. We require them to match.
2353     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2354     // fall short. (If two declarations both have alignas, they must both match
2355     // every definition, and so must match each other if there is a definition.)
2356 
2357     // If either declaration only contains 'alignas(0)' specifiers, then it
2358     // specifies the natural alignment for the type.
2359     if (OldAlign == 0 || NewAlign == 0) {
2360       QualType Ty;
2361       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2362         Ty = VD->getType();
2363       else
2364         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2365 
2366       if (OldAlign == 0)
2367         OldAlign = S.Context.getTypeAlign(Ty);
2368       if (NewAlign == 0)
2369         NewAlign = S.Context.getTypeAlign(Ty);
2370     }
2371 
2372     if (OldAlign != NewAlign) {
2373       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2374         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2375         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2376       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2377     }
2378   }
2379 
2380   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2381     // C++11 [dcl.align]p6:
2382     //   if any declaration of an entity has an alignment-specifier,
2383     //   every defining declaration of that entity shall specify an
2384     //   equivalent alignment.
2385     // C11 6.7.5/7:
2386     //   If the definition of an object does not have an alignment
2387     //   specifier, any other declaration of that object shall also
2388     //   have no alignment specifier.
2389     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2390       << OldAlignasAttr;
2391     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2392       << OldAlignasAttr;
2393   }
2394 
2395   bool AnyAdded = false;
2396 
2397   // Ensure we have an attribute representing the strictest alignment.
2398   if (OldAlign > NewAlign) {
2399     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2400     Clone->setInherited(true);
2401     New->addAttr(Clone);
2402     AnyAdded = true;
2403   }
2404 
2405   // Ensure we have an alignas attribute if the old declaration had one.
2406   if (OldAlignasAttr && !NewAlignasAttr &&
2407       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2408     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2409     Clone->setInherited(true);
2410     New->addAttr(Clone);
2411     AnyAdded = true;
2412   }
2413 
2414   return AnyAdded;
2415 }
2416 
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,Sema::AvailabilityMergeKind AMK)2417 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2418                                const InheritableAttr *Attr,
2419                                Sema::AvailabilityMergeKind AMK) {
2420   // This function copies an attribute Attr from a previous declaration to the
2421   // new declaration D if the new declaration doesn't itself have that attribute
2422   // yet or if that attribute allows duplicates.
2423   // If you're adding a new attribute that requires logic different from
2424   // "use explicit attribute on decl if present, else use attribute from
2425   // previous decl", for example if the attribute needs to be consistent
2426   // between redeclarations, you need to call a custom merge function here.
2427   InheritableAttr *NewAttr = nullptr;
2428   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2429   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2430     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2431                                       AA->isImplicit(), AA->getIntroduced(),
2432                                       AA->getDeprecated(),
2433                                       AA->getObsoleted(), AA->getUnavailable(),
2434                                       AA->getMessage(), AA->getStrict(),
2435                                       AA->getReplacement(), AMK,
2436                                       AttrSpellingListIndex);
2437   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2438     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2439                                     AttrSpellingListIndex);
2440   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2441     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2442                                         AttrSpellingListIndex);
2443   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2444     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2445                                    AttrSpellingListIndex);
2446   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2447     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2448                                    AttrSpellingListIndex);
2449   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2450     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2451                                 FA->getFormatIdx(), FA->getFirstArg(),
2452                                 AttrSpellingListIndex);
2453   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2454     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2455                                  AttrSpellingListIndex);
2456   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2457     NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2458                                  AttrSpellingListIndex);
2459   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2460     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2461                                        AttrSpellingListIndex,
2462                                        IA->getSemanticSpelling());
2463   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2464     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2465                                       &S.Context.Idents.get(AA->getSpelling()),
2466                                       AttrSpellingListIndex);
2467   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2468            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2469             isa<CUDAGlobalAttr>(Attr))) {
2470     // CUDA target attributes are part of function signature for
2471     // overloading purposes and must not be merged.
2472     return false;
2473   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2474     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2475   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2476     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2477   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2478     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2479   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2480     NewAttr = S.mergeCommonAttr(D, *CommonA);
2481   else if (isa<AlignedAttr>(Attr))
2482     // AlignedAttrs are handled separately, because we need to handle all
2483     // such attributes on a declaration at the same time.
2484     NewAttr = nullptr;
2485   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2486            (AMK == Sema::AMK_Override ||
2487             AMK == Sema::AMK_ProtocolImplementation))
2488     NewAttr = nullptr;
2489   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2490     NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2491                               UA->getGuid());
2492   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2493     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2494 
2495   if (NewAttr) {
2496     NewAttr->setInherited(true);
2497     D->addAttr(NewAttr);
2498     if (isa<MSInheritanceAttr>(NewAttr))
2499       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2500     return true;
2501   }
2502 
2503   return false;
2504 }
2505 
getDefinition(const Decl * D)2506 static const NamedDecl *getDefinition(const Decl *D) {
2507   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2508     return TD->getDefinition();
2509   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2510     const VarDecl *Def = VD->getDefinition();
2511     if (Def)
2512       return Def;
2513     return VD->getActingDefinition();
2514   }
2515   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2516     return FD->getDefinition();
2517   return nullptr;
2518 }
2519 
hasAttribute(const Decl * D,attr::Kind Kind)2520 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2521   for (const auto *Attribute : D->attrs())
2522     if (Attribute->getKind() == Kind)
2523       return true;
2524   return false;
2525 }
2526 
2527 /// checkNewAttributesAfterDef - If we already have a definition, check that
2528 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2529 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2530   if (!New->hasAttrs())
2531     return;
2532 
2533   const NamedDecl *Def = getDefinition(Old);
2534   if (!Def || Def == New)
2535     return;
2536 
2537   AttrVec &NewAttributes = New->getAttrs();
2538   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2539     const Attr *NewAttribute = NewAttributes[I];
2540 
2541     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2542       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2543         Sema::SkipBodyInfo SkipBody;
2544         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2545 
2546         // If we're skipping this definition, drop the "alias" attribute.
2547         if (SkipBody.ShouldSkip) {
2548           NewAttributes.erase(NewAttributes.begin() + I);
2549           --E;
2550           continue;
2551         }
2552       } else {
2553         VarDecl *VD = cast<VarDecl>(New);
2554         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2555                                 VarDecl::TentativeDefinition
2556                             ? diag::err_alias_after_tentative
2557                             : diag::err_redefinition;
2558         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2559         if (Diag == diag::err_redefinition)
2560           S.notePreviousDefinition(Def, VD->getLocation());
2561         else
2562           S.Diag(Def->getLocation(), diag::note_previous_definition);
2563         VD->setInvalidDecl();
2564       }
2565       ++I;
2566       continue;
2567     }
2568 
2569     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2570       // Tentative definitions are only interesting for the alias check above.
2571       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2572         ++I;
2573         continue;
2574       }
2575     }
2576 
2577     if (hasAttribute(Def, NewAttribute->getKind())) {
2578       ++I;
2579       continue; // regular attr merging will take care of validating this.
2580     }
2581 
2582     if (isa<C11NoReturnAttr>(NewAttribute)) {
2583       // C's _Noreturn is allowed to be added to a function after it is defined.
2584       ++I;
2585       continue;
2586     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2587       if (AA->isAlignas()) {
2588         // C++11 [dcl.align]p6:
2589         //   if any declaration of an entity has an alignment-specifier,
2590         //   every defining declaration of that entity shall specify an
2591         //   equivalent alignment.
2592         // C11 6.7.5/7:
2593         //   If the definition of an object does not have an alignment
2594         //   specifier, any other declaration of that object shall also
2595         //   have no alignment specifier.
2596         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2597           << AA;
2598         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2599           << AA;
2600         NewAttributes.erase(NewAttributes.begin() + I);
2601         --E;
2602         continue;
2603       }
2604     }
2605 
2606     S.Diag(NewAttribute->getLocation(),
2607            diag::warn_attribute_precede_definition);
2608     S.Diag(Def->getLocation(), diag::note_previous_definition);
2609     NewAttributes.erase(NewAttributes.begin() + I);
2610     --E;
2611   }
2612 }
2613 
2614 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2615 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2616                                AvailabilityMergeKind AMK) {
2617   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2618     UsedAttr *NewAttr = OldAttr->clone(Context);
2619     NewAttr->setInherited(true);
2620     New->addAttr(NewAttr);
2621   }
2622 
2623   if (!Old->hasAttrs() && !New->hasAttrs())
2624     return;
2625 
2626   // Attributes declared post-definition are currently ignored.
2627   checkNewAttributesAfterDef(*this, New, Old);
2628 
2629   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2630     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2631       if (OldA->getLabel() != NewA->getLabel()) {
2632         // This redeclaration changes __asm__ label.
2633         Diag(New->getLocation(), diag::err_different_asm_label);
2634         Diag(OldA->getLocation(), diag::note_previous_declaration);
2635       }
2636     } else if (Old->isUsed()) {
2637       // This redeclaration adds an __asm__ label to a declaration that has
2638       // already been ODR-used.
2639       Diag(New->getLocation(), diag::err_late_asm_label_name)
2640         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2641     }
2642   }
2643 
2644   // Re-declaration cannot add abi_tag's.
2645   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2646     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2647       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2648         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2649                       NewTag) == OldAbiTagAttr->tags_end()) {
2650           Diag(NewAbiTagAttr->getLocation(),
2651                diag::err_new_abi_tag_on_redeclaration)
2652               << NewTag;
2653           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2654         }
2655       }
2656     } else {
2657       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2658       Diag(Old->getLocation(), diag::note_previous_declaration);
2659     }
2660   }
2661 
2662   // This redeclaration adds a section attribute.
2663   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2664     if (auto *VD = dyn_cast<VarDecl>(New)) {
2665       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2666         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2667         Diag(Old->getLocation(), diag::note_previous_declaration);
2668       }
2669     }
2670   }
2671 
2672   // Redeclaration adds code-seg attribute.
2673   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2674   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2675       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2676     Diag(New->getLocation(), diag::warn_mismatched_section)
2677          << 0 /*codeseg*/;
2678     Diag(Old->getLocation(), diag::note_previous_declaration);
2679   }
2680 
2681   if (!Old->hasAttrs())
2682     return;
2683 
2684   bool foundAny = New->hasAttrs();
2685 
2686   // Ensure that any moving of objects within the allocated map is done before
2687   // we process them.
2688   if (!foundAny) New->setAttrs(AttrVec());
2689 
2690   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2691     // Ignore deprecated/unavailable/availability attributes if requested.
2692     AvailabilityMergeKind LocalAMK = AMK_None;
2693     if (isa<DeprecatedAttr>(I) ||
2694         isa<UnavailableAttr>(I) ||
2695         isa<AvailabilityAttr>(I)) {
2696       switch (AMK) {
2697       case AMK_None:
2698         continue;
2699 
2700       case AMK_Redeclaration:
2701       case AMK_Override:
2702       case AMK_ProtocolImplementation:
2703         LocalAMK = AMK;
2704         break;
2705       }
2706     }
2707 
2708     // Already handled.
2709     if (isa<UsedAttr>(I))
2710       continue;
2711 
2712     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2713       foundAny = true;
2714   }
2715 
2716   if (mergeAlignedAttrs(*this, New, Old))
2717     foundAny = true;
2718 
2719   if (!foundAny) New->dropAttrs();
2720 }
2721 
2722 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2723 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2724 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2725                                      const ParmVarDecl *oldDecl,
2726                                      Sema &S) {
2727   // C++11 [dcl.attr.depend]p2:
2728   //   The first declaration of a function shall specify the
2729   //   carries_dependency attribute for its declarator-id if any declaration
2730   //   of the function specifies the carries_dependency attribute.
2731   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2732   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2733     S.Diag(CDA->getLocation(),
2734            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2735     // Find the first declaration of the parameter.
2736     // FIXME: Should we build redeclaration chains for function parameters?
2737     const FunctionDecl *FirstFD =
2738       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2739     const ParmVarDecl *FirstVD =
2740       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2741     S.Diag(FirstVD->getLocation(),
2742            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2743   }
2744 
2745   if (!oldDecl->hasAttrs())
2746     return;
2747 
2748   bool foundAny = newDecl->hasAttrs();
2749 
2750   // Ensure that any moving of objects within the allocated map is
2751   // done before we process them.
2752   if (!foundAny) newDecl->setAttrs(AttrVec());
2753 
2754   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2755     if (!DeclHasAttr(newDecl, I)) {
2756       InheritableAttr *newAttr =
2757         cast<InheritableParamAttr>(I->clone(S.Context));
2758       newAttr->setInherited(true);
2759       newDecl->addAttr(newAttr);
2760       foundAny = true;
2761     }
2762   }
2763 
2764   if (!foundAny) newDecl->dropAttrs();
2765 }
2766 
mergeParamDeclTypes(ParmVarDecl * NewParam,const ParmVarDecl * OldParam,Sema & S)2767 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2768                                 const ParmVarDecl *OldParam,
2769                                 Sema &S) {
2770   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2771     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2772       if (*Oldnullability != *Newnullability) {
2773         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2774           << DiagNullabilityKind(
2775                *Newnullability,
2776                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2777                 != 0))
2778           << DiagNullabilityKind(
2779                *Oldnullability,
2780                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2781                 != 0));
2782         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2783       }
2784     } else {
2785       QualType NewT = NewParam->getType();
2786       NewT = S.Context.getAttributedType(
2787                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2788                          NewT, NewT);
2789       NewParam->setType(NewT);
2790     }
2791   }
2792 }
2793 
2794 namespace {
2795 
2796 /// Used in MergeFunctionDecl to keep track of function parameters in
2797 /// C.
2798 struct GNUCompatibleParamWarning {
2799   ParmVarDecl *OldParm;
2800   ParmVarDecl *NewParm;
2801   QualType PromotedType;
2802 };
2803 
2804 } // end anonymous namespace
2805 
2806 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2807 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2808   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2809     if (Ctor->isDefaultConstructor())
2810       return Sema::CXXDefaultConstructor;
2811 
2812     if (Ctor->isCopyConstructor())
2813       return Sema::CXXCopyConstructor;
2814 
2815     if (Ctor->isMoveConstructor())
2816       return Sema::CXXMoveConstructor;
2817   } else if (isa<CXXDestructorDecl>(MD)) {
2818     return Sema::CXXDestructor;
2819   } else if (MD->isCopyAssignmentOperator()) {
2820     return Sema::CXXCopyAssignment;
2821   } else if (MD->isMoveAssignmentOperator()) {
2822     return Sema::CXXMoveAssignment;
2823   }
2824 
2825   return Sema::CXXInvalid;
2826 }
2827 
2828 // Determine whether the previous declaration was a definition, implicit
2829 // declaration, or a declaration.
2830 template <typename T>
2831 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2832 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2833   diag::kind PrevDiag;
2834   SourceLocation OldLocation = Old->getLocation();
2835   if (Old->isThisDeclarationADefinition())
2836     PrevDiag = diag::note_previous_definition;
2837   else if (Old->isImplicit()) {
2838     PrevDiag = diag::note_previous_implicit_declaration;
2839     if (OldLocation.isInvalid())
2840       OldLocation = New->getLocation();
2841   } else
2842     PrevDiag = diag::note_previous_declaration;
2843   return std::make_pair(PrevDiag, OldLocation);
2844 }
2845 
2846 /// canRedefineFunction - checks if a function can be redefined. Currently,
2847 /// only extern inline functions can be redefined, and even then only in
2848 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2849 static bool canRedefineFunction(const FunctionDecl *FD,
2850                                 const LangOptions& LangOpts) {
2851   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2852           !LangOpts.CPlusPlus &&
2853           FD->isInlineSpecified() &&
2854           FD->getStorageClass() == SC_Extern);
2855 }
2856 
getCallingConvAttributedType(QualType T) const2857 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2858   const AttributedType *AT = T->getAs<AttributedType>();
2859   while (AT && !AT->isCallingConv())
2860     AT = AT->getModifiedType()->getAs<AttributedType>();
2861   return AT;
2862 }
2863 
2864 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2865 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2866   const DeclContext *DC = Old->getDeclContext();
2867   if (DC->isRecord())
2868     return false;
2869 
2870   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2871   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2872     return true;
2873   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2874     return true;
2875   return false;
2876 }
2877 
isExternC(T * D)2878 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
isExternC(VarTemplateDecl *)2879 static bool isExternC(VarTemplateDecl *) { return false; }
2880 
2881 /// Check whether a redeclaration of an entity introduced by a
2882 /// using-declaration is valid, given that we know it's not an overload
2883 /// (nor a hidden tag declaration).
2884 template<typename ExpectedDecl>
checkUsingShadowRedecl(Sema & S,UsingShadowDecl * OldS,ExpectedDecl * New)2885 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2886                                    ExpectedDecl *New) {
2887   // C++11 [basic.scope.declarative]p4:
2888   //   Given a set of declarations in a single declarative region, each of
2889   //   which specifies the same unqualified name,
2890   //   -- they shall all refer to the same entity, or all refer to functions
2891   //      and function templates; or
2892   //   -- exactly one declaration shall declare a class name or enumeration
2893   //      name that is not a typedef name and the other declarations shall all
2894   //      refer to the same variable or enumerator, or all refer to functions
2895   //      and function templates; in this case the class name or enumeration
2896   //      name is hidden (3.3.10).
2897 
2898   // C++11 [namespace.udecl]p14:
2899   //   If a function declaration in namespace scope or block scope has the
2900   //   same name and the same parameter-type-list as a function introduced
2901   //   by a using-declaration, and the declarations do not declare the same
2902   //   function, the program is ill-formed.
2903 
2904   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2905   if (Old &&
2906       !Old->getDeclContext()->getRedeclContext()->Equals(
2907           New->getDeclContext()->getRedeclContext()) &&
2908       !(isExternC(Old) && isExternC(New)))
2909     Old = nullptr;
2910 
2911   if (!Old) {
2912     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2913     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2914     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2915     return true;
2916   }
2917   return false;
2918 }
2919 
hasIdenticalPassObjectSizeAttrs(const FunctionDecl * A,const FunctionDecl * B)2920 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2921                                             const FunctionDecl *B) {
2922   assert(A->getNumParams() == B->getNumParams());
2923 
2924   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2925     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2926     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2927     if (AttrA == AttrB)
2928       return true;
2929     return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2930   };
2931 
2932   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2933 }
2934 
2935 /// If necessary, adjust the semantic declaration context for a qualified
2936 /// declaration to name the correct inline namespace within the qualifier.
adjustDeclContextForDeclaratorDecl(DeclaratorDecl * NewD,DeclaratorDecl * OldD)2937 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2938                                                DeclaratorDecl *OldD) {
2939   // The only case where we need to update the DeclContext is when
2940   // redeclaration lookup for a qualified name finds a declaration
2941   // in an inline namespace within the context named by the qualifier:
2942   //
2943   //   inline namespace N { int f(); }
2944   //   int ::f(); // Sema DC needs adjusting from :: to N::.
2945   //
2946   // For unqualified declarations, the semantic context *can* change
2947   // along the redeclaration chain (for local extern declarations,
2948   // extern "C" declarations, and friend declarations in particular).
2949   if (!NewD->getQualifier())
2950     return;
2951 
2952   // NewD is probably already in the right context.
2953   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2954   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2955   if (NamedDC->Equals(SemaDC))
2956     return;
2957 
2958   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
2959           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
2960          "unexpected context for redeclaration");
2961 
2962   auto *LexDC = NewD->getLexicalDeclContext();
2963   auto FixSemaDC = [=](NamedDecl *D) {
2964     if (!D)
2965       return;
2966     D->setDeclContext(SemaDC);
2967     D->setLexicalDeclContext(LexDC);
2968   };
2969 
2970   FixSemaDC(NewD);
2971   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2972     FixSemaDC(FD->getDescribedFunctionTemplate());
2973   else if (auto *VD = dyn_cast<VarDecl>(NewD))
2974     FixSemaDC(VD->getDescribedVarTemplate());
2975 }
2976 
2977 /// MergeFunctionDecl - We just parsed a function 'New' from
2978 /// declarator D which has the same name and scope as a previous
2979 /// declaration 'Old'.  Figure out how to resolve this situation,
2980 /// merging decls or emitting diagnostics as appropriate.
2981 ///
2982 /// In C++, New and Old must be declarations that are not
2983 /// overloaded. Use IsOverload to determine whether New and Old are
2984 /// overloaded, and to select the Old declaration that New should be
2985 /// merged with.
2986 ///
2987 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2988 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2989                              Scope *S, bool MergeTypeWithOld) {
2990   // Verify the old decl was also a function.
2991   FunctionDecl *Old = OldD->getAsFunction();
2992   if (!Old) {
2993     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2994       if (New->getFriendObjectKind()) {
2995         Diag(New->getLocation(), diag::err_using_decl_friend);
2996         Diag(Shadow->getTargetDecl()->getLocation(),
2997              diag::note_using_decl_target);
2998         Diag(Shadow->getUsingDecl()->getLocation(),
2999              diag::note_using_decl) << 0;
3000         return true;
3001       }
3002 
3003       // Check whether the two declarations might declare the same function.
3004       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3005         return true;
3006       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3007     } else {
3008       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3009         << New->getDeclName();
3010       notePreviousDefinition(OldD, New->getLocation());
3011       return true;
3012     }
3013   }
3014 
3015   // If the old declaration is invalid, just give up here.
3016   if (Old->isInvalidDecl())
3017     return true;
3018 
3019   // Disallow redeclaration of some builtins.
3020   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3021     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3022     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3023         << Old << Old->getType();
3024     return true;
3025   }
3026 
3027   diag::kind PrevDiag;
3028   SourceLocation OldLocation;
3029   std::tie(PrevDiag, OldLocation) =
3030       getNoteDiagForInvalidRedeclaration(Old, New);
3031 
3032   // Don't complain about this if we're in GNU89 mode and the old function
3033   // is an extern inline function.
3034   // Don't complain about specializations. They are not supposed to have
3035   // storage classes.
3036   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3037       New->getStorageClass() == SC_Static &&
3038       Old->hasExternalFormalLinkage() &&
3039       !New->getTemplateSpecializationInfo() &&
3040       !canRedefineFunction(Old, getLangOpts())) {
3041     if (getLangOpts().MicrosoftExt) {
3042       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3043       Diag(OldLocation, PrevDiag);
3044     } else {
3045       Diag(New->getLocation(), diag::err_static_non_static) << New;
3046       Diag(OldLocation, PrevDiag);
3047       return true;
3048     }
3049   }
3050 
3051   if (New->hasAttr<InternalLinkageAttr>() &&
3052       !Old->hasAttr<InternalLinkageAttr>()) {
3053     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3054         << New->getDeclName();
3055     notePreviousDefinition(Old, New->getLocation());
3056     New->dropAttr<InternalLinkageAttr>();
3057   }
3058 
3059   if (CheckRedeclarationModuleOwnership(New, Old))
3060     return true;
3061 
3062   if (!getLangOpts().CPlusPlus) {
3063     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3064     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3065       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3066         << New << OldOvl;
3067 
3068       // Try our best to find a decl that actually has the overloadable
3069       // attribute for the note. In most cases (e.g. programs with only one
3070       // broken declaration/definition), this won't matter.
3071       //
3072       // FIXME: We could do this if we juggled some extra state in
3073       // OverloadableAttr, rather than just removing it.
3074       const Decl *DiagOld = Old;
3075       if (OldOvl) {
3076         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3077           const auto *A = D->getAttr<OverloadableAttr>();
3078           return A && !A->isImplicit();
3079         });
3080         // If we've implicitly added *all* of the overloadable attrs to this
3081         // chain, emitting a "previous redecl" note is pointless.
3082         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3083       }
3084 
3085       if (DiagOld)
3086         Diag(DiagOld->getLocation(),
3087              diag::note_attribute_overloadable_prev_overload)
3088           << OldOvl;
3089 
3090       if (OldOvl)
3091         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3092       else
3093         New->dropAttr<OverloadableAttr>();
3094     }
3095   }
3096 
3097   // If a function is first declared with a calling convention, but is later
3098   // declared or defined without one, all following decls assume the calling
3099   // convention of the first.
3100   //
3101   // It's OK if a function is first declared without a calling convention,
3102   // but is later declared or defined with the default calling convention.
3103   //
3104   // To test if either decl has an explicit calling convention, we look for
3105   // AttributedType sugar nodes on the type as written.  If they are missing or
3106   // were canonicalized away, we assume the calling convention was implicit.
3107   //
3108   // Note also that we DO NOT return at this point, because we still have
3109   // other tests to run.
3110   QualType OldQType = Context.getCanonicalType(Old->getType());
3111   QualType NewQType = Context.getCanonicalType(New->getType());
3112   const FunctionType *OldType = cast<FunctionType>(OldQType);
3113   const FunctionType *NewType = cast<FunctionType>(NewQType);
3114   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3115   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3116   bool RequiresAdjustment = false;
3117 
3118   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3119     FunctionDecl *First = Old->getFirstDecl();
3120     const FunctionType *FT =
3121         First->getType().getCanonicalType()->castAs<FunctionType>();
3122     FunctionType::ExtInfo FI = FT->getExtInfo();
3123     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3124     if (!NewCCExplicit) {
3125       // Inherit the CC from the previous declaration if it was specified
3126       // there but not here.
3127       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3128       RequiresAdjustment = true;
3129     } else {
3130       // Calling conventions aren't compatible, so complain.
3131       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3132       Diag(New->getLocation(), diag::err_cconv_change)
3133         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3134         << !FirstCCExplicit
3135         << (!FirstCCExplicit ? "" :
3136             FunctionType::getNameForCallConv(FI.getCC()));
3137 
3138       // Put the note on the first decl, since it is the one that matters.
3139       Diag(First->getLocation(), diag::note_previous_declaration);
3140       return true;
3141     }
3142   }
3143 
3144   // FIXME: diagnose the other way around?
3145   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3146     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3147     RequiresAdjustment = true;
3148   }
3149 
3150   // Merge regparm attribute.
3151   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3152       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3153     if (NewTypeInfo.getHasRegParm()) {
3154       Diag(New->getLocation(), diag::err_regparm_mismatch)
3155         << NewType->getRegParmType()
3156         << OldType->getRegParmType();
3157       Diag(OldLocation, diag::note_previous_declaration);
3158       return true;
3159     }
3160 
3161     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3162     RequiresAdjustment = true;
3163   }
3164 
3165   // Merge ns_returns_retained attribute.
3166   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3167     if (NewTypeInfo.getProducesResult()) {
3168       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3169           << "'ns_returns_retained'";
3170       Diag(OldLocation, diag::note_previous_declaration);
3171       return true;
3172     }
3173 
3174     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3175     RequiresAdjustment = true;
3176   }
3177 
3178   if (OldTypeInfo.getNoCallerSavedRegs() !=
3179       NewTypeInfo.getNoCallerSavedRegs()) {
3180     if (NewTypeInfo.getNoCallerSavedRegs()) {
3181       AnyX86NoCallerSavedRegistersAttr *Attr =
3182         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3183       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3184       Diag(OldLocation, diag::note_previous_declaration);
3185       return true;
3186     }
3187 
3188     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3189     RequiresAdjustment = true;
3190   }
3191 
3192   if (RequiresAdjustment) {
3193     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3194     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3195     New->setType(QualType(AdjustedType, 0));
3196     NewQType = Context.getCanonicalType(New->getType());
3197     NewType = cast<FunctionType>(NewQType);
3198   }
3199 
3200   // If this redeclaration makes the function inline, we may need to add it to
3201   // UndefinedButUsed.
3202   if (!Old->isInlined() && New->isInlined() &&
3203       !New->hasAttr<GNUInlineAttr>() &&
3204       !getLangOpts().GNUInline &&
3205       Old->isUsed(false) &&
3206       !Old->isDefined() && !New->isThisDeclarationADefinition())
3207     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3208                                            SourceLocation()));
3209 
3210   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3211   // about it.
3212   if (New->hasAttr<GNUInlineAttr>() &&
3213       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3214     UndefinedButUsed.erase(Old->getCanonicalDecl());
3215   }
3216 
3217   // If pass_object_size params don't match up perfectly, this isn't a valid
3218   // redeclaration.
3219   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3220       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3221     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3222         << New->getDeclName();
3223     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3224     return true;
3225   }
3226 
3227   if (getLangOpts().CPlusPlus) {
3228     // C++1z [over.load]p2
3229     //   Certain function declarations cannot be overloaded:
3230     //     -- Function declarations that differ only in the return type,
3231     //        the exception specification, or both cannot be overloaded.
3232 
3233     // Check the exception specifications match. This may recompute the type of
3234     // both Old and New if it resolved exception specifications, so grab the
3235     // types again after this. Because this updates the type, we do this before
3236     // any of the other checks below, which may update the "de facto" NewQType
3237     // but do not necessarily update the type of New.
3238     if (CheckEquivalentExceptionSpec(Old, New))
3239       return true;
3240     OldQType = Context.getCanonicalType(Old->getType());
3241     NewQType = Context.getCanonicalType(New->getType());
3242 
3243     // Go back to the type source info to compare the declared return types,
3244     // per C++1y [dcl.type.auto]p13:
3245     //   Redeclarations or specializations of a function or function template
3246     //   with a declared return type that uses a placeholder type shall also
3247     //   use that placeholder, not a deduced type.
3248     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3249     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3250     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3251         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3252                                        OldDeclaredReturnType)) {
3253       QualType ResQT;
3254       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3255           OldDeclaredReturnType->isObjCObjectPointerType())
3256         // FIXME: This does the wrong thing for a deduced return type.
3257         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3258       if (ResQT.isNull()) {
3259         if (New->isCXXClassMember() && New->isOutOfLine())
3260           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3261               << New << New->getReturnTypeSourceRange();
3262         else
3263           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3264               << New->getReturnTypeSourceRange();
3265         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3266                                     << Old->getReturnTypeSourceRange();
3267         return true;
3268       }
3269       else
3270         NewQType = ResQT;
3271     }
3272 
3273     QualType OldReturnType = OldType->getReturnType();
3274     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3275     if (OldReturnType != NewReturnType) {
3276       // If this function has a deduced return type and has already been
3277       // defined, copy the deduced value from the old declaration.
3278       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3279       if (OldAT && OldAT->isDeduced()) {
3280         New->setType(
3281             SubstAutoType(New->getType(),
3282                           OldAT->isDependentType() ? Context.DependentTy
3283                                                    : OldAT->getDeducedType()));
3284         NewQType = Context.getCanonicalType(
3285             SubstAutoType(NewQType,
3286                           OldAT->isDependentType() ? Context.DependentTy
3287                                                    : OldAT->getDeducedType()));
3288       }
3289     }
3290 
3291     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3292     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3293     if (OldMethod && NewMethod) {
3294       // Preserve triviality.
3295       NewMethod->setTrivial(OldMethod->isTrivial());
3296 
3297       // MSVC allows explicit template specialization at class scope:
3298       // 2 CXXMethodDecls referring to the same function will be injected.
3299       // We don't want a redeclaration error.
3300       bool IsClassScopeExplicitSpecialization =
3301                               OldMethod->isFunctionTemplateSpecialization() &&
3302                               NewMethod->isFunctionTemplateSpecialization();
3303       bool isFriend = NewMethod->getFriendObjectKind();
3304 
3305       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3306           !IsClassScopeExplicitSpecialization) {
3307         //    -- Member function declarations with the same name and the
3308         //       same parameter types cannot be overloaded if any of them
3309         //       is a static member function declaration.
3310         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3311           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3312           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3313           return true;
3314         }
3315 
3316         // C++ [class.mem]p1:
3317         //   [...] A member shall not be declared twice in the
3318         //   member-specification, except that a nested class or member
3319         //   class template can be declared and then later defined.
3320         if (!inTemplateInstantiation()) {
3321           unsigned NewDiag;
3322           if (isa<CXXConstructorDecl>(OldMethod))
3323             NewDiag = diag::err_constructor_redeclared;
3324           else if (isa<CXXDestructorDecl>(NewMethod))
3325             NewDiag = diag::err_destructor_redeclared;
3326           else if (isa<CXXConversionDecl>(NewMethod))
3327             NewDiag = diag::err_conv_function_redeclared;
3328           else
3329             NewDiag = diag::err_member_redeclared;
3330 
3331           Diag(New->getLocation(), NewDiag);
3332         } else {
3333           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3334             << New << New->getType();
3335         }
3336         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3337         return true;
3338 
3339       // Complain if this is an explicit declaration of a special
3340       // member that was initially declared implicitly.
3341       //
3342       // As an exception, it's okay to befriend such methods in order
3343       // to permit the implicit constructor/destructor/operator calls.
3344       } else if (OldMethod->isImplicit()) {
3345         if (isFriend) {
3346           NewMethod->setImplicit();
3347         } else {
3348           Diag(NewMethod->getLocation(),
3349                diag::err_definition_of_implicitly_declared_member)
3350             << New << getSpecialMember(OldMethod);
3351           return true;
3352         }
3353       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3354         Diag(NewMethod->getLocation(),
3355              diag::err_definition_of_explicitly_defaulted_member)
3356           << getSpecialMember(OldMethod);
3357         return true;
3358       }
3359     }
3360 
3361     // C++11 [dcl.attr.noreturn]p1:
3362     //   The first declaration of a function shall specify the noreturn
3363     //   attribute if any declaration of that function specifies the noreturn
3364     //   attribute.
3365     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3366     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3367       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3368       Diag(Old->getFirstDecl()->getLocation(),
3369            diag::note_noreturn_missing_first_decl);
3370     }
3371 
3372     // C++11 [dcl.attr.depend]p2:
3373     //   The first declaration of a function shall specify the
3374     //   carries_dependency attribute for its declarator-id if any declaration
3375     //   of the function specifies the carries_dependency attribute.
3376     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3377     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3378       Diag(CDA->getLocation(),
3379            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3380       Diag(Old->getFirstDecl()->getLocation(),
3381            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3382     }
3383 
3384     // (C++98 8.3.5p3):
3385     //   All declarations for a function shall agree exactly in both the
3386     //   return type and the parameter-type-list.
3387     // We also want to respect all the extended bits except noreturn.
3388 
3389     // noreturn should now match unless the old type info didn't have it.
3390     QualType OldQTypeForComparison = OldQType;
3391     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3392       auto *OldType = OldQType->castAs<FunctionProtoType>();
3393       const FunctionType *OldTypeForComparison
3394         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3395       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3396       assert(OldQTypeForComparison.isCanonical());
3397     }
3398 
3399     if (haveIncompatibleLanguageLinkages(Old, New)) {
3400       // As a special case, retain the language linkage from previous
3401       // declarations of a friend function as an extension.
3402       //
3403       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3404       // and is useful because there's otherwise no way to specify language
3405       // linkage within class scope.
3406       //
3407       // Check cautiously as the friend object kind isn't yet complete.
3408       if (New->getFriendObjectKind() != Decl::FOK_None) {
3409         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3410         Diag(OldLocation, PrevDiag);
3411       } else {
3412         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3413         Diag(OldLocation, PrevDiag);
3414         return true;
3415       }
3416     }
3417 
3418     if (OldQTypeForComparison == NewQType)
3419       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3420 
3421     // If the types are imprecise (due to dependent constructs in friends or
3422     // local extern declarations), it's OK if they differ. We'll check again
3423     // during instantiation.
3424     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3425       return false;
3426 
3427     // Fall through for conflicting redeclarations and redefinitions.
3428   }
3429 
3430   // C: Function types need to be compatible, not identical. This handles
3431   // duplicate function decls like "void f(int); void f(enum X);" properly.
3432   if (!getLangOpts().CPlusPlus &&
3433       Context.typesAreCompatible(OldQType, NewQType)) {
3434     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3435     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3436     const FunctionProtoType *OldProto = nullptr;
3437     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3438         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3439       // The old declaration provided a function prototype, but the
3440       // new declaration does not. Merge in the prototype.
3441       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3442       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3443       NewQType =
3444           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3445                                   OldProto->getExtProtoInfo());
3446       New->setType(NewQType);
3447       New->setHasInheritedPrototype();
3448 
3449       // Synthesize parameters with the same types.
3450       SmallVector<ParmVarDecl*, 16> Params;
3451       for (const auto &ParamType : OldProto->param_types()) {
3452         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3453                                                  SourceLocation(), nullptr,
3454                                                  ParamType, /*TInfo=*/nullptr,
3455                                                  SC_None, nullptr);
3456         Param->setScopeInfo(0, Params.size());
3457         Param->setImplicit();
3458         Params.push_back(Param);
3459       }
3460 
3461       New->setParams(Params);
3462     }
3463 
3464     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3465   }
3466 
3467   // GNU C permits a K&R definition to follow a prototype declaration
3468   // if the declared types of the parameters in the K&R definition
3469   // match the types in the prototype declaration, even when the
3470   // promoted types of the parameters from the K&R definition differ
3471   // from the types in the prototype. GCC then keeps the types from
3472   // the prototype.
3473   //
3474   // If a variadic prototype is followed by a non-variadic K&R definition,
3475   // the K&R definition becomes variadic.  This is sort of an edge case, but
3476   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3477   // C99 6.9.1p8.
3478   if (!getLangOpts().CPlusPlus &&
3479       Old->hasPrototype() && !New->hasPrototype() &&
3480       New->getType()->getAs<FunctionProtoType>() &&
3481       Old->getNumParams() == New->getNumParams()) {
3482     SmallVector<QualType, 16> ArgTypes;
3483     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3484     const FunctionProtoType *OldProto
3485       = Old->getType()->getAs<FunctionProtoType>();
3486     const FunctionProtoType *NewProto
3487       = New->getType()->getAs<FunctionProtoType>();
3488 
3489     // Determine whether this is the GNU C extension.
3490     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3491                                                NewProto->getReturnType());
3492     bool LooseCompatible = !MergedReturn.isNull();
3493     for (unsigned Idx = 0, End = Old->getNumParams();
3494          LooseCompatible && Idx != End; ++Idx) {
3495       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3496       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3497       if (Context.typesAreCompatible(OldParm->getType(),
3498                                      NewProto->getParamType(Idx))) {
3499         ArgTypes.push_back(NewParm->getType());
3500       } else if (Context.typesAreCompatible(OldParm->getType(),
3501                                             NewParm->getType(),
3502                                             /*CompareUnqualified=*/true)) {
3503         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3504                                            NewProto->getParamType(Idx) };
3505         Warnings.push_back(Warn);
3506         ArgTypes.push_back(NewParm->getType());
3507       } else
3508         LooseCompatible = false;
3509     }
3510 
3511     if (LooseCompatible) {
3512       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3513         Diag(Warnings[Warn].NewParm->getLocation(),
3514              diag::ext_param_promoted_not_compatible_with_prototype)
3515           << Warnings[Warn].PromotedType
3516           << Warnings[Warn].OldParm->getType();
3517         if (Warnings[Warn].OldParm->getLocation().isValid())
3518           Diag(Warnings[Warn].OldParm->getLocation(),
3519                diag::note_previous_declaration);
3520       }
3521 
3522       if (MergeTypeWithOld)
3523         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3524                                              OldProto->getExtProtoInfo()));
3525       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3526     }
3527 
3528     // Fall through to diagnose conflicting types.
3529   }
3530 
3531   // A function that has already been declared has been redeclared or
3532   // defined with a different type; show an appropriate diagnostic.
3533 
3534   // If the previous declaration was an implicitly-generated builtin
3535   // declaration, then at the very least we should use a specialized note.
3536   unsigned BuiltinID;
3537   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3538     // If it's actually a library-defined builtin function like 'malloc'
3539     // or 'printf', just warn about the incompatible redeclaration.
3540     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3541       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3542       Diag(OldLocation, diag::note_previous_builtin_declaration)
3543         << Old << Old->getType();
3544 
3545       // If this is a global redeclaration, just forget hereafter
3546       // about the "builtin-ness" of the function.
3547       //
3548       // Doing this for local extern declarations is problematic.  If
3549       // the builtin declaration remains visible, a second invalid
3550       // local declaration will produce a hard error; if it doesn't
3551       // remain visible, a single bogus local redeclaration (which is
3552       // actually only a warning) could break all the downstream code.
3553       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3554         New->getIdentifier()->revertBuiltin();
3555 
3556       return false;
3557     }
3558 
3559     PrevDiag = diag::note_previous_builtin_declaration;
3560   }
3561 
3562   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3563   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3564   return true;
3565 }
3566 
3567 /// Completes the merge of two function declarations that are
3568 /// known to be compatible.
3569 ///
3570 /// This routine handles the merging of attributes and other
3571 /// properties of function declarations from the old declaration to
3572 /// the new declaration, once we know that New is in fact a
3573 /// redeclaration of Old.
3574 ///
3575 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3576 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3577                                         Scope *S, bool MergeTypeWithOld) {
3578   // Merge the attributes
3579   mergeDeclAttributes(New, Old);
3580 
3581   // Merge "pure" flag.
3582   if (Old->isPure())
3583     New->setPure();
3584 
3585   // Merge "used" flag.
3586   if (Old->getMostRecentDecl()->isUsed(false))
3587     New->setIsUsed();
3588 
3589   // Merge attributes from the parameters.  These can mismatch with K&R
3590   // declarations.
3591   if (New->getNumParams() == Old->getNumParams())
3592       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3593         ParmVarDecl *NewParam = New->getParamDecl(i);
3594         ParmVarDecl *OldParam = Old->getParamDecl(i);
3595         mergeParamDeclAttributes(NewParam, OldParam, *this);
3596         mergeParamDeclTypes(NewParam, OldParam, *this);
3597       }
3598 
3599   if (getLangOpts().CPlusPlus)
3600     return MergeCXXFunctionDecl(New, Old, S);
3601 
3602   // Merge the function types so the we get the composite types for the return
3603   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3604   // was visible.
3605   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3606   if (!Merged.isNull() && MergeTypeWithOld)
3607     New->setType(Merged);
3608 
3609   return false;
3610 }
3611 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3612 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3613                                 ObjCMethodDecl *oldMethod) {
3614   // Merge the attributes, including deprecated/unavailable
3615   AvailabilityMergeKind MergeKind =
3616     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3617       ? AMK_ProtocolImplementation
3618       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3619                                                        : AMK_Override;
3620 
3621   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3622 
3623   // Merge attributes from the parameters.
3624   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3625                                        oe = oldMethod->param_end();
3626   for (ObjCMethodDecl::param_iterator
3627          ni = newMethod->param_begin(), ne = newMethod->param_end();
3628        ni != ne && oi != oe; ++ni, ++oi)
3629     mergeParamDeclAttributes(*ni, *oi, *this);
3630 
3631   CheckObjCMethodOverride(newMethod, oldMethod);
3632 }
3633 
diagnoseVarDeclTypeMismatch(Sema & S,VarDecl * New,VarDecl * Old)3634 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3635   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3636 
3637   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3638          ? diag::err_redefinition_different_type
3639          : diag::err_redeclaration_different_type)
3640     << New->getDeclName() << New->getType() << Old->getType();
3641 
3642   diag::kind PrevDiag;
3643   SourceLocation OldLocation;
3644   std::tie(PrevDiag, OldLocation)
3645     = getNoteDiagForInvalidRedeclaration(Old, New);
3646   S.Diag(OldLocation, PrevDiag);
3647   New->setInvalidDecl();
3648 }
3649 
3650 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3651 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3652 /// emitting diagnostics as appropriate.
3653 ///
3654 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3655 /// to here in AddInitializerToDecl. We can't check them before the initializer
3656 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3657 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3658                              bool MergeTypeWithOld) {
3659   if (New->isInvalidDecl() || Old->isInvalidDecl())
3660     return;
3661 
3662   QualType MergedT;
3663   if (getLangOpts().CPlusPlus) {
3664     if (New->getType()->isUndeducedType()) {
3665       // We don't know what the new type is until the initializer is attached.
3666       return;
3667     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3668       // These could still be something that needs exception specs checked.
3669       return MergeVarDeclExceptionSpecs(New, Old);
3670     }
3671     // C++ [basic.link]p10:
3672     //   [...] the types specified by all declarations referring to a given
3673     //   object or function shall be identical, except that declarations for an
3674     //   array object can specify array types that differ by the presence or
3675     //   absence of a major array bound (8.3.4).
3676     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3677       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3678       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3679 
3680       // We are merging a variable declaration New into Old. If it has an array
3681       // bound, and that bound differs from Old's bound, we should diagnose the
3682       // mismatch.
3683       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3684         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3685              PrevVD = PrevVD->getPreviousDecl()) {
3686           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3687           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3688             continue;
3689 
3690           if (!Context.hasSameType(NewArray, PrevVDTy))
3691             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3692         }
3693       }
3694 
3695       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3696         if (Context.hasSameType(OldArray->getElementType(),
3697                                 NewArray->getElementType()))
3698           MergedT = New->getType();
3699       }
3700       // FIXME: Check visibility. New is hidden but has a complete type. If New
3701       // has no array bound, it should not inherit one from Old, if Old is not
3702       // visible.
3703       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3704         if (Context.hasSameType(OldArray->getElementType(),
3705                                 NewArray->getElementType()))
3706           MergedT = Old->getType();
3707       }
3708     }
3709     else if (New->getType()->isObjCObjectPointerType() &&
3710                Old->getType()->isObjCObjectPointerType()) {
3711       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3712                                               Old->getType());
3713     }
3714   } else {
3715     // C 6.2.7p2:
3716     //   All declarations that refer to the same object or function shall have
3717     //   compatible type.
3718     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3719   }
3720   if (MergedT.isNull()) {
3721     // It's OK if we couldn't merge types if either type is dependent, for a
3722     // block-scope variable. In other cases (static data members of class
3723     // templates, variable templates, ...), we require the types to be
3724     // equivalent.
3725     // FIXME: The C++ standard doesn't say anything about this.
3726     if ((New->getType()->isDependentType() ||
3727          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3728       // If the old type was dependent, we can't merge with it, so the new type
3729       // becomes dependent for now. We'll reproduce the original type when we
3730       // instantiate the TypeSourceInfo for the variable.
3731       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3732         New->setType(Context.DependentTy);
3733       return;
3734     }
3735     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3736   }
3737 
3738   // Don't actually update the type on the new declaration if the old
3739   // declaration was an extern declaration in a different scope.
3740   if (MergeTypeWithOld)
3741     New->setType(MergedT);
3742 }
3743 
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3744 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3745                                   LookupResult &Previous) {
3746   // C11 6.2.7p4:
3747   //   For an identifier with internal or external linkage declared
3748   //   in a scope in which a prior declaration of that identifier is
3749   //   visible, if the prior declaration specifies internal or
3750   //   external linkage, the type of the identifier at the later
3751   //   declaration becomes the composite type.
3752   //
3753   // If the variable isn't visible, we do not merge with its type.
3754   if (Previous.isShadowed())
3755     return false;
3756 
3757   if (S.getLangOpts().CPlusPlus) {
3758     // C++11 [dcl.array]p3:
3759     //   If there is a preceding declaration of the entity in the same
3760     //   scope in which the bound was specified, an omitted array bound
3761     //   is taken to be the same as in that earlier declaration.
3762     return NewVD->isPreviousDeclInSameBlockScope() ||
3763            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3764             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3765   } else {
3766     // If the old declaration was function-local, don't merge with its
3767     // type unless we're in the same function.
3768     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3769            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3770   }
3771 }
3772 
3773 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3774 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3775 /// situation, merging decls or emitting diagnostics as appropriate.
3776 ///
3777 /// Tentative definition rules (C99 6.9.2p2) are checked by
3778 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3779 /// definitions here, since the initializer hasn't been attached.
3780 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3781 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3782   // If the new decl is already invalid, don't do any other checking.
3783   if (New->isInvalidDecl())
3784     return;
3785 
3786   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3787     return;
3788 
3789   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3790 
3791   // Verify the old decl was also a variable or variable template.
3792   VarDecl *Old = nullptr;
3793   VarTemplateDecl *OldTemplate = nullptr;
3794   if (Previous.isSingleResult()) {
3795     if (NewTemplate) {
3796       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3797       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3798 
3799       if (auto *Shadow =
3800               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3801         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3802           return New->setInvalidDecl();
3803     } else {
3804       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3805 
3806       if (auto *Shadow =
3807               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3808         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3809           return New->setInvalidDecl();
3810     }
3811   }
3812   if (!Old) {
3813     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3814         << New->getDeclName();
3815     notePreviousDefinition(Previous.getRepresentativeDecl(),
3816                            New->getLocation());
3817     return New->setInvalidDecl();
3818   }
3819 
3820   // Ensure the template parameters are compatible.
3821   if (NewTemplate &&
3822       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3823                                       OldTemplate->getTemplateParameters(),
3824                                       /*Complain=*/true, TPL_TemplateMatch))
3825     return New->setInvalidDecl();
3826 
3827   // C++ [class.mem]p1:
3828   //   A member shall not be declared twice in the member-specification [...]
3829   //
3830   // Here, we need only consider static data members.
3831   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3832     Diag(New->getLocation(), diag::err_duplicate_member)
3833       << New->getIdentifier();
3834     Diag(Old->getLocation(), diag::note_previous_declaration);
3835     New->setInvalidDecl();
3836   }
3837 
3838   mergeDeclAttributes(New, Old);
3839   // Warn if an already-declared variable is made a weak_import in a subsequent
3840   // declaration
3841   if (New->hasAttr<WeakImportAttr>() &&
3842       Old->getStorageClass() == SC_None &&
3843       !Old->hasAttr<WeakImportAttr>()) {
3844     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3845     notePreviousDefinition(Old, New->getLocation());
3846     // Remove weak_import attribute on new declaration.
3847     New->dropAttr<WeakImportAttr>();
3848   }
3849 
3850   if (New->hasAttr<InternalLinkageAttr>() &&
3851       !Old->hasAttr<InternalLinkageAttr>()) {
3852     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3853         << New->getDeclName();
3854     notePreviousDefinition(Old, New->getLocation());
3855     New->dropAttr<InternalLinkageAttr>();
3856   }
3857 
3858   // Merge the types.
3859   VarDecl *MostRecent = Old->getMostRecentDecl();
3860   if (MostRecent != Old) {
3861     MergeVarDeclTypes(New, MostRecent,
3862                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3863     if (New->isInvalidDecl())
3864       return;
3865   }
3866 
3867   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3868   if (New->isInvalidDecl())
3869     return;
3870 
3871   diag::kind PrevDiag;
3872   SourceLocation OldLocation;
3873   std::tie(PrevDiag, OldLocation) =
3874       getNoteDiagForInvalidRedeclaration(Old, New);
3875 
3876   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3877   if (New->getStorageClass() == SC_Static &&
3878       !New->isStaticDataMember() &&
3879       Old->hasExternalFormalLinkage()) {
3880     if (getLangOpts().MicrosoftExt) {
3881       Diag(New->getLocation(), diag::ext_static_non_static)
3882           << New->getDeclName();
3883       Diag(OldLocation, PrevDiag);
3884     } else {
3885       Diag(New->getLocation(), diag::err_static_non_static)
3886           << New->getDeclName();
3887       Diag(OldLocation, PrevDiag);
3888       return New->setInvalidDecl();
3889     }
3890   }
3891   // C99 6.2.2p4:
3892   //   For an identifier declared with the storage-class specifier
3893   //   extern in a scope in which a prior declaration of that
3894   //   identifier is visible,23) if the prior declaration specifies
3895   //   internal or external linkage, the linkage of the identifier at
3896   //   the later declaration is the same as the linkage specified at
3897   //   the prior declaration. If no prior declaration is visible, or
3898   //   if the prior declaration specifies no linkage, then the
3899   //   identifier has external linkage.
3900   if (New->hasExternalStorage() && Old->hasLinkage())
3901     /* Okay */;
3902   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3903            !New->isStaticDataMember() &&
3904            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3905     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3906     Diag(OldLocation, PrevDiag);
3907     return New->setInvalidDecl();
3908   }
3909 
3910   // Check if extern is followed by non-extern and vice-versa.
3911   if (New->hasExternalStorage() &&
3912       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3913     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3914     Diag(OldLocation, PrevDiag);
3915     return New->setInvalidDecl();
3916   }
3917   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3918       !New->hasExternalStorage()) {
3919     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3920     Diag(OldLocation, PrevDiag);
3921     return New->setInvalidDecl();
3922   }
3923 
3924   if (CheckRedeclarationModuleOwnership(New, Old))
3925     return;
3926 
3927   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3928 
3929   // FIXME: The test for external storage here seems wrong? We still
3930   // need to check for mismatches.
3931   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3932       // Don't complain about out-of-line definitions of static members.
3933       !(Old->getLexicalDeclContext()->isRecord() &&
3934         !New->getLexicalDeclContext()->isRecord())) {
3935     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3936     Diag(OldLocation, PrevDiag);
3937     return New->setInvalidDecl();
3938   }
3939 
3940   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3941     if (VarDecl *Def = Old->getDefinition()) {
3942       // C++1z [dcl.fcn.spec]p4:
3943       //   If the definition of a variable appears in a translation unit before
3944       //   its first declaration as inline, the program is ill-formed.
3945       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3946       Diag(Def->getLocation(), diag::note_previous_definition);
3947     }
3948   }
3949 
3950   // If this redeclaration makes the variable inline, we may need to add it to
3951   // UndefinedButUsed.
3952   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3953       !Old->getDefinition() && !New->isThisDeclarationADefinition())
3954     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3955                                            SourceLocation()));
3956 
3957   if (New->getTLSKind() != Old->getTLSKind()) {
3958     if (!Old->getTLSKind()) {
3959       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3960       Diag(OldLocation, PrevDiag);
3961     } else if (!New->getTLSKind()) {
3962       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3963       Diag(OldLocation, PrevDiag);
3964     } else {
3965       // Do not allow redeclaration to change the variable between requiring
3966       // static and dynamic initialization.
3967       // FIXME: GCC allows this, but uses the TLS keyword on the first
3968       // declaration to determine the kind. Do we need to be compatible here?
3969       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3970         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3971       Diag(OldLocation, PrevDiag);
3972     }
3973   }
3974 
3975   // C++ doesn't have tentative definitions, so go right ahead and check here.
3976   if (getLangOpts().CPlusPlus &&
3977       New->isThisDeclarationADefinition() == VarDecl::Definition) {
3978     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3979         Old->getCanonicalDecl()->isConstexpr()) {
3980       // This definition won't be a definition any more once it's been merged.
3981       Diag(New->getLocation(),
3982            diag::warn_deprecated_redundant_constexpr_static_def);
3983     } else if (VarDecl *Def = Old->getDefinition()) {
3984       if (checkVarDeclRedefinition(Def, New))
3985         return;
3986     }
3987   }
3988 
3989   if (haveIncompatibleLanguageLinkages(Old, New)) {
3990     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3991     Diag(OldLocation, PrevDiag);
3992     New->setInvalidDecl();
3993     return;
3994   }
3995 
3996   // Merge "used" flag.
3997   if (Old->getMostRecentDecl()->isUsed(false))
3998     New->setIsUsed();
3999 
4000   // Keep a chain of previous declarations.
4001   New->setPreviousDecl(Old);
4002   if (NewTemplate)
4003     NewTemplate->setPreviousDecl(OldTemplate);
4004   adjustDeclContextForDeclaratorDecl(New, Old);
4005 
4006   // Inherit access appropriately.
4007   New->setAccess(Old->getAccess());
4008   if (NewTemplate)
4009     NewTemplate->setAccess(New->getAccess());
4010 
4011   if (Old->isInline())
4012     New->setImplicitlyInline();
4013 }
4014 
notePreviousDefinition(const NamedDecl * Old,SourceLocation New)4015 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4016   SourceManager &SrcMgr = getSourceManager();
4017   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4018   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4019   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4020   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4021   auto &HSI = PP.getHeaderSearchInfo();
4022   StringRef HdrFilename =
4023       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4024 
4025   auto noteFromModuleOrInclude = [&](Module *Mod,
4026                                      SourceLocation IncLoc) -> bool {
4027     // Redefinition errors with modules are common with non modular mapped
4028     // headers, example: a non-modular header H in module A that also gets
4029     // included directly in a TU. Pointing twice to the same header/definition
4030     // is confusing, try to get better diagnostics when modules is on.
4031     if (IncLoc.isValid()) {
4032       if (Mod) {
4033         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4034             << HdrFilename.str() << Mod->getFullModuleName();
4035         if (!Mod->DefinitionLoc.isInvalid())
4036           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4037               << Mod->getFullModuleName();
4038       } else {
4039         Diag(IncLoc, diag::note_redefinition_include_same_file)
4040             << HdrFilename.str();
4041       }
4042       return true;
4043     }
4044 
4045     return false;
4046   };
4047 
4048   // Is it the same file and same offset? Provide more information on why
4049   // this leads to a redefinition error.
4050   bool EmittedDiag = false;
4051   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4052     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4053     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4054     EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4055     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4056 
4057     // If the header has no guards, emit a note suggesting one.
4058     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4059       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4060 
4061     if (EmittedDiag)
4062       return;
4063   }
4064 
4065   // Redefinition coming from different files or couldn't do better above.
4066   if (Old->getLocation().isValid())
4067     Diag(Old->getLocation(), diag::note_previous_definition);
4068 }
4069 
4070 /// We've just determined that \p Old and \p New both appear to be definitions
4071 /// of the same variable. Either diagnose or fix the problem.
checkVarDeclRedefinition(VarDecl * Old,VarDecl * New)4072 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4073   if (!hasVisibleDefinition(Old) &&
4074       (New->getFormalLinkage() == InternalLinkage ||
4075        New->isInline() ||
4076        New->getDescribedVarTemplate() ||
4077        New->getNumTemplateParameterLists() ||
4078        New->getDeclContext()->isDependentContext())) {
4079     // The previous definition is hidden, and multiple definitions are
4080     // permitted (in separate TUs). Demote this to a declaration.
4081     New->demoteThisDefinitionToDeclaration();
4082 
4083     // Make the canonical definition visible.
4084     if (auto *OldTD = Old->getDescribedVarTemplate())
4085       makeMergedDefinitionVisible(OldTD);
4086     makeMergedDefinitionVisible(Old);
4087     return false;
4088   } else {
4089     Diag(New->getLocation(), diag::err_redefinition) << New;
4090     notePreviousDefinition(Old, New->getLocation());
4091     New->setInvalidDecl();
4092     return true;
4093   }
4094 }
4095 
4096 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4097 /// no declarator (e.g. "struct foo;") is parsed.
4098 Decl *
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,RecordDecl * & AnonRecord)4099 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4100                                  RecordDecl *&AnonRecord) {
4101   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4102                                     AnonRecord);
4103 }
4104 
4105 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4106 // disambiguate entities defined in different scopes.
4107 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4108 // compatibility.
4109 // We will pick our mangling number depending on which version of MSVC is being
4110 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)4111 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4112   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4113              ? S->getMSCurManglingNumber()
4114              : S->getMSLastManglingNumber();
4115 }
4116 
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)4117 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4118   if (!Context.getLangOpts().CPlusPlus)
4119     return;
4120 
4121   if (isa<CXXRecordDecl>(Tag->getParent())) {
4122     // If this tag is the direct child of a class, number it if
4123     // it is anonymous.
4124     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4125       return;
4126     MangleNumberingContext &MCtx =
4127         Context.getManglingNumberContext(Tag->getParent());
4128     Context.setManglingNumber(
4129         Tag, MCtx.getManglingNumber(
4130                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4131     return;
4132   }
4133 
4134   // If this tag isn't a direct child of a class, number it if it is local.
4135   Decl *ManglingContextDecl;
4136   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4137           Tag->getDeclContext(), ManglingContextDecl)) {
4138     Context.setManglingNumber(
4139         Tag, MCtx->getManglingNumber(
4140                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4141   }
4142 }
4143 
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)4144 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4145                                         TypedefNameDecl *NewTD) {
4146   if (TagFromDeclSpec->isInvalidDecl())
4147     return;
4148 
4149   // Do nothing if the tag already has a name for linkage purposes.
4150   if (TagFromDeclSpec->hasNameForLinkage())
4151     return;
4152 
4153   // A well-formed anonymous tag must always be a TUK_Definition.
4154   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4155 
4156   // The type must match the tag exactly;  no qualifiers allowed.
4157   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4158                            Context.getTagDeclType(TagFromDeclSpec))) {
4159     if (getLangOpts().CPlusPlus)
4160       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4161     return;
4162   }
4163 
4164   // If we've already computed linkage for the anonymous tag, then
4165   // adding a typedef name for the anonymous decl can change that
4166   // linkage, which might be a serious problem.  Diagnose this as
4167   // unsupported and ignore the typedef name.  TODO: we should
4168   // pursue this as a language defect and establish a formal rule
4169   // for how to handle it.
4170   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4171     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4172 
4173     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4174     tagLoc = getLocForEndOfToken(tagLoc);
4175 
4176     llvm::SmallString<40> textToInsert;
4177     textToInsert += ' ';
4178     textToInsert += NewTD->getIdentifier()->getName();
4179     Diag(tagLoc, diag::note_typedef_changes_linkage)
4180         << FixItHint::CreateInsertion(tagLoc, textToInsert);
4181     return;
4182   }
4183 
4184   // Otherwise, set this is the anon-decl typedef for the tag.
4185   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4186 }
4187 
GetDiagnosticTypeSpecifierID(DeclSpec::TST T)4188 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4189   switch (T) {
4190   case DeclSpec::TST_class:
4191     return 0;
4192   case DeclSpec::TST_struct:
4193     return 1;
4194   case DeclSpec::TST_interface:
4195     return 2;
4196   case DeclSpec::TST_union:
4197     return 3;
4198   case DeclSpec::TST_enum:
4199     return 4;
4200   default:
4201     llvm_unreachable("unexpected type specifier");
4202   }
4203 }
4204 
4205 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4206 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4207 /// parameters to cope with template friend declarations.
4208 Decl *
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation,RecordDecl * & AnonRecord)4209 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4210                                  MultiTemplateParamsArg TemplateParams,
4211                                  bool IsExplicitInstantiation,
4212                                  RecordDecl *&AnonRecord) {
4213   Decl *TagD = nullptr;
4214   TagDecl *Tag = nullptr;
4215   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4216       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4217       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4218       DS.getTypeSpecType() == DeclSpec::TST_union ||
4219       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4220     TagD = DS.getRepAsDecl();
4221 
4222     if (!TagD) // We probably had an error
4223       return nullptr;
4224 
4225     // Note that the above type specs guarantee that the
4226     // type rep is a Decl, whereas in many of the others
4227     // it's a Type.
4228     if (isa<TagDecl>(TagD))
4229       Tag = cast<TagDecl>(TagD);
4230     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4231       Tag = CTD->getTemplatedDecl();
4232   }
4233 
4234   if (Tag) {
4235     handleTagNumbering(Tag, S);
4236     Tag->setFreeStanding();
4237     if (Tag->isInvalidDecl())
4238       return Tag;
4239   }
4240 
4241   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4242     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4243     // or incomplete types shall not be restrict-qualified."
4244     if (TypeQuals & DeclSpec::TQ_restrict)
4245       Diag(DS.getRestrictSpecLoc(),
4246            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4247            << DS.getSourceRange();
4248   }
4249 
4250   if (DS.isInlineSpecified())
4251     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4252         << getLangOpts().CPlusPlus17;
4253 
4254   if (DS.isConstexprSpecified()) {
4255     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4256     // and definitions of functions and variables.
4257     if (Tag)
4258       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4259           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4260     else
4261       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4262     // Don't emit warnings after this error.
4263     return TagD;
4264   }
4265 
4266   DiagnoseFunctionSpecifiers(DS);
4267 
4268   if (DS.isFriendSpecified()) {
4269     // If we're dealing with a decl but not a TagDecl, assume that
4270     // whatever routines created it handled the friendship aspect.
4271     if (TagD && !Tag)
4272       return nullptr;
4273     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4274   }
4275 
4276   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4277   bool IsExplicitSpecialization =
4278     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4279   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4280       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4281       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4282     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4283     // nested-name-specifier unless it is an explicit instantiation
4284     // or an explicit specialization.
4285     //
4286     // FIXME: We allow class template partial specializations here too, per the
4287     // obvious intent of DR1819.
4288     //
4289     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4290     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4291         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4292     return nullptr;
4293   }
4294 
4295   // Track whether this decl-specifier declares anything.
4296   bool DeclaresAnything = true;
4297 
4298   // Handle anonymous struct definitions.
4299   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4300     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4301         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4302       if (getLangOpts().CPlusPlus ||
4303           Record->getDeclContext()->isRecord()) {
4304         // If CurContext is a DeclContext that can contain statements,
4305         // RecursiveASTVisitor won't visit the decls that
4306         // BuildAnonymousStructOrUnion() will put into CurContext.
4307         // Also store them here so that they can be part of the
4308         // DeclStmt that gets created in this case.
4309         // FIXME: Also return the IndirectFieldDecls created by
4310         // BuildAnonymousStructOr union, for the same reason?
4311         if (CurContext->isFunctionOrMethod())
4312           AnonRecord = Record;
4313         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4314                                            Context.getPrintingPolicy());
4315       }
4316 
4317       DeclaresAnything = false;
4318     }
4319   }
4320 
4321   // C11 6.7.2.1p2:
4322   //   A struct-declaration that does not declare an anonymous structure or
4323   //   anonymous union shall contain a struct-declarator-list.
4324   //
4325   // This rule also existed in C89 and C99; the grammar for struct-declaration
4326   // did not permit a struct-declaration without a struct-declarator-list.
4327   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4328       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4329     // Check for Microsoft C extension: anonymous struct/union member.
4330     // Handle 2 kinds of anonymous struct/union:
4331     //   struct STRUCT;
4332     //   union UNION;
4333     // and
4334     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4335     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4336     if ((Tag && Tag->getDeclName()) ||
4337         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4338       RecordDecl *Record = nullptr;
4339       if (Tag)
4340         Record = dyn_cast<RecordDecl>(Tag);
4341       else if (const RecordType *RT =
4342                    DS.getRepAsType().get()->getAsStructureType())
4343         Record = RT->getDecl();
4344       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4345         Record = UT->getDecl();
4346 
4347       if (Record && getLangOpts().MicrosoftExt) {
4348         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4349             << Record->isUnion() << DS.getSourceRange();
4350         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4351       }
4352 
4353       DeclaresAnything = false;
4354     }
4355   }
4356 
4357   // Skip all the checks below if we have a type error.
4358   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4359       (TagD && TagD->isInvalidDecl()))
4360     return TagD;
4361 
4362   if (getLangOpts().CPlusPlus &&
4363       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4364     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4365       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4366           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4367         DeclaresAnything = false;
4368 
4369   if (!DS.isMissingDeclaratorOk()) {
4370     // Customize diagnostic for a typedef missing a name.
4371     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4372       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4373           << DS.getSourceRange();
4374     else
4375       DeclaresAnything = false;
4376   }
4377 
4378   if (DS.isModulePrivateSpecified() &&
4379       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4380     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4381       << Tag->getTagKind()
4382       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4383 
4384   ActOnDocumentableDecl(TagD);
4385 
4386   // C 6.7/2:
4387   //   A declaration [...] shall declare at least a declarator [...], a tag,
4388   //   or the members of an enumeration.
4389   // C++ [dcl.dcl]p3:
4390   //   [If there are no declarators], and except for the declaration of an
4391   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4392   //   names into the program, or shall redeclare a name introduced by a
4393   //   previous declaration.
4394   if (!DeclaresAnything) {
4395     // In C, we allow this as a (popular) extension / bug. Don't bother
4396     // producing further diagnostics for redundant qualifiers after this.
4397     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4398     return TagD;
4399   }
4400 
4401   // C++ [dcl.stc]p1:
4402   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4403   //   init-declarator-list of the declaration shall not be empty.
4404   // C++ [dcl.fct.spec]p1:
4405   //   If a cv-qualifier appears in a decl-specifier-seq, the
4406   //   init-declarator-list of the declaration shall not be empty.
4407   //
4408   // Spurious qualifiers here appear to be valid in C.
4409   unsigned DiagID = diag::warn_standalone_specifier;
4410   if (getLangOpts().CPlusPlus)
4411     DiagID = diag::ext_standalone_specifier;
4412 
4413   // Note that a linkage-specification sets a storage class, but
4414   // 'extern "C" struct foo;' is actually valid and not theoretically
4415   // useless.
4416   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4417     if (SCS == DeclSpec::SCS_mutable)
4418       // Since mutable is not a viable storage class specifier in C, there is
4419       // no reason to treat it as an extension. Instead, diagnose as an error.
4420       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4421     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4422       Diag(DS.getStorageClassSpecLoc(), DiagID)
4423         << DeclSpec::getSpecifierName(SCS);
4424   }
4425 
4426   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4427     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4428       << DeclSpec::getSpecifierName(TSCS);
4429   if (DS.getTypeQualifiers()) {
4430     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4431       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4432     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4433       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4434     // Restrict is covered above.
4435     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4436       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4437     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4438       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4439   }
4440 
4441   // Warn about ignored type attributes, for example:
4442   // __attribute__((aligned)) struct A;
4443   // Attributes should be placed after tag to apply to type declaration.
4444   if (!DS.getAttributes().empty()) {
4445     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4446     if (TypeSpecType == DeclSpec::TST_class ||
4447         TypeSpecType == DeclSpec::TST_struct ||
4448         TypeSpecType == DeclSpec::TST_interface ||
4449         TypeSpecType == DeclSpec::TST_union ||
4450         TypeSpecType == DeclSpec::TST_enum) {
4451       for (const ParsedAttr &AL : DS.getAttributes())
4452         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4453             << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4454     }
4455   }
4456 
4457   return TagD;
4458 }
4459 
4460 /// We are trying to inject an anonymous member into the given scope;
4461 /// check if there's an existing declaration that can't be overloaded.
4462 ///
4463 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,bool IsUnion)4464 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4465                                          Scope *S,
4466                                          DeclContext *Owner,
4467                                          DeclarationName Name,
4468                                          SourceLocation NameLoc,
4469                                          bool IsUnion) {
4470   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4471                  Sema::ForVisibleRedeclaration);
4472   if (!SemaRef.LookupName(R, S)) return false;
4473 
4474   // Pick a representative declaration.
4475   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4476   assert(PrevDecl && "Expected a non-null Decl");
4477 
4478   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4479     return false;
4480 
4481   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4482     << IsUnion << Name;
4483   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4484 
4485   return true;
4486 }
4487 
4488 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4489 /// anonymous struct or union AnonRecord into the owning context Owner
4490 /// and scope S. This routine will be invoked just after we realize
4491 /// that an unnamed union or struct is actually an anonymous union or
4492 /// struct, e.g.,
4493 ///
4494 /// @code
4495 /// union {
4496 ///   int i;
4497 ///   float f;
4498 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4499 ///    // f into the surrounding scope.x
4500 /// @endcode
4501 ///
4502 /// This routine is recursive, injecting the names of nested anonymous
4503 /// structs/unions into the owning context and scope as well.
4504 static bool
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining)4505 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4506                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4507                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4508   bool Invalid = false;
4509 
4510   // Look every FieldDecl and IndirectFieldDecl with a name.
4511   for (auto *D : AnonRecord->decls()) {
4512     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4513         cast<NamedDecl>(D)->getDeclName()) {
4514       ValueDecl *VD = cast<ValueDecl>(D);
4515       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4516                                        VD->getLocation(),
4517                                        AnonRecord->isUnion())) {
4518         // C++ [class.union]p2:
4519         //   The names of the members of an anonymous union shall be
4520         //   distinct from the names of any other entity in the
4521         //   scope in which the anonymous union is declared.
4522         Invalid = true;
4523       } else {
4524         // C++ [class.union]p2:
4525         //   For the purpose of name lookup, after the anonymous union
4526         //   definition, the members of the anonymous union are
4527         //   considered to have been defined in the scope in which the
4528         //   anonymous union is declared.
4529         unsigned OldChainingSize = Chaining.size();
4530         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4531           Chaining.append(IF->chain_begin(), IF->chain_end());
4532         else
4533           Chaining.push_back(VD);
4534 
4535         assert(Chaining.size() >= 2);
4536         NamedDecl **NamedChain =
4537           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4538         for (unsigned i = 0; i < Chaining.size(); i++)
4539           NamedChain[i] = Chaining[i];
4540 
4541         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4542             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4543             VD->getType(), {NamedChain, Chaining.size()});
4544 
4545         for (const auto *Attr : VD->attrs())
4546           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4547 
4548         IndirectField->setAccess(AS);
4549         IndirectField->setImplicit();
4550         SemaRef.PushOnScopeChains(IndirectField, S);
4551 
4552         // That includes picking up the appropriate access specifier.
4553         if (AS != AS_none) IndirectField->setAccess(AS);
4554 
4555         Chaining.resize(OldChainingSize);
4556       }
4557     }
4558   }
4559 
4560   return Invalid;
4561 }
4562 
4563 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4564 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4565 /// illegal input values are mapped to SC_None.
4566 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)4567 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4568   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4569   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4570          "Parser allowed 'typedef' as storage class VarDecl.");
4571   switch (StorageClassSpec) {
4572   case DeclSpec::SCS_unspecified:    return SC_None;
4573   case DeclSpec::SCS_extern:
4574     if (DS.isExternInLinkageSpec())
4575       return SC_None;
4576     return SC_Extern;
4577   case DeclSpec::SCS_static:         return SC_Static;
4578   case DeclSpec::SCS_auto:           return SC_Auto;
4579   case DeclSpec::SCS_register:       return SC_Register;
4580   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4581     // Illegal SCSs map to None: error reporting is up to the caller.
4582   case DeclSpec::SCS_mutable:        // Fall through.
4583   case DeclSpec::SCS_typedef:        return SC_None;
4584   }
4585   llvm_unreachable("unknown storage class specifier");
4586 }
4587 
findDefaultInitializer(const CXXRecordDecl * Record)4588 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4589   assert(Record->hasInClassInitializer());
4590 
4591   for (const auto *I : Record->decls()) {
4592     const auto *FD = dyn_cast<FieldDecl>(I);
4593     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4594       FD = IFD->getAnonField();
4595     if (FD && FD->hasInClassInitializer())
4596       return FD->getLocation();
4597   }
4598 
4599   llvm_unreachable("couldn't find in-class initializer");
4600 }
4601 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)4602 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4603                                       SourceLocation DefaultInitLoc) {
4604   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4605     return;
4606 
4607   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4608   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4609 }
4610 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)4611 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4612                                       CXXRecordDecl *AnonUnion) {
4613   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4614     return;
4615 
4616   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4617 }
4618 
4619 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4620 /// anonymous structure or union. Anonymous unions are a C++ feature
4621 /// (C++ [class.union]) and a C11 feature; anonymous structures
4622 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)4623 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4624                                         AccessSpecifier AS,
4625                                         RecordDecl *Record,
4626                                         const PrintingPolicy &Policy) {
4627   DeclContext *Owner = Record->getDeclContext();
4628 
4629   // Diagnose whether this anonymous struct/union is an extension.
4630   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4631     Diag(Record->getLocation(), diag::ext_anonymous_union);
4632   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4633     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4634   else if (!Record->isUnion() && !getLangOpts().C11)
4635     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4636 
4637   // C and C++ require different kinds of checks for anonymous
4638   // structs/unions.
4639   bool Invalid = false;
4640   if (getLangOpts().CPlusPlus) {
4641     const char *PrevSpec = nullptr;
4642     unsigned DiagID;
4643     if (Record->isUnion()) {
4644       // C++ [class.union]p6:
4645       // C++17 [class.union.anon]p2:
4646       //   Anonymous unions declared in a named namespace or in the
4647       //   global namespace shall be declared static.
4648       DeclContext *OwnerScope = Owner->getRedeclContext();
4649       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4650           (OwnerScope->isTranslationUnit() ||
4651            (OwnerScope->isNamespace() &&
4652             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4653         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4654           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4655 
4656         // Recover by adding 'static'.
4657         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4658                                PrevSpec, DiagID, Policy);
4659       }
4660       // C++ [class.union]p6:
4661       //   A storage class is not allowed in a declaration of an
4662       //   anonymous union in a class scope.
4663       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4664                isa<RecordDecl>(Owner)) {
4665         Diag(DS.getStorageClassSpecLoc(),
4666              diag::err_anonymous_union_with_storage_spec)
4667           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4668 
4669         // Recover by removing the storage specifier.
4670         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4671                                SourceLocation(),
4672                                PrevSpec, DiagID, Context.getPrintingPolicy());
4673       }
4674     }
4675 
4676     // Ignore const/volatile/restrict qualifiers.
4677     if (DS.getTypeQualifiers()) {
4678       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4679         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4680           << Record->isUnion() << "const"
4681           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4682       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4683         Diag(DS.getVolatileSpecLoc(),
4684              diag::ext_anonymous_struct_union_qualified)
4685           << Record->isUnion() << "volatile"
4686           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4687       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4688         Diag(DS.getRestrictSpecLoc(),
4689              diag::ext_anonymous_struct_union_qualified)
4690           << Record->isUnion() << "restrict"
4691           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4692       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4693         Diag(DS.getAtomicSpecLoc(),
4694              diag::ext_anonymous_struct_union_qualified)
4695           << Record->isUnion() << "_Atomic"
4696           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4697       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4698         Diag(DS.getUnalignedSpecLoc(),
4699              diag::ext_anonymous_struct_union_qualified)
4700           << Record->isUnion() << "__unaligned"
4701           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4702 
4703       DS.ClearTypeQualifiers();
4704     }
4705 
4706     // C++ [class.union]p2:
4707     //   The member-specification of an anonymous union shall only
4708     //   define non-static data members. [Note: nested types and
4709     //   functions cannot be declared within an anonymous union. ]
4710     for (auto *Mem : Record->decls()) {
4711       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4712         // C++ [class.union]p3:
4713         //   An anonymous union shall not have private or protected
4714         //   members (clause 11).
4715         assert(FD->getAccess() != AS_none);
4716         if (FD->getAccess() != AS_public) {
4717           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4718             << Record->isUnion() << (FD->getAccess() == AS_protected);
4719           Invalid = true;
4720         }
4721 
4722         // C++ [class.union]p1
4723         //   An object of a class with a non-trivial constructor, a non-trivial
4724         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4725         //   assignment operator cannot be a member of a union, nor can an
4726         //   array of such objects.
4727         if (CheckNontrivialField(FD))
4728           Invalid = true;
4729       } else if (Mem->isImplicit()) {
4730         // Any implicit members are fine.
4731       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4732         // This is a type that showed up in an
4733         // elaborated-type-specifier inside the anonymous struct or
4734         // union, but which actually declares a type outside of the
4735         // anonymous struct or union. It's okay.
4736       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4737         if (!MemRecord->isAnonymousStructOrUnion() &&
4738             MemRecord->getDeclName()) {
4739           // Visual C++ allows type definition in anonymous struct or union.
4740           if (getLangOpts().MicrosoftExt)
4741             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4742               << Record->isUnion();
4743           else {
4744             // This is a nested type declaration.
4745             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4746               << Record->isUnion();
4747             Invalid = true;
4748           }
4749         } else {
4750           // This is an anonymous type definition within another anonymous type.
4751           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4752           // not part of standard C++.
4753           Diag(MemRecord->getLocation(),
4754                diag::ext_anonymous_record_with_anonymous_type)
4755             << Record->isUnion();
4756         }
4757       } else if (isa<AccessSpecDecl>(Mem)) {
4758         // Any access specifier is fine.
4759       } else if (isa<StaticAssertDecl>(Mem)) {
4760         // In C++1z, static_assert declarations are also fine.
4761       } else {
4762         // We have something that isn't a non-static data
4763         // member. Complain about it.
4764         unsigned DK = diag::err_anonymous_record_bad_member;
4765         if (isa<TypeDecl>(Mem))
4766           DK = diag::err_anonymous_record_with_type;
4767         else if (isa<FunctionDecl>(Mem))
4768           DK = diag::err_anonymous_record_with_function;
4769         else if (isa<VarDecl>(Mem))
4770           DK = diag::err_anonymous_record_with_static;
4771 
4772         // Visual C++ allows type definition in anonymous struct or union.
4773         if (getLangOpts().MicrosoftExt &&
4774             DK == diag::err_anonymous_record_with_type)
4775           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4776             << Record->isUnion();
4777         else {
4778           Diag(Mem->getLocation(), DK) << Record->isUnion();
4779           Invalid = true;
4780         }
4781       }
4782     }
4783 
4784     // C++11 [class.union]p8 (DR1460):
4785     //   At most one variant member of a union may have a
4786     //   brace-or-equal-initializer.
4787     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4788         Owner->isRecord())
4789       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4790                                 cast<CXXRecordDecl>(Record));
4791   }
4792 
4793   if (!Record->isUnion() && !Owner->isRecord()) {
4794     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4795       << getLangOpts().CPlusPlus;
4796     Invalid = true;
4797   }
4798 
4799   // Mock up a declarator.
4800   Declarator Dc(DS, DeclaratorContext::MemberContext);
4801   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4802   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4803 
4804   // Create a declaration for this anonymous struct/union.
4805   NamedDecl *Anon = nullptr;
4806   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4807     Anon = FieldDecl::Create(
4808         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4809         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4810         /*BitWidth=*/nullptr, /*Mutable=*/false,
4811         /*InitStyle=*/ICIS_NoInit);
4812     Anon->setAccess(AS);
4813     if (getLangOpts().CPlusPlus)
4814       FieldCollector->Add(cast<FieldDecl>(Anon));
4815   } else {
4816     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4817     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4818     if (SCSpec == DeclSpec::SCS_mutable) {
4819       // mutable can only appear on non-static class members, so it's always
4820       // an error here
4821       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4822       Invalid = true;
4823       SC = SC_None;
4824     }
4825 
4826     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4827                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4828                            Context.getTypeDeclType(Record), TInfo, SC);
4829 
4830     // Default-initialize the implicit variable. This initialization will be
4831     // trivial in almost all cases, except if a union member has an in-class
4832     // initializer:
4833     //   union { int n = 0; };
4834     ActOnUninitializedDecl(Anon);
4835   }
4836   Anon->setImplicit();
4837 
4838   // Mark this as an anonymous struct/union type.
4839   Record->setAnonymousStructOrUnion(true);
4840 
4841   // Add the anonymous struct/union object to the current
4842   // context. We'll be referencing this object when we refer to one of
4843   // its members.
4844   Owner->addDecl(Anon);
4845 
4846   // Inject the members of the anonymous struct/union into the owning
4847   // context and into the identifier resolver chain for name lookup
4848   // purposes.
4849   SmallVector<NamedDecl*, 2> Chain;
4850   Chain.push_back(Anon);
4851 
4852   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4853     Invalid = true;
4854 
4855   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4856     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4857       Decl *ManglingContextDecl;
4858       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4859               NewVD->getDeclContext(), ManglingContextDecl)) {
4860         Context.setManglingNumber(
4861             NewVD, MCtx->getManglingNumber(
4862                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4863         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4864       }
4865     }
4866   }
4867 
4868   if (Invalid)
4869     Anon->setInvalidDecl();
4870 
4871   return Anon;
4872 }
4873 
4874 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4875 /// Microsoft C anonymous structure.
4876 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4877 /// Example:
4878 ///
4879 /// struct A { int a; };
4880 /// struct B { struct A; int b; };
4881 ///
4882 /// void foo() {
4883 ///   B var;
4884 ///   var.a = 3;
4885 /// }
4886 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)4887 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4888                                            RecordDecl *Record) {
4889   assert(Record && "expected a record!");
4890 
4891   // Mock up a declarator.
4892   Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4893   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4894   assert(TInfo && "couldn't build declarator info for anonymous struct");
4895 
4896   auto *ParentDecl = cast<RecordDecl>(CurContext);
4897   QualType RecTy = Context.getTypeDeclType(Record);
4898 
4899   // Create a declaration for this anonymous struct.
4900   NamedDecl *Anon =
4901       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4902                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4903                         /*BitWidth=*/nullptr, /*Mutable=*/false,
4904                         /*InitStyle=*/ICIS_NoInit);
4905   Anon->setImplicit();
4906 
4907   // Add the anonymous struct object to the current context.
4908   CurContext->addDecl(Anon);
4909 
4910   // Inject the members of the anonymous struct into the current
4911   // context and into the identifier resolver chain for name lookup
4912   // purposes.
4913   SmallVector<NamedDecl*, 2> Chain;
4914   Chain.push_back(Anon);
4915 
4916   RecordDecl *RecordDef = Record->getDefinition();
4917   if (RequireCompleteType(Anon->getLocation(), RecTy,
4918                           diag::err_field_incomplete) ||
4919       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4920                                           AS_none, Chain)) {
4921     Anon->setInvalidDecl();
4922     ParentDecl->setInvalidDecl();
4923   }
4924 
4925   return Anon;
4926 }
4927 
4928 /// GetNameForDeclarator - Determine the full declaration name for the
4929 /// given Declarator.
GetNameForDeclarator(Declarator & D)4930 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4931   return GetNameFromUnqualifiedId(D.getName());
4932 }
4933 
4934 /// Retrieves the declaration name from a parsed unqualified-id.
4935 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4936 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4937   DeclarationNameInfo NameInfo;
4938   NameInfo.setLoc(Name.StartLocation);
4939 
4940   switch (Name.getKind()) {
4941 
4942   case UnqualifiedIdKind::IK_ImplicitSelfParam:
4943   case UnqualifiedIdKind::IK_Identifier:
4944     NameInfo.setName(Name.Identifier);
4945     return NameInfo;
4946 
4947   case UnqualifiedIdKind::IK_DeductionGuideName: {
4948     // C++ [temp.deduct.guide]p3:
4949     //   The simple-template-id shall name a class template specialization.
4950     //   The template-name shall be the same identifier as the template-name
4951     //   of the simple-template-id.
4952     // These together intend to imply that the template-name shall name a
4953     // class template.
4954     // FIXME: template<typename T> struct X {};
4955     //        template<typename T> using Y = X<T>;
4956     //        Y(int) -> Y<int>;
4957     //   satisfies these rules but does not name a class template.
4958     TemplateName TN = Name.TemplateName.get().get();
4959     auto *Template = TN.getAsTemplateDecl();
4960     if (!Template || !isa<ClassTemplateDecl>(Template)) {
4961       Diag(Name.StartLocation,
4962            diag::err_deduction_guide_name_not_class_template)
4963         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4964       if (Template)
4965         Diag(Template->getLocation(), diag::note_template_decl_here);
4966       return DeclarationNameInfo();
4967     }
4968 
4969     NameInfo.setName(
4970         Context.DeclarationNames.getCXXDeductionGuideName(Template));
4971     return NameInfo;
4972   }
4973 
4974   case UnqualifiedIdKind::IK_OperatorFunctionId:
4975     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4976                                            Name.OperatorFunctionId.Operator));
4977     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4978       = Name.OperatorFunctionId.SymbolLocations[0];
4979     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4980       = Name.EndLocation.getRawEncoding();
4981     return NameInfo;
4982 
4983   case UnqualifiedIdKind::IK_LiteralOperatorId:
4984     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4985                                                            Name.Identifier));
4986     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4987     return NameInfo;
4988 
4989   case UnqualifiedIdKind::IK_ConversionFunctionId: {
4990     TypeSourceInfo *TInfo;
4991     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4992     if (Ty.isNull())
4993       return DeclarationNameInfo();
4994     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4995                                                Context.getCanonicalType(Ty)));
4996     NameInfo.setNamedTypeInfo(TInfo);
4997     return NameInfo;
4998   }
4999 
5000   case UnqualifiedIdKind::IK_ConstructorName: {
5001     TypeSourceInfo *TInfo;
5002     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5003     if (Ty.isNull())
5004       return DeclarationNameInfo();
5005     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5006                                               Context.getCanonicalType(Ty)));
5007     NameInfo.setNamedTypeInfo(TInfo);
5008     return NameInfo;
5009   }
5010 
5011   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5012     // In well-formed code, we can only have a constructor
5013     // template-id that refers to the current context, so go there
5014     // to find the actual type being constructed.
5015     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5016     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5017       return DeclarationNameInfo();
5018 
5019     // Determine the type of the class being constructed.
5020     QualType CurClassType = Context.getTypeDeclType(CurClass);
5021 
5022     // FIXME: Check two things: that the template-id names the same type as
5023     // CurClassType, and that the template-id does not occur when the name
5024     // was qualified.
5025 
5026     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5027                                     Context.getCanonicalType(CurClassType)));
5028     // FIXME: should we retrieve TypeSourceInfo?
5029     NameInfo.setNamedTypeInfo(nullptr);
5030     return NameInfo;
5031   }
5032 
5033   case UnqualifiedIdKind::IK_DestructorName: {
5034     TypeSourceInfo *TInfo;
5035     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5036     if (Ty.isNull())
5037       return DeclarationNameInfo();
5038     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5039                                               Context.getCanonicalType(Ty)));
5040     NameInfo.setNamedTypeInfo(TInfo);
5041     return NameInfo;
5042   }
5043 
5044   case UnqualifiedIdKind::IK_TemplateId: {
5045     TemplateName TName = Name.TemplateId->Template.get();
5046     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5047     return Context.getNameForTemplate(TName, TNameLoc);
5048   }
5049 
5050   } // switch (Name.getKind())
5051 
5052   llvm_unreachable("Unknown name kind");
5053 }
5054 
getCoreType(QualType Ty)5055 static QualType getCoreType(QualType Ty) {
5056   do {
5057     if (Ty->isPointerType() || Ty->isReferenceType())
5058       Ty = Ty->getPointeeType();
5059     else if (Ty->isArrayType())
5060       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5061     else
5062       return Ty.withoutLocalFastQualifiers();
5063   } while (true);
5064 }
5065 
5066 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5067 /// and Definition have "nearly" matching parameters. This heuristic is
5068 /// used to improve diagnostics in the case where an out-of-line function
5069 /// definition doesn't match any declaration within the class or namespace.
5070 /// Also sets Params to the list of indices to the parameters that differ
5071 /// between the declaration and the definition. If hasSimilarParameters
5072 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)5073 static bool hasSimilarParameters(ASTContext &Context,
5074                                      FunctionDecl *Declaration,
5075                                      FunctionDecl *Definition,
5076                                      SmallVectorImpl<unsigned> &Params) {
5077   Params.clear();
5078   if (Declaration->param_size() != Definition->param_size())
5079     return false;
5080   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5081     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5082     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5083 
5084     // The parameter types are identical
5085     if (Context.hasSameType(DefParamTy, DeclParamTy))
5086       continue;
5087 
5088     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5089     QualType DefParamBaseTy = getCoreType(DefParamTy);
5090     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5091     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5092 
5093     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5094         (DeclTyName && DeclTyName == DefTyName))
5095       Params.push_back(Idx);
5096     else  // The two parameters aren't even close
5097       return false;
5098   }
5099 
5100   return true;
5101 }
5102 
5103 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5104 /// declarator needs to be rebuilt in the current instantiation.
5105 /// Any bits of declarator which appear before the name are valid for
5106 /// consideration here.  That's specifically the type in the decl spec
5107 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)5108 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5109                                                     DeclarationName Name) {
5110   // The types we specifically need to rebuild are:
5111   //   - typenames, typeofs, and decltypes
5112   //   - types which will become injected class names
5113   // Of course, we also need to rebuild any type referencing such a
5114   // type.  It's safest to just say "dependent", but we call out a
5115   // few cases here.
5116 
5117   DeclSpec &DS = D.getMutableDeclSpec();
5118   switch (DS.getTypeSpecType()) {
5119   case DeclSpec::TST_typename:
5120   case DeclSpec::TST_typeofType:
5121   case DeclSpec::TST_underlyingType:
5122   case DeclSpec::TST_atomic: {
5123     // Grab the type from the parser.
5124     TypeSourceInfo *TSI = nullptr;
5125     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5126     if (T.isNull() || !T->isDependentType()) break;
5127 
5128     // Make sure there's a type source info.  This isn't really much
5129     // of a waste; most dependent types should have type source info
5130     // attached already.
5131     if (!TSI)
5132       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5133 
5134     // Rebuild the type in the current instantiation.
5135     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5136     if (!TSI) return true;
5137 
5138     // Store the new type back in the decl spec.
5139     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5140     DS.UpdateTypeRep(LocType);
5141     break;
5142   }
5143 
5144   case DeclSpec::TST_decltype:
5145   case DeclSpec::TST_typeofExpr: {
5146     Expr *E = DS.getRepAsExpr();
5147     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5148     if (Result.isInvalid()) return true;
5149     DS.UpdateExprRep(Result.get());
5150     break;
5151   }
5152 
5153   default:
5154     // Nothing to do for these decl specs.
5155     break;
5156   }
5157 
5158   // It doesn't matter what order we do this in.
5159   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5160     DeclaratorChunk &Chunk = D.getTypeObject(I);
5161 
5162     // The only type information in the declarator which can come
5163     // before the declaration name is the base type of a member
5164     // pointer.
5165     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5166       continue;
5167 
5168     // Rebuild the scope specifier in-place.
5169     CXXScopeSpec &SS = Chunk.Mem.Scope();
5170     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5171       return true;
5172   }
5173 
5174   return false;
5175 }
5176 
ActOnDeclarator(Scope * S,Declarator & D)5177 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5178   D.setFunctionDefinitionKind(FDK_Declaration);
5179   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5180 
5181   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5182       Dcl && Dcl->getDeclContext()->isFileContext())
5183     Dcl->setTopLevelDeclInObjCContainer();
5184 
5185   if (getLangOpts().OpenCL)
5186     setCurrentOpenCLExtensionForDecl(Dcl);
5187 
5188   return Dcl;
5189 }
5190 
5191 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5192 ///   If T is the name of a class, then each of the following shall have a
5193 ///   name different from T:
5194 ///     - every static data member of class T;
5195 ///     - every member function of class T
5196 ///     - every member of class T that is itself a type;
5197 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)5198 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5199                                    DeclarationNameInfo NameInfo) {
5200   DeclarationName Name = NameInfo.getName();
5201 
5202   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5203   while (Record && Record->isAnonymousStructOrUnion())
5204     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5205   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5206     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5207     return true;
5208   }
5209 
5210   return false;
5211 }
5212 
5213 /// Diagnose a declaration whose declarator-id has the given
5214 /// nested-name-specifier.
5215 ///
5216 /// \param SS The nested-name-specifier of the declarator-id.
5217 ///
5218 /// \param DC The declaration context to which the nested-name-specifier
5219 /// resolves.
5220 ///
5221 /// \param Name The name of the entity being declared.
5222 ///
5223 /// \param Loc The location of the name of the entity being declared.
5224 ///
5225 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5226 /// we're declaring an explicit / partial specialization / instantiation.
5227 ///
5228 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc,bool IsTemplateId)5229 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5230                                         DeclarationName Name,
5231                                         SourceLocation Loc, bool IsTemplateId) {
5232   DeclContext *Cur = CurContext;
5233   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5234     Cur = Cur->getParent();
5235 
5236   // If the user provided a superfluous scope specifier that refers back to the
5237   // class in which the entity is already declared, diagnose and ignore it.
5238   //
5239   // class X {
5240   //   void X::f();
5241   // };
5242   //
5243   // Note, it was once ill-formed to give redundant qualification in all
5244   // contexts, but that rule was removed by DR482.
5245   if (Cur->Equals(DC)) {
5246     if (Cur->isRecord()) {
5247       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5248                                       : diag::err_member_extra_qualification)
5249         << Name << FixItHint::CreateRemoval(SS.getRange());
5250       SS.clear();
5251     } else {
5252       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5253     }
5254     return false;
5255   }
5256 
5257   // Check whether the qualifying scope encloses the scope of the original
5258   // declaration. For a template-id, we perform the checks in
5259   // CheckTemplateSpecializationScope.
5260   if (!Cur->Encloses(DC) && !IsTemplateId) {
5261     if (Cur->isRecord())
5262       Diag(Loc, diag::err_member_qualification)
5263         << Name << SS.getRange();
5264     else if (isa<TranslationUnitDecl>(DC))
5265       Diag(Loc, diag::err_invalid_declarator_global_scope)
5266         << Name << SS.getRange();
5267     else if (isa<FunctionDecl>(Cur))
5268       Diag(Loc, diag::err_invalid_declarator_in_function)
5269         << Name << SS.getRange();
5270     else if (isa<BlockDecl>(Cur))
5271       Diag(Loc, diag::err_invalid_declarator_in_block)
5272         << Name << SS.getRange();
5273     else
5274       Diag(Loc, diag::err_invalid_declarator_scope)
5275       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5276 
5277     return true;
5278   }
5279 
5280   if (Cur->isRecord()) {
5281     // Cannot qualify members within a class.
5282     Diag(Loc, diag::err_member_qualification)
5283       << Name << SS.getRange();
5284     SS.clear();
5285 
5286     // C++ constructors and destructors with incorrect scopes can break
5287     // our AST invariants by having the wrong underlying types. If
5288     // that's the case, then drop this declaration entirely.
5289     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5290          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5291         !Context.hasSameType(Name.getCXXNameType(),
5292                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5293       return true;
5294 
5295     return false;
5296   }
5297 
5298   // C++11 [dcl.meaning]p1:
5299   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5300   //   not begin with a decltype-specifer"
5301   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5302   while (SpecLoc.getPrefix())
5303     SpecLoc = SpecLoc.getPrefix();
5304   if (dyn_cast_or_null<DecltypeType>(
5305         SpecLoc.getNestedNameSpecifier()->getAsType()))
5306     Diag(Loc, diag::err_decltype_in_declarator)
5307       << SpecLoc.getTypeLoc().getSourceRange();
5308 
5309   return false;
5310 }
5311 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)5312 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5313                                   MultiTemplateParamsArg TemplateParamLists) {
5314   // TODO: consider using NameInfo for diagnostic.
5315   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5316   DeclarationName Name = NameInfo.getName();
5317 
5318   // All of these full declarators require an identifier.  If it doesn't have
5319   // one, the ParsedFreeStandingDeclSpec action should be used.
5320   if (D.isDecompositionDeclarator()) {
5321     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5322   } else if (!Name) {
5323     if (!D.isInvalidType())  // Reject this if we think it is valid.
5324       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5325           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5326     return nullptr;
5327   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5328     return nullptr;
5329 
5330   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5331   // we find one that is.
5332   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5333          (S->getFlags() & Scope::TemplateParamScope) != 0)
5334     S = S->getParent();
5335 
5336   DeclContext *DC = CurContext;
5337   if (D.getCXXScopeSpec().isInvalid())
5338     D.setInvalidType();
5339   else if (D.getCXXScopeSpec().isSet()) {
5340     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5341                                         UPPC_DeclarationQualifier))
5342       return nullptr;
5343 
5344     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5345     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5346     if (!DC || isa<EnumDecl>(DC)) {
5347       // If we could not compute the declaration context, it's because the
5348       // declaration context is dependent but does not refer to a class,
5349       // class template, or class template partial specialization. Complain
5350       // and return early, to avoid the coming semantic disaster.
5351       Diag(D.getIdentifierLoc(),
5352            diag::err_template_qualified_declarator_no_match)
5353         << D.getCXXScopeSpec().getScopeRep()
5354         << D.getCXXScopeSpec().getRange();
5355       return nullptr;
5356     }
5357     bool IsDependentContext = DC->isDependentContext();
5358 
5359     if (!IsDependentContext &&
5360         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5361       return nullptr;
5362 
5363     // If a class is incomplete, do not parse entities inside it.
5364     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5365       Diag(D.getIdentifierLoc(),
5366            diag::err_member_def_undefined_record)
5367         << Name << DC << D.getCXXScopeSpec().getRange();
5368       return nullptr;
5369     }
5370     if (!D.getDeclSpec().isFriendSpecified()) {
5371       if (diagnoseQualifiedDeclaration(
5372               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5373               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5374         if (DC->isRecord())
5375           return nullptr;
5376 
5377         D.setInvalidType();
5378       }
5379     }
5380 
5381     // Check whether we need to rebuild the type of the given
5382     // declaration in the current instantiation.
5383     if (EnteringContext && IsDependentContext &&
5384         TemplateParamLists.size() != 0) {
5385       ContextRAII SavedContext(*this, DC);
5386       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5387         D.setInvalidType();
5388     }
5389   }
5390 
5391   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5392   QualType R = TInfo->getType();
5393 
5394   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5395                                       UPPC_DeclarationType))
5396     D.setInvalidType();
5397 
5398   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5399                         forRedeclarationInCurContext());
5400 
5401   // See if this is a redefinition of a variable in the same scope.
5402   if (!D.getCXXScopeSpec().isSet()) {
5403     bool IsLinkageLookup = false;
5404     bool CreateBuiltins = false;
5405 
5406     // If the declaration we're planning to build will be a function
5407     // or object with linkage, then look for another declaration with
5408     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5409     //
5410     // If the declaration we're planning to build will be declared with
5411     // external linkage in the translation unit, create any builtin with
5412     // the same name.
5413     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5414       /* Do nothing*/;
5415     else if (CurContext->isFunctionOrMethod() &&
5416              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5417               R->isFunctionType())) {
5418       IsLinkageLookup = true;
5419       CreateBuiltins =
5420           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5421     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5422                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5423       CreateBuiltins = true;
5424 
5425     if (IsLinkageLookup) {
5426       Previous.clear(LookupRedeclarationWithLinkage);
5427       Previous.setRedeclarationKind(ForExternalRedeclaration);
5428     }
5429 
5430     LookupName(Previous, S, CreateBuiltins);
5431   } else { // Something like "int foo::x;"
5432     LookupQualifiedName(Previous, DC);
5433 
5434     // C++ [dcl.meaning]p1:
5435     //   When the declarator-id is qualified, the declaration shall refer to a
5436     //  previously declared member of the class or namespace to which the
5437     //  qualifier refers (or, in the case of a namespace, of an element of the
5438     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5439     //  thereof; [...]
5440     //
5441     // Note that we already checked the context above, and that we do not have
5442     // enough information to make sure that Previous contains the declaration
5443     // we want to match. For example, given:
5444     //
5445     //   class X {
5446     //     void f();
5447     //     void f(float);
5448     //   };
5449     //
5450     //   void X::f(int) { } // ill-formed
5451     //
5452     // In this case, Previous will point to the overload set
5453     // containing the two f's declared in X, but neither of them
5454     // matches.
5455 
5456     // C++ [dcl.meaning]p1:
5457     //   [...] the member shall not merely have been introduced by a
5458     //   using-declaration in the scope of the class or namespace nominated by
5459     //   the nested-name-specifier of the declarator-id.
5460     RemoveUsingDecls(Previous);
5461   }
5462 
5463   if (Previous.isSingleResult() &&
5464       Previous.getFoundDecl()->isTemplateParameter()) {
5465     // Maybe we will complain about the shadowed template parameter.
5466     if (!D.isInvalidType())
5467       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5468                                       Previous.getFoundDecl());
5469 
5470     // Just pretend that we didn't see the previous declaration.
5471     Previous.clear();
5472   }
5473 
5474   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5475     // Forget that the previous declaration is the injected-class-name.
5476     Previous.clear();
5477 
5478   // In C++, the previous declaration we find might be a tag type
5479   // (class or enum). In this case, the new declaration will hide the
5480   // tag type. Note that this applies to functions, function templates, and
5481   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5482   if (Previous.isSingleTagDecl() &&
5483       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5484       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5485     Previous.clear();
5486 
5487   // Check that there are no default arguments other than in the parameters
5488   // of a function declaration (C++ only).
5489   if (getLangOpts().CPlusPlus)
5490     CheckExtraCXXDefaultArguments(D);
5491 
5492   NamedDecl *New;
5493 
5494   bool AddToScope = true;
5495   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5496     if (TemplateParamLists.size()) {
5497       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5498       return nullptr;
5499     }
5500 
5501     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5502   } else if (R->isFunctionType()) {
5503     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5504                                   TemplateParamLists,
5505                                   AddToScope);
5506   } else {
5507     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5508                                   AddToScope);
5509   }
5510 
5511   if (!New)
5512     return nullptr;
5513 
5514   // If this has an identifier and is not a function template specialization,
5515   // add it to the scope stack.
5516   if (New->getDeclName() && AddToScope)
5517     PushOnScopeChains(New, S);
5518 
5519   if (isInOpenMPDeclareTargetContext())
5520     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5521 
5522   return New;
5523 }
5524 
5525 /// Helper method to turn variable array types into constant array
5526 /// types in certain situations which would otherwise be errors (for
5527 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5528 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5529                                                     ASTContext &Context,
5530                                                     bool &SizeIsNegative,
5531                                                     llvm::APSInt &Oversized) {
5532   // This method tries to turn a variable array into a constant
5533   // array even when the size isn't an ICE.  This is necessary
5534   // for compatibility with code that depends on gcc's buggy
5535   // constant expression folding, like struct {char x[(int)(char*)2];}
5536   SizeIsNegative = false;
5537   Oversized = 0;
5538 
5539   if (T->isDependentType())
5540     return QualType();
5541 
5542   QualifierCollector Qs;
5543   const Type *Ty = Qs.strip(T);
5544 
5545   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5546     QualType Pointee = PTy->getPointeeType();
5547     QualType FixedType =
5548         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5549                                             Oversized);
5550     if (FixedType.isNull()) return FixedType;
5551     FixedType = Context.getPointerType(FixedType);
5552     return Qs.apply(Context, FixedType);
5553   }
5554   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5555     QualType Inner = PTy->getInnerType();
5556     QualType FixedType =
5557         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5558                                             Oversized);
5559     if (FixedType.isNull()) return FixedType;
5560     FixedType = Context.getParenType(FixedType);
5561     return Qs.apply(Context, FixedType);
5562   }
5563 
5564   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5565   if (!VLATy)
5566     return QualType();
5567   // FIXME: We should probably handle this case
5568   if (VLATy->getElementType()->isVariablyModifiedType())
5569     return QualType();
5570 
5571   Expr::EvalResult Result;
5572   if (!VLATy->getSizeExpr() ||
5573       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5574     return QualType();
5575 
5576   llvm::APSInt Res = Result.Val.getInt();
5577 
5578   // Check whether the array size is negative.
5579   if (Res.isSigned() && Res.isNegative()) {
5580     SizeIsNegative = true;
5581     return QualType();
5582   }
5583 
5584   // Check whether the array is too large to be addressed.
5585   unsigned ActiveSizeBits
5586     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5587                                               Res);
5588   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5589     Oversized = Res;
5590     return QualType();
5591   }
5592 
5593   return Context.getConstantArrayType(VLATy->getElementType(),
5594                                       Res, ArrayType::Normal, 0);
5595 }
5596 
5597 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)5598 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5599   SrcTL = SrcTL.getUnqualifiedLoc();
5600   DstTL = DstTL.getUnqualifiedLoc();
5601   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5602     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5603     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5604                                       DstPTL.getPointeeLoc());
5605     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5606     return;
5607   }
5608   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5609     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5610     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5611                                       DstPTL.getInnerLoc());
5612     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5613     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5614     return;
5615   }
5616   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5617   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5618   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5619   TypeLoc DstElemTL = DstATL.getElementLoc();
5620   DstElemTL.initializeFullCopy(SrcElemTL);
5621   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5622   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5623   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5624 }
5625 
5626 /// Helper method to turn variable array types into constant array
5627 /// types in certain situations which would otherwise be errors (for
5628 /// GCC compatibility).
5629 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5630 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5631                                               ASTContext &Context,
5632                                               bool &SizeIsNegative,
5633                                               llvm::APSInt &Oversized) {
5634   QualType FixedTy
5635     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5636                                           SizeIsNegative, Oversized);
5637   if (FixedTy.isNull())
5638     return nullptr;
5639   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5640   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5641                                     FixedTInfo->getTypeLoc());
5642   return FixedTInfo;
5643 }
5644 
5645 /// Register the given locally-scoped extern "C" declaration so
5646 /// that it can be found later for redeclarations. We include any extern "C"
5647 /// declaration that is not visible in the translation unit here, not just
5648 /// function-scope declarations.
5649 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)5650 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5651   if (!getLangOpts().CPlusPlus &&
5652       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5653     // Don't need to track declarations in the TU in C.
5654     return;
5655 
5656   // Note that we have a locally-scoped external with this name.
5657   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5658 }
5659 
findLocallyScopedExternCDecl(DeclarationName Name)5660 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5661   // FIXME: We can have multiple results via __attribute__((overloadable)).
5662   auto Result = Context.getExternCContextDecl()->lookup(Name);
5663   return Result.empty() ? nullptr : *Result.begin();
5664 }
5665 
5666 /// Diagnose function specifiers on a declaration of an identifier that
5667 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)5668 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5669   // FIXME: We should probably indicate the identifier in question to avoid
5670   // confusion for constructs like "virtual int a(), b;"
5671   if (DS.isVirtualSpecified())
5672     Diag(DS.getVirtualSpecLoc(),
5673          diag::err_virtual_non_function);
5674 
5675   if (DS.isExplicitSpecified())
5676     Diag(DS.getExplicitSpecLoc(),
5677          diag::err_explicit_non_function);
5678 
5679   if (DS.isNoreturnSpecified())
5680     Diag(DS.getNoreturnSpecLoc(),
5681          diag::err_noreturn_non_function);
5682 }
5683 
5684 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)5685 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5686                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5687   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5688   if (D.getCXXScopeSpec().isSet()) {
5689     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5690       << D.getCXXScopeSpec().getRange();
5691     D.setInvalidType();
5692     // Pretend we didn't see the scope specifier.
5693     DC = CurContext;
5694     Previous.clear();
5695   }
5696 
5697   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5698 
5699   if (D.getDeclSpec().isInlineSpecified())
5700     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5701         << getLangOpts().CPlusPlus17;
5702   if (D.getDeclSpec().isConstexprSpecified())
5703     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5704       << 1;
5705 
5706   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5707     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5708       Diag(D.getName().StartLocation,
5709            diag::err_deduction_guide_invalid_specifier)
5710           << "typedef";
5711     else
5712       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5713           << D.getName().getSourceRange();
5714     return nullptr;
5715   }
5716 
5717   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5718   if (!NewTD) return nullptr;
5719 
5720   // Handle attributes prior to checking for duplicates in MergeVarDecl
5721   ProcessDeclAttributes(S, NewTD, D);
5722 
5723   CheckTypedefForVariablyModifiedType(S, NewTD);
5724 
5725   bool Redeclaration = D.isRedeclaration();
5726   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5727   D.setRedeclaration(Redeclaration);
5728   return ND;
5729 }
5730 
5731 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)5732 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5733   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5734   // then it shall have block scope.
5735   // Note that variably modified types must be fixed before merging the decl so
5736   // that redeclarations will match.
5737   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5738   QualType T = TInfo->getType();
5739   if (T->isVariablyModifiedType()) {
5740     setFunctionHasBranchProtectedScope();
5741 
5742     if (S->getFnParent() == nullptr) {
5743       bool SizeIsNegative;
5744       llvm::APSInt Oversized;
5745       TypeSourceInfo *FixedTInfo =
5746         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5747                                                       SizeIsNegative,
5748                                                       Oversized);
5749       if (FixedTInfo) {
5750         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5751         NewTD->setTypeSourceInfo(FixedTInfo);
5752       } else {
5753         if (SizeIsNegative)
5754           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5755         else if (T->isVariableArrayType())
5756           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5757         else if (Oversized.getBoolValue())
5758           Diag(NewTD->getLocation(), diag::err_array_too_large)
5759             << Oversized.toString(10);
5760         else
5761           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5762         NewTD->setInvalidDecl();
5763       }
5764     }
5765   }
5766 }
5767 
5768 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5769 /// declares a typedef-name, either using the 'typedef' type specifier or via
5770 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5771 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)5772 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5773                            LookupResult &Previous, bool &Redeclaration) {
5774 
5775   // Find the shadowed declaration before filtering for scope.
5776   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5777 
5778   // Merge the decl with the existing one if appropriate. If the decl is
5779   // in an outer scope, it isn't the same thing.
5780   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5781                        /*AllowInlineNamespace*/false);
5782   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5783   if (!Previous.empty()) {
5784     Redeclaration = true;
5785     MergeTypedefNameDecl(S, NewTD, Previous);
5786   }
5787 
5788   if (ShadowedDecl && !Redeclaration)
5789     CheckShadow(NewTD, ShadowedDecl, Previous);
5790 
5791   // If this is the C FILE type, notify the AST context.
5792   if (IdentifierInfo *II = NewTD->getIdentifier())
5793     if (!NewTD->isInvalidDecl() &&
5794         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5795       if (II->isStr("FILE"))
5796         Context.setFILEDecl(NewTD);
5797       else if (II->isStr("jmp_buf"))
5798         Context.setjmp_bufDecl(NewTD);
5799       else if (II->isStr("sigjmp_buf"))
5800         Context.setsigjmp_bufDecl(NewTD);
5801       else if (II->isStr("ucontext_t"))
5802         Context.setucontext_tDecl(NewTD);
5803     }
5804 
5805   return NewTD;
5806 }
5807 
5808 /// Determines whether the given declaration is an out-of-scope
5809 /// previous declaration.
5810 ///
5811 /// This routine should be invoked when name lookup has found a
5812 /// previous declaration (PrevDecl) that is not in the scope where a
5813 /// new declaration by the same name is being introduced. If the new
5814 /// declaration occurs in a local scope, previous declarations with
5815 /// linkage may still be considered previous declarations (C99
5816 /// 6.2.2p4-5, C++ [basic.link]p6).
5817 ///
5818 /// \param PrevDecl the previous declaration found by name
5819 /// lookup
5820 ///
5821 /// \param DC the context in which the new declaration is being
5822 /// declared.
5823 ///
5824 /// \returns true if PrevDecl is an out-of-scope previous declaration
5825 /// for a new delcaration with the same name.
5826 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)5827 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5828                                 ASTContext &Context) {
5829   if (!PrevDecl)
5830     return false;
5831 
5832   if (!PrevDecl->hasLinkage())
5833     return false;
5834 
5835   if (Context.getLangOpts().CPlusPlus) {
5836     // C++ [basic.link]p6:
5837     //   If there is a visible declaration of an entity with linkage
5838     //   having the same name and type, ignoring entities declared
5839     //   outside the innermost enclosing namespace scope, the block
5840     //   scope declaration declares that same entity and receives the
5841     //   linkage of the previous declaration.
5842     DeclContext *OuterContext = DC->getRedeclContext();
5843     if (!OuterContext->isFunctionOrMethod())
5844       // This rule only applies to block-scope declarations.
5845       return false;
5846 
5847     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5848     if (PrevOuterContext->isRecord())
5849       // We found a member function: ignore it.
5850       return false;
5851 
5852     // Find the innermost enclosing namespace for the new and
5853     // previous declarations.
5854     OuterContext = OuterContext->getEnclosingNamespaceContext();
5855     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5856 
5857     // The previous declaration is in a different namespace, so it
5858     // isn't the same function.
5859     if (!OuterContext->Equals(PrevOuterContext))
5860       return false;
5861   }
5862 
5863   return true;
5864 }
5865 
SetNestedNameSpecifier(Sema & S,DeclaratorDecl * DD,Declarator & D)5866 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
5867   CXXScopeSpec &SS = D.getCXXScopeSpec();
5868   if (!SS.isSet()) return;
5869   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
5870 }
5871 
inferObjCARCLifetime(ValueDecl * decl)5872 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5873   QualType type = decl->getType();
5874   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5875   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5876     // Various kinds of declaration aren't allowed to be __autoreleasing.
5877     unsigned kind = -1U;
5878     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5879       if (var->hasAttr<BlocksAttr>())
5880         kind = 0; // __block
5881       else if (!var->hasLocalStorage())
5882         kind = 1; // global
5883     } else if (isa<ObjCIvarDecl>(decl)) {
5884       kind = 3; // ivar
5885     } else if (isa<FieldDecl>(decl)) {
5886       kind = 2; // field
5887     }
5888 
5889     if (kind != -1U) {
5890       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5891         << kind;
5892     }
5893   } else if (lifetime == Qualifiers::OCL_None) {
5894     // Try to infer lifetime.
5895     if (!type->isObjCLifetimeType())
5896       return false;
5897 
5898     lifetime = type->getObjCARCImplicitLifetime();
5899     type = Context.getLifetimeQualifiedType(type, lifetime);
5900     decl->setType(type);
5901   }
5902 
5903   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5904     // Thread-local variables cannot have lifetime.
5905     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5906         var->getTLSKind()) {
5907       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5908         << var->getType();
5909       return true;
5910     }
5911   }
5912 
5913   return false;
5914 }
5915 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)5916 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5917   // Ensure that an auto decl is deduced otherwise the checks below might cache
5918   // the wrong linkage.
5919   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5920 
5921   // 'weak' only applies to declarations with external linkage.
5922   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5923     if (!ND.isExternallyVisible()) {
5924       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5925       ND.dropAttr<WeakAttr>();
5926     }
5927   }
5928   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5929     if (ND.isExternallyVisible()) {
5930       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5931       ND.dropAttr<WeakRefAttr>();
5932       ND.dropAttr<AliasAttr>();
5933     }
5934   }
5935 
5936   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5937     if (VD->hasInit()) {
5938       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5939         assert(VD->isThisDeclarationADefinition() &&
5940                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5941         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5942         VD->dropAttr<AliasAttr>();
5943       }
5944     }
5945   }
5946 
5947   // 'selectany' only applies to externally visible variable declarations.
5948   // It does not apply to functions.
5949   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5950     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5951       S.Diag(Attr->getLocation(),
5952              diag::err_attribute_selectany_non_extern_data);
5953       ND.dropAttr<SelectAnyAttr>();
5954     }
5955   }
5956 
5957   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5958     // dll attributes require external linkage. Static locals may have external
5959     // linkage but still cannot be explicitly imported or exported.
5960     auto *VD = dyn_cast<VarDecl>(&ND);
5961     if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5962       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5963         << &ND << Attr;
5964       ND.setInvalidDecl();
5965     }
5966   }
5967 
5968   // Virtual functions cannot be marked as 'notail'.
5969   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5970     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5971       if (MD->isVirtual()) {
5972         S.Diag(ND.getLocation(),
5973                diag::err_invalid_attribute_on_virtual_function)
5974             << Attr;
5975         ND.dropAttr<NotTailCalledAttr>();
5976       }
5977 
5978   // Check the attributes on the function type, if any.
5979   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
5980     // Don't declare this variable in the second operand of the for-statement;
5981     // GCC miscompiles that by ending its lifetime before evaluating the
5982     // third operand. See gcc.gnu.org/PR86769.
5983     AttributedTypeLoc ATL;
5984     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
5985          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
5986          TL = ATL.getModifiedLoc()) {
5987       // The [[lifetimebound]] attribute can be applied to the implicit object
5988       // parameter of a non-static member function (other than a ctor or dtor)
5989       // by applying it to the function type.
5990       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
5991         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
5992         if (!MD || MD->isStatic()) {
5993           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
5994               << !MD << A->getRange();
5995         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
5996           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
5997               << isa<CXXDestructorDecl>(MD) << A->getRange();
5998         }
5999       }
6000     }
6001   }
6002 }
6003 
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization,bool IsDefinition)6004 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6005                                            NamedDecl *NewDecl,
6006                                            bool IsSpecialization,
6007                                            bool IsDefinition) {
6008   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6009     return;
6010 
6011   bool IsTemplate = false;
6012   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6013     OldDecl = OldTD->getTemplatedDecl();
6014     IsTemplate = true;
6015     if (!IsSpecialization)
6016       IsDefinition = false;
6017   }
6018   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6019     NewDecl = NewTD->getTemplatedDecl();
6020     IsTemplate = true;
6021   }
6022 
6023   if (!OldDecl || !NewDecl)
6024     return;
6025 
6026   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6027   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6028   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6029   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6030 
6031   // dllimport and dllexport are inheritable attributes so we have to exclude
6032   // inherited attribute instances.
6033   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6034                     (NewExportAttr && !NewExportAttr->isInherited());
6035 
6036   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6037   // the only exception being explicit specializations.
6038   // Implicitly generated declarations are also excluded for now because there
6039   // is no other way to switch these to use dllimport or dllexport.
6040   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6041 
6042   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6043     // Allow with a warning for free functions and global variables.
6044     bool JustWarn = false;
6045     if (!OldDecl->isCXXClassMember()) {
6046       auto *VD = dyn_cast<VarDecl>(OldDecl);
6047       if (VD && !VD->getDescribedVarTemplate())
6048         JustWarn = true;
6049       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6050       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6051         JustWarn = true;
6052     }
6053 
6054     // We cannot change a declaration that's been used because IR has already
6055     // been emitted. Dllimported functions will still work though (modulo
6056     // address equality) as they can use the thunk.
6057     if (OldDecl->isUsed())
6058       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6059         JustWarn = false;
6060 
6061     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6062                                : diag::err_attribute_dll_redeclaration;
6063     S.Diag(NewDecl->getLocation(), DiagID)
6064         << NewDecl
6065         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6066     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6067     if (!JustWarn) {
6068       NewDecl->setInvalidDecl();
6069       return;
6070     }
6071   }
6072 
6073   // A redeclaration is not allowed to drop a dllimport attribute, the only
6074   // exceptions being inline function definitions (except for function
6075   // templates), local extern declarations, qualified friend declarations or
6076   // special MSVC extension: in the last case, the declaration is treated as if
6077   // it were marked dllexport.
6078   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6079   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6080   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6081     // Ignore static data because out-of-line definitions are diagnosed
6082     // separately.
6083     IsStaticDataMember = VD->isStaticDataMember();
6084     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6085                    VarDecl::DeclarationOnly;
6086   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6087     IsInline = FD->isInlined();
6088     IsQualifiedFriend = FD->getQualifier() &&
6089                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6090   }
6091 
6092   if (OldImportAttr && !HasNewAttr &&
6093       (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6094       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6095     if (IsMicrosoft && IsDefinition) {
6096       S.Diag(NewDecl->getLocation(),
6097              diag::warn_redeclaration_without_import_attribute)
6098           << NewDecl;
6099       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6100       NewDecl->dropAttr<DLLImportAttr>();
6101       NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6102           NewImportAttr->getRange(), S.Context,
6103           NewImportAttr->getSpellingListIndex()));
6104     } else {
6105       S.Diag(NewDecl->getLocation(),
6106              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6107           << NewDecl << OldImportAttr;
6108       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6109       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6110       OldDecl->dropAttr<DLLImportAttr>();
6111       NewDecl->dropAttr<DLLImportAttr>();
6112     }
6113   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6114     // In MinGW, seeing a function declared inline drops the dllimport
6115     // attribute.
6116     OldDecl->dropAttr<DLLImportAttr>();
6117     NewDecl->dropAttr<DLLImportAttr>();
6118     S.Diag(NewDecl->getLocation(),
6119            diag::warn_dllimport_dropped_from_inline_function)
6120         << NewDecl << OldImportAttr;
6121   }
6122 
6123   // A specialization of a class template member function is processed here
6124   // since it's a redeclaration. If the parent class is dllexport, the
6125   // specialization inherits that attribute. This doesn't happen automatically
6126   // since the parent class isn't instantiated until later.
6127   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6128     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6129         !NewImportAttr && !NewExportAttr) {
6130       if (const DLLExportAttr *ParentExportAttr =
6131               MD->getParent()->getAttr<DLLExportAttr>()) {
6132         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6133         NewAttr->setInherited(true);
6134         NewDecl->addAttr(NewAttr);
6135       }
6136     }
6137   }
6138 }
6139 
6140 /// Given that we are within the definition of the given function,
6141 /// will that definition behave like C99's 'inline', where the
6142 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)6143 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6144   // Try to avoid calling GetGVALinkageForFunction.
6145 
6146   // All cases of this require the 'inline' keyword.
6147   if (!FD->isInlined()) return false;
6148 
6149   // This is only possible in C++ with the gnu_inline attribute.
6150   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6151     return false;
6152 
6153   // Okay, go ahead and call the relatively-more-expensive function.
6154   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6155 }
6156 
6157 /// Determine whether a variable is extern "C" prior to attaching
6158 /// an initializer. We can't just call isExternC() here, because that
6159 /// will also compute and cache whether the declaration is externally
6160 /// visible, which might change when we attach the initializer.
6161 ///
6162 /// This can only be used if the declaration is known to not be a
6163 /// redeclaration of an internal linkage declaration.
6164 ///
6165 /// For instance:
6166 ///
6167 ///   auto x = []{};
6168 ///
6169 /// Attaching the initializer here makes this declaration not externally
6170 /// visible, because its type has internal linkage.
6171 ///
6172 /// FIXME: This is a hack.
6173 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)6174 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6175   if (S.getLangOpts().CPlusPlus) {
6176     // In C++, the overloadable attribute negates the effects of extern "C".
6177     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6178       return false;
6179 
6180     // So do CUDA's host/device attributes.
6181     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6182                                  D->template hasAttr<CUDAHostAttr>()))
6183       return false;
6184   }
6185   return D->isExternC();
6186 }
6187 
shouldConsiderLinkage(const VarDecl * VD)6188 static bool shouldConsiderLinkage(const VarDecl *VD) {
6189   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6190   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
6191     return VD->hasExternalStorage();
6192   if (DC->isFileContext())
6193     return true;
6194   if (DC->isRecord())
6195     return false;
6196   llvm_unreachable("Unexpected context");
6197 }
6198 
shouldConsiderLinkage(const FunctionDecl * FD)6199 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6200   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6201   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6202       isa<OMPDeclareReductionDecl>(DC))
6203     return true;
6204   if (DC->isRecord())
6205     return false;
6206   llvm_unreachable("Unexpected context");
6207 }
6208 
hasParsedAttr(Scope * S,const Declarator & PD,ParsedAttr::Kind Kind)6209 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6210                           ParsedAttr::Kind Kind) {
6211   // Check decl attributes on the DeclSpec.
6212   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6213     return true;
6214 
6215   // Walk the declarator structure, checking decl attributes that were in a type
6216   // position to the decl itself.
6217   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6218     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6219       return true;
6220   }
6221 
6222   // Finally, check attributes on the decl itself.
6223   return PD.getAttributes().hasAttribute(Kind);
6224 }
6225 
6226 /// Adjust the \c DeclContext for a function or variable that might be a
6227 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)6228 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6229   if (!DC->isFunctionOrMethod())
6230     return false;
6231 
6232   // If this is a local extern function or variable declared within a function
6233   // template, don't add it into the enclosing namespace scope until it is
6234   // instantiated; it might have a dependent type right now.
6235   if (DC->isDependentContext())
6236     return true;
6237 
6238   // C++11 [basic.link]p7:
6239   //   When a block scope declaration of an entity with linkage is not found to
6240   //   refer to some other declaration, then that entity is a member of the
6241   //   innermost enclosing namespace.
6242   //
6243   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6244   // semantically-enclosing namespace, not a lexically-enclosing one.
6245   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6246     DC = DC->getParent();
6247   return true;
6248 }
6249 
6250 /// Returns true if given declaration has external C language linkage.
isDeclExternC(const Decl * D)6251 static bool isDeclExternC(const Decl *D) {
6252   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6253     return FD->isExternC();
6254   if (const auto *VD = dyn_cast<VarDecl>(D))
6255     return VD->isExternC();
6256 
6257   llvm_unreachable("Unknown type of decl!");
6258 }
6259 
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope,ArrayRef<BindingDecl * > Bindings)6260 NamedDecl *Sema::ActOnVariableDeclarator(
6261     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6262     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6263     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6264   QualType R = TInfo->getType();
6265   DeclarationName Name = GetNameForDeclarator(D).getName();
6266 
6267   IdentifierInfo *II = Name.getAsIdentifierInfo();
6268 
6269   if (D.isDecompositionDeclarator()) {
6270     // Take the name of the first declarator as our name for diagnostic
6271     // purposes.
6272     auto &Decomp = D.getDecompositionDeclarator();
6273     if (!Decomp.bindings().empty()) {
6274       II = Decomp.bindings()[0].Name;
6275       Name = II;
6276     }
6277   } else if (!II) {
6278     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6279     return nullptr;
6280   }
6281 
6282   if (getLangOpts().OpenCL) {
6283     // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6284     // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6285     // argument.
6286     if (R->isImageType() || R->isPipeType()) {
6287       Diag(D.getIdentifierLoc(),
6288            diag::err_opencl_type_can_only_be_used_as_function_parameter)
6289           << R;
6290       D.setInvalidType();
6291       return nullptr;
6292     }
6293 
6294     // OpenCL v1.2 s6.9.r:
6295     // The event type cannot be used to declare a program scope variable.
6296     // OpenCL v2.0 s6.9.q:
6297     // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6298     if (NULL == S->getParent()) {
6299       if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6300         Diag(D.getIdentifierLoc(),
6301              diag::err_invalid_type_for_program_scope_var) << R;
6302         D.setInvalidType();
6303         return nullptr;
6304       }
6305     }
6306 
6307     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6308     QualType NR = R;
6309     while (NR->isPointerType()) {
6310       if (NR->isFunctionPointerType()) {
6311         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6312         D.setInvalidType();
6313         break;
6314       }
6315       NR = NR->getPointeeType();
6316     }
6317 
6318     if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6319       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6320       // half array type (unless the cl_khr_fp16 extension is enabled).
6321       if (Context.getBaseElementType(R)->isHalfType()) {
6322         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6323         D.setInvalidType();
6324       }
6325     }
6326 
6327     if (R->isSamplerT()) {
6328       // OpenCL v1.2 s6.9.b p4:
6329       // The sampler type cannot be used with the __local and __global address
6330       // space qualifiers.
6331       if (R.getAddressSpace() == LangAS::opencl_local ||
6332           R.getAddressSpace() == LangAS::opencl_global) {
6333         Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6334       }
6335 
6336       // OpenCL v1.2 s6.12.14.1:
6337       // A global sampler must be declared with either the constant address
6338       // space qualifier or with the const qualifier.
6339       if (DC->isTranslationUnit() &&
6340           !(R.getAddressSpace() == LangAS::opencl_constant ||
6341           R.isConstQualified())) {
6342         Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6343         D.setInvalidType();
6344       }
6345     }
6346 
6347     // OpenCL v1.2 s6.9.r:
6348     // The event type cannot be used with the __local, __constant and __global
6349     // address space qualifiers.
6350     if (R->isEventT()) {
6351       if (R.getAddressSpace() != LangAS::opencl_private) {
6352         Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6353         D.setInvalidType();
6354       }
6355     }
6356 
6357     // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6358     // supported.  OpenCL C does not support thread_local either, and
6359     // also reject all other thread storage class specifiers.
6360     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6361     if (TSC != TSCS_unspecified) {
6362       bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6363       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6364            diag::err_opencl_unknown_type_specifier)
6365           << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6366           << DeclSpec::getSpecifierName(TSC) << 1;
6367       D.setInvalidType();
6368       return nullptr;
6369     }
6370   }
6371 
6372   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6373   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6374 
6375   // dllimport globals without explicit storage class are treated as extern. We
6376   // have to change the storage class this early to get the right DeclContext.
6377   if (SC == SC_None && !DC->isRecord() &&
6378       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6379       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6380     SC = SC_Extern;
6381 
6382   DeclContext *OriginalDC = DC;
6383   bool IsLocalExternDecl = SC == SC_Extern &&
6384                            adjustContextForLocalExternDecl(DC);
6385 
6386   if (SCSpec == DeclSpec::SCS_mutable) {
6387     // mutable can only appear on non-static class members, so it's always
6388     // an error here
6389     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6390     D.setInvalidType();
6391     SC = SC_None;
6392   }
6393 
6394   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6395       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6396                               D.getDeclSpec().getStorageClassSpecLoc())) {
6397     // In C++11, the 'register' storage class specifier is deprecated.
6398     // Suppress the warning in system macros, it's used in macros in some
6399     // popular C system headers, such as in glibc's htonl() macro.
6400     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6401          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6402                                    : diag::warn_deprecated_register)
6403       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6404   }
6405 
6406   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6407 
6408   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6409     // C99 6.9p2: The storage-class specifiers auto and register shall not
6410     // appear in the declaration specifiers in an external declaration.
6411     // Global Register+Asm is a GNU extension we support.
6412     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6413       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6414       D.setInvalidType();
6415     }
6416   }
6417 
6418   bool IsMemberSpecialization = false;
6419   bool IsVariableTemplateSpecialization = false;
6420   bool IsPartialSpecialization = false;
6421   bool IsVariableTemplate = false;
6422   VarDecl *NewVD = nullptr;
6423   VarTemplateDecl *NewTemplate = nullptr;
6424   TemplateParameterList *TemplateParams = nullptr;
6425   if (!getLangOpts().CPlusPlus) {
6426     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6427                             II, R, TInfo, SC);
6428 
6429     if (R->getContainedDeducedType())
6430       ParsingInitForAutoVars.insert(NewVD);
6431 
6432     if (D.isInvalidType())
6433       NewVD->setInvalidDecl();
6434   } else {
6435     bool Invalid = false;
6436 
6437     if (DC->isRecord() && !CurContext->isRecord()) {
6438       // This is an out-of-line definition of a static data member.
6439       switch (SC) {
6440       case SC_None:
6441         break;
6442       case SC_Static:
6443         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6444              diag::err_static_out_of_line)
6445           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6446         break;
6447       case SC_Auto:
6448       case SC_Register:
6449       case SC_Extern:
6450         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6451         // to names of variables declared in a block or to function parameters.
6452         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6453         // of class members
6454 
6455         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6456              diag::err_storage_class_for_static_member)
6457           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6458         break;
6459       case SC_PrivateExtern:
6460         llvm_unreachable("C storage class in c++!");
6461       }
6462     }
6463 
6464     if (SC == SC_Static && CurContext->isRecord()) {
6465       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6466         if (RD->isLocalClass())
6467           Diag(D.getIdentifierLoc(),
6468                diag::err_static_data_member_not_allowed_in_local_class)
6469             << Name << RD->getDeclName();
6470 
6471         // C++98 [class.union]p1: If a union contains a static data member,
6472         // the program is ill-formed. C++11 drops this restriction.
6473         if (RD->isUnion())
6474           Diag(D.getIdentifierLoc(),
6475                getLangOpts().CPlusPlus11
6476                  ? diag::warn_cxx98_compat_static_data_member_in_union
6477                  : diag::ext_static_data_member_in_union) << Name;
6478         // We conservatively disallow static data members in anonymous structs.
6479         else if (!RD->getDeclName())
6480           Diag(D.getIdentifierLoc(),
6481                diag::err_static_data_member_not_allowed_in_anon_struct)
6482             << Name << RD->isUnion();
6483       }
6484     }
6485 
6486     // Match up the template parameter lists with the scope specifier, then
6487     // determine whether we have a template or a template specialization.
6488     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6489         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6490         D.getCXXScopeSpec(),
6491         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6492             ? D.getName().TemplateId
6493             : nullptr,
6494         TemplateParamLists,
6495         /*never a friend*/ false, IsMemberSpecialization, Invalid);
6496 
6497     if (TemplateParams) {
6498       if (!TemplateParams->size() &&
6499           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6500         // There is an extraneous 'template<>' for this variable. Complain
6501         // about it, but allow the declaration of the variable.
6502         Diag(TemplateParams->getTemplateLoc(),
6503              diag::err_template_variable_noparams)
6504           << II
6505           << SourceRange(TemplateParams->getTemplateLoc(),
6506                          TemplateParams->getRAngleLoc());
6507         TemplateParams = nullptr;
6508       } else {
6509         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6510           // This is an explicit specialization or a partial specialization.
6511           // FIXME: Check that we can declare a specialization here.
6512           IsVariableTemplateSpecialization = true;
6513           IsPartialSpecialization = TemplateParams->size() > 0;
6514         } else { // if (TemplateParams->size() > 0)
6515           // This is a template declaration.
6516           IsVariableTemplate = true;
6517 
6518           // Check that we can declare a template here.
6519           if (CheckTemplateDeclScope(S, TemplateParams))
6520             return nullptr;
6521 
6522           // Only C++1y supports variable templates (N3651).
6523           Diag(D.getIdentifierLoc(),
6524                getLangOpts().CPlusPlus14
6525                    ? diag::warn_cxx11_compat_variable_template
6526                    : diag::ext_variable_template);
6527         }
6528       }
6529     } else {
6530       assert((Invalid ||
6531               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6532              "should have a 'template<>' for this decl");
6533     }
6534 
6535     if (IsVariableTemplateSpecialization) {
6536       SourceLocation TemplateKWLoc =
6537           TemplateParamLists.size() > 0
6538               ? TemplateParamLists[0]->getTemplateLoc()
6539               : SourceLocation();
6540       DeclResult Res = ActOnVarTemplateSpecialization(
6541           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6542           IsPartialSpecialization);
6543       if (Res.isInvalid())
6544         return nullptr;
6545       NewVD = cast<VarDecl>(Res.get());
6546       AddToScope = false;
6547     } else if (D.isDecompositionDeclarator()) {
6548       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6549                                         D.getIdentifierLoc(), R, TInfo, SC,
6550                                         Bindings);
6551     } else
6552       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6553                               D.getIdentifierLoc(), II, R, TInfo, SC);
6554 
6555     // If this is supposed to be a variable template, create it as such.
6556     if (IsVariableTemplate) {
6557       NewTemplate =
6558           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6559                                   TemplateParams, NewVD);
6560       NewVD->setDescribedVarTemplate(NewTemplate);
6561     }
6562 
6563     // If this decl has an auto type in need of deduction, make a note of the
6564     // Decl so we can diagnose uses of it in its own initializer.
6565     if (R->getContainedDeducedType())
6566       ParsingInitForAutoVars.insert(NewVD);
6567 
6568     if (D.isInvalidType() || Invalid) {
6569       NewVD->setInvalidDecl();
6570       if (NewTemplate)
6571         NewTemplate->setInvalidDecl();
6572     }
6573 
6574     SetNestedNameSpecifier(*this, NewVD, D);
6575 
6576     // If we have any template parameter lists that don't directly belong to
6577     // the variable (matching the scope specifier), store them.
6578     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6579     if (TemplateParamLists.size() > VDTemplateParamLists)
6580       NewVD->setTemplateParameterListsInfo(
6581           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6582 
6583     if (D.getDeclSpec().isConstexprSpecified()) {
6584       NewVD->setConstexpr(true);
6585       // C++1z [dcl.spec.constexpr]p1:
6586       //   A static data member declared with the constexpr specifier is
6587       //   implicitly an inline variable.
6588       if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6589         NewVD->setImplicitlyInline();
6590     }
6591   }
6592 
6593   if (D.getDeclSpec().isInlineSpecified()) {
6594     if (!getLangOpts().CPlusPlus) {
6595       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6596           << 0;
6597     } else if (CurContext->isFunctionOrMethod()) {
6598       // 'inline' is not allowed on block scope variable declaration.
6599       Diag(D.getDeclSpec().getInlineSpecLoc(),
6600            diag::err_inline_declaration_block_scope) << Name
6601         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6602     } else {
6603       Diag(D.getDeclSpec().getInlineSpecLoc(),
6604            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6605                                      : diag::ext_inline_variable);
6606       NewVD->setInlineSpecified();
6607     }
6608   }
6609 
6610   // Set the lexical context. If the declarator has a C++ scope specifier, the
6611   // lexical context will be different from the semantic context.
6612   NewVD->setLexicalDeclContext(CurContext);
6613   if (NewTemplate)
6614     NewTemplate->setLexicalDeclContext(CurContext);
6615 
6616   if (IsLocalExternDecl) {
6617     if (D.isDecompositionDeclarator())
6618       for (auto *B : Bindings)
6619         B->setLocalExternDecl();
6620     else
6621       NewVD->setLocalExternDecl();
6622   }
6623 
6624   bool EmitTLSUnsupportedError = false;
6625   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6626     // C++11 [dcl.stc]p4:
6627     //   When thread_local is applied to a variable of block scope the
6628     //   storage-class-specifier static is implied if it does not appear
6629     //   explicitly.
6630     // Core issue: 'static' is not implied if the variable is declared
6631     //   'extern'.
6632     if (NewVD->hasLocalStorage() &&
6633         (SCSpec != DeclSpec::SCS_unspecified ||
6634          TSCS != DeclSpec::TSCS_thread_local ||
6635          !DC->isFunctionOrMethod()))
6636       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6637            diag::err_thread_non_global)
6638         << DeclSpec::getSpecifierName(TSCS);
6639     else if (!Context.getTargetInfo().isTLSSupported()) {
6640       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6641         // Postpone error emission until we've collected attributes required to
6642         // figure out whether it's a host or device variable and whether the
6643         // error should be ignored.
6644         EmitTLSUnsupportedError = true;
6645         // We still need to mark the variable as TLS so it shows up in AST with
6646         // proper storage class for other tools to use even if we're not going
6647         // to emit any code for it.
6648         NewVD->setTSCSpec(TSCS);
6649       } else
6650         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6651              diag::err_thread_unsupported);
6652     } else
6653       NewVD->setTSCSpec(TSCS);
6654   }
6655 
6656   // C99 6.7.4p3
6657   //   An inline definition of a function with external linkage shall
6658   //   not contain a definition of a modifiable object with static or
6659   //   thread storage duration...
6660   // We only apply this when the function is required to be defined
6661   // elsewhere, i.e. when the function is not 'extern inline'.  Note
6662   // that a local variable with thread storage duration still has to
6663   // be marked 'static'.  Also note that it's possible to get these
6664   // semantics in C++ using __attribute__((gnu_inline)).
6665   if (SC == SC_Static && S->getFnParent() != nullptr &&
6666       !NewVD->getType().isConstQualified()) {
6667     FunctionDecl *CurFD = getCurFunctionDecl();
6668     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6669       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6670            diag::warn_static_local_in_extern_inline);
6671       MaybeSuggestAddingStaticToDecl(CurFD);
6672     }
6673   }
6674 
6675   if (D.getDeclSpec().isModulePrivateSpecified()) {
6676     if (IsVariableTemplateSpecialization)
6677       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6678           << (IsPartialSpecialization ? 1 : 0)
6679           << FixItHint::CreateRemoval(
6680                  D.getDeclSpec().getModulePrivateSpecLoc());
6681     else if (IsMemberSpecialization)
6682       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6683         << 2
6684         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6685     else if (NewVD->hasLocalStorage())
6686       Diag(NewVD->getLocation(), diag::err_module_private_local)
6687         << 0 << NewVD->getDeclName()
6688         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6689         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6690     else {
6691       NewVD->setModulePrivate();
6692       if (NewTemplate)
6693         NewTemplate->setModulePrivate();
6694       for (auto *B : Bindings)
6695         B->setModulePrivate();
6696     }
6697   }
6698 
6699   // Handle attributes prior to checking for duplicates in MergeVarDecl
6700   ProcessDeclAttributes(S, NewVD, D);
6701 
6702   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6703     if (EmitTLSUnsupportedError &&
6704         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6705          (getLangOpts().OpenMPIsDevice &&
6706           NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6707       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6708            diag::err_thread_unsupported);
6709     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6710     // storage [duration]."
6711     if (SC == SC_None && S->getFnParent() != nullptr &&
6712         (NewVD->hasAttr<CUDASharedAttr>() ||
6713          NewVD->hasAttr<CUDAConstantAttr>())) {
6714       NewVD->setStorageClass(SC_Static);
6715     }
6716   }
6717 
6718   // Ensure that dllimport globals without explicit storage class are treated as
6719   // extern. The storage class is set above using parsed attributes. Now we can
6720   // check the VarDecl itself.
6721   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6722          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6723          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6724 
6725   // In auto-retain/release, infer strong retension for variables of
6726   // retainable type.
6727   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6728     NewVD->setInvalidDecl();
6729 
6730   // Handle GNU asm-label extension (encoded as an attribute).
6731   if (Expr *E = (Expr*)D.getAsmLabel()) {
6732     // The parser guarantees this is a string.
6733     StringLiteral *SE = cast<StringLiteral>(E);
6734     StringRef Label = SE->getString();
6735     if (S->getFnParent() != nullptr) {
6736       switch (SC) {
6737       case SC_None:
6738       case SC_Auto:
6739         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6740         break;
6741       case SC_Register:
6742         // Local Named register
6743         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6744             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6745           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6746         break;
6747       case SC_Static:
6748       case SC_Extern:
6749       case SC_PrivateExtern:
6750         break;
6751       }
6752     } else if (SC == SC_Register) {
6753       // Global Named register
6754       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6755         const auto &TI = Context.getTargetInfo();
6756         bool HasSizeMismatch;
6757 
6758         if (!TI.isValidGCCRegisterName(Label))
6759           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6760         else if (!TI.validateGlobalRegisterVariable(Label,
6761                                                     Context.getTypeSize(R),
6762                                                     HasSizeMismatch))
6763           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6764         else if (HasSizeMismatch)
6765           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6766       }
6767 
6768       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6769         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6770         NewVD->setInvalidDecl(true);
6771       }
6772     }
6773 
6774     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6775                                                 Context, Label, 0));
6776   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6777     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6778       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6779     if (I != ExtnameUndeclaredIdentifiers.end()) {
6780       if (isDeclExternC(NewVD)) {
6781         NewVD->addAttr(I->second);
6782         ExtnameUndeclaredIdentifiers.erase(I);
6783       } else
6784         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6785             << /*Variable*/1 << NewVD;
6786     }
6787   }
6788 
6789   // Find the shadowed declaration before filtering for scope.
6790   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6791                                 ? getShadowedDeclaration(NewVD, Previous)
6792                                 : nullptr;
6793 
6794   // Don't consider existing declarations that are in a different
6795   // scope and are out-of-semantic-context declarations (if the new
6796   // declaration has linkage).
6797   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6798                        D.getCXXScopeSpec().isNotEmpty() ||
6799                        IsMemberSpecialization ||
6800                        IsVariableTemplateSpecialization);
6801 
6802   // Check whether the previous declaration is in the same block scope. This
6803   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6804   if (getLangOpts().CPlusPlus &&
6805       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6806     NewVD->setPreviousDeclInSameBlockScope(
6807         Previous.isSingleResult() && !Previous.isShadowed() &&
6808         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6809 
6810   if (!getLangOpts().CPlusPlus) {
6811     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6812   } else {
6813     // If this is an explicit specialization of a static data member, check it.
6814     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6815         CheckMemberSpecialization(NewVD, Previous))
6816       NewVD->setInvalidDecl();
6817 
6818     // Merge the decl with the existing one if appropriate.
6819     if (!Previous.empty()) {
6820       if (Previous.isSingleResult() &&
6821           isa<FieldDecl>(Previous.getFoundDecl()) &&
6822           D.getCXXScopeSpec().isSet()) {
6823         // The user tried to define a non-static data member
6824         // out-of-line (C++ [dcl.meaning]p1).
6825         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6826           << D.getCXXScopeSpec().getRange();
6827         Previous.clear();
6828         NewVD->setInvalidDecl();
6829       }
6830     } else if (D.getCXXScopeSpec().isSet()) {
6831       // No previous declaration in the qualifying scope.
6832       Diag(D.getIdentifierLoc(), diag::err_no_member)
6833         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6834         << D.getCXXScopeSpec().getRange();
6835       NewVD->setInvalidDecl();
6836     }
6837 
6838     if (!IsVariableTemplateSpecialization)
6839       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6840 
6841     if (NewTemplate) {
6842       VarTemplateDecl *PrevVarTemplate =
6843           NewVD->getPreviousDecl()
6844               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6845               : nullptr;
6846 
6847       // Check the template parameter list of this declaration, possibly
6848       // merging in the template parameter list from the previous variable
6849       // template declaration.
6850       if (CheckTemplateParameterList(
6851               TemplateParams,
6852               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6853                               : nullptr,
6854               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6855                DC->isDependentContext())
6856                   ? TPC_ClassTemplateMember
6857                   : TPC_VarTemplate))
6858         NewVD->setInvalidDecl();
6859 
6860       // If we are providing an explicit specialization of a static variable
6861       // template, make a note of that.
6862       if (PrevVarTemplate &&
6863           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6864         PrevVarTemplate->setMemberSpecialization();
6865     }
6866   }
6867 
6868   // Diagnose shadowed variables iff this isn't a redeclaration.
6869   if (ShadowedDecl && !D.isRedeclaration())
6870     CheckShadow(NewVD, ShadowedDecl, Previous);
6871 
6872   ProcessPragmaWeak(S, NewVD);
6873 
6874   // If this is the first declaration of an extern C variable, update
6875   // the map of such variables.
6876   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6877       isIncompleteDeclExternC(*this, NewVD))
6878     RegisterLocallyScopedExternCDecl(NewVD, S);
6879 
6880   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6881     Decl *ManglingContextDecl;
6882     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6883             NewVD->getDeclContext(), ManglingContextDecl)) {
6884       Context.setManglingNumber(
6885           NewVD, MCtx->getManglingNumber(
6886                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6887       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6888     }
6889   }
6890 
6891   // Special handling of variable named 'main'.
6892   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6893       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6894       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6895 
6896     // C++ [basic.start.main]p3
6897     // A program that declares a variable main at global scope is ill-formed.
6898     if (getLangOpts().CPlusPlus)
6899       Diag(D.getBeginLoc(), diag::err_main_global_variable);
6900 
6901     // In C, and external-linkage variable named main results in undefined
6902     // behavior.
6903     else if (NewVD->hasExternalFormalLinkage())
6904       Diag(D.getBeginLoc(), diag::warn_main_redefined);
6905   }
6906 
6907   if (D.isRedeclaration() && !Previous.empty()) {
6908     NamedDecl *Prev = Previous.getRepresentativeDecl();
6909     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6910                                    D.isFunctionDefinition());
6911   }
6912 
6913   if (NewTemplate) {
6914     if (NewVD->isInvalidDecl())
6915       NewTemplate->setInvalidDecl();
6916     ActOnDocumentableDecl(NewTemplate);
6917     return NewTemplate;
6918   }
6919 
6920   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6921     CompleteMemberSpecialization(NewVD, Previous);
6922 
6923   return NewVD;
6924 }
6925 
6926 /// Enum describing the %select options in diag::warn_decl_shadow.
6927 enum ShadowedDeclKind {
6928   SDK_Local,
6929   SDK_Global,
6930   SDK_StaticMember,
6931   SDK_Field,
6932   SDK_Typedef,
6933   SDK_Using
6934 };
6935 
6936 /// Determine what kind of declaration we're shadowing.
computeShadowedDeclKind(const NamedDecl * ShadowedDecl,const DeclContext * OldDC)6937 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
6938                                                 const DeclContext *OldDC) {
6939   if (isa<TypeAliasDecl>(ShadowedDecl))
6940     return SDK_Using;
6941   else if (isa<TypedefDecl>(ShadowedDecl))
6942     return SDK_Typedef;
6943   else if (isa<RecordDecl>(OldDC))
6944     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
6945 
6946   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
6947 }
6948 
6949 /// Return the location of the capture if the given lambda captures the given
6950 /// variable \p VD, or an invalid source location otherwise.
getCaptureLocation(const LambdaScopeInfo * LSI,const VarDecl * VD)6951 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
6952                                          const VarDecl *VD) {
6953   for (const Capture &Capture : LSI->Captures) {
6954     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
6955       return Capture.getLocation();
6956   }
6957   return SourceLocation();
6958 }
6959 
shouldWarnIfShadowedDecl(const DiagnosticsEngine & Diags,const LookupResult & R)6960 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
6961                                      const LookupResult &R) {
6962   // Only diagnose if we're shadowing an unambiguous field or variable.
6963   if (R.getResultKind() != LookupResult::Found)
6964     return false;
6965 
6966   // Return false if warning is ignored.
6967   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
6968 }
6969 
6970 /// Return the declaration shadowed by the given variable \p D, or null
6971 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const VarDecl * D,const LookupResult & R)6972 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
6973                                         const LookupResult &R) {
6974   if (!shouldWarnIfShadowedDecl(Diags, R))
6975     return nullptr;
6976 
6977   // Don't diagnose declarations at file scope.
6978   if (D->hasGlobalStorage())
6979     return nullptr;
6980 
6981   NamedDecl *ShadowedDecl = R.getFoundDecl();
6982   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
6983              ? ShadowedDecl
6984              : nullptr;
6985 }
6986 
6987 /// Return the declaration shadowed by the given typedef \p D, or null
6988 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const TypedefNameDecl * D,const LookupResult & R)6989 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
6990                                         const LookupResult &R) {
6991   // Don't warn if typedef declaration is part of a class
6992   if (D->getDeclContext()->isRecord())
6993     return nullptr;
6994 
6995   if (!shouldWarnIfShadowedDecl(Diags, R))
6996     return nullptr;
6997 
6998   NamedDecl *ShadowedDecl = R.getFoundDecl();
6999   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7000 }
7001 
7002 /// Diagnose variable or built-in function shadowing.  Implements
7003 /// -Wshadow.
7004 ///
7005 /// This method is called whenever a VarDecl is added to a "useful"
7006 /// scope.
7007 ///
7008 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7009 /// \param R the lookup of the name
7010 ///
CheckShadow(NamedDecl * D,NamedDecl * ShadowedDecl,const LookupResult & R)7011 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7012                        const LookupResult &R) {
7013   DeclContext *NewDC = D->getDeclContext();
7014 
7015   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7016     // Fields are not shadowed by variables in C++ static methods.
7017     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7018       if (MD->isStatic())
7019         return;
7020 
7021     // Fields shadowed by constructor parameters are a special case. Usually
7022     // the constructor initializes the field with the parameter.
7023     if (isa<CXXConstructorDecl>(NewDC))
7024       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7025         // Remember that this was shadowed so we can either warn about its
7026         // modification or its existence depending on warning settings.
7027         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7028         return;
7029       }
7030   }
7031 
7032   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7033     if (shadowedVar->isExternC()) {
7034       // For shadowing external vars, make sure that we point to the global
7035       // declaration, not a locally scoped extern declaration.
7036       for (auto I : shadowedVar->redecls())
7037         if (I->isFileVarDecl()) {
7038           ShadowedDecl = I;
7039           break;
7040         }
7041     }
7042 
7043   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7044 
7045   unsigned WarningDiag = diag::warn_decl_shadow;
7046   SourceLocation CaptureLoc;
7047   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7048       isa<CXXMethodDecl>(NewDC)) {
7049     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7050       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7051         if (RD->getLambdaCaptureDefault() == LCD_None) {
7052           // Try to avoid warnings for lambdas with an explicit capture list.
7053           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7054           // Warn only when the lambda captures the shadowed decl explicitly.
7055           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7056           if (CaptureLoc.isInvalid())
7057             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7058         } else {
7059           // Remember that this was shadowed so we can avoid the warning if the
7060           // shadowed decl isn't captured and the warning settings allow it.
7061           cast<LambdaScopeInfo>(getCurFunction())
7062               ->ShadowingDecls.push_back(
7063                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7064           return;
7065         }
7066       }
7067 
7068       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7069         // A variable can't shadow a local variable in an enclosing scope, if
7070         // they are separated by a non-capturing declaration context.
7071         for (DeclContext *ParentDC = NewDC;
7072              ParentDC && !ParentDC->Equals(OldDC);
7073              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7074           // Only block literals, captured statements, and lambda expressions
7075           // can capture; other scopes don't.
7076           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7077               !isLambdaCallOperator(ParentDC)) {
7078             return;
7079           }
7080         }
7081       }
7082     }
7083   }
7084 
7085   // Only warn about certain kinds of shadowing for class members.
7086   if (NewDC && NewDC->isRecord()) {
7087     // In particular, don't warn about shadowing non-class members.
7088     if (!OldDC->isRecord())
7089       return;
7090 
7091     // TODO: should we warn about static data members shadowing
7092     // static data members from base classes?
7093 
7094     // TODO: don't diagnose for inaccessible shadowed members.
7095     // This is hard to do perfectly because we might friend the
7096     // shadowing context, but that's just a false negative.
7097   }
7098 
7099 
7100   DeclarationName Name = R.getLookupName();
7101 
7102   // Emit warning and note.
7103   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7104     return;
7105   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7106   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7107   if (!CaptureLoc.isInvalid())
7108     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7109         << Name << /*explicitly*/ 1;
7110   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7111 }
7112 
7113 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7114 /// when these variables are captured by the lambda.
DiagnoseShadowingLambdaDecls(const LambdaScopeInfo * LSI)7115 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7116   for (const auto &Shadow : LSI->ShadowingDecls) {
7117     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7118     // Try to avoid the warning when the shadowed decl isn't captured.
7119     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7120     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7121     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7122                                        ? diag::warn_decl_shadow_uncaptured_local
7123                                        : diag::warn_decl_shadow)
7124         << Shadow.VD->getDeclName()
7125         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7126     if (!CaptureLoc.isInvalid())
7127       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7128           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7129     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7130   }
7131 }
7132 
7133 /// Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)7134 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7135   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7136     return;
7137 
7138   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7139                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7140   LookupName(R, S);
7141   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7142     CheckShadow(D, ShadowedDecl, R);
7143 }
7144 
7145 /// Check if 'E', which is an expression that is about to be modified, refers
7146 /// to a constructor parameter that shadows a field.
CheckShadowingDeclModification(Expr * E,SourceLocation Loc)7147 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7148   // Quickly ignore expressions that can't be shadowing ctor parameters.
7149   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7150     return;
7151   E = E->IgnoreParenImpCasts();
7152   auto *DRE = dyn_cast<DeclRefExpr>(E);
7153   if (!DRE)
7154     return;
7155   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7156   auto I = ShadowingDecls.find(D);
7157   if (I == ShadowingDecls.end())
7158     return;
7159   const NamedDecl *ShadowedDecl = I->second;
7160   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7161   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7162   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7163   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7164 
7165   // Avoid issuing multiple warnings about the same decl.
7166   ShadowingDecls.erase(I);
7167 }
7168 
7169 /// Check for conflict between this global or extern "C" declaration and
7170 /// previous global or extern "C" declarations. This is only used in C++.
7171 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)7172 static bool checkGlobalOrExternCConflict(
7173     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7174   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7175   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7176 
7177   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7178     // The common case: this global doesn't conflict with any extern "C"
7179     // declaration.
7180     return false;
7181   }
7182 
7183   if (Prev) {
7184     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7185       // Both the old and new declarations have C language linkage. This is a
7186       // redeclaration.
7187       Previous.clear();
7188       Previous.addDecl(Prev);
7189       return true;
7190     }
7191 
7192     // This is a global, non-extern "C" declaration, and there is a previous
7193     // non-global extern "C" declaration. Diagnose if this is a variable
7194     // declaration.
7195     if (!isa<VarDecl>(ND))
7196       return false;
7197   } else {
7198     // The declaration is extern "C". Check for any declaration in the
7199     // translation unit which might conflict.
7200     if (IsGlobal) {
7201       // We have already performed the lookup into the translation unit.
7202       IsGlobal = false;
7203       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7204            I != E; ++I) {
7205         if (isa<VarDecl>(*I)) {
7206           Prev = *I;
7207           break;
7208         }
7209       }
7210     } else {
7211       DeclContext::lookup_result R =
7212           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7213       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7214            I != E; ++I) {
7215         if (isa<VarDecl>(*I)) {
7216           Prev = *I;
7217           break;
7218         }
7219         // FIXME: If we have any other entity with this name in global scope,
7220         // the declaration is ill-formed, but that is a defect: it breaks the
7221         // 'stat' hack, for instance. Only variables can have mangled name
7222         // clashes with extern "C" declarations, so only they deserve a
7223         // diagnostic.
7224       }
7225     }
7226 
7227     if (!Prev)
7228       return false;
7229   }
7230 
7231   // Use the first declaration's location to ensure we point at something which
7232   // is lexically inside an extern "C" linkage-spec.
7233   assert(Prev && "should have found a previous declaration to diagnose");
7234   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7235     Prev = FD->getFirstDecl();
7236   else
7237     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7238 
7239   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7240     << IsGlobal << ND;
7241   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7242     << IsGlobal;
7243   return false;
7244 }
7245 
7246 /// Apply special rules for handling extern "C" declarations. Returns \c true
7247 /// if we have found that this is a redeclaration of some prior entity.
7248 ///
7249 /// Per C++ [dcl.link]p6:
7250 ///   Two declarations [for a function or variable] with C language linkage
7251 ///   with the same name that appear in different scopes refer to the same
7252 ///   [entity]. An entity with C language linkage shall not be declared with
7253 ///   the same name as an entity in global scope.
7254 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)7255 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7256                                                   LookupResult &Previous) {
7257   if (!S.getLangOpts().CPlusPlus) {
7258     // In C, when declaring a global variable, look for a corresponding 'extern'
7259     // variable declared in function scope. We don't need this in C++, because
7260     // we find local extern decls in the surrounding file-scope DeclContext.
7261     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7262       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7263         Previous.clear();
7264         Previous.addDecl(Prev);
7265         return true;
7266       }
7267     }
7268     return false;
7269   }
7270 
7271   // A declaration in the translation unit can conflict with an extern "C"
7272   // declaration.
7273   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7274     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7275 
7276   // An extern "C" declaration can conflict with a declaration in the
7277   // translation unit or can be a redeclaration of an extern "C" declaration
7278   // in another scope.
7279   if (isIncompleteDeclExternC(S,ND))
7280     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7281 
7282   // Neither global nor extern "C": nothing to do.
7283   return false;
7284 }
7285 
CheckVariableDeclarationType(VarDecl * NewVD)7286 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7287   // If the decl is already known invalid, don't check it.
7288   if (NewVD->isInvalidDecl())
7289     return;
7290 
7291   QualType T = NewVD->getType();
7292 
7293   // Defer checking an 'auto' type until its initializer is attached.
7294   if (T->isUndeducedType())
7295     return;
7296 
7297   if (NewVD->hasAttrs())
7298     CheckAlignasUnderalignment(NewVD);
7299 
7300   if (T->isObjCObjectType()) {
7301     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7302       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7303     T = Context.getObjCObjectPointerType(T);
7304     NewVD->setType(T);
7305   }
7306 
7307   // Emit an error if an address space was applied to decl with local storage.
7308   // This includes arrays of objects with address space qualifiers, but not
7309   // automatic variables that point to other address spaces.
7310   // ISO/IEC TR 18037 S5.1.2
7311   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7312       T.getAddressSpace() != LangAS::Default) {
7313     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7314     NewVD->setInvalidDecl();
7315     return;
7316   }
7317 
7318   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7319   // scope.
7320   if (getLangOpts().OpenCLVersion == 120 &&
7321       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7322       NewVD->isStaticLocal()) {
7323     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7324     NewVD->setInvalidDecl();
7325     return;
7326   }
7327 
7328   if (getLangOpts().OpenCL) {
7329     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7330     if (NewVD->hasAttr<BlocksAttr>()) {
7331       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7332       return;
7333     }
7334 
7335     if (T->isBlockPointerType()) {
7336       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7337       // can't use 'extern' storage class.
7338       if (!T.isConstQualified()) {
7339         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7340             << 0 /*const*/;
7341         NewVD->setInvalidDecl();
7342         return;
7343       }
7344       if (NewVD->hasExternalStorage()) {
7345         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7346         NewVD->setInvalidDecl();
7347         return;
7348       }
7349     }
7350     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7351     // __constant address space.
7352     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7353     // variables inside a function can also be declared in the global
7354     // address space.
7355     // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
7356     // address space additionally.
7357     // FIXME: Add local AS for OpenCL C++.
7358     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7359         NewVD->hasExternalStorage()) {
7360       if (!T->isSamplerT() &&
7361           !(T.getAddressSpace() == LangAS::opencl_constant ||
7362             (T.getAddressSpace() == LangAS::opencl_global &&
7363              (getLangOpts().OpenCLVersion == 200 ||
7364               getLangOpts().OpenCLCPlusPlus)))) {
7365         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7366         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7367           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7368               << Scope << "global or constant";
7369         else
7370           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7371               << Scope << "constant";
7372         NewVD->setInvalidDecl();
7373         return;
7374       }
7375     } else {
7376       if (T.getAddressSpace() == LangAS::opencl_global) {
7377         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7378             << 1 /*is any function*/ << "global";
7379         NewVD->setInvalidDecl();
7380         return;
7381       }
7382       if (T.getAddressSpace() == LangAS::opencl_constant ||
7383           T.getAddressSpace() == LangAS::opencl_local) {
7384         FunctionDecl *FD = getCurFunctionDecl();
7385         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7386         // in functions.
7387         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7388           if (T.getAddressSpace() == LangAS::opencl_constant)
7389             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7390                 << 0 /*non-kernel only*/ << "constant";
7391           else
7392             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7393                 << 0 /*non-kernel only*/ << "local";
7394           NewVD->setInvalidDecl();
7395           return;
7396         }
7397         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7398         // in the outermost scope of a kernel function.
7399         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7400           if (!getCurScope()->isFunctionScope()) {
7401             if (T.getAddressSpace() == LangAS::opencl_constant)
7402               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7403                   << "constant";
7404             else
7405               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7406                   << "local";
7407             NewVD->setInvalidDecl();
7408             return;
7409           }
7410         }
7411       } else if (T.getAddressSpace() != LangAS::opencl_private) {
7412         // Do not allow other address spaces on automatic variable.
7413         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7414         NewVD->setInvalidDecl();
7415         return;
7416       }
7417     }
7418   }
7419 
7420   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7421       && !NewVD->hasAttr<BlocksAttr>()) {
7422     if (getLangOpts().getGC() != LangOptions::NonGC)
7423       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7424     else {
7425       assert(!getLangOpts().ObjCAutoRefCount);
7426       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7427     }
7428   }
7429 
7430   bool isVM = T->isVariablyModifiedType();
7431   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7432       NewVD->hasAttr<BlocksAttr>())
7433     setFunctionHasBranchProtectedScope();
7434 
7435   if ((isVM && NewVD->hasLinkage()) ||
7436       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7437     bool SizeIsNegative;
7438     llvm::APSInt Oversized;
7439     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7440         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7441     QualType FixedT;
7442     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7443       FixedT = FixedTInfo->getType();
7444     else if (FixedTInfo) {
7445       // Type and type-as-written are canonically different. We need to fix up
7446       // both types separately.
7447       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7448                                                    Oversized);
7449     }
7450     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7451       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7452       // FIXME: This won't give the correct result for
7453       // int a[10][n];
7454       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7455 
7456       if (NewVD->isFileVarDecl())
7457         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7458         << SizeRange;
7459       else if (NewVD->isStaticLocal())
7460         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7461         << SizeRange;
7462       else
7463         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7464         << SizeRange;
7465       NewVD->setInvalidDecl();
7466       return;
7467     }
7468 
7469     if (!FixedTInfo) {
7470       if (NewVD->isFileVarDecl())
7471         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7472       else
7473         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7474       NewVD->setInvalidDecl();
7475       return;
7476     }
7477 
7478     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7479     NewVD->setType(FixedT);
7480     NewVD->setTypeSourceInfo(FixedTInfo);
7481   }
7482 
7483   if (T->isVoidType()) {
7484     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7485     //                    of objects and functions.
7486     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7487       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7488         << T;
7489       NewVD->setInvalidDecl();
7490       return;
7491     }
7492   }
7493 
7494   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7495     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7496     NewVD->setInvalidDecl();
7497     return;
7498   }
7499 
7500   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7501     Diag(NewVD->getLocation(), diag::err_block_on_vm);
7502     NewVD->setInvalidDecl();
7503     return;
7504   }
7505 
7506   if (NewVD->isConstexpr() && !T->isDependentType() &&
7507       RequireLiteralType(NewVD->getLocation(), T,
7508                          diag::err_constexpr_var_non_literal)) {
7509     NewVD->setInvalidDecl();
7510     return;
7511   }
7512 }
7513 
7514 /// Perform semantic checking on a newly-created variable
7515 /// declaration.
7516 ///
7517 /// This routine performs all of the type-checking required for a
7518 /// variable declaration once it has been built. It is used both to
7519 /// check variables after they have been parsed and their declarators
7520 /// have been translated into a declaration, and to check variables
7521 /// that have been instantiated from a template.
7522 ///
7523 /// Sets NewVD->isInvalidDecl() if an error was encountered.
7524 ///
7525 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)7526 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7527   CheckVariableDeclarationType(NewVD);
7528 
7529   // If the decl is already known invalid, don't check it.
7530   if (NewVD->isInvalidDecl())
7531     return false;
7532 
7533   // If we did not find anything by this name, look for a non-visible
7534   // extern "C" declaration with the same name.
7535   if (Previous.empty() &&
7536       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7537     Previous.setShadowed();
7538 
7539   if (!Previous.empty()) {
7540     MergeVarDecl(NewVD, Previous);
7541     return true;
7542   }
7543   return false;
7544 }
7545 
7546 namespace {
7547 struct FindOverriddenMethod {
7548   Sema *S;
7549   CXXMethodDecl *Method;
7550 
7551   /// Member lookup function that determines whether a given C++
7552   /// method overrides a method in a base class, to be used with
7553   /// CXXRecordDecl::lookupInBases().
operator ()__anon71a41dfb0811::FindOverriddenMethod7554   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7555     RecordDecl *BaseRecord =
7556         Specifier->getType()->getAs<RecordType>()->getDecl();
7557 
7558     DeclarationName Name = Method->getDeclName();
7559 
7560     // FIXME: Do we care about other names here too?
7561     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7562       // We really want to find the base class destructor here.
7563       QualType T = S->Context.getTypeDeclType(BaseRecord);
7564       CanQualType CT = S->Context.getCanonicalType(T);
7565 
7566       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7567     }
7568 
7569     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7570          Path.Decls = Path.Decls.slice(1)) {
7571       NamedDecl *D = Path.Decls.front();
7572       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7573         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7574           return true;
7575       }
7576     }
7577 
7578     return false;
7579   }
7580 };
7581 
7582 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7583 } // end anonymous namespace
7584 
7585 /// Report an error regarding overriding, along with any relevant
7586 /// overridden methods.
7587 ///
7588 /// \param DiagID the primary error to report.
7589 /// \param MD the overriding method.
7590 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)7591 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7592                             OverrideErrorKind OEK = OEK_All) {
7593   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7594   for (const CXXMethodDecl *O : MD->overridden_methods()) {
7595     // This check (& the OEK parameter) could be replaced by a predicate, but
7596     // without lambdas that would be overkill. This is still nicer than writing
7597     // out the diag loop 3 times.
7598     if ((OEK == OEK_All) ||
7599         (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7600         (OEK == OEK_Deleted && O->isDeleted()))
7601       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7602   }
7603 }
7604 
7605 /// AddOverriddenMethods - See if a method overrides any in the base classes,
7606 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)7607 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7608   // Look for methods in base classes that this method might override.
7609   CXXBasePaths Paths;
7610   FindOverriddenMethod FOM;
7611   FOM.Method = MD;
7612   FOM.S = this;
7613   bool hasDeletedOverridenMethods = false;
7614   bool hasNonDeletedOverridenMethods = false;
7615   bool AddedAny = false;
7616   if (DC->lookupInBases(FOM, Paths)) {
7617     for (auto *I : Paths.found_decls()) {
7618       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7619         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7620         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7621             !CheckOverridingFunctionAttributes(MD, OldMD) &&
7622             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7623             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7624           hasDeletedOverridenMethods |= OldMD->isDeleted();
7625           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7626           AddedAny = true;
7627         }
7628       }
7629     }
7630   }
7631 
7632   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7633     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7634   }
7635   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7636     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7637   }
7638 
7639   return AddedAny;
7640 }
7641 
7642 namespace {
7643   // Struct for holding all of the extra arguments needed by
7644   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7645   struct ActOnFDArgs {
7646     Scope *S;
7647     Declarator &D;
7648     MultiTemplateParamsArg TemplateParamLists;
7649     bool AddToScope;
7650   };
7651 } // end anonymous namespace
7652 
7653 namespace {
7654 
7655 // Callback to only accept typo corrections that have a non-zero edit distance.
7656 // Also only accept corrections that have the same parent decl.
7657 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
7658  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)7659   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7660                             CXXRecordDecl *Parent)
7661       : Context(Context), OriginalFD(TypoFD),
7662         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7663 
ValidateCandidate(const TypoCorrection & candidate)7664   bool ValidateCandidate(const TypoCorrection &candidate) override {
7665     if (candidate.getEditDistance() == 0)
7666       return false;
7667 
7668     SmallVector<unsigned, 1> MismatchedParams;
7669     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7670                                           CDeclEnd = candidate.end();
7671          CDecl != CDeclEnd; ++CDecl) {
7672       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7673 
7674       if (FD && !FD->hasBody() &&
7675           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7676         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7677           CXXRecordDecl *Parent = MD->getParent();
7678           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7679             return true;
7680         } else if (!ExpectedParent) {
7681           return true;
7682         }
7683       }
7684     }
7685 
7686     return false;
7687   }
7688 
7689  private:
7690   ASTContext &Context;
7691   FunctionDecl *OriginalFD;
7692   CXXRecordDecl *ExpectedParent;
7693 };
7694 
7695 } // end anonymous namespace
7696 
MarkTypoCorrectedFunctionDefinition(const NamedDecl * F)7697 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7698   TypoCorrectedFunctionDefinitions.insert(F);
7699 }
7700 
7701 /// Generate diagnostics for an invalid function redeclaration.
7702 ///
7703 /// This routine handles generating the diagnostic messages for an invalid
7704 /// function redeclaration, including finding possible similar declarations
7705 /// or performing typo correction if there are no previous declarations with
7706 /// the same name.
7707 ///
7708 /// Returns a NamedDecl iff typo correction was performed and substituting in
7709 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)7710 static NamedDecl *DiagnoseInvalidRedeclaration(
7711     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7712     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7713   DeclarationName Name = NewFD->getDeclName();
7714   DeclContext *NewDC = NewFD->getDeclContext();
7715   SmallVector<unsigned, 1> MismatchedParams;
7716   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7717   TypoCorrection Correction;
7718   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7719   unsigned DiagMsg =
7720     IsLocalFriend ? diag::err_no_matching_local_friend :
7721     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
7722     diag::err_member_decl_does_not_match;
7723   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7724                     IsLocalFriend ? Sema::LookupLocalFriendName
7725                                   : Sema::LookupOrdinaryName,
7726                     Sema::ForVisibleRedeclaration);
7727 
7728   NewFD->setInvalidDecl();
7729   if (IsLocalFriend)
7730     SemaRef.LookupName(Prev, S);
7731   else
7732     SemaRef.LookupQualifiedName(Prev, NewDC);
7733   assert(!Prev.isAmbiguous() &&
7734          "Cannot have an ambiguity in previous-declaration lookup");
7735   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7736   if (!Prev.empty()) {
7737     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7738          Func != FuncEnd; ++Func) {
7739       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7740       if (FD &&
7741           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7742         // Add 1 to the index so that 0 can mean the mismatch didn't
7743         // involve a parameter
7744         unsigned ParamNum =
7745             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7746         NearMatches.push_back(std::make_pair(FD, ParamNum));
7747       }
7748     }
7749   // If the qualified name lookup yielded nothing, try typo correction
7750   } else if ((Correction = SemaRef.CorrectTypo(
7751                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7752                   &ExtraArgs.D.getCXXScopeSpec(),
7753                   llvm::make_unique<DifferentNameValidatorCCC>(
7754                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
7755                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
7756     // Set up everything for the call to ActOnFunctionDeclarator
7757     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7758                               ExtraArgs.D.getIdentifierLoc());
7759     Previous.clear();
7760     Previous.setLookupName(Correction.getCorrection());
7761     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7762                                     CDeclEnd = Correction.end();
7763          CDecl != CDeclEnd; ++CDecl) {
7764       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7765       if (FD && !FD->hasBody() &&
7766           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7767         Previous.addDecl(FD);
7768       }
7769     }
7770     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7771 
7772     NamedDecl *Result;
7773     // Retry building the function declaration with the new previous
7774     // declarations, and with errors suppressed.
7775     {
7776       // Trap errors.
7777       Sema::SFINAETrap Trap(SemaRef);
7778 
7779       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7780       // pieces need to verify the typo-corrected C++ declaration and hopefully
7781       // eliminate the need for the parameter pack ExtraArgs.
7782       Result = SemaRef.ActOnFunctionDeclarator(
7783           ExtraArgs.S, ExtraArgs.D,
7784           Correction.getCorrectionDecl()->getDeclContext(),
7785           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7786           ExtraArgs.AddToScope);
7787 
7788       if (Trap.hasErrorOccurred())
7789         Result = nullptr;
7790     }
7791 
7792     if (Result) {
7793       // Determine which correction we picked.
7794       Decl *Canonical = Result->getCanonicalDecl();
7795       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7796            I != E; ++I)
7797         if ((*I)->getCanonicalDecl() == Canonical)
7798           Correction.setCorrectionDecl(*I);
7799 
7800       // Let Sema know about the correction.
7801       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7802       SemaRef.diagnoseTypo(
7803           Correction,
7804           SemaRef.PDiag(IsLocalFriend
7805                           ? diag::err_no_matching_local_friend_suggest
7806                           : diag::err_member_decl_does_not_match_suggest)
7807             << Name << NewDC << IsDefinition);
7808       return Result;
7809     }
7810 
7811     // Pretend the typo correction never occurred
7812     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7813                               ExtraArgs.D.getIdentifierLoc());
7814     ExtraArgs.D.setRedeclaration(wasRedeclaration);
7815     Previous.clear();
7816     Previous.setLookupName(Name);
7817   }
7818 
7819   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7820       << Name << NewDC << IsDefinition << NewFD->getLocation();
7821 
7822   bool NewFDisConst = false;
7823   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7824     NewFDisConst = NewMD->isConst();
7825 
7826   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7827        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7828        NearMatch != NearMatchEnd; ++NearMatch) {
7829     FunctionDecl *FD = NearMatch->first;
7830     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7831     bool FDisConst = MD && MD->isConst();
7832     bool IsMember = MD || !IsLocalFriend;
7833 
7834     // FIXME: These notes are poorly worded for the local friend case.
7835     if (unsigned Idx = NearMatch->second) {
7836       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7837       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7838       if (Loc.isInvalid()) Loc = FD->getLocation();
7839       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7840                                  : diag::note_local_decl_close_param_match)
7841         << Idx << FDParam->getType()
7842         << NewFD->getParamDecl(Idx - 1)->getType();
7843     } else if (FDisConst != NewFDisConst) {
7844       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7845           << NewFDisConst << FD->getSourceRange().getEnd();
7846     } else
7847       SemaRef.Diag(FD->getLocation(),
7848                    IsMember ? diag::note_member_def_close_match
7849                             : diag::note_local_decl_close_match);
7850   }
7851   return nullptr;
7852 }
7853 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)7854 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7855   switch (D.getDeclSpec().getStorageClassSpec()) {
7856   default: llvm_unreachable("Unknown storage class!");
7857   case DeclSpec::SCS_auto:
7858   case DeclSpec::SCS_register:
7859   case DeclSpec::SCS_mutable:
7860     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7861                  diag::err_typecheck_sclass_func);
7862     D.getMutableDeclSpec().ClearStorageClassSpecs();
7863     D.setInvalidType();
7864     break;
7865   case DeclSpec::SCS_unspecified: break;
7866   case DeclSpec::SCS_extern:
7867     if (D.getDeclSpec().isExternInLinkageSpec())
7868       return SC_None;
7869     return SC_Extern;
7870   case DeclSpec::SCS_static: {
7871     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7872       // C99 6.7.1p5:
7873       //   The declaration of an identifier for a function that has
7874       //   block scope shall have no explicit storage-class specifier
7875       //   other than extern
7876       // See also (C++ [dcl.stc]p4).
7877       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7878                    diag::err_static_block_func);
7879       break;
7880     } else
7881       return SC_Static;
7882   }
7883   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7884   }
7885 
7886   // No explicit storage class has already been returned
7887   return SC_None;
7888 }
7889 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)7890 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7891                                            DeclContext *DC, QualType &R,
7892                                            TypeSourceInfo *TInfo,
7893                                            StorageClass SC,
7894                                            bool &IsVirtualOkay) {
7895   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7896   DeclarationName Name = NameInfo.getName();
7897 
7898   FunctionDecl *NewFD = nullptr;
7899   bool isInline = D.getDeclSpec().isInlineSpecified();
7900 
7901   if (!SemaRef.getLangOpts().CPlusPlus) {
7902     // Determine whether the function was written with a
7903     // prototype. This true when:
7904     //   - there is a prototype in the declarator, or
7905     //   - the type R of the function is some kind of typedef or other non-
7906     //     attributed reference to a type name (which eventually refers to a
7907     //     function type).
7908     bool HasPrototype =
7909       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7910       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7911 
7912     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
7913                                  R, TInfo, SC, isInline, HasPrototype, false);
7914     if (D.isInvalidType())
7915       NewFD->setInvalidDecl();
7916 
7917     return NewFD;
7918   }
7919 
7920   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7921   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7922 
7923   // Check that the return type is not an abstract class type.
7924   // For record types, this is done by the AbstractClassUsageDiagnoser once
7925   // the class has been completely parsed.
7926   if (!DC->isRecord() &&
7927       SemaRef.RequireNonAbstractType(
7928           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7929           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7930     D.setInvalidType();
7931 
7932   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7933     // This is a C++ constructor declaration.
7934     assert(DC->isRecord() &&
7935            "Constructors can only be declared in a member context");
7936 
7937     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7938     return CXXConstructorDecl::Create(
7939         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
7940         TInfo, isExplicit, isInline,
7941         /*isImplicitlyDeclared=*/false, isConstexpr);
7942 
7943   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7944     // This is a C++ destructor declaration.
7945     if (DC->isRecord()) {
7946       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7947       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7948       CXXDestructorDecl *NewDD =
7949           CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
7950                                     NameInfo, R, TInfo, isInline,
7951                                     /*isImplicitlyDeclared=*/false);
7952 
7953       // If the destructor needs an implicit exception specification, set it
7954       // now. FIXME: It'd be nice to be able to create the right type to start
7955       // with, but the type needs to reference the destructor declaration.
7956       if (SemaRef.getLangOpts().CPlusPlus11)
7957         SemaRef.AdjustDestructorExceptionSpec(NewDD);
7958 
7959       IsVirtualOkay = true;
7960       return NewDD;
7961 
7962     } else {
7963       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7964       D.setInvalidType();
7965 
7966       // Create a FunctionDecl to satisfy the function definition parsing
7967       // code path.
7968       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
7969                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
7970                                   isInline,
7971                                   /*hasPrototype=*/true, isConstexpr);
7972     }
7973 
7974   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7975     if (!DC->isRecord()) {
7976       SemaRef.Diag(D.getIdentifierLoc(),
7977            diag::err_conv_function_not_member);
7978       return nullptr;
7979     }
7980 
7981     SemaRef.CheckConversionDeclarator(D, R, SC);
7982     IsVirtualOkay = true;
7983     return CXXConversionDecl::Create(
7984         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
7985         TInfo, isInline, isExplicit, isConstexpr, SourceLocation());
7986 
7987   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
7988     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
7989 
7990     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
7991                                          isExplicit, NameInfo, R, TInfo,
7992                                          D.getEndLoc());
7993   } else if (DC->isRecord()) {
7994     // If the name of the function is the same as the name of the record,
7995     // then this must be an invalid constructor that has a return type.
7996     // (The parser checks for a return type and makes the declarator a
7997     // constructor if it has no return type).
7998     if (Name.getAsIdentifierInfo() &&
7999         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8000       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8001         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8002         << SourceRange(D.getIdentifierLoc());
8003       return nullptr;
8004     }
8005 
8006     // This is a C++ method declaration.
8007     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8008         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8009         TInfo, SC, isInline, isConstexpr, SourceLocation());
8010     IsVirtualOkay = !Ret->isStatic();
8011     return Ret;
8012   } else {
8013     bool isFriend =
8014         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8015     if (!isFriend && SemaRef.CurContext->isRecord())
8016       return nullptr;
8017 
8018     // Determine whether the function was written with a
8019     // prototype. This true when:
8020     //   - we're in C++ (where every function has a prototype),
8021     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8022                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8023                                 isConstexpr);
8024   }
8025 }
8026 
8027 enum OpenCLParamType {
8028   ValidKernelParam,
8029   PtrPtrKernelParam,
8030   PtrKernelParam,
8031   InvalidAddrSpacePtrKernelParam,
8032   InvalidKernelParam,
8033   RecordKernelParam
8034 };
8035 
isOpenCLSizeDependentType(ASTContext & C,QualType Ty)8036 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8037   // Size dependent types are just typedefs to normal integer types
8038   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8039   // integers other than by their names.
8040   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8041 
8042   // Remove typedefs one by one until we reach a typedef
8043   // for a size dependent type.
8044   QualType DesugaredTy = Ty;
8045   do {
8046     ArrayRef<StringRef> Names(SizeTypeNames);
8047     auto Match =
8048         std::find(Names.begin(), Names.end(), DesugaredTy.getAsString());
8049     if (Names.end() != Match)
8050       return true;
8051 
8052     Ty = DesugaredTy;
8053     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8054   } while (DesugaredTy != Ty);
8055 
8056   return false;
8057 }
8058 
getOpenCLKernelParameterType(Sema & S,QualType PT)8059 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8060   if (PT->isPointerType()) {
8061     QualType PointeeType = PT->getPointeeType();
8062     if (PointeeType->isPointerType())
8063       return PtrPtrKernelParam;
8064     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8065         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8066         PointeeType.getAddressSpace() == LangAS::Default)
8067       return InvalidAddrSpacePtrKernelParam;
8068     return PtrKernelParam;
8069   }
8070 
8071   // OpenCL v1.2 s6.9.k:
8072   // Arguments to kernel functions in a program cannot be declared with the
8073   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8074   // uintptr_t or a struct and/or union that contain fields declared to be one
8075   // of these built-in scalar types.
8076   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8077     return InvalidKernelParam;
8078 
8079   if (PT->isImageType())
8080     return PtrKernelParam;
8081 
8082   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8083     return InvalidKernelParam;
8084 
8085   // OpenCL extension spec v1.2 s9.5:
8086   // This extension adds support for half scalar and vector types as built-in
8087   // types that can be used for arithmetic operations, conversions etc.
8088   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8089     return InvalidKernelParam;
8090 
8091   if (PT->isRecordType())
8092     return RecordKernelParam;
8093 
8094   // Look into an array argument to check if it has a forbidden type.
8095   if (PT->isArrayType()) {
8096     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8097     // Call ourself to check an underlying type of an array. Since the
8098     // getPointeeOrArrayElementType returns an innermost type which is not an
8099     // array, this recursive call only happens once.
8100     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8101   }
8102 
8103   return ValidKernelParam;
8104 }
8105 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)8106 static void checkIsValidOpenCLKernelParameter(
8107   Sema &S,
8108   Declarator &D,
8109   ParmVarDecl *Param,
8110   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8111   QualType PT = Param->getType();
8112 
8113   // Cache the valid types we encounter to avoid rechecking structs that are
8114   // used again
8115   if (ValidTypes.count(PT.getTypePtr()))
8116     return;
8117 
8118   switch (getOpenCLKernelParameterType(S, PT)) {
8119   case PtrPtrKernelParam:
8120     // OpenCL v1.2 s6.9.a:
8121     // A kernel function argument cannot be declared as a
8122     // pointer to a pointer type.
8123     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8124     D.setInvalidType();
8125     return;
8126 
8127   case InvalidAddrSpacePtrKernelParam:
8128     // OpenCL v1.0 s6.5:
8129     // __kernel function arguments declared to be a pointer of a type can point
8130     // to one of the following address spaces only : __global, __local or
8131     // __constant.
8132     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8133     D.setInvalidType();
8134     return;
8135 
8136     // OpenCL v1.2 s6.9.k:
8137     // Arguments to kernel functions in a program cannot be declared with the
8138     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8139     // uintptr_t or a struct and/or union that contain fields declared to be
8140     // one of these built-in scalar types.
8141 
8142   case InvalidKernelParam:
8143     // OpenCL v1.2 s6.8 n:
8144     // A kernel function argument cannot be declared
8145     // of event_t type.
8146     // Do not diagnose half type since it is diagnosed as invalid argument
8147     // type for any function elsewhere.
8148     if (!PT->isHalfType()) {
8149       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8150 
8151       // Explain what typedefs are involved.
8152       const TypedefType *Typedef = nullptr;
8153       while ((Typedef = PT->getAs<TypedefType>())) {
8154         SourceLocation Loc = Typedef->getDecl()->getLocation();
8155         // SourceLocation may be invalid for a built-in type.
8156         if (Loc.isValid())
8157           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8158         PT = Typedef->desugar();
8159       }
8160     }
8161 
8162     D.setInvalidType();
8163     return;
8164 
8165   case PtrKernelParam:
8166   case ValidKernelParam:
8167     ValidTypes.insert(PT.getTypePtr());
8168     return;
8169 
8170   case RecordKernelParam:
8171     break;
8172   }
8173 
8174   // Track nested structs we will inspect
8175   SmallVector<const Decl *, 4> VisitStack;
8176 
8177   // Track where we are in the nested structs. Items will migrate from
8178   // VisitStack to HistoryStack as we do the DFS for bad field.
8179   SmallVector<const FieldDecl *, 4> HistoryStack;
8180   HistoryStack.push_back(nullptr);
8181 
8182   // At this point we already handled everything except of a RecordType or
8183   // an ArrayType of a RecordType.
8184   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8185   const RecordType *RecTy =
8186       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8187   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8188 
8189   VisitStack.push_back(RecTy->getDecl());
8190   assert(VisitStack.back() && "First decl null?");
8191 
8192   do {
8193     const Decl *Next = VisitStack.pop_back_val();
8194     if (!Next) {
8195       assert(!HistoryStack.empty());
8196       // Found a marker, we have gone up a level
8197       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8198         ValidTypes.insert(Hist->getType().getTypePtr());
8199 
8200       continue;
8201     }
8202 
8203     // Adds everything except the original parameter declaration (which is not a
8204     // field itself) to the history stack.
8205     const RecordDecl *RD;
8206     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8207       HistoryStack.push_back(Field);
8208 
8209       QualType FieldTy = Field->getType();
8210       // Other field types (known to be valid or invalid) are handled while we
8211       // walk around RecordDecl::fields().
8212       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8213              "Unexpected type.");
8214       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8215 
8216       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8217     } else {
8218       RD = cast<RecordDecl>(Next);
8219     }
8220 
8221     // Add a null marker so we know when we've gone back up a level
8222     VisitStack.push_back(nullptr);
8223 
8224     for (const auto *FD : RD->fields()) {
8225       QualType QT = FD->getType();
8226 
8227       if (ValidTypes.count(QT.getTypePtr()))
8228         continue;
8229 
8230       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8231       if (ParamType == ValidKernelParam)
8232         continue;
8233 
8234       if (ParamType == RecordKernelParam) {
8235         VisitStack.push_back(FD);
8236         continue;
8237       }
8238 
8239       // OpenCL v1.2 s6.9.p:
8240       // Arguments to kernel functions that are declared to be a struct or union
8241       // do not allow OpenCL objects to be passed as elements of the struct or
8242       // union.
8243       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8244           ParamType == InvalidAddrSpacePtrKernelParam) {
8245         S.Diag(Param->getLocation(),
8246                diag::err_record_with_pointers_kernel_param)
8247           << PT->isUnionType()
8248           << PT;
8249       } else {
8250         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8251       }
8252 
8253       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8254           << OrigRecDecl->getDeclName();
8255 
8256       // We have an error, now let's go back up through history and show where
8257       // the offending field came from
8258       for (ArrayRef<const FieldDecl *>::const_iterator
8259                I = HistoryStack.begin() + 1,
8260                E = HistoryStack.end();
8261            I != E; ++I) {
8262         const FieldDecl *OuterField = *I;
8263         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8264           << OuterField->getType();
8265       }
8266 
8267       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8268         << QT->isPointerType()
8269         << QT;
8270       D.setInvalidType();
8271       return;
8272     }
8273   } while (!VisitStack.empty());
8274 }
8275 
8276 /// Find the DeclContext in which a tag is implicitly declared if we see an
8277 /// elaborated type specifier in the specified context, and lookup finds
8278 /// nothing.
getTagInjectionContext(DeclContext * DC)8279 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8280   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8281     DC = DC->getParent();
8282   return DC;
8283 }
8284 
8285 /// Find the Scope in which a tag is implicitly declared if we see an
8286 /// elaborated type specifier in the specified context, and lookup finds
8287 /// nothing.
getTagInjectionScope(Scope * S,const LangOptions & LangOpts)8288 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8289   while (S->isClassScope() ||
8290          (LangOpts.CPlusPlus &&
8291           S->isFunctionPrototypeScope()) ||
8292          ((S->getFlags() & Scope::DeclScope) == 0) ||
8293          (S->getEntity() && S->getEntity()->isTransparentContext()))
8294     S = S->getParent();
8295   return S;
8296 }
8297 
8298 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)8299 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8300                               TypeSourceInfo *TInfo, LookupResult &Previous,
8301                               MultiTemplateParamsArg TemplateParamLists,
8302                               bool &AddToScope) {
8303   QualType R = TInfo->getType();
8304 
8305   assert(R->isFunctionType());
8306 
8307   // TODO: consider using NameInfo for diagnostic.
8308   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8309   DeclarationName Name = NameInfo.getName();
8310   StorageClass SC = getFunctionStorageClass(*this, D);
8311 
8312   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8313     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8314          diag::err_invalid_thread)
8315       << DeclSpec::getSpecifierName(TSCS);
8316 
8317   if (D.isFirstDeclarationOfMember())
8318     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8319                            D.getIdentifierLoc());
8320 
8321   bool isFriend = false;
8322   FunctionTemplateDecl *FunctionTemplate = nullptr;
8323   bool isMemberSpecialization = false;
8324   bool isFunctionTemplateSpecialization = false;
8325 
8326   bool isDependentClassScopeExplicitSpecialization = false;
8327   bool HasExplicitTemplateArgs = false;
8328   TemplateArgumentListInfo TemplateArgs;
8329 
8330   bool isVirtualOkay = false;
8331 
8332   DeclContext *OriginalDC = DC;
8333   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8334 
8335   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8336                                               isVirtualOkay);
8337   if (!NewFD) return nullptr;
8338 
8339   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8340     NewFD->setTopLevelDeclInObjCContainer();
8341 
8342   // Set the lexical context. If this is a function-scope declaration, or has a
8343   // C++ scope specifier, or is the object of a friend declaration, the lexical
8344   // context will be different from the semantic context.
8345   NewFD->setLexicalDeclContext(CurContext);
8346 
8347   if (IsLocalExternDecl)
8348     NewFD->setLocalExternDecl();
8349 
8350   if (getLangOpts().CPlusPlus) {
8351     bool isInline = D.getDeclSpec().isInlineSpecified();
8352     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8353     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
8354     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8355     isFriend = D.getDeclSpec().isFriendSpecified();
8356     if (isFriend && !isInline && D.isFunctionDefinition()) {
8357       // C++ [class.friend]p5
8358       //   A function can be defined in a friend declaration of a
8359       //   class . . . . Such a function is implicitly inline.
8360       NewFD->setImplicitlyInline();
8361     }
8362 
8363     // If this is a method defined in an __interface, and is not a constructor
8364     // or an overloaded operator, then set the pure flag (isVirtual will already
8365     // return true).
8366     if (const CXXRecordDecl *Parent =
8367           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8368       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8369         NewFD->setPure(true);
8370 
8371       // C++ [class.union]p2
8372       //   A union can have member functions, but not virtual functions.
8373       if (isVirtual && Parent->isUnion())
8374         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8375     }
8376 
8377     SetNestedNameSpecifier(*this, NewFD, D);
8378     isMemberSpecialization = false;
8379     isFunctionTemplateSpecialization = false;
8380     if (D.isInvalidType())
8381       NewFD->setInvalidDecl();
8382 
8383     // Match up the template parameter lists with the scope specifier, then
8384     // determine whether we have a template or a template specialization.
8385     bool Invalid = false;
8386     if (TemplateParameterList *TemplateParams =
8387             MatchTemplateParametersToScopeSpecifier(
8388                 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8389                 D.getCXXScopeSpec(),
8390                 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8391                     ? D.getName().TemplateId
8392                     : nullptr,
8393                 TemplateParamLists, isFriend, isMemberSpecialization,
8394                 Invalid)) {
8395       if (TemplateParams->size() > 0) {
8396         // This is a function template
8397 
8398         // Check that we can declare a template here.
8399         if (CheckTemplateDeclScope(S, TemplateParams))
8400           NewFD->setInvalidDecl();
8401 
8402         // A destructor cannot be a template.
8403         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8404           Diag(NewFD->getLocation(), diag::err_destructor_template);
8405           NewFD->setInvalidDecl();
8406         }
8407 
8408         // If we're adding a template to a dependent context, we may need to
8409         // rebuilding some of the types used within the template parameter list,
8410         // now that we know what the current instantiation is.
8411         if (DC->isDependentContext()) {
8412           ContextRAII SavedContext(*this, DC);
8413           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8414             Invalid = true;
8415         }
8416 
8417         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8418                                                         NewFD->getLocation(),
8419                                                         Name, TemplateParams,
8420                                                         NewFD);
8421         FunctionTemplate->setLexicalDeclContext(CurContext);
8422         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8423 
8424         // For source fidelity, store the other template param lists.
8425         if (TemplateParamLists.size() > 1) {
8426           NewFD->setTemplateParameterListsInfo(Context,
8427                                                TemplateParamLists.drop_back(1));
8428         }
8429       } else {
8430         // This is a function template specialization.
8431         isFunctionTemplateSpecialization = true;
8432         // For source fidelity, store all the template param lists.
8433         if (TemplateParamLists.size() > 0)
8434           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8435 
8436         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8437         if (isFriend) {
8438           // We want to remove the "template<>", found here.
8439           SourceRange RemoveRange = TemplateParams->getSourceRange();
8440 
8441           // If we remove the template<> and the name is not a
8442           // template-id, we're actually silently creating a problem:
8443           // the friend declaration will refer to an untemplated decl,
8444           // and clearly the user wants a template specialization.  So
8445           // we need to insert '<>' after the name.
8446           SourceLocation InsertLoc;
8447           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8448             InsertLoc = D.getName().getSourceRange().getEnd();
8449             InsertLoc = getLocForEndOfToken(InsertLoc);
8450           }
8451 
8452           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8453             << Name << RemoveRange
8454             << FixItHint::CreateRemoval(RemoveRange)
8455             << FixItHint::CreateInsertion(InsertLoc, "<>");
8456         }
8457       }
8458     } else {
8459       // All template param lists were matched against the scope specifier:
8460       // this is NOT (an explicit specialization of) a template.
8461       if (TemplateParamLists.size() > 0)
8462         // For source fidelity, store all the template param lists.
8463         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8464     }
8465 
8466     if (Invalid) {
8467       NewFD->setInvalidDecl();
8468       if (FunctionTemplate)
8469         FunctionTemplate->setInvalidDecl();
8470     }
8471 
8472     // C++ [dcl.fct.spec]p5:
8473     //   The virtual specifier shall only be used in declarations of
8474     //   nonstatic class member functions that appear within a
8475     //   member-specification of a class declaration; see 10.3.
8476     //
8477     if (isVirtual && !NewFD->isInvalidDecl()) {
8478       if (!isVirtualOkay) {
8479         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8480              diag::err_virtual_non_function);
8481       } else if (!CurContext->isRecord()) {
8482         // 'virtual' was specified outside of the class.
8483         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8484              diag::err_virtual_out_of_class)
8485           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8486       } else if (NewFD->getDescribedFunctionTemplate()) {
8487         // C++ [temp.mem]p3:
8488         //  A member function template shall not be virtual.
8489         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8490              diag::err_virtual_member_function_template)
8491           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8492       } else {
8493         // Okay: Add virtual to the method.
8494         NewFD->setVirtualAsWritten(true);
8495       }
8496 
8497       if (getLangOpts().CPlusPlus14 &&
8498           NewFD->getReturnType()->isUndeducedType())
8499         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8500     }
8501 
8502     if (getLangOpts().CPlusPlus14 &&
8503         (NewFD->isDependentContext() ||
8504          (isFriend && CurContext->isDependentContext())) &&
8505         NewFD->getReturnType()->isUndeducedType()) {
8506       // If the function template is referenced directly (for instance, as a
8507       // member of the current instantiation), pretend it has a dependent type.
8508       // This is not really justified by the standard, but is the only sane
8509       // thing to do.
8510       // FIXME: For a friend function, we have not marked the function as being
8511       // a friend yet, so 'isDependentContext' on the FD doesn't work.
8512       const FunctionProtoType *FPT =
8513           NewFD->getType()->castAs<FunctionProtoType>();
8514       QualType Result =
8515           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8516       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8517                                              FPT->getExtProtoInfo()));
8518     }
8519 
8520     // C++ [dcl.fct.spec]p3:
8521     //  The inline specifier shall not appear on a block scope function
8522     //  declaration.
8523     if (isInline && !NewFD->isInvalidDecl()) {
8524       if (CurContext->isFunctionOrMethod()) {
8525         // 'inline' is not allowed on block scope function declaration.
8526         Diag(D.getDeclSpec().getInlineSpecLoc(),
8527              diag::err_inline_declaration_block_scope) << Name
8528           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8529       }
8530     }
8531 
8532     // C++ [dcl.fct.spec]p6:
8533     //  The explicit specifier shall be used only in the declaration of a
8534     //  constructor or conversion function within its class definition;
8535     //  see 12.3.1 and 12.3.2.
8536     if (isExplicit && !NewFD->isInvalidDecl() &&
8537         !isa<CXXDeductionGuideDecl>(NewFD)) {
8538       if (!CurContext->isRecord()) {
8539         // 'explicit' was specified outside of the class.
8540         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8541              diag::err_explicit_out_of_class)
8542           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8543       } else if (!isa<CXXConstructorDecl>(NewFD) &&
8544                  !isa<CXXConversionDecl>(NewFD)) {
8545         // 'explicit' was specified on a function that wasn't a constructor
8546         // or conversion function.
8547         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8548              diag::err_explicit_non_ctor_or_conv_function)
8549           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8550       }
8551     }
8552 
8553     if (isConstexpr) {
8554       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8555       // are implicitly inline.
8556       NewFD->setImplicitlyInline();
8557 
8558       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8559       // be either constructors or to return a literal type. Therefore,
8560       // destructors cannot be declared constexpr.
8561       if (isa<CXXDestructorDecl>(NewFD))
8562         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8563     }
8564 
8565     // If __module_private__ was specified, mark the function accordingly.
8566     if (D.getDeclSpec().isModulePrivateSpecified()) {
8567       if (isFunctionTemplateSpecialization) {
8568         SourceLocation ModulePrivateLoc
8569           = D.getDeclSpec().getModulePrivateSpecLoc();
8570         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8571           << 0
8572           << FixItHint::CreateRemoval(ModulePrivateLoc);
8573       } else {
8574         NewFD->setModulePrivate();
8575         if (FunctionTemplate)
8576           FunctionTemplate->setModulePrivate();
8577       }
8578     }
8579 
8580     if (isFriend) {
8581       if (FunctionTemplate) {
8582         FunctionTemplate->setObjectOfFriendDecl();
8583         FunctionTemplate->setAccess(AS_public);
8584       }
8585       NewFD->setObjectOfFriendDecl();
8586       NewFD->setAccess(AS_public);
8587     }
8588 
8589     // If a function is defined as defaulted or deleted, mark it as such now.
8590     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8591     // definition kind to FDK_Definition.
8592     switch (D.getFunctionDefinitionKind()) {
8593       case FDK_Declaration:
8594       case FDK_Definition:
8595         break;
8596 
8597       case FDK_Defaulted:
8598         NewFD->setDefaulted();
8599         break;
8600 
8601       case FDK_Deleted:
8602         NewFD->setDeletedAsWritten();
8603         break;
8604     }
8605 
8606     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8607         D.isFunctionDefinition()) {
8608       // C++ [class.mfct]p2:
8609       //   A member function may be defined (8.4) in its class definition, in
8610       //   which case it is an inline member function (7.1.2)
8611       NewFD->setImplicitlyInline();
8612     }
8613 
8614     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8615         !CurContext->isRecord()) {
8616       // C++ [class.static]p1:
8617       //   A data or function member of a class may be declared static
8618       //   in a class definition, in which case it is a static member of
8619       //   the class.
8620 
8621       // Complain about the 'static' specifier if it's on an out-of-line
8622       // member function definition.
8623       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8624            diag::err_static_out_of_line)
8625         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8626     }
8627 
8628     // C++11 [except.spec]p15:
8629     //   A deallocation function with no exception-specification is treated
8630     //   as if it were specified with noexcept(true).
8631     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8632     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8633          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8634         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8635       NewFD->setType(Context.getFunctionType(
8636           FPT->getReturnType(), FPT->getParamTypes(),
8637           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8638   }
8639 
8640   // Filter out previous declarations that don't match the scope.
8641   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8642                        D.getCXXScopeSpec().isNotEmpty() ||
8643                        isMemberSpecialization ||
8644                        isFunctionTemplateSpecialization);
8645 
8646   // Handle GNU asm-label extension (encoded as an attribute).
8647   if (Expr *E = (Expr*) D.getAsmLabel()) {
8648     // The parser guarantees this is a string.
8649     StringLiteral *SE = cast<StringLiteral>(E);
8650     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8651                                                 SE->getString(), 0));
8652   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8653     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8654       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8655     if (I != ExtnameUndeclaredIdentifiers.end()) {
8656       if (isDeclExternC(NewFD)) {
8657         NewFD->addAttr(I->second);
8658         ExtnameUndeclaredIdentifiers.erase(I);
8659       } else
8660         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8661             << /*Variable*/0 << NewFD;
8662     }
8663   }
8664 
8665   // Copy the parameter declarations from the declarator D to the function
8666   // declaration NewFD, if they are available.  First scavenge them into Params.
8667   SmallVector<ParmVarDecl*, 16> Params;
8668   unsigned FTIIdx;
8669   if (D.isFunctionDeclarator(FTIIdx)) {
8670     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8671 
8672     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8673     // function that takes no arguments, not a function that takes a
8674     // single void argument.
8675     // We let through "const void" here because Sema::GetTypeForDeclarator
8676     // already checks for that case.
8677     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8678       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8679         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8680         assert(Param->getDeclContext() != NewFD && "Was set before ?");
8681         Param->setDeclContext(NewFD);
8682         Params.push_back(Param);
8683 
8684         if (Param->isInvalidDecl())
8685           NewFD->setInvalidDecl();
8686       }
8687     }
8688 
8689     if (!getLangOpts().CPlusPlus) {
8690       // In C, find all the tag declarations from the prototype and move them
8691       // into the function DeclContext. Remove them from the surrounding tag
8692       // injection context of the function, which is typically but not always
8693       // the TU.
8694       DeclContext *PrototypeTagContext =
8695           getTagInjectionContext(NewFD->getLexicalDeclContext());
8696       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8697         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8698 
8699         // We don't want to reparent enumerators. Look at their parent enum
8700         // instead.
8701         if (!TD) {
8702           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8703             TD = cast<EnumDecl>(ECD->getDeclContext());
8704         }
8705         if (!TD)
8706           continue;
8707         DeclContext *TagDC = TD->getLexicalDeclContext();
8708         if (!TagDC->containsDecl(TD))
8709           continue;
8710         TagDC->removeDecl(TD);
8711         TD->setDeclContext(NewFD);
8712         NewFD->addDecl(TD);
8713 
8714         // Preserve the lexical DeclContext if it is not the surrounding tag
8715         // injection context of the FD. In this example, the semantic context of
8716         // E will be f and the lexical context will be S, while both the
8717         // semantic and lexical contexts of S will be f:
8718         //   void f(struct S { enum E { a } f; } s);
8719         if (TagDC != PrototypeTagContext)
8720           TD->setLexicalDeclContext(TagDC);
8721       }
8722     }
8723   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8724     // When we're declaring a function with a typedef, typeof, etc as in the
8725     // following example, we'll need to synthesize (unnamed)
8726     // parameters for use in the declaration.
8727     //
8728     // @code
8729     // typedef void fn(int);
8730     // fn f;
8731     // @endcode
8732 
8733     // Synthesize a parameter for each argument type.
8734     for (const auto &AI : FT->param_types()) {
8735       ParmVarDecl *Param =
8736           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8737       Param->setScopeInfo(0, Params.size());
8738       Params.push_back(Param);
8739     }
8740   } else {
8741     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
8742            "Should not need args for typedef of non-prototype fn");
8743   }
8744 
8745   // Finally, we know we have the right number of parameters, install them.
8746   NewFD->setParams(Params);
8747 
8748   if (D.getDeclSpec().isNoreturnSpecified())
8749     NewFD->addAttr(
8750         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8751                                        Context, 0));
8752 
8753   // Functions returning a variably modified type violate C99 6.7.5.2p2
8754   // because all functions have linkage.
8755   if (!NewFD->isInvalidDecl() &&
8756       NewFD->getReturnType()->isVariablyModifiedType()) {
8757     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8758     NewFD->setInvalidDecl();
8759   }
8760 
8761   // Apply an implicit SectionAttr if '#pragma clang section text' is active
8762   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8763       !NewFD->hasAttr<SectionAttr>()) {
8764     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8765                                                  PragmaClangTextSection.SectionName,
8766                                                  PragmaClangTextSection.PragmaLocation));
8767   }
8768 
8769   // Apply an implicit SectionAttr if #pragma code_seg is active.
8770   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8771       !NewFD->hasAttr<SectionAttr>()) {
8772     NewFD->addAttr(
8773         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8774                                     CodeSegStack.CurrentValue->getString(),
8775                                     CodeSegStack.CurrentPragmaLocation));
8776     if (UnifySection(CodeSegStack.CurrentValue->getString(),
8777                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8778                          ASTContext::PSF_Read,
8779                      NewFD))
8780       NewFD->dropAttr<SectionAttr>();
8781   }
8782 
8783   // Apply an implicit CodeSegAttr from class declspec or
8784   // apply an implicit SectionAttr from #pragma code_seg if active.
8785   if (!NewFD->hasAttr<CodeSegAttr>()) {
8786     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8787                                                                  D.isFunctionDefinition())) {
8788       NewFD->addAttr(SAttr);
8789     }
8790   }
8791 
8792   // Handle attributes.
8793   ProcessDeclAttributes(S, NewFD, D);
8794 
8795   if (getLangOpts().OpenCL) {
8796     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8797     // type declaration will generate a compilation error.
8798     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8799     if (AddressSpace != LangAS::Default) {
8800       Diag(NewFD->getLocation(),
8801            diag::err_opencl_return_value_with_address_space);
8802       NewFD->setInvalidDecl();
8803     }
8804   }
8805 
8806   if (!getLangOpts().CPlusPlus) {
8807     // Perform semantic checking on the function declaration.
8808     if (!NewFD->isInvalidDecl() && NewFD->isMain())
8809       CheckMain(NewFD, D.getDeclSpec());
8810 
8811     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8812       CheckMSVCRTEntryPoint(NewFD);
8813 
8814     if (!NewFD->isInvalidDecl())
8815       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8816                                                   isMemberSpecialization));
8817     else if (!Previous.empty())
8818       // Recover gracefully from an invalid redeclaration.
8819       D.setRedeclaration(true);
8820     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8821             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8822            "previous declaration set still overloaded");
8823 
8824     // Diagnose no-prototype function declarations with calling conventions that
8825     // don't support variadic calls. Only do this in C and do it after merging
8826     // possibly prototyped redeclarations.
8827     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8828     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8829       CallingConv CC = FT->getExtInfo().getCC();
8830       if (!supportsVariadicCall(CC)) {
8831         // Windows system headers sometimes accidentally use stdcall without
8832         // (void) parameters, so we relax this to a warning.
8833         int DiagID =
8834             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8835         Diag(NewFD->getLocation(), DiagID)
8836             << FunctionType::getNameForCallConv(CC);
8837       }
8838     }
8839   } else {
8840     // C++11 [replacement.functions]p3:
8841     //  The program's definitions shall not be specified as inline.
8842     //
8843     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8844     //
8845     // Suppress the diagnostic if the function is __attribute__((used)), since
8846     // that forces an external definition to be emitted.
8847     if (D.getDeclSpec().isInlineSpecified() &&
8848         NewFD->isReplaceableGlobalAllocationFunction() &&
8849         !NewFD->hasAttr<UsedAttr>())
8850       Diag(D.getDeclSpec().getInlineSpecLoc(),
8851            diag::ext_operator_new_delete_declared_inline)
8852         << NewFD->getDeclName();
8853 
8854     // If the declarator is a template-id, translate the parser's template
8855     // argument list into our AST format.
8856     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8857       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8858       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8859       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8860       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8861                                          TemplateId->NumArgs);
8862       translateTemplateArguments(TemplateArgsPtr,
8863                                  TemplateArgs);
8864 
8865       HasExplicitTemplateArgs = true;
8866 
8867       if (NewFD->isInvalidDecl()) {
8868         HasExplicitTemplateArgs = false;
8869       } else if (FunctionTemplate) {
8870         // Function template with explicit template arguments.
8871         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8872           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8873 
8874         HasExplicitTemplateArgs = false;
8875       } else {
8876         assert((isFunctionTemplateSpecialization ||
8877                 D.getDeclSpec().isFriendSpecified()) &&
8878                "should have a 'template<>' for this decl");
8879         // "friend void foo<>(int);" is an implicit specialization decl.
8880         isFunctionTemplateSpecialization = true;
8881       }
8882     } else if (isFriend && isFunctionTemplateSpecialization) {
8883       // This combination is only possible in a recovery case;  the user
8884       // wrote something like:
8885       //   template <> friend void foo(int);
8886       // which we're recovering from as if the user had written:
8887       //   friend void foo<>(int);
8888       // Go ahead and fake up a template id.
8889       HasExplicitTemplateArgs = true;
8890       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8891       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8892     }
8893 
8894     // We do not add HD attributes to specializations here because
8895     // they may have different constexpr-ness compared to their
8896     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8897     // may end up with different effective targets. Instead, a
8898     // specialization inherits its target attributes from its template
8899     // in the CheckFunctionTemplateSpecialization() call below.
8900     if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8901       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8902 
8903     // If it's a friend (and only if it's a friend), it's possible
8904     // that either the specialized function type or the specialized
8905     // template is dependent, and therefore matching will fail.  In
8906     // this case, don't check the specialization yet.
8907     bool InstantiationDependent = false;
8908     if (isFunctionTemplateSpecialization && isFriend &&
8909         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8910          TemplateSpecializationType::anyDependentTemplateArguments(
8911             TemplateArgs,
8912             InstantiationDependent))) {
8913       assert(HasExplicitTemplateArgs &&
8914              "friend function specialization without template args");
8915       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8916                                                        Previous))
8917         NewFD->setInvalidDecl();
8918     } else if (isFunctionTemplateSpecialization) {
8919       if (CurContext->isDependentContext() && CurContext->isRecord()
8920           && !isFriend) {
8921         isDependentClassScopeExplicitSpecialization = true;
8922       } else if (!NewFD->isInvalidDecl() &&
8923                  CheckFunctionTemplateSpecialization(
8924                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
8925                      Previous))
8926         NewFD->setInvalidDecl();
8927 
8928       // C++ [dcl.stc]p1:
8929       //   A storage-class-specifier shall not be specified in an explicit
8930       //   specialization (14.7.3)
8931       FunctionTemplateSpecializationInfo *Info =
8932           NewFD->getTemplateSpecializationInfo();
8933       if (Info && SC != SC_None) {
8934         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8935           Diag(NewFD->getLocation(),
8936                diag::err_explicit_specialization_inconsistent_storage_class)
8937             << SC
8938             << FixItHint::CreateRemoval(
8939                                       D.getDeclSpec().getStorageClassSpecLoc());
8940 
8941         else
8942           Diag(NewFD->getLocation(),
8943                diag::ext_explicit_specialization_storage_class)
8944             << FixItHint::CreateRemoval(
8945                                       D.getDeclSpec().getStorageClassSpecLoc());
8946       }
8947     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
8948       if (CheckMemberSpecialization(NewFD, Previous))
8949           NewFD->setInvalidDecl();
8950     }
8951 
8952     // Perform semantic checking on the function declaration.
8953     if (!isDependentClassScopeExplicitSpecialization) {
8954       if (!NewFD->isInvalidDecl() && NewFD->isMain())
8955         CheckMain(NewFD, D.getDeclSpec());
8956 
8957       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8958         CheckMSVCRTEntryPoint(NewFD);
8959 
8960       if (!NewFD->isInvalidDecl())
8961         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8962                                                     isMemberSpecialization));
8963       else if (!Previous.empty())
8964         // Recover gracefully from an invalid redeclaration.
8965         D.setRedeclaration(true);
8966     }
8967 
8968     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8969             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8970            "previous declaration set still overloaded");
8971 
8972     NamedDecl *PrincipalDecl = (FunctionTemplate
8973                                 ? cast<NamedDecl>(FunctionTemplate)
8974                                 : NewFD);
8975 
8976     if (isFriend && NewFD->getPreviousDecl()) {
8977       AccessSpecifier Access = AS_public;
8978       if (!NewFD->isInvalidDecl())
8979         Access = NewFD->getPreviousDecl()->getAccess();
8980 
8981       NewFD->setAccess(Access);
8982       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8983     }
8984 
8985     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8986         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8987       PrincipalDecl->setNonMemberOperator();
8988 
8989     // If we have a function template, check the template parameter
8990     // list. This will check and merge default template arguments.
8991     if (FunctionTemplate) {
8992       FunctionTemplateDecl *PrevTemplate =
8993                                      FunctionTemplate->getPreviousDecl();
8994       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
8995                        PrevTemplate ? PrevTemplate->getTemplateParameters()
8996                                     : nullptr,
8997                             D.getDeclSpec().isFriendSpecified()
8998                               ? (D.isFunctionDefinition()
8999                                    ? TPC_FriendFunctionTemplateDefinition
9000                                    : TPC_FriendFunctionTemplate)
9001                               : (D.getCXXScopeSpec().isSet() &&
9002                                  DC && DC->isRecord() &&
9003                                  DC->isDependentContext())
9004                                   ? TPC_ClassTemplateMember
9005                                   : TPC_FunctionTemplate);
9006     }
9007 
9008     if (NewFD->isInvalidDecl()) {
9009       // Ignore all the rest of this.
9010     } else if (!D.isRedeclaration()) {
9011       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9012                                        AddToScope };
9013       // Fake up an access specifier if it's supposed to be a class member.
9014       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9015         NewFD->setAccess(AS_public);
9016 
9017       // Qualified decls generally require a previous declaration.
9018       if (D.getCXXScopeSpec().isSet()) {
9019         // ...with the major exception of templated-scope or
9020         // dependent-scope friend declarations.
9021 
9022         // TODO: we currently also suppress this check in dependent
9023         // contexts because (1) the parameter depth will be off when
9024         // matching friend templates and (2) we might actually be
9025         // selecting a friend based on a dependent factor.  But there
9026         // are situations where these conditions don't apply and we
9027         // can actually do this check immediately.
9028         //
9029         // Unless the scope is dependent, it's always an error if qualified
9030         // redeclaration lookup found nothing at all. Diagnose that now;
9031         // nothing will diagnose that error later.
9032         if (isFriend &&
9033             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9034              (!Previous.empty() && (TemplateParamLists.size() ||
9035                                     CurContext->isDependentContext())))) {
9036           // ignore these
9037         } else {
9038           // The user tried to provide an out-of-line definition for a
9039           // function that is a member of a class or namespace, but there
9040           // was no such member function declared (C++ [class.mfct]p2,
9041           // C++ [namespace.memdef]p2). For example:
9042           //
9043           // class X {
9044           //   void f() const;
9045           // };
9046           //
9047           // void X::f() { } // ill-formed
9048           //
9049           // Complain about this problem, and attempt to suggest close
9050           // matches (e.g., those that differ only in cv-qualifiers and
9051           // whether the parameter types are references).
9052 
9053           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9054                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9055             AddToScope = ExtraArgs.AddToScope;
9056             return Result;
9057           }
9058         }
9059 
9060         // Unqualified local friend declarations are required to resolve
9061         // to something.
9062       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9063         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9064                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9065           AddToScope = ExtraArgs.AddToScope;
9066           return Result;
9067         }
9068       }
9069     } else if (!D.isFunctionDefinition() &&
9070                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9071                !isFriend && !isFunctionTemplateSpecialization &&
9072                !isMemberSpecialization) {
9073       // An out-of-line member function declaration must also be a
9074       // definition (C++ [class.mfct]p2).
9075       // Note that this is not the case for explicit specializations of
9076       // function templates or member functions of class templates, per
9077       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9078       // extension for compatibility with old SWIG code which likes to
9079       // generate them.
9080       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9081         << D.getCXXScopeSpec().getRange();
9082     }
9083   }
9084 
9085   ProcessPragmaWeak(S, NewFD);
9086   checkAttributesAfterMerging(*this, *NewFD);
9087 
9088   AddKnownFunctionAttributes(NewFD);
9089 
9090   if (NewFD->hasAttr<OverloadableAttr>() &&
9091       !NewFD->getType()->getAs<FunctionProtoType>()) {
9092     Diag(NewFD->getLocation(),
9093          diag::err_attribute_overloadable_no_prototype)
9094       << NewFD;
9095 
9096     // Turn this into a variadic function with no parameters.
9097     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9098     FunctionProtoType::ExtProtoInfo EPI(
9099         Context.getDefaultCallingConvention(true, false));
9100     EPI.Variadic = true;
9101     EPI.ExtInfo = FT->getExtInfo();
9102 
9103     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9104     NewFD->setType(R);
9105   }
9106 
9107   // If there's a #pragma GCC visibility in scope, and this isn't a class
9108   // member, set the visibility of this function.
9109   if (!DC->isRecord() && NewFD->isExternallyVisible())
9110     AddPushedVisibilityAttribute(NewFD);
9111 
9112   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9113   // marking the function.
9114   AddCFAuditedAttribute(NewFD);
9115 
9116   // If this is a function definition, check if we have to apply optnone due to
9117   // a pragma.
9118   if(D.isFunctionDefinition())
9119     AddRangeBasedOptnone(NewFD);
9120 
9121   // If this is the first declaration of an extern C variable, update
9122   // the map of such variables.
9123   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9124       isIncompleteDeclExternC(*this, NewFD))
9125     RegisterLocallyScopedExternCDecl(NewFD, S);
9126 
9127   // Set this FunctionDecl's range up to the right paren.
9128   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9129 
9130   if (D.isRedeclaration() && !Previous.empty()) {
9131     NamedDecl *Prev = Previous.getRepresentativeDecl();
9132     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9133                                    isMemberSpecialization ||
9134                                        isFunctionTemplateSpecialization,
9135                                    D.isFunctionDefinition());
9136   }
9137 
9138   if (getLangOpts().CUDA) {
9139     IdentifierInfo *II = NewFD->getIdentifier();
9140     if (II &&
9141         II->isStr(getLangOpts().HIP ? "hipConfigureCall"
9142                                     : "cudaConfigureCall") &&
9143         !NewFD->isInvalidDecl() &&
9144         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9145       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9146         Diag(NewFD->getLocation(), diag::err_config_scalar_return);
9147       Context.setcudaConfigureCallDecl(NewFD);
9148     }
9149 
9150     // Variadic functions, other than a *declaration* of printf, are not allowed
9151     // in device-side CUDA code, unless someone passed
9152     // -fcuda-allow-variadic-functions.
9153     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9154         (NewFD->hasAttr<CUDADeviceAttr>() ||
9155          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9156         !(II && II->isStr("printf") && NewFD->isExternC() &&
9157           !D.isFunctionDefinition())) {
9158       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9159     }
9160   }
9161 
9162   MarkUnusedFileScopedDecl(NewFD);
9163 
9164   if (getLangOpts().CPlusPlus) {
9165     if (FunctionTemplate) {
9166       if (NewFD->isInvalidDecl())
9167         FunctionTemplate->setInvalidDecl();
9168       return FunctionTemplate;
9169     }
9170 
9171     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9172       CompleteMemberSpecialization(NewFD, Previous);
9173   }
9174 
9175   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
9176     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9177     if ((getLangOpts().OpenCLVersion >= 120)
9178         && (SC == SC_Static)) {
9179       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9180       D.setInvalidType();
9181     }
9182 
9183     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9184     if (!NewFD->getReturnType()->isVoidType()) {
9185       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9186       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9187           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9188                                 : FixItHint());
9189       D.setInvalidType();
9190     }
9191 
9192     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9193     for (auto Param : NewFD->parameters())
9194       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9195   }
9196   for (const ParmVarDecl *Param : NewFD->parameters()) {
9197     QualType PT = Param->getType();
9198 
9199     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9200     // types.
9201     if (getLangOpts().OpenCLVersion >= 200) {
9202       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9203         QualType ElemTy = PipeTy->getElementType();
9204           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9205             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9206             D.setInvalidType();
9207           }
9208       }
9209     }
9210   }
9211 
9212   // Here we have an function template explicit specialization at class scope.
9213   // The actual specialization will be postponed to template instatiation
9214   // time via the ClassScopeFunctionSpecializationDecl node.
9215   if (isDependentClassScopeExplicitSpecialization) {
9216     ClassScopeFunctionSpecializationDecl *NewSpec =
9217                          ClassScopeFunctionSpecializationDecl::Create(
9218                                 Context, CurContext, NewFD->getLocation(),
9219                                 cast<CXXMethodDecl>(NewFD),
9220                                 HasExplicitTemplateArgs, TemplateArgs);
9221     CurContext->addDecl(NewSpec);
9222     AddToScope = false;
9223   }
9224 
9225   // Diagnose availability attributes. Availability cannot be used on functions
9226   // that are run during load/unload.
9227   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9228     if (NewFD->hasAttr<ConstructorAttr>()) {
9229       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9230           << 1;
9231       NewFD->dropAttr<AvailabilityAttr>();
9232     }
9233     if (NewFD->hasAttr<DestructorAttr>()) {
9234       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9235           << 2;
9236       NewFD->dropAttr<AvailabilityAttr>();
9237     }
9238   }
9239 
9240   return NewFD;
9241 }
9242 
9243 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9244 /// when __declspec(code_seg) "is applied to a class, all member functions of
9245 /// the class and nested classes -- this includes compiler-generated special
9246 /// member functions -- are put in the specified segment."
9247 /// The actual behavior is a little more complicated. The Microsoft compiler
9248 /// won't check outer classes if there is an active value from #pragma code_seg.
9249 /// The CodeSeg is always applied from the direct parent but only from outer
9250 /// classes when the #pragma code_seg stack is empty. See:
9251 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9252 /// available since MS has removed the page.
getImplicitCodeSegAttrFromClass(Sema & S,const FunctionDecl * FD)9253 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9254   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9255   if (!Method)
9256     return nullptr;
9257   const CXXRecordDecl *Parent = Method->getParent();
9258   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9259     Attr *NewAttr = SAttr->clone(S.getASTContext());
9260     NewAttr->setImplicit(true);
9261     return NewAttr;
9262   }
9263 
9264   // The Microsoft compiler won't check outer classes for the CodeSeg
9265   // when the #pragma code_seg stack is active.
9266   if (S.CodeSegStack.CurrentValue)
9267    return nullptr;
9268 
9269   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9270     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9271       Attr *NewAttr = SAttr->clone(S.getASTContext());
9272       NewAttr->setImplicit(true);
9273       return NewAttr;
9274     }
9275   }
9276   return nullptr;
9277 }
9278 
9279 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9280 /// containing class. Otherwise it will return implicit SectionAttr if the
9281 /// function is a definition and there is an active value on CodeSegStack
9282 /// (from the current #pragma code-seg value).
9283 ///
9284 /// \param FD Function being declared.
9285 /// \param IsDefinition Whether it is a definition or just a declarartion.
9286 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9287 ///          nullptr if no attribute should be added.
getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl * FD,bool IsDefinition)9288 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9289                                                        bool IsDefinition) {
9290   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9291     return A;
9292   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9293       CodeSegStack.CurrentValue) {
9294     return SectionAttr::CreateImplicit(getASTContext(),
9295                                        SectionAttr::Declspec_allocate,
9296                                        CodeSegStack.CurrentValue->getString(),
9297                                        CodeSegStack.CurrentPragmaLocation);
9298   }
9299   return nullptr;
9300 }
9301 
9302 /// Determines if we can perform a correct type check for \p D as a
9303 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9304 /// best-effort check.
9305 ///
9306 /// \param NewD The new declaration.
9307 /// \param OldD The old declaration.
9308 /// \param NewT The portion of the type of the new declaration to check.
9309 /// \param OldT The portion of the type of the old declaration to check.
canFullyTypeCheckRedeclaration(ValueDecl * NewD,ValueDecl * OldD,QualType NewT,QualType OldT)9310 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9311                                           QualType NewT, QualType OldT) {
9312   if (!NewD->getLexicalDeclContext()->isDependentContext())
9313     return true;
9314 
9315   // For dependently-typed local extern declarations and friends, we can't
9316   // perform a correct type check in general until instantiation:
9317   //
9318   //   int f();
9319   //   template<typename T> void g() { T f(); }
9320   //
9321   // (valid if g() is only instantiated with T = int).
9322   if (NewT->isDependentType() &&
9323       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9324     return false;
9325 
9326   // Similarly, if the previous declaration was a dependent local extern
9327   // declaration, we don't really know its type yet.
9328   if (OldT->isDependentType() && OldD->isLocalExternDecl())
9329     return false;
9330 
9331   return true;
9332 }
9333 
9334 /// Checks if the new declaration declared in dependent context must be
9335 /// put in the same redeclaration chain as the specified declaration.
9336 ///
9337 /// \param D Declaration that is checked.
9338 /// \param PrevDecl Previous declaration found with proper lookup method for the
9339 ///                 same declaration name.
9340 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9341 ///          belongs to.
9342 ///
shouldLinkDependentDeclWithPrevious(Decl * D,Decl * PrevDecl)9343 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9344   if (!D->getLexicalDeclContext()->isDependentContext())
9345     return true;
9346 
9347   // Don't chain dependent friend function definitions until instantiation, to
9348   // permit cases like
9349   //
9350   //   void func();
9351   //   template<typename T> class C1 { friend void func() {} };
9352   //   template<typename T> class C2 { friend void func() {} };
9353   //
9354   // ... which is valid if only one of C1 and C2 is ever instantiated.
9355   //
9356   // FIXME: This need only apply to function definitions. For now, we proxy
9357   // this by checking for a file-scope function. We do not want this to apply
9358   // to friend declarations nominating member functions, because that gets in
9359   // the way of access checks.
9360   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9361     return false;
9362 
9363   auto *VD = dyn_cast<ValueDecl>(D);
9364   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9365   return !VD || !PrevVD ||
9366          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9367                                         PrevVD->getType());
9368 }
9369 
9370 /// Check the target attribute of the function for MultiVersion
9371 /// validity.
9372 ///
9373 /// Returns true if there was an error, false otherwise.
CheckMultiVersionValue(Sema & S,const FunctionDecl * FD)9374 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9375   const auto *TA = FD->getAttr<TargetAttr>();
9376   assert(TA && "MultiVersion Candidate requires a target attribute");
9377   TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9378   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9379   enum ErrType { Feature = 0, Architecture = 1 };
9380 
9381   if (!ParseInfo.Architecture.empty() &&
9382       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9383     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9384         << Architecture << ParseInfo.Architecture;
9385     return true;
9386   }
9387 
9388   for (const auto &Feat : ParseInfo.Features) {
9389     auto BareFeat = StringRef{Feat}.substr(1);
9390     if (Feat[0] == '-') {
9391       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9392           << Feature << ("no-" + BareFeat).str();
9393       return true;
9394     }
9395 
9396     if (!TargetInfo.validateCpuSupports(BareFeat) ||
9397         !TargetInfo.isValidFeatureName(BareFeat)) {
9398       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9399           << Feature << BareFeat;
9400       return true;
9401     }
9402   }
9403   return false;
9404 }
9405 
HasNonMultiVersionAttributes(const FunctionDecl * FD,MultiVersionKind MVType)9406 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9407                                          MultiVersionKind MVType) {
9408   for (const Attr *A : FD->attrs()) {
9409     switch (A->getKind()) {
9410     case attr::CPUDispatch:
9411     case attr::CPUSpecific:
9412       if (MVType != MultiVersionKind::CPUDispatch &&
9413           MVType != MultiVersionKind::CPUSpecific)
9414         return true;
9415       break;
9416     case attr::Target:
9417       if (MVType != MultiVersionKind::Target)
9418         return true;
9419       break;
9420     default:
9421       return true;
9422     }
9423   }
9424   return false;
9425 }
9426 
CheckMultiVersionAdditionalRules(Sema & S,const FunctionDecl * OldFD,const FunctionDecl * NewFD,bool CausesMV,MultiVersionKind MVType)9427 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9428                                              const FunctionDecl *NewFD,
9429                                              bool CausesMV,
9430                                              MultiVersionKind MVType) {
9431   enum DoesntSupport {
9432     FuncTemplates = 0,
9433     VirtFuncs = 1,
9434     DeducedReturn = 2,
9435     Constructors = 3,
9436     Destructors = 4,
9437     DeletedFuncs = 5,
9438     DefaultedFuncs = 6,
9439     ConstexprFuncs = 7,
9440   };
9441   enum Different {
9442     CallingConv = 0,
9443     ReturnType = 1,
9444     ConstexprSpec = 2,
9445     InlineSpec = 3,
9446     StorageClass = 4,
9447     Linkage = 5
9448   };
9449 
9450   bool IsCPUSpecificCPUDispatchMVType =
9451       MVType == MultiVersionKind::CPUDispatch ||
9452       MVType == MultiVersionKind::CPUSpecific;
9453 
9454   if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9455     S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9456     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9457     return true;
9458   }
9459 
9460   if (!NewFD->getType()->getAs<FunctionProtoType>())
9461     return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9462 
9463   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9464     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9465     if (OldFD)
9466       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9467     return true;
9468   }
9469 
9470   // For now, disallow all other attributes.  These should be opt-in, but
9471   // an analysis of all of them is a future FIXME.
9472   if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9473     S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9474         << IsCPUSpecificCPUDispatchMVType;
9475     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9476     return true;
9477   }
9478 
9479   if (HasNonMultiVersionAttributes(NewFD, MVType))
9480     return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9481            << IsCPUSpecificCPUDispatchMVType;
9482 
9483   if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9484     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9485            << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9486 
9487   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9488     if (NewCXXFD->isVirtual())
9489       return S.Diag(NewCXXFD->getLocation(),
9490                     diag::err_multiversion_doesnt_support)
9491              << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9492 
9493     if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9494       return S.Diag(NewCXXCtor->getLocation(),
9495                     diag::err_multiversion_doesnt_support)
9496              << IsCPUSpecificCPUDispatchMVType << Constructors;
9497 
9498     if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9499       return S.Diag(NewCXXDtor->getLocation(),
9500                     diag::err_multiversion_doesnt_support)
9501              << IsCPUSpecificCPUDispatchMVType << Destructors;
9502   }
9503 
9504   if (NewFD->isDeleted())
9505     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9506            << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9507 
9508   if (NewFD->isDefaulted())
9509     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9510            << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9511 
9512   if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9513                                MVType == MultiVersionKind::CPUSpecific))
9514     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9515            << IsCPUSpecificCPUDispatchMVType << ConstexprFuncs;
9516 
9517   QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9518   const auto *NewType = cast<FunctionType>(NewQType);
9519   QualType NewReturnType = NewType->getReturnType();
9520 
9521   if (NewReturnType->isUndeducedType())
9522     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9523            << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9524 
9525   // Only allow transition to MultiVersion if it hasn't been used.
9526   if (OldFD && CausesMV && OldFD->isUsed(false))
9527     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9528 
9529   // Ensure the return type is identical.
9530   if (OldFD) {
9531     QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9532     const auto *OldType = cast<FunctionType>(OldQType);
9533     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9534     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9535 
9536     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9537       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9538              << CallingConv;
9539 
9540     QualType OldReturnType = OldType->getReturnType();
9541 
9542     if (OldReturnType != NewReturnType)
9543       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9544              << ReturnType;
9545 
9546     if (OldFD->isConstexpr() != NewFD->isConstexpr())
9547       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9548              << ConstexprSpec;
9549 
9550     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9551       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9552              << InlineSpec;
9553 
9554     if (OldFD->getStorageClass() != NewFD->getStorageClass())
9555       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9556              << StorageClass;
9557 
9558     if (OldFD->isExternC() != NewFD->isExternC())
9559       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9560              << Linkage;
9561 
9562     if (S.CheckEquivalentExceptionSpec(
9563             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9564             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9565       return true;
9566   }
9567   return false;
9568 }
9569 
9570 /// Check the validity of a multiversion function declaration that is the
9571 /// first of its kind. Also sets the multiversion'ness' of the function itself.
9572 ///
9573 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9574 ///
9575 /// Returns true if there was an error, false otherwise.
CheckMultiVersionFirstFunction(Sema & S,FunctionDecl * FD,MultiVersionKind MVType,const TargetAttr * TA,const CPUDispatchAttr * CPUDisp,const CPUSpecificAttr * CPUSpec)9576 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9577                                            MultiVersionKind MVType,
9578                                            const TargetAttr *TA,
9579                                            const CPUDispatchAttr *CPUDisp,
9580                                            const CPUSpecificAttr *CPUSpec) {
9581   assert(MVType != MultiVersionKind::None &&
9582          "Function lacks multiversion attribute");
9583 
9584   // Target only causes MV if it is default, otherwise this is a normal
9585   // function.
9586   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9587     return false;
9588 
9589   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9590     FD->setInvalidDecl();
9591     return true;
9592   }
9593 
9594   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9595     FD->setInvalidDecl();
9596     return true;
9597   }
9598 
9599   FD->setIsMultiVersion();
9600   return false;
9601 }
9602 
PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl * FD)9603 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9604   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9605     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9606       return true;
9607   }
9608 
9609   return false;
9610 }
9611 
CheckTargetCausesMultiVersioning(Sema & S,FunctionDecl * OldFD,FunctionDecl * NewFD,const TargetAttr * NewTA,bool & Redeclaration,NamedDecl * & OldDecl,bool & MergeTypeWithPrevious,LookupResult & Previous)9612 static bool CheckTargetCausesMultiVersioning(
9613     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9614     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9615     LookupResult &Previous) {
9616   const auto *OldTA = OldFD->getAttr<TargetAttr>();
9617   TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9618   // Sort order doesn't matter, it just needs to be consistent.
9619   llvm::sort(NewParsed.Features);
9620 
9621   // If the old decl is NOT MultiVersioned yet, and we don't cause that
9622   // to change, this is a simple redeclaration.
9623   if (!NewTA->isDefaultVersion() &&
9624       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9625     return false;
9626 
9627   // Otherwise, this decl causes MultiVersioning.
9628   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9629     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9630     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9631     NewFD->setInvalidDecl();
9632     return true;
9633   }
9634 
9635   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9636                                        MultiVersionKind::Target)) {
9637     NewFD->setInvalidDecl();
9638     return true;
9639   }
9640 
9641   if (CheckMultiVersionValue(S, NewFD)) {
9642     NewFD->setInvalidDecl();
9643     return true;
9644   }
9645 
9646   // If this is 'default', permit the forward declaration.
9647   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9648     Redeclaration = true;
9649     OldDecl = OldFD;
9650     OldFD->setIsMultiVersion();
9651     NewFD->setIsMultiVersion();
9652     return false;
9653   }
9654 
9655   if (CheckMultiVersionValue(S, OldFD)) {
9656     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9657     NewFD->setInvalidDecl();
9658     return true;
9659   }
9660 
9661   TargetAttr::ParsedTargetAttr OldParsed =
9662       OldTA->parse(std::less<std::string>());
9663 
9664   if (OldParsed == NewParsed) {
9665     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9666     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9667     NewFD->setInvalidDecl();
9668     return true;
9669   }
9670 
9671   for (const auto *FD : OldFD->redecls()) {
9672     const auto *CurTA = FD->getAttr<TargetAttr>();
9673     // We allow forward declarations before ANY multiversioning attributes, but
9674     // nothing after the fact.
9675     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9676         (!CurTA || CurTA->isInherited())) {
9677       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9678           << 0;
9679       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9680       NewFD->setInvalidDecl();
9681       return true;
9682     }
9683   }
9684 
9685   OldFD->setIsMultiVersion();
9686   NewFD->setIsMultiVersion();
9687   Redeclaration = false;
9688   MergeTypeWithPrevious = false;
9689   OldDecl = nullptr;
9690   Previous.clear();
9691   return false;
9692 }
9693 
9694 /// Check the validity of a new function declaration being added to an existing
9695 /// multiversioned declaration collection.
CheckMultiVersionAdditionalDecl(Sema & S,FunctionDecl * OldFD,FunctionDecl * NewFD,MultiVersionKind NewMVType,const TargetAttr * NewTA,const CPUDispatchAttr * NewCPUDisp,const CPUSpecificAttr * NewCPUSpec,bool & Redeclaration,NamedDecl * & OldDecl,bool & MergeTypeWithPrevious,LookupResult & Previous)9696 static bool CheckMultiVersionAdditionalDecl(
9697     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9698     MultiVersionKind NewMVType, const TargetAttr *NewTA,
9699     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9700     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9701     LookupResult &Previous) {
9702 
9703   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9704   // Disallow mixing of multiversioning types.
9705   if ((OldMVType == MultiVersionKind::Target &&
9706        NewMVType != MultiVersionKind::Target) ||
9707       (NewMVType == MultiVersionKind::Target &&
9708        OldMVType != MultiVersionKind::Target)) {
9709     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9710     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9711     NewFD->setInvalidDecl();
9712     return true;
9713   }
9714 
9715   TargetAttr::ParsedTargetAttr NewParsed;
9716   if (NewTA) {
9717     NewParsed = NewTA->parse();
9718     llvm::sort(NewParsed.Features);
9719   }
9720 
9721   bool UseMemberUsingDeclRules =
9722       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9723 
9724   // Next, check ALL non-overloads to see if this is a redeclaration of a
9725   // previous member of the MultiVersion set.
9726   for (NamedDecl *ND : Previous) {
9727     FunctionDecl *CurFD = ND->getAsFunction();
9728     if (!CurFD)
9729       continue;
9730     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9731       continue;
9732 
9733     if (NewMVType == MultiVersionKind::Target) {
9734       const auto *CurTA = CurFD->getAttr<TargetAttr>();
9735       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9736         NewFD->setIsMultiVersion();
9737         Redeclaration = true;
9738         OldDecl = ND;
9739         return false;
9740       }
9741 
9742       TargetAttr::ParsedTargetAttr CurParsed =
9743           CurTA->parse(std::less<std::string>());
9744       if (CurParsed == NewParsed) {
9745         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9746         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9747         NewFD->setInvalidDecl();
9748         return true;
9749       }
9750     } else {
9751       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9752       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9753       // Handle CPUDispatch/CPUSpecific versions.
9754       // Only 1 CPUDispatch function is allowed, this will make it go through
9755       // the redeclaration errors.
9756       if (NewMVType == MultiVersionKind::CPUDispatch &&
9757           CurFD->hasAttr<CPUDispatchAttr>()) {
9758         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9759             std::equal(
9760                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9761                 NewCPUDisp->cpus_begin(),
9762                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9763                   return Cur->getName() == New->getName();
9764                 })) {
9765           NewFD->setIsMultiVersion();
9766           Redeclaration = true;
9767           OldDecl = ND;
9768           return false;
9769         }
9770 
9771         // If the declarations don't match, this is an error condition.
9772         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9773         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9774         NewFD->setInvalidDecl();
9775         return true;
9776       }
9777       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9778 
9779         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9780             std::equal(
9781                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9782                 NewCPUSpec->cpus_begin(),
9783                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9784                   return Cur->getName() == New->getName();
9785                 })) {
9786           NewFD->setIsMultiVersion();
9787           Redeclaration = true;
9788           OldDecl = ND;
9789           return false;
9790         }
9791 
9792         // Only 1 version of CPUSpecific is allowed for each CPU.
9793         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9794           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9795             if (CurII == NewII) {
9796               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9797                   << NewII;
9798               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9799               NewFD->setInvalidDecl();
9800               return true;
9801             }
9802           }
9803         }
9804       }
9805       // If the two decls aren't the same MVType, there is no possible error
9806       // condition.
9807     }
9808   }
9809 
9810   // Else, this is simply a non-redecl case.  Checking the 'value' is only
9811   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9812   // handled in the attribute adding step.
9813   if (NewMVType == MultiVersionKind::Target &&
9814       CheckMultiVersionValue(S, NewFD)) {
9815     NewFD->setInvalidDecl();
9816     return true;
9817   }
9818 
9819   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
9820                                        !OldFD->isMultiVersion(), NewMVType)) {
9821     NewFD->setInvalidDecl();
9822     return true;
9823   }
9824 
9825   // Permit forward declarations in the case where these two are compatible.
9826   if (!OldFD->isMultiVersion()) {
9827     OldFD->setIsMultiVersion();
9828     NewFD->setIsMultiVersion();
9829     Redeclaration = true;
9830     OldDecl = OldFD;
9831     return false;
9832   }
9833 
9834   NewFD->setIsMultiVersion();
9835   Redeclaration = false;
9836   MergeTypeWithPrevious = false;
9837   OldDecl = nullptr;
9838   Previous.clear();
9839   return false;
9840 }
9841 
9842 
9843 /// Check the validity of a mulitversion function declaration.
9844 /// Also sets the multiversion'ness' of the function itself.
9845 ///
9846 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9847 ///
9848 /// Returns true if there was an error, false otherwise.
CheckMultiVersionFunction(Sema & S,FunctionDecl * NewFD,bool & Redeclaration,NamedDecl * & OldDecl,bool & MergeTypeWithPrevious,LookupResult & Previous)9849 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9850                                       bool &Redeclaration, NamedDecl *&OldDecl,
9851                                       bool &MergeTypeWithPrevious,
9852                                       LookupResult &Previous) {
9853   const auto *NewTA = NewFD->getAttr<TargetAttr>();
9854   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9855   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9856 
9857   // Mixing Multiversioning types is prohibited.
9858   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9859       (NewCPUDisp && NewCPUSpec)) {
9860     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9861     NewFD->setInvalidDecl();
9862     return true;
9863   }
9864 
9865   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
9866 
9867   // Main isn't allowed to become a multiversion function, however it IS
9868   // permitted to have 'main' be marked with the 'target' optimization hint.
9869   if (NewFD->isMain()) {
9870     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
9871         MVType == MultiVersionKind::CPUDispatch ||
9872         MVType == MultiVersionKind::CPUSpecific) {
9873       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9874       NewFD->setInvalidDecl();
9875       return true;
9876     }
9877     return false;
9878   }
9879 
9880   if (!OldDecl || !OldDecl->getAsFunction() ||
9881       OldDecl->getDeclContext()->getRedeclContext() !=
9882           NewFD->getDeclContext()->getRedeclContext()) {
9883     // If there's no previous declaration, AND this isn't attempting to cause
9884     // multiversioning, this isn't an error condition.
9885     if (MVType == MultiVersionKind::None)
9886       return false;
9887     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA, NewCPUDisp,
9888                                           NewCPUSpec);
9889   }
9890 
9891   FunctionDecl *OldFD = OldDecl->getAsFunction();
9892 
9893   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
9894     return false;
9895 
9896   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
9897     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
9898         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
9899     NewFD->setInvalidDecl();
9900     return true;
9901   }
9902 
9903   // Handle the target potentially causes multiversioning case.
9904   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
9905     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
9906                                             Redeclaration, OldDecl,
9907                                             MergeTypeWithPrevious, Previous);
9908 
9909   // At this point, we have a multiversion function decl (in OldFD) AND an
9910   // appropriate attribute in the current function decl.  Resolve that these are
9911   // still compatible with previous declarations.
9912   return CheckMultiVersionAdditionalDecl(
9913       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
9914       OldDecl, MergeTypeWithPrevious, Previous);
9915 }
9916 
9917 /// Perform semantic checking of a new function declaration.
9918 ///
9919 /// Performs semantic analysis of the new function declaration
9920 /// NewFD. This routine performs all semantic checking that does not
9921 /// require the actual declarator involved in the declaration, and is
9922 /// used both for the declaration of functions as they are parsed
9923 /// (called via ActOnDeclarator) and for the declaration of functions
9924 /// that have been instantiated via C++ template instantiation (called
9925 /// via InstantiateDecl).
9926 ///
9927 /// \param IsMemberSpecialization whether this new function declaration is
9928 /// a member specialization (that replaces any definition provided by the
9929 /// previous declaration).
9930 ///
9931 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9932 ///
9933 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsMemberSpecialization)9934 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
9935                                     LookupResult &Previous,
9936                                     bool IsMemberSpecialization) {
9937   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
9938          "Variably modified return types are not handled here");
9939 
9940   // Determine whether the type of this function should be merged with
9941   // a previous visible declaration. This never happens for functions in C++,
9942   // and always happens in C if the previous declaration was visible.
9943   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
9944                                !Previous.isShadowed();
9945 
9946   bool Redeclaration = false;
9947   NamedDecl *OldDecl = nullptr;
9948   bool MayNeedOverloadableChecks = false;
9949 
9950   // Merge or overload the declaration with an existing declaration of
9951   // the same name, if appropriate.
9952   if (!Previous.empty()) {
9953     // Determine whether NewFD is an overload of PrevDecl or
9954     // a declaration that requires merging. If it's an overload,
9955     // there's no more work to do here; we'll just add the new
9956     // function to the scope.
9957     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
9958       NamedDecl *Candidate = Previous.getRepresentativeDecl();
9959       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
9960         Redeclaration = true;
9961         OldDecl = Candidate;
9962       }
9963     } else {
9964       MayNeedOverloadableChecks = true;
9965       switch (CheckOverload(S, NewFD, Previous, OldDecl,
9966                             /*NewIsUsingDecl*/ false)) {
9967       case Ovl_Match:
9968         Redeclaration = true;
9969         break;
9970 
9971       case Ovl_NonFunction:
9972         Redeclaration = true;
9973         break;
9974 
9975       case Ovl_Overload:
9976         Redeclaration = false;
9977         break;
9978       }
9979     }
9980   }
9981 
9982   // Check for a previous extern "C" declaration with this name.
9983   if (!Redeclaration &&
9984       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
9985     if (!Previous.empty()) {
9986       // This is an extern "C" declaration with the same name as a previous
9987       // declaration, and thus redeclares that entity...
9988       Redeclaration = true;
9989       OldDecl = Previous.getFoundDecl();
9990       MergeTypeWithPrevious = false;
9991 
9992       // ... except in the presence of __attribute__((overloadable)).
9993       if (OldDecl->hasAttr<OverloadableAttr>() ||
9994           NewFD->hasAttr<OverloadableAttr>()) {
9995         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
9996           MayNeedOverloadableChecks = true;
9997           Redeclaration = false;
9998           OldDecl = nullptr;
9999         }
10000       }
10001     }
10002   }
10003 
10004   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10005                                 MergeTypeWithPrevious, Previous))
10006     return Redeclaration;
10007 
10008   // C++11 [dcl.constexpr]p8:
10009   //   A constexpr specifier for a non-static member function that is not
10010   //   a constructor declares that member function to be const.
10011   //
10012   // This needs to be delayed until we know whether this is an out-of-line
10013   // definition of a static member function.
10014   //
10015   // This rule is not present in C++1y, so we produce a backwards
10016   // compatibility warning whenever it happens in C++11.
10017   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10018   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10019       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10020       !MD->getTypeQualifiers().hasConst()) {
10021     CXXMethodDecl *OldMD = nullptr;
10022     if (OldDecl)
10023       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10024     if (!OldMD || !OldMD->isStatic()) {
10025       const FunctionProtoType *FPT =
10026         MD->getType()->castAs<FunctionProtoType>();
10027       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10028       EPI.TypeQuals.addConst();
10029       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10030                                           FPT->getParamTypes(), EPI));
10031 
10032       // Warn that we did this, if we're not performing template instantiation.
10033       // In that case, we'll have warned already when the template was defined.
10034       if (!inTemplateInstantiation()) {
10035         SourceLocation AddConstLoc;
10036         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10037                 .IgnoreParens().getAs<FunctionTypeLoc>())
10038           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10039 
10040         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10041           << FixItHint::CreateInsertion(AddConstLoc, " const");
10042       }
10043     }
10044   }
10045 
10046   if (Redeclaration) {
10047     // NewFD and OldDecl represent declarations that need to be
10048     // merged.
10049     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10050       NewFD->setInvalidDecl();
10051       return Redeclaration;
10052     }
10053 
10054     Previous.clear();
10055     Previous.addDecl(OldDecl);
10056 
10057     if (FunctionTemplateDecl *OldTemplateDecl =
10058             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10059       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10060       FunctionTemplateDecl *NewTemplateDecl
10061         = NewFD->getDescribedFunctionTemplate();
10062       assert(NewTemplateDecl && "Template/non-template mismatch");
10063 
10064       // The call to MergeFunctionDecl above may have created some state in
10065       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10066       // can add it as a redeclaration.
10067       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10068 
10069       NewFD->setPreviousDeclaration(OldFD);
10070       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10071       if (NewFD->isCXXClassMember()) {
10072         NewFD->setAccess(OldTemplateDecl->getAccess());
10073         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10074       }
10075 
10076       // If this is an explicit specialization of a member that is a function
10077       // template, mark it as a member specialization.
10078       if (IsMemberSpecialization &&
10079           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10080         NewTemplateDecl->setMemberSpecialization();
10081         assert(OldTemplateDecl->isMemberSpecialization());
10082         // Explicit specializations of a member template do not inherit deleted
10083         // status from the parent member template that they are specializing.
10084         if (OldFD->isDeleted()) {
10085           // FIXME: This assert will not hold in the presence of modules.
10086           assert(OldFD->getCanonicalDecl() == OldFD);
10087           // FIXME: We need an update record for this AST mutation.
10088           OldFD->setDeletedAsWritten(false);
10089         }
10090       }
10091 
10092     } else {
10093       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10094         auto *OldFD = cast<FunctionDecl>(OldDecl);
10095         // This needs to happen first so that 'inline' propagates.
10096         NewFD->setPreviousDeclaration(OldFD);
10097         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10098         if (NewFD->isCXXClassMember())
10099           NewFD->setAccess(OldFD->getAccess());
10100       }
10101     }
10102   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10103              !NewFD->getAttr<OverloadableAttr>()) {
10104     assert((Previous.empty() ||
10105             llvm::any_of(Previous,
10106                          [](const NamedDecl *ND) {
10107                            return ND->hasAttr<OverloadableAttr>();
10108                          })) &&
10109            "Non-redecls shouldn't happen without overloadable present");
10110 
10111     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10112       const auto *FD = dyn_cast<FunctionDecl>(ND);
10113       return FD && !FD->hasAttr<OverloadableAttr>();
10114     });
10115 
10116     if (OtherUnmarkedIter != Previous.end()) {
10117       Diag(NewFD->getLocation(),
10118            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10119       Diag((*OtherUnmarkedIter)->getLocation(),
10120            diag::note_attribute_overloadable_prev_overload)
10121           << false;
10122 
10123       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10124     }
10125   }
10126 
10127   // Semantic checking for this function declaration (in isolation).
10128 
10129   if (getLangOpts().CPlusPlus) {
10130     // C++-specific checks.
10131     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10132       CheckConstructor(Constructor);
10133     } else if (CXXDestructorDecl *Destructor =
10134                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10135       CXXRecordDecl *Record = Destructor->getParent();
10136       QualType ClassType = Context.getTypeDeclType(Record);
10137 
10138       // FIXME: Shouldn't we be able to perform this check even when the class
10139       // type is dependent? Both gcc and edg can handle that.
10140       if (!ClassType->isDependentType()) {
10141         DeclarationName Name
10142           = Context.DeclarationNames.getCXXDestructorName(
10143                                         Context.getCanonicalType(ClassType));
10144         if (NewFD->getDeclName() != Name) {
10145           Diag(NewFD->getLocation(), diag::err_destructor_name);
10146           NewFD->setInvalidDecl();
10147           return Redeclaration;
10148         }
10149       }
10150     } else if (CXXConversionDecl *Conversion
10151                = dyn_cast<CXXConversionDecl>(NewFD)) {
10152       ActOnConversionDeclarator(Conversion);
10153     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10154       if (auto *TD = Guide->getDescribedFunctionTemplate())
10155         CheckDeductionGuideTemplate(TD);
10156 
10157       // A deduction guide is not on the list of entities that can be
10158       // explicitly specialized.
10159       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10160         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10161             << /*explicit specialization*/ 1;
10162     }
10163 
10164     // Find any virtual functions that this function overrides.
10165     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10166       if (!Method->isFunctionTemplateSpecialization() &&
10167           !Method->getDescribedFunctionTemplate() &&
10168           Method->isCanonicalDecl()) {
10169         if (AddOverriddenMethods(Method->getParent(), Method)) {
10170           // If the function was marked as "static", we have a problem.
10171           if (NewFD->getStorageClass() == SC_Static) {
10172             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10173           }
10174         }
10175       }
10176 
10177       if (Method->isStatic())
10178         checkThisInStaticMemberFunctionType(Method);
10179     }
10180 
10181     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10182     if (NewFD->isOverloadedOperator() &&
10183         CheckOverloadedOperatorDeclaration(NewFD)) {
10184       NewFD->setInvalidDecl();
10185       return Redeclaration;
10186     }
10187 
10188     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10189     if (NewFD->getLiteralIdentifier() &&
10190         CheckLiteralOperatorDeclaration(NewFD)) {
10191       NewFD->setInvalidDecl();
10192       return Redeclaration;
10193     }
10194 
10195     // In C++, check default arguments now that we have merged decls. Unless
10196     // the lexical context is the class, because in this case this is done
10197     // during delayed parsing anyway.
10198     if (!CurContext->isRecord())
10199       CheckCXXDefaultArguments(NewFD);
10200 
10201     // If this function declares a builtin function, check the type of this
10202     // declaration against the expected type for the builtin.
10203     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10204       ASTContext::GetBuiltinTypeError Error;
10205       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10206       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10207       // If the type of the builtin differs only in its exception
10208       // specification, that's OK.
10209       // FIXME: If the types do differ in this way, it would be better to
10210       // retain the 'noexcept' form of the type.
10211       if (!T.isNull() &&
10212           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10213                                                             NewFD->getType()))
10214         // The type of this function differs from the type of the builtin,
10215         // so forget about the builtin entirely.
10216         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10217     }
10218 
10219     // If this function is declared as being extern "C", then check to see if
10220     // the function returns a UDT (class, struct, or union type) that is not C
10221     // compatible, and if it does, warn the user.
10222     // But, issue any diagnostic on the first declaration only.
10223     if (Previous.empty() && NewFD->isExternC()) {
10224       QualType R = NewFD->getReturnType();
10225       if (R->isIncompleteType() && !R->isVoidType())
10226         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10227             << NewFD << R;
10228       else if (!R.isPODType(Context) && !R->isVoidType() &&
10229                !R->isObjCObjectPointerType())
10230         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10231     }
10232 
10233     // C++1z [dcl.fct]p6:
10234     //   [...] whether the function has a non-throwing exception-specification
10235     //   [is] part of the function type
10236     //
10237     // This results in an ABI break between C++14 and C++17 for functions whose
10238     // declared type includes an exception-specification in a parameter or
10239     // return type. (Exception specifications on the function itself are OK in
10240     // most cases, and exception specifications are not permitted in most other
10241     // contexts where they could make it into a mangling.)
10242     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10243       auto HasNoexcept = [&](QualType T) -> bool {
10244         // Strip off declarator chunks that could be between us and a function
10245         // type. We don't need to look far, exception specifications are very
10246         // restricted prior to C++17.
10247         if (auto *RT = T->getAs<ReferenceType>())
10248           T = RT->getPointeeType();
10249         else if (T->isAnyPointerType())
10250           T = T->getPointeeType();
10251         else if (auto *MPT = T->getAs<MemberPointerType>())
10252           T = MPT->getPointeeType();
10253         if (auto *FPT = T->getAs<FunctionProtoType>())
10254           if (FPT->isNothrow())
10255             return true;
10256         return false;
10257       };
10258 
10259       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10260       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10261       for (QualType T : FPT->param_types())
10262         AnyNoexcept |= HasNoexcept(T);
10263       if (AnyNoexcept)
10264         Diag(NewFD->getLocation(),
10265              diag::warn_cxx17_compat_exception_spec_in_signature)
10266             << NewFD;
10267     }
10268 
10269     if (!Redeclaration && LangOpts.CUDA)
10270       checkCUDATargetOverload(NewFD, Previous);
10271   }
10272   return Redeclaration;
10273 }
10274 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)10275 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10276   // C++11 [basic.start.main]p3:
10277   //   A program that [...] declares main to be inline, static or
10278   //   constexpr is ill-formed.
10279   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
10280   //   appear in a declaration of main.
10281   // static main is not an error under C99, but we should warn about it.
10282   // We accept _Noreturn main as an extension.
10283   if (FD->getStorageClass() == SC_Static)
10284     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10285          ? diag::err_static_main : diag::warn_static_main)
10286       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10287   if (FD->isInlineSpecified())
10288     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10289       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10290   if (DS.isNoreturnSpecified()) {
10291     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10292     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10293     Diag(NoreturnLoc, diag::ext_noreturn_main);
10294     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10295       << FixItHint::CreateRemoval(NoreturnRange);
10296   }
10297   if (FD->isConstexpr()) {
10298     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10299       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10300     FD->setConstexpr(false);
10301   }
10302 
10303   if (getLangOpts().OpenCL) {
10304     Diag(FD->getLocation(), diag::err_opencl_no_main)
10305         << FD->hasAttr<OpenCLKernelAttr>();
10306     FD->setInvalidDecl();
10307     return;
10308   }
10309 
10310   QualType T = FD->getType();
10311   assert(T->isFunctionType() && "function decl is not of function type");
10312   const FunctionType* FT = T->castAs<FunctionType>();
10313 
10314   // Set default calling convention for main()
10315   if (FT->getCallConv() != CC_C) {
10316     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10317     FD->setType(QualType(FT, 0));
10318     T = Context.getCanonicalType(FD->getType());
10319   }
10320 
10321   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10322     // In C with GNU extensions we allow main() to have non-integer return
10323     // type, but we should warn about the extension, and we disable the
10324     // implicit-return-zero rule.
10325 
10326     // GCC in C mode accepts qualified 'int'.
10327     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10328       FD->setHasImplicitReturnZero(true);
10329     else {
10330       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10331       SourceRange RTRange = FD->getReturnTypeSourceRange();
10332       if (RTRange.isValid())
10333         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10334             << FixItHint::CreateReplacement(RTRange, "int");
10335     }
10336   } else {
10337     // In C and C++, main magically returns 0 if you fall off the end;
10338     // set the flag which tells us that.
10339     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10340 
10341     // All the standards say that main() should return 'int'.
10342     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10343       FD->setHasImplicitReturnZero(true);
10344     else {
10345       // Otherwise, this is just a flat-out error.
10346       SourceRange RTRange = FD->getReturnTypeSourceRange();
10347       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10348           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10349                                 : FixItHint());
10350       FD->setInvalidDecl(true);
10351     }
10352   }
10353 
10354   // Treat protoless main() as nullary.
10355   if (isa<FunctionNoProtoType>(FT)) return;
10356 
10357   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10358   unsigned nparams = FTP->getNumParams();
10359   assert(FD->getNumParams() == nparams);
10360 
10361   bool HasExtraParameters = (nparams > 3);
10362 
10363   if (FTP->isVariadic()) {
10364     Diag(FD->getLocation(), diag::ext_variadic_main);
10365     // FIXME: if we had information about the location of the ellipsis, we
10366     // could add a FixIt hint to remove it as a parameter.
10367   }
10368 
10369   // Darwin passes an undocumented fourth argument of type char**.  If
10370   // other platforms start sprouting these, the logic below will start
10371   // getting shifty.
10372   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10373     HasExtraParameters = false;
10374 
10375   if (HasExtraParameters) {
10376     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10377     FD->setInvalidDecl(true);
10378     nparams = 3;
10379   }
10380 
10381   // FIXME: a lot of the following diagnostics would be improved
10382   // if we had some location information about types.
10383 
10384   QualType CharPP =
10385     Context.getPointerType(Context.getPointerType(Context.CharTy));
10386   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10387 
10388   for (unsigned i = 0; i < nparams; ++i) {
10389     QualType AT = FTP->getParamType(i);
10390 
10391     bool mismatch = true;
10392 
10393     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10394       mismatch = false;
10395     else if (Expected[i] == CharPP) {
10396       // As an extension, the following forms are okay:
10397       //   char const **
10398       //   char const * const *
10399       //   char * const *
10400 
10401       QualifierCollector qs;
10402       const PointerType* PT;
10403       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10404           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10405           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10406                               Context.CharTy)) {
10407         qs.removeConst();
10408         mismatch = !qs.empty();
10409       }
10410     }
10411 
10412     if (mismatch) {
10413       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10414       // TODO: suggest replacing given type with expected type
10415       FD->setInvalidDecl(true);
10416     }
10417   }
10418 
10419   if (nparams == 1 && !FD->isInvalidDecl()) {
10420     Diag(FD->getLocation(), diag::warn_main_one_arg);
10421   }
10422 
10423   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10424     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10425     FD->setInvalidDecl();
10426   }
10427 }
10428 
CheckMSVCRTEntryPoint(FunctionDecl * FD)10429 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10430   QualType T = FD->getType();
10431   assert(T->isFunctionType() && "function decl is not of function type");
10432   const FunctionType *FT = T->castAs<FunctionType>();
10433 
10434   // Set an implicit return of 'zero' if the function can return some integral,
10435   // enumeration, pointer or nullptr type.
10436   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10437       FT->getReturnType()->isAnyPointerType() ||
10438       FT->getReturnType()->isNullPtrType())
10439     // DllMain is exempt because a return value of zero means it failed.
10440     if (FD->getName() != "DllMain")
10441       FD->setHasImplicitReturnZero(true);
10442 
10443   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10444     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10445     FD->setInvalidDecl();
10446   }
10447 }
10448 
CheckForConstantInitializer(Expr * Init,QualType DclT)10449 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10450   // FIXME: Need strict checking.  In C89, we need to check for
10451   // any assignment, increment, decrement, function-calls, or
10452   // commas outside of a sizeof.  In C99, it's the same list,
10453   // except that the aforementioned are allowed in unevaluated
10454   // expressions.  Everything else falls under the
10455   // "may accept other forms of constant expressions" exception.
10456   // (We never end up here for C++, so the constant expression
10457   // rules there don't matter.)
10458   const Expr *Culprit;
10459   if (Init->isConstantInitializer(Context, false, &Culprit))
10460     return false;
10461   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10462     << Culprit->getSourceRange();
10463   return true;
10464 }
10465 
10466 namespace {
10467   // Visits an initialization expression to see if OrigDecl is evaluated in
10468   // its own initialization and throws a warning if it does.
10469   class SelfReferenceChecker
10470       : public EvaluatedExprVisitor<SelfReferenceChecker> {
10471     Sema &S;
10472     Decl *OrigDecl;
10473     bool isRecordType;
10474     bool isPODType;
10475     bool isReferenceType;
10476 
10477     bool isInitList;
10478     llvm::SmallVector<unsigned, 4> InitFieldIndex;
10479 
10480   public:
10481     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10482 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)10483     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10484                                                     S(S), OrigDecl(OrigDecl) {
10485       isPODType = false;
10486       isRecordType = false;
10487       isReferenceType = false;
10488       isInitList = false;
10489       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10490         isPODType = VD->getType().isPODType(S.Context);
10491         isRecordType = VD->getType()->isRecordType();
10492         isReferenceType = VD->getType()->isReferenceType();
10493       }
10494     }
10495 
10496     // For most expressions, just call the visitor.  For initializer lists,
10497     // track the index of the field being initialized since fields are
10498     // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)10499     void CheckExpr(Expr *E) {
10500       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10501       if (!InitList) {
10502         Visit(E);
10503         return;
10504       }
10505 
10506       // Track and increment the index here.
10507       isInitList = true;
10508       InitFieldIndex.push_back(0);
10509       for (auto Child : InitList->children()) {
10510         CheckExpr(cast<Expr>(Child));
10511         ++InitFieldIndex.back();
10512       }
10513       InitFieldIndex.pop_back();
10514     }
10515 
10516     // Returns true if MemberExpr is checked and no further checking is needed.
10517     // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)10518     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10519       llvm::SmallVector<FieldDecl*, 4> Fields;
10520       Expr *Base = E;
10521       bool ReferenceField = false;
10522 
10523       // Get the field members used.
10524       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10525         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10526         if (!FD)
10527           return false;
10528         Fields.push_back(FD);
10529         if (FD->getType()->isReferenceType())
10530           ReferenceField = true;
10531         Base = ME->getBase()->IgnoreParenImpCasts();
10532       }
10533 
10534       // Keep checking only if the base Decl is the same.
10535       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10536       if (!DRE || DRE->getDecl() != OrigDecl)
10537         return false;
10538 
10539       // A reference field can be bound to an unininitialized field.
10540       if (CheckReference && !ReferenceField)
10541         return true;
10542 
10543       // Convert FieldDecls to their index number.
10544       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10545       for (const FieldDecl *I : llvm::reverse(Fields))
10546         UsedFieldIndex.push_back(I->getFieldIndex());
10547 
10548       // See if a warning is needed by checking the first difference in index
10549       // numbers.  If field being used has index less than the field being
10550       // initialized, then the use is safe.
10551       for (auto UsedIter = UsedFieldIndex.begin(),
10552                 UsedEnd = UsedFieldIndex.end(),
10553                 OrigIter = InitFieldIndex.begin(),
10554                 OrigEnd = InitFieldIndex.end();
10555            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10556         if (*UsedIter < *OrigIter)
10557           return true;
10558         if (*UsedIter > *OrigIter)
10559           break;
10560       }
10561 
10562       // TODO: Add a different warning which will print the field names.
10563       HandleDeclRefExpr(DRE);
10564       return true;
10565     }
10566 
10567     // For most expressions, the cast is directly above the DeclRefExpr.
10568     // For conditional operators, the cast can be outside the conditional
10569     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)10570     void HandleValue(Expr *E) {
10571       E = E->IgnoreParens();
10572       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10573         HandleDeclRefExpr(DRE);
10574         return;
10575       }
10576 
10577       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10578         Visit(CO->getCond());
10579         HandleValue(CO->getTrueExpr());
10580         HandleValue(CO->getFalseExpr());
10581         return;
10582       }
10583 
10584       if (BinaryConditionalOperator *BCO =
10585               dyn_cast<BinaryConditionalOperator>(E)) {
10586         Visit(BCO->getCond());
10587         HandleValue(BCO->getFalseExpr());
10588         return;
10589       }
10590 
10591       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10592         HandleValue(OVE->getSourceExpr());
10593         return;
10594       }
10595 
10596       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10597         if (BO->getOpcode() == BO_Comma) {
10598           Visit(BO->getLHS());
10599           HandleValue(BO->getRHS());
10600           return;
10601         }
10602       }
10603 
10604       if (isa<MemberExpr>(E)) {
10605         if (isInitList) {
10606           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10607                                       false /*CheckReference*/))
10608             return;
10609         }
10610 
10611         Expr *Base = E->IgnoreParenImpCasts();
10612         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10613           // Check for static member variables and don't warn on them.
10614           if (!isa<FieldDecl>(ME->getMemberDecl()))
10615             return;
10616           Base = ME->getBase()->IgnoreParenImpCasts();
10617         }
10618         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10619           HandleDeclRefExpr(DRE);
10620         return;
10621       }
10622 
10623       Visit(E);
10624     }
10625 
10626     // Reference types not handled in HandleValue are handled here since all
10627     // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)10628     void VisitDeclRefExpr(DeclRefExpr *E) {
10629       if (isReferenceType)
10630         HandleDeclRefExpr(E);
10631     }
10632 
VisitImplicitCastExpr(ImplicitCastExpr * E)10633     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10634       if (E->getCastKind() == CK_LValueToRValue) {
10635         HandleValue(E->getSubExpr());
10636         return;
10637       }
10638 
10639       Inherited::VisitImplicitCastExpr(E);
10640     }
10641 
VisitMemberExpr(MemberExpr * E)10642     void VisitMemberExpr(MemberExpr *E) {
10643       if (isInitList) {
10644         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10645           return;
10646       }
10647 
10648       // Don't warn on arrays since they can be treated as pointers.
10649       if (E->getType()->canDecayToPointerType()) return;
10650 
10651       // Warn when a non-static method call is followed by non-static member
10652       // field accesses, which is followed by a DeclRefExpr.
10653       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10654       bool Warn = (MD && !MD->isStatic());
10655       Expr *Base = E->getBase()->IgnoreParenImpCasts();
10656       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10657         if (!isa<FieldDecl>(ME->getMemberDecl()))
10658           Warn = false;
10659         Base = ME->getBase()->IgnoreParenImpCasts();
10660       }
10661 
10662       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10663         if (Warn)
10664           HandleDeclRefExpr(DRE);
10665         return;
10666       }
10667 
10668       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10669       // Visit that expression.
10670       Visit(Base);
10671     }
10672 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)10673     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10674       Expr *Callee = E->getCallee();
10675 
10676       if (isa<UnresolvedLookupExpr>(Callee))
10677         return Inherited::VisitCXXOperatorCallExpr(E);
10678 
10679       Visit(Callee);
10680       for (auto Arg: E->arguments())
10681         HandleValue(Arg->IgnoreParenImpCasts());
10682     }
10683 
VisitUnaryOperator(UnaryOperator * E)10684     void VisitUnaryOperator(UnaryOperator *E) {
10685       // For POD record types, addresses of its own members are well-defined.
10686       if (E->getOpcode() == UO_AddrOf && isRecordType &&
10687           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10688         if (!isPODType)
10689           HandleValue(E->getSubExpr());
10690         return;
10691       }
10692 
10693       if (E->isIncrementDecrementOp()) {
10694         HandleValue(E->getSubExpr());
10695         return;
10696       }
10697 
10698       Inherited::VisitUnaryOperator(E);
10699     }
10700 
VisitObjCMessageExpr(ObjCMessageExpr * E)10701     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10702 
VisitCXXConstructExpr(CXXConstructExpr * E)10703     void VisitCXXConstructExpr(CXXConstructExpr *E) {
10704       if (E->getConstructor()->isCopyConstructor()) {
10705         Expr *ArgExpr = E->getArg(0);
10706         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10707           if (ILE->getNumInits() == 1)
10708             ArgExpr = ILE->getInit(0);
10709         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10710           if (ICE->getCastKind() == CK_NoOp)
10711             ArgExpr = ICE->getSubExpr();
10712         HandleValue(ArgExpr);
10713         return;
10714       }
10715       Inherited::VisitCXXConstructExpr(E);
10716     }
10717 
VisitCallExpr(CallExpr * E)10718     void VisitCallExpr(CallExpr *E) {
10719       // Treat std::move as a use.
10720       if (E->isCallToStdMove()) {
10721         HandleValue(E->getArg(0));
10722         return;
10723       }
10724 
10725       Inherited::VisitCallExpr(E);
10726     }
10727 
VisitBinaryOperator(BinaryOperator * E)10728     void VisitBinaryOperator(BinaryOperator *E) {
10729       if (E->isCompoundAssignmentOp()) {
10730         HandleValue(E->getLHS());
10731         Visit(E->getRHS());
10732         return;
10733       }
10734 
10735       Inherited::VisitBinaryOperator(E);
10736     }
10737 
10738     // A custom visitor for BinaryConditionalOperator is needed because the
10739     // regular visitor would check the condition and true expression separately
10740     // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)10741     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10742       Visit(E->getCond());
10743       Visit(E->getFalseExpr());
10744     }
10745 
HandleDeclRefExpr(DeclRefExpr * DRE)10746     void HandleDeclRefExpr(DeclRefExpr *DRE) {
10747       Decl* ReferenceDecl = DRE->getDecl();
10748       if (OrigDecl != ReferenceDecl) return;
10749       unsigned diag;
10750       if (isReferenceType) {
10751         diag = diag::warn_uninit_self_reference_in_reference_init;
10752       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10753         diag = diag::warn_static_self_reference_in_init;
10754       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10755                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10756                  DRE->getDecl()->getType()->isRecordType()) {
10757         diag = diag::warn_uninit_self_reference_in_init;
10758       } else {
10759         // Local variables will be handled by the CFG analysis.
10760         return;
10761       }
10762 
10763       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10764                             S.PDiag(diag)
10765                                 << DRE->getDecl() << OrigDecl->getLocation()
10766                                 << DRE->getSourceRange());
10767     }
10768   };
10769 
10770   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)10771   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10772                                  bool DirectInit) {
10773     // Parameters arguments are occassionially constructed with itself,
10774     // for instance, in recursive functions.  Skip them.
10775     if (isa<ParmVarDecl>(OrigDecl))
10776       return;
10777 
10778     E = E->IgnoreParens();
10779 
10780     // Skip checking T a = a where T is not a record or reference type.
10781     // Doing so is a way to silence uninitialized warnings.
10782     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10783       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10784         if (ICE->getCastKind() == CK_LValueToRValue)
10785           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10786             if (DRE->getDecl() == OrigDecl)
10787               return;
10788 
10789     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10790   }
10791 } // end anonymous namespace
10792 
10793 namespace {
10794   // Simple wrapper to add the name of a variable or (if no variable is
10795   // available) a DeclarationName into a diagnostic.
10796   struct VarDeclOrName {
10797     VarDecl *VDecl;
10798     DeclarationName Name;
10799 
10800     friend const Sema::SemaDiagnosticBuilder &
operator <<(const Sema::SemaDiagnosticBuilder & Diag,VarDeclOrName VN)10801     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10802       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10803     }
10804   };
10805 } // end anonymous namespace
10806 
deduceVarTypeFromInitializer(VarDecl * VDecl,DeclarationName Name,QualType Type,TypeSourceInfo * TSI,SourceRange Range,bool DirectInit,Expr * & Init)10807 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10808                                             DeclarationName Name, QualType Type,
10809                                             TypeSourceInfo *TSI,
10810                                             SourceRange Range, bool DirectInit,
10811                                             Expr *&Init) {
10812   bool IsInitCapture = !VDecl;
10813   assert((!VDecl || !VDecl->isInitCapture()) &&
10814          "init captures are expected to be deduced prior to initialization");
10815 
10816   VarDeclOrName VN{VDecl, Name};
10817 
10818   DeducedType *Deduced = Type->getContainedDeducedType();
10819   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
10820 
10821   // C++11 [dcl.spec.auto]p3
10822   if (!Init) {
10823     assert(VDecl && "no init for init capture deduction?");
10824 
10825     // Except for class argument deduction, and then for an initializing
10826     // declaration only, i.e. no static at class scope or extern.
10827     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10828         VDecl->hasExternalStorage() ||
10829         VDecl->isStaticDataMember()) {
10830       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10831         << VDecl->getDeclName() << Type;
10832       return QualType();
10833     }
10834   }
10835 
10836   ArrayRef<Expr*> DeduceInits;
10837   if (Init)
10838     DeduceInits = Init;
10839 
10840   if (DirectInit) {
10841     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10842       DeduceInits = PL->exprs();
10843   }
10844 
10845   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10846     assert(VDecl && "non-auto type for init capture deduction?");
10847     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10848     InitializationKind Kind = InitializationKind::CreateForInit(
10849         VDecl->getLocation(), DirectInit, Init);
10850     // FIXME: Initialization should not be taking a mutable list of inits.
10851     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10852     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10853                                                        InitsCopy);
10854   }
10855 
10856   if (DirectInit) {
10857     if (auto *IL = dyn_cast<InitListExpr>(Init))
10858       DeduceInits = IL->inits();
10859   }
10860 
10861   // Deduction only works if we have exactly one source expression.
10862   if (DeduceInits.empty()) {
10863     // It isn't possible to write this directly, but it is possible to
10864     // end up in this situation with "auto x(some_pack...);"
10865     Diag(Init->getBeginLoc(), IsInitCapture
10866                                   ? diag::err_init_capture_no_expression
10867                                   : diag::err_auto_var_init_no_expression)
10868         << VN << Type << Range;
10869     return QualType();
10870   }
10871 
10872   if (DeduceInits.size() > 1) {
10873     Diag(DeduceInits[1]->getBeginLoc(),
10874          IsInitCapture ? diag::err_init_capture_multiple_expressions
10875                        : diag::err_auto_var_init_multiple_expressions)
10876         << VN << Type << Range;
10877     return QualType();
10878   }
10879 
10880   Expr *DeduceInit = DeduceInits[0];
10881   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10882     Diag(Init->getBeginLoc(), IsInitCapture
10883                                   ? diag::err_init_capture_paren_braces
10884                                   : diag::err_auto_var_init_paren_braces)
10885         << isa<InitListExpr>(Init) << VN << Type << Range;
10886     return QualType();
10887   }
10888 
10889   // Expressions default to 'id' when we're in a debugger.
10890   bool DefaultedAnyToId = false;
10891   if (getLangOpts().DebuggerCastResultToId &&
10892       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10893     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10894     if (Result.isInvalid()) {
10895       return QualType();
10896     }
10897     Init = Result.get();
10898     DefaultedAnyToId = true;
10899   }
10900 
10901   // C++ [dcl.decomp]p1:
10902   //   If the assignment-expression [...] has array type A and no ref-qualifier
10903   //   is present, e has type cv A
10904   if (VDecl && isa<DecompositionDecl>(VDecl) &&
10905       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10906       DeduceInit->getType()->isConstantArrayType())
10907     return Context.getQualifiedType(DeduceInit->getType(),
10908                                     Type.getQualifiers());
10909 
10910   QualType DeducedType;
10911   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10912     if (!IsInitCapture)
10913       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
10914     else if (isa<InitListExpr>(Init))
10915       Diag(Range.getBegin(),
10916            diag::err_init_capture_deduction_failure_from_init_list)
10917           << VN
10918           << (DeduceInit->getType().isNull() ? TSI->getType()
10919                                              : DeduceInit->getType())
10920           << DeduceInit->getSourceRange();
10921     else
10922       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
10923           << VN << TSI->getType()
10924           << (DeduceInit->getType().isNull() ? TSI->getType()
10925                                              : DeduceInit->getType())
10926           << DeduceInit->getSourceRange();
10927   } else
10928     Init = DeduceInit;
10929 
10930   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
10931   // 'id' instead of a specific object type prevents most of our usual
10932   // checks.
10933   // We only want to warn outside of template instantiations, though:
10934   // inside a template, the 'id' could have come from a parameter.
10935   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
10936       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
10937     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
10938     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
10939   }
10940 
10941   return DeducedType;
10942 }
10943 
DeduceVariableDeclarationType(VarDecl * VDecl,bool DirectInit,Expr * & Init)10944 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
10945                                          Expr *&Init) {
10946   QualType DeducedType = deduceVarTypeFromInitializer(
10947       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
10948       VDecl->getSourceRange(), DirectInit, Init);
10949   if (DeducedType.isNull()) {
10950     VDecl->setInvalidDecl();
10951     return true;
10952   }
10953 
10954   VDecl->setType(DeducedType);
10955   assert(VDecl->isLinkageValid());
10956 
10957   // In ARC, infer lifetime.
10958   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
10959     VDecl->setInvalidDecl();
10960 
10961   // If this is a redeclaration, check that the type we just deduced matches
10962   // the previously declared type.
10963   if (VarDecl *Old = VDecl->getPreviousDecl()) {
10964     // We never need to merge the type, because we cannot form an incomplete
10965     // array of auto, nor deduce such a type.
10966     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
10967   }
10968 
10969   // Check the deduced type is valid for a variable declaration.
10970   CheckVariableDeclarationType(VDecl);
10971   return VDecl->isInvalidDecl();
10972 }
10973 
10974 /// AddInitializerToDecl - Adds the initializer Init to the
10975 /// declaration dcl. If DirectInit is true, this is C++ direct
10976 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit)10977 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
10978   // If there is no declaration, there was an error parsing it.  Just ignore
10979   // the initializer.
10980   if (!RealDecl || RealDecl->isInvalidDecl()) {
10981     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
10982     return;
10983   }
10984 
10985   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
10986     // Pure-specifiers are handled in ActOnPureSpecifier.
10987     Diag(Method->getLocation(), diag::err_member_function_initialization)
10988       << Method->getDeclName() << Init->getSourceRange();
10989     Method->setInvalidDecl();
10990     return;
10991   }
10992 
10993   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
10994   if (!VDecl) {
10995     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
10996     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
10997     RealDecl->setInvalidDecl();
10998     return;
10999   }
11000 
11001   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11002   if (VDecl->getType()->isUndeducedType()) {
11003     // Attempt typo correction early so that the type of the init expression can
11004     // be deduced based on the chosen correction if the original init contains a
11005     // TypoExpr.
11006     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11007     if (!Res.isUsable()) {
11008       RealDecl->setInvalidDecl();
11009       return;
11010     }
11011     Init = Res.get();
11012 
11013     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11014       return;
11015   }
11016 
11017   // dllimport cannot be used on variable definitions.
11018   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11019     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11020     VDecl->setInvalidDecl();
11021     return;
11022   }
11023 
11024   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11025     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11026     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11027     VDecl->setInvalidDecl();
11028     return;
11029   }
11030 
11031   if (!VDecl->getType()->isDependentType()) {
11032     // A definition must end up with a complete type, which means it must be
11033     // complete with the restriction that an array type might be completed by
11034     // the initializer; note that later code assumes this restriction.
11035     QualType BaseDeclType = VDecl->getType();
11036     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11037       BaseDeclType = Array->getElementType();
11038     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11039                             diag::err_typecheck_decl_incomplete_type)) {
11040       RealDecl->setInvalidDecl();
11041       return;
11042     }
11043 
11044     // The variable can not have an abstract class type.
11045     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11046                                diag::err_abstract_type_in_decl,
11047                                AbstractVariableType))
11048       VDecl->setInvalidDecl();
11049   }
11050 
11051   // If adding the initializer will turn this declaration into a definition,
11052   // and we already have a definition for this variable, diagnose or otherwise
11053   // handle the situation.
11054   VarDecl *Def;
11055   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11056       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11057       !VDecl->isThisDeclarationADemotedDefinition() &&
11058       checkVarDeclRedefinition(Def, VDecl))
11059     return;
11060 
11061   if (getLangOpts().CPlusPlus) {
11062     // C++ [class.static.data]p4
11063     //   If a static data member is of const integral or const
11064     //   enumeration type, its declaration in the class definition can
11065     //   specify a constant-initializer which shall be an integral
11066     //   constant expression (5.19). In that case, the member can appear
11067     //   in integral constant expressions. The member shall still be
11068     //   defined in a namespace scope if it is used in the program and the
11069     //   namespace scope definition shall not contain an initializer.
11070     //
11071     // We already performed a redefinition check above, but for static
11072     // data members we also need to check whether there was an in-class
11073     // declaration with an initializer.
11074     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11075       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11076           << VDecl->getDeclName();
11077       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11078            diag::note_previous_initializer)
11079           << 0;
11080       return;
11081     }
11082 
11083     if (VDecl->hasLocalStorage())
11084       setFunctionHasBranchProtectedScope();
11085 
11086     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11087       VDecl->setInvalidDecl();
11088       return;
11089     }
11090   }
11091 
11092   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11093   // a kernel function cannot be initialized."
11094   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11095     Diag(VDecl->getLocation(), diag::err_local_cant_init);
11096     VDecl->setInvalidDecl();
11097     return;
11098   }
11099 
11100   // Get the decls type and save a reference for later, since
11101   // CheckInitializerTypes may change it.
11102   QualType DclT = VDecl->getType(), SavT = DclT;
11103 
11104   // Expressions default to 'id' when we're in a debugger
11105   // and we are assigning it to a variable of Objective-C pointer type.
11106   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11107       Init->getType() == Context.UnknownAnyTy) {
11108     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11109     if (Result.isInvalid()) {
11110       VDecl->setInvalidDecl();
11111       return;
11112     }
11113     Init = Result.get();
11114   }
11115 
11116   // Perform the initialization.
11117   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11118   if (!VDecl->isInvalidDecl()) {
11119     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11120     InitializationKind Kind = InitializationKind::CreateForInit(
11121         VDecl->getLocation(), DirectInit, Init);
11122 
11123     MultiExprArg Args = Init;
11124     if (CXXDirectInit)
11125       Args = MultiExprArg(CXXDirectInit->getExprs(),
11126                           CXXDirectInit->getNumExprs());
11127 
11128     // Try to correct any TypoExprs in the initialization arguments.
11129     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11130       ExprResult Res = CorrectDelayedTyposInExpr(
11131           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11132             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11133             return Init.Failed() ? ExprError() : E;
11134           });
11135       if (Res.isInvalid()) {
11136         VDecl->setInvalidDecl();
11137       } else if (Res.get() != Args[Idx]) {
11138         Args[Idx] = Res.get();
11139       }
11140     }
11141     if (VDecl->isInvalidDecl())
11142       return;
11143 
11144     InitializationSequence InitSeq(*this, Entity, Kind, Args,
11145                                    /*TopLevelOfInitList=*/false,
11146                                    /*TreatUnavailableAsInvalid=*/false);
11147     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11148     if (Result.isInvalid()) {
11149       VDecl->setInvalidDecl();
11150       return;
11151     }
11152 
11153     Init = Result.getAs<Expr>();
11154   }
11155 
11156   // Check for self-references within variable initializers.
11157   // Variables declared within a function/method body (except for references)
11158   // are handled by a dataflow analysis.
11159   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11160       VDecl->getType()->isReferenceType()) {
11161     CheckSelfReference(*this, RealDecl, Init, DirectInit);
11162   }
11163 
11164   // If the type changed, it means we had an incomplete type that was
11165   // completed by the initializer. For example:
11166   //   int ary[] = { 1, 3, 5 };
11167   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11168   if (!VDecl->isInvalidDecl() && (DclT != SavT))
11169     VDecl->setType(DclT);
11170 
11171   if (!VDecl->isInvalidDecl()) {
11172     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11173 
11174     if (VDecl->hasAttr<BlocksAttr>())
11175       checkRetainCycles(VDecl, Init);
11176 
11177     // It is safe to assign a weak reference into a strong variable.
11178     // Although this code can still have problems:
11179     //   id x = self.weakProp;
11180     //   id y = self.weakProp;
11181     // we do not warn to warn spuriously when 'x' and 'y' are on separate
11182     // paths through the function. This should be revisited if
11183     // -Wrepeated-use-of-weak is made flow-sensitive.
11184     if (FunctionScopeInfo *FSI = getCurFunction())
11185       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11186            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11187           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11188                            Init->getBeginLoc()))
11189         FSI->markSafeWeakUse(Init);
11190   }
11191 
11192   // The initialization is usually a full-expression.
11193   //
11194   // FIXME: If this is a braced initialization of an aggregate, it is not
11195   // an expression, and each individual field initializer is a separate
11196   // full-expression. For instance, in:
11197   //
11198   //   struct Temp { ~Temp(); };
11199   //   struct S { S(Temp); };
11200   //   struct T { S a, b; } t = { Temp(), Temp() }
11201   //
11202   // we should destroy the first Temp before constructing the second.
11203   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
11204                                           false,
11205                                           VDecl->isConstexpr());
11206   if (Result.isInvalid()) {
11207     VDecl->setInvalidDecl();
11208     return;
11209   }
11210   Init = Result.get();
11211 
11212   // Attach the initializer to the decl.
11213   VDecl->setInit(Init);
11214 
11215   if (VDecl->isLocalVarDecl()) {
11216     // Don't check the initializer if the declaration is malformed.
11217     if (VDecl->isInvalidDecl()) {
11218       // do nothing
11219 
11220     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11221     // This is true even in OpenCL C++.
11222     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11223       CheckForConstantInitializer(Init, DclT);
11224 
11225     // Otherwise, C++ does not restrict the initializer.
11226     } else if (getLangOpts().CPlusPlus) {
11227       // do nothing
11228 
11229     // C99 6.7.8p4: All the expressions in an initializer for an object that has
11230     // static storage duration shall be constant expressions or string literals.
11231     } else if (VDecl->getStorageClass() == SC_Static) {
11232       CheckForConstantInitializer(Init, DclT);
11233 
11234     // C89 is stricter than C99 for aggregate initializers.
11235     // C89 6.5.7p3: All the expressions [...] in an initializer list
11236     // for an object that has aggregate or union type shall be
11237     // constant expressions.
11238     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11239                isa<InitListExpr>(Init)) {
11240       const Expr *Culprit;
11241       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11242         Diag(Culprit->getExprLoc(),
11243              diag::ext_aggregate_init_not_constant)
11244           << Culprit->getSourceRange();
11245       }
11246     }
11247   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11248              VDecl->getLexicalDeclContext()->isRecord()) {
11249     // This is an in-class initialization for a static data member, e.g.,
11250     //
11251     // struct S {
11252     //   static const int value = 17;
11253     // };
11254 
11255     // C++ [class.mem]p4:
11256     //   A member-declarator can contain a constant-initializer only
11257     //   if it declares a static member (9.4) of const integral or
11258     //   const enumeration type, see 9.4.2.
11259     //
11260     // C++11 [class.static.data]p3:
11261     //   If a non-volatile non-inline const static data member is of integral
11262     //   or enumeration type, its declaration in the class definition can
11263     //   specify a brace-or-equal-initializer in which every initializer-clause
11264     //   that is an assignment-expression is a constant expression. A static
11265     //   data member of literal type can be declared in the class definition
11266     //   with the constexpr specifier; if so, its declaration shall specify a
11267     //   brace-or-equal-initializer in which every initializer-clause that is
11268     //   an assignment-expression is a constant expression.
11269 
11270     // Do nothing on dependent types.
11271     if (DclT->isDependentType()) {
11272 
11273     // Allow any 'static constexpr' members, whether or not they are of literal
11274     // type. We separately check that every constexpr variable is of literal
11275     // type.
11276     } else if (VDecl->isConstexpr()) {
11277 
11278     // Require constness.
11279     } else if (!DclT.isConstQualified()) {
11280       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11281         << Init->getSourceRange();
11282       VDecl->setInvalidDecl();
11283 
11284     // We allow integer constant expressions in all cases.
11285     } else if (DclT->isIntegralOrEnumerationType()) {
11286       // Check whether the expression is a constant expression.
11287       SourceLocation Loc;
11288       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11289         // In C++11, a non-constexpr const static data member with an
11290         // in-class initializer cannot be volatile.
11291         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11292       else if (Init->isValueDependent())
11293         ; // Nothing to check.
11294       else if (Init->isIntegerConstantExpr(Context, &Loc))
11295         ; // Ok, it's an ICE!
11296       else if (Init->getType()->isScopedEnumeralType() &&
11297                Init->isCXX11ConstantExpr(Context))
11298         ; // Ok, it is a scoped-enum constant expression.
11299       else if (Init->isEvaluatable(Context)) {
11300         // If we can constant fold the initializer through heroics, accept it,
11301         // but report this as a use of an extension for -pedantic.
11302         Diag(Loc, diag::ext_in_class_initializer_non_constant)
11303           << Init->getSourceRange();
11304       } else {
11305         // Otherwise, this is some crazy unknown case.  Report the issue at the
11306         // location provided by the isIntegerConstantExpr failed check.
11307         Diag(Loc, diag::err_in_class_initializer_non_constant)
11308           << Init->getSourceRange();
11309         VDecl->setInvalidDecl();
11310       }
11311 
11312     // We allow foldable floating-point constants as an extension.
11313     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11314       // In C++98, this is a GNU extension. In C++11, it is not, but we support
11315       // it anyway and provide a fixit to add the 'constexpr'.
11316       if (getLangOpts().CPlusPlus11) {
11317         Diag(VDecl->getLocation(),
11318              diag::ext_in_class_initializer_float_type_cxx11)
11319             << DclT << Init->getSourceRange();
11320         Diag(VDecl->getBeginLoc(),
11321              diag::note_in_class_initializer_float_type_cxx11)
11322             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11323       } else {
11324         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11325           << DclT << Init->getSourceRange();
11326 
11327         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11328           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11329             << Init->getSourceRange();
11330           VDecl->setInvalidDecl();
11331         }
11332       }
11333 
11334     // Suggest adding 'constexpr' in C++11 for literal types.
11335     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11336       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11337           << DclT << Init->getSourceRange()
11338           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11339       VDecl->setConstexpr(true);
11340 
11341     } else {
11342       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11343         << DclT << Init->getSourceRange();
11344       VDecl->setInvalidDecl();
11345     }
11346   } else if (VDecl->isFileVarDecl()) {
11347     // In C, extern is typically used to avoid tentative definitions when
11348     // declaring variables in headers, but adding an intializer makes it a
11349     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11350     // In C++, extern is often used to give implictly static const variables
11351     // external linkage, so don't warn in that case. If selectany is present,
11352     // this might be header code intended for C and C++ inclusion, so apply the
11353     // C++ rules.
11354     if (VDecl->getStorageClass() == SC_Extern &&
11355         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11356          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11357         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11358         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11359       Diag(VDecl->getLocation(), diag::warn_extern_init);
11360 
11361     // C99 6.7.8p4. All file scoped initializers need to be constant.
11362     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11363       CheckForConstantInitializer(Init, DclT);
11364   }
11365 
11366   // We will represent direct-initialization similarly to copy-initialization:
11367   //    int x(1);  -as-> int x = 1;
11368   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11369   //
11370   // Clients that want to distinguish between the two forms, can check for
11371   // direct initializer using VarDecl::getInitStyle().
11372   // A major benefit is that clients that don't particularly care about which
11373   // exactly form was it (like the CodeGen) can handle both cases without
11374   // special case code.
11375 
11376   // C++ 8.5p11:
11377   // The form of initialization (using parentheses or '=') is generally
11378   // insignificant, but does matter when the entity being initialized has a
11379   // class type.
11380   if (CXXDirectInit) {
11381     assert(DirectInit && "Call-style initializer must be direct init.");
11382     VDecl->setInitStyle(VarDecl::CallInit);
11383   } else if (DirectInit) {
11384     // This must be list-initialization. No other way is direct-initialization.
11385     VDecl->setInitStyle(VarDecl::ListInit);
11386   }
11387 
11388   CheckCompleteVariableDeclaration(VDecl);
11389 }
11390 
11391 /// ActOnInitializerError - Given that there was an error parsing an
11392 /// initializer for the given declaration, try to return to some form
11393 /// of sanity.
ActOnInitializerError(Decl * D)11394 void Sema::ActOnInitializerError(Decl *D) {
11395   // Our main concern here is re-establishing invariants like "a
11396   // variable's type is either dependent or complete".
11397   if (!D || D->isInvalidDecl()) return;
11398 
11399   VarDecl *VD = dyn_cast<VarDecl>(D);
11400   if (!VD) return;
11401 
11402   // Bindings are not usable if we can't make sense of the initializer.
11403   if (auto *DD = dyn_cast<DecompositionDecl>(D))
11404     for (auto *BD : DD->bindings())
11405       BD->setInvalidDecl();
11406 
11407   // Auto types are meaningless if we can't make sense of the initializer.
11408   if (ParsingInitForAutoVars.count(D)) {
11409     D->setInvalidDecl();
11410     return;
11411   }
11412 
11413   QualType Ty = VD->getType();
11414   if (Ty->isDependentType()) return;
11415 
11416   // Require a complete type.
11417   if (RequireCompleteType(VD->getLocation(),
11418                           Context.getBaseElementType(Ty),
11419                           diag::err_typecheck_decl_incomplete_type)) {
11420     VD->setInvalidDecl();
11421     return;
11422   }
11423 
11424   // Require a non-abstract type.
11425   if (RequireNonAbstractType(VD->getLocation(), Ty,
11426                              diag::err_abstract_type_in_decl,
11427                              AbstractVariableType)) {
11428     VD->setInvalidDecl();
11429     return;
11430   }
11431 
11432   // Don't bother complaining about constructors or destructors,
11433   // though.
11434 }
11435 
ActOnUninitializedDecl(Decl * RealDecl)11436 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11437   // If there is no declaration, there was an error parsing it. Just ignore it.
11438   if (!RealDecl)
11439     return;
11440 
11441   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11442     QualType Type = Var->getType();
11443 
11444     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11445     if (isa<DecompositionDecl>(RealDecl)) {
11446       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11447       Var->setInvalidDecl();
11448       return;
11449     }
11450 
11451     Expr *TmpInit = nullptr;
11452     if (Type->isUndeducedType() &&
11453         DeduceVariableDeclarationType(Var, false, TmpInit))
11454       return;
11455 
11456     // C++11 [class.static.data]p3: A static data member can be declared with
11457     // the constexpr specifier; if so, its declaration shall specify
11458     // a brace-or-equal-initializer.
11459     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11460     // the definition of a variable [...] or the declaration of a static data
11461     // member.
11462     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11463         !Var->isThisDeclarationADemotedDefinition()) {
11464       if (Var->isStaticDataMember()) {
11465         // C++1z removes the relevant rule; the in-class declaration is always
11466         // a definition there.
11467         if (!getLangOpts().CPlusPlus17) {
11468           Diag(Var->getLocation(),
11469                diag::err_constexpr_static_mem_var_requires_init)
11470             << Var->getDeclName();
11471           Var->setInvalidDecl();
11472           return;
11473         }
11474       } else {
11475         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11476         Var->setInvalidDecl();
11477         return;
11478       }
11479     }
11480 
11481     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11482     // be initialized.
11483     if (!Var->isInvalidDecl() &&
11484         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11485         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11486       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11487       Var->setInvalidDecl();
11488       return;
11489     }
11490 
11491     switch (Var->isThisDeclarationADefinition()) {
11492     case VarDecl::Definition:
11493       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11494         break;
11495 
11496       // We have an out-of-line definition of a static data member
11497       // that has an in-class initializer, so we type-check this like
11498       // a declaration.
11499       //
11500       LLVM_FALLTHROUGH;
11501 
11502     case VarDecl::DeclarationOnly:
11503       // It's only a declaration.
11504 
11505       // Block scope. C99 6.7p7: If an identifier for an object is
11506       // declared with no linkage (C99 6.2.2p6), the type for the
11507       // object shall be complete.
11508       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11509           !Var->hasLinkage() && !Var->isInvalidDecl() &&
11510           RequireCompleteType(Var->getLocation(), Type,
11511                               diag::err_typecheck_decl_incomplete_type))
11512         Var->setInvalidDecl();
11513 
11514       // Make sure that the type is not abstract.
11515       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11516           RequireNonAbstractType(Var->getLocation(), Type,
11517                                  diag::err_abstract_type_in_decl,
11518                                  AbstractVariableType))
11519         Var->setInvalidDecl();
11520       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11521           Var->getStorageClass() == SC_PrivateExtern) {
11522         Diag(Var->getLocation(), diag::warn_private_extern);
11523         Diag(Var->getLocation(), diag::note_private_extern);
11524       }
11525 
11526       return;
11527 
11528     case VarDecl::TentativeDefinition:
11529       // File scope. C99 6.9.2p2: A declaration of an identifier for an
11530       // object that has file scope without an initializer, and without a
11531       // storage-class specifier or with the storage-class specifier "static",
11532       // constitutes a tentative definition. Note: A tentative definition with
11533       // external linkage is valid (C99 6.2.2p5).
11534       if (!Var->isInvalidDecl()) {
11535         if (const IncompleteArrayType *ArrayT
11536                                     = Context.getAsIncompleteArrayType(Type)) {
11537           if (RequireCompleteType(Var->getLocation(),
11538                                   ArrayT->getElementType(),
11539                                   diag::err_illegal_decl_array_incomplete_type))
11540             Var->setInvalidDecl();
11541         } else if (Var->getStorageClass() == SC_Static) {
11542           // C99 6.9.2p3: If the declaration of an identifier for an object is
11543           // a tentative definition and has internal linkage (C99 6.2.2p3), the
11544           // declared type shall not be an incomplete type.
11545           // NOTE: code such as the following
11546           //     static struct s;
11547           //     struct s { int a; };
11548           // is accepted by gcc. Hence here we issue a warning instead of
11549           // an error and we do not invalidate the static declaration.
11550           // NOTE: to avoid multiple warnings, only check the first declaration.
11551           if (Var->isFirstDecl())
11552             RequireCompleteType(Var->getLocation(), Type,
11553                                 diag::ext_typecheck_decl_incomplete_type);
11554         }
11555       }
11556 
11557       // Record the tentative definition; we're done.
11558       if (!Var->isInvalidDecl())
11559         TentativeDefinitions.push_back(Var);
11560       return;
11561     }
11562 
11563     // Provide a specific diagnostic for uninitialized variable
11564     // definitions with incomplete array type.
11565     if (Type->isIncompleteArrayType()) {
11566       Diag(Var->getLocation(),
11567            diag::err_typecheck_incomplete_array_needs_initializer);
11568       Var->setInvalidDecl();
11569       return;
11570     }
11571 
11572     // Provide a specific diagnostic for uninitialized variable
11573     // definitions with reference type.
11574     if (Type->isReferenceType()) {
11575       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11576         << Var->getDeclName()
11577         << SourceRange(Var->getLocation(), Var->getLocation());
11578       Var->setInvalidDecl();
11579       return;
11580     }
11581 
11582     // Do not attempt to type-check the default initializer for a
11583     // variable with dependent type.
11584     if (Type->isDependentType())
11585       return;
11586 
11587     if (Var->isInvalidDecl())
11588       return;
11589 
11590     if (!Var->hasAttr<AliasAttr>()) {
11591       if (RequireCompleteType(Var->getLocation(),
11592                               Context.getBaseElementType(Type),
11593                               diag::err_typecheck_decl_incomplete_type)) {
11594         Var->setInvalidDecl();
11595         return;
11596       }
11597     } else {
11598       return;
11599     }
11600 
11601     // The variable can not have an abstract class type.
11602     if (RequireNonAbstractType(Var->getLocation(), Type,
11603                                diag::err_abstract_type_in_decl,
11604                                AbstractVariableType)) {
11605       Var->setInvalidDecl();
11606       return;
11607     }
11608 
11609     // Check for jumps past the implicit initializer.  C++0x
11610     // clarifies that this applies to a "variable with automatic
11611     // storage duration", not a "local variable".
11612     // C++11 [stmt.dcl]p3
11613     //   A program that jumps from a point where a variable with automatic
11614     //   storage duration is not in scope to a point where it is in scope is
11615     //   ill-formed unless the variable has scalar type, class type with a
11616     //   trivial default constructor and a trivial destructor, a cv-qualified
11617     //   version of one of these types, or an array of one of the preceding
11618     //   types and is declared without an initializer.
11619     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11620       if (const RecordType *Record
11621             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11622         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11623         // Mark the function (if we're in one) for further checking even if the
11624         // looser rules of C++11 do not require such checks, so that we can
11625         // diagnose incompatibilities with C++98.
11626         if (!CXXRecord->isPOD())
11627           setFunctionHasBranchProtectedScope();
11628       }
11629     }
11630 
11631     // C++03 [dcl.init]p9:
11632     //   If no initializer is specified for an object, and the
11633     //   object is of (possibly cv-qualified) non-POD class type (or
11634     //   array thereof), the object shall be default-initialized; if
11635     //   the object is of const-qualified type, the underlying class
11636     //   type shall have a user-declared default
11637     //   constructor. Otherwise, if no initializer is specified for
11638     //   a non- static object, the object and its subobjects, if
11639     //   any, have an indeterminate initial value); if the object
11640     //   or any of its subobjects are of const-qualified type, the
11641     //   program is ill-formed.
11642     // C++0x [dcl.init]p11:
11643     //   If no initializer is specified for an object, the object is
11644     //   default-initialized; [...].
11645     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11646     InitializationKind Kind
11647       = InitializationKind::CreateDefault(Var->getLocation());
11648 
11649     InitializationSequence InitSeq(*this, Entity, Kind, None);
11650     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11651     if (Init.isInvalid())
11652       Var->setInvalidDecl();
11653     else if (Init.get()) {
11654       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11655       // This is important for template substitution.
11656       Var->setInitStyle(VarDecl::CallInit);
11657     }
11658 
11659     CheckCompleteVariableDeclaration(Var);
11660   }
11661 }
11662 
ActOnCXXForRangeDecl(Decl * D)11663 void Sema::ActOnCXXForRangeDecl(Decl *D) {
11664   // If there is no declaration, there was an error parsing it. Ignore it.
11665   if (!D)
11666     return;
11667 
11668   VarDecl *VD = dyn_cast<VarDecl>(D);
11669   if (!VD) {
11670     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11671     D->setInvalidDecl();
11672     return;
11673   }
11674 
11675   VD->setCXXForRangeDecl(true);
11676 
11677   // for-range-declaration cannot be given a storage class specifier.
11678   int Error = -1;
11679   switch (VD->getStorageClass()) {
11680   case SC_None:
11681     break;
11682   case SC_Extern:
11683     Error = 0;
11684     break;
11685   case SC_Static:
11686     Error = 1;
11687     break;
11688   case SC_PrivateExtern:
11689     Error = 2;
11690     break;
11691   case SC_Auto:
11692     Error = 3;
11693     break;
11694   case SC_Register:
11695     Error = 4;
11696     break;
11697   }
11698   if (Error != -1) {
11699     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11700       << VD->getDeclName() << Error;
11701     D->setInvalidDecl();
11702   }
11703 }
11704 
11705 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)11706 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11707                                  IdentifierInfo *Ident,
11708                                  ParsedAttributes &Attrs,
11709                                  SourceLocation AttrEnd) {
11710   // C++1y [stmt.iter]p1:
11711   //   A range-based for statement of the form
11712   //      for ( for-range-identifier : for-range-initializer ) statement
11713   //   is equivalent to
11714   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
11715   DeclSpec DS(Attrs.getPool().getFactory());
11716 
11717   const char *PrevSpec;
11718   unsigned DiagID;
11719   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11720                      getPrintingPolicy());
11721 
11722   Declarator D(DS, DeclaratorContext::ForContext);
11723   D.SetIdentifier(Ident, IdentLoc);
11724   D.takeAttributes(Attrs, AttrEnd);
11725 
11726   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
11727   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
11728                 IdentLoc);
11729   Decl *Var = ActOnDeclarator(S, D);
11730   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11731   FinalizeDeclaration(Var);
11732   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11733                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
11734 }
11735 
CheckCompleteVariableDeclaration(VarDecl * var)11736 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11737   if (var->isInvalidDecl()) return;
11738 
11739   if (getLangOpts().OpenCL) {
11740     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11741     // initialiser
11742     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11743         !var->hasInit()) {
11744       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11745           << 1 /*Init*/;
11746       var->setInvalidDecl();
11747       return;
11748     }
11749   }
11750 
11751   // In Objective-C, don't allow jumps past the implicit initialization of a
11752   // local retaining variable.
11753   if (getLangOpts().ObjC &&
11754       var->hasLocalStorage()) {
11755     switch (var->getType().getObjCLifetime()) {
11756     case Qualifiers::OCL_None:
11757     case Qualifiers::OCL_ExplicitNone:
11758     case Qualifiers::OCL_Autoreleasing:
11759       break;
11760 
11761     case Qualifiers::OCL_Weak:
11762     case Qualifiers::OCL_Strong:
11763       setFunctionHasBranchProtectedScope();
11764       break;
11765     }
11766   }
11767 
11768   if (var->hasLocalStorage() &&
11769       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11770     setFunctionHasBranchProtectedScope();
11771 
11772   // Warn about externally-visible variables being defined without a
11773   // prior declaration.  We only want to do this for global
11774   // declarations, but we also specifically need to avoid doing it for
11775   // class members because the linkage of an anonymous class can
11776   // change if it's later given a typedef name.
11777   if (var->isThisDeclarationADefinition() &&
11778       var->getDeclContext()->getRedeclContext()->isFileContext() &&
11779       var->isExternallyVisible() && var->hasLinkage() &&
11780       !var->isInline() && !var->getDescribedVarTemplate() &&
11781       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11782       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11783                                   var->getLocation())) {
11784     // Find a previous declaration that's not a definition.
11785     VarDecl *prev = var->getPreviousDecl();
11786     while (prev && prev->isThisDeclarationADefinition())
11787       prev = prev->getPreviousDecl();
11788 
11789     if (!prev)
11790       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11791   }
11792 
11793   // Cache the result of checking for constant initialization.
11794   Optional<bool> CacheHasConstInit;
11795   const Expr *CacheCulprit;
11796   auto checkConstInit = [&]() mutable {
11797     if (!CacheHasConstInit)
11798       CacheHasConstInit = var->getInit()->isConstantInitializer(
11799             Context, var->getType()->isReferenceType(), &CacheCulprit);
11800     return *CacheHasConstInit;
11801   };
11802 
11803   if (var->getTLSKind() == VarDecl::TLS_Static) {
11804     if (var->getType().isDestructedType()) {
11805       // GNU C++98 edits for __thread, [basic.start.term]p3:
11806       //   The type of an object with thread storage duration shall not
11807       //   have a non-trivial destructor.
11808       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11809       if (getLangOpts().CPlusPlus11)
11810         Diag(var->getLocation(), diag::note_use_thread_local);
11811     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11812       if (!checkConstInit()) {
11813         // GNU C++98 edits for __thread, [basic.start.init]p4:
11814         //   An object of thread storage duration shall not require dynamic
11815         //   initialization.
11816         // FIXME: Need strict checking here.
11817         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11818           << CacheCulprit->getSourceRange();
11819         if (getLangOpts().CPlusPlus11)
11820           Diag(var->getLocation(), diag::note_use_thread_local);
11821       }
11822     }
11823   }
11824 
11825   // Apply section attributes and pragmas to global variables.
11826   bool GlobalStorage = var->hasGlobalStorage();
11827   if (GlobalStorage && var->isThisDeclarationADefinition() &&
11828       !inTemplateInstantiation()) {
11829     PragmaStack<StringLiteral *> *Stack = nullptr;
11830     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11831     if (var->getType().isConstQualified())
11832       Stack = &ConstSegStack;
11833     else if (!var->getInit()) {
11834       Stack = &BSSSegStack;
11835       SectionFlags |= ASTContext::PSF_Write;
11836     } else {
11837       Stack = &DataSegStack;
11838       SectionFlags |= ASTContext::PSF_Write;
11839     }
11840     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11841       var->addAttr(SectionAttr::CreateImplicit(
11842           Context, SectionAttr::Declspec_allocate,
11843           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11844     }
11845     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11846       if (UnifySection(SA->getName(), SectionFlags, var))
11847         var->dropAttr<SectionAttr>();
11848 
11849     // Apply the init_seg attribute if this has an initializer.  If the
11850     // initializer turns out to not be dynamic, we'll end up ignoring this
11851     // attribute.
11852     if (CurInitSeg && var->getInit())
11853       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11854                                                CurInitSegLoc));
11855   }
11856 
11857   // All the following checks are C++ only.
11858   if (!getLangOpts().CPlusPlus) {
11859       // If this variable must be emitted, add it as an initializer for the
11860       // current module.
11861      if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11862        Context.addModuleInitializer(ModuleScopes.back().Module, var);
11863      return;
11864   }
11865 
11866   if (auto *DD = dyn_cast<DecompositionDecl>(var))
11867     CheckCompleteDecompositionDeclaration(DD);
11868 
11869   QualType type = var->getType();
11870   if (type->isDependentType()) return;
11871 
11872   if (var->hasAttr<BlocksAttr>())
11873     getCurFunction()->addByrefBlockVar(var);
11874 
11875   Expr *Init = var->getInit();
11876   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11877   QualType baseType = Context.getBaseElementType(type);
11878 
11879   if (Init && !Init->isValueDependent()) {
11880     if (var->isConstexpr()) {
11881       SmallVector<PartialDiagnosticAt, 8> Notes;
11882       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11883         SourceLocation DiagLoc = var->getLocation();
11884         // If the note doesn't add any useful information other than a source
11885         // location, fold it into the primary diagnostic.
11886         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11887               diag::note_invalid_subexpr_in_const_expr) {
11888           DiagLoc = Notes[0].first;
11889           Notes.clear();
11890         }
11891         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11892           << var << Init->getSourceRange();
11893         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11894           Diag(Notes[I].first, Notes[I].second);
11895       }
11896     } else if (var->isUsableInConstantExpressions(Context)) {
11897       // Check whether the initializer of a const variable of integral or
11898       // enumeration type is an ICE now, since we can't tell whether it was
11899       // initialized by a constant expression if we check later.
11900       var->checkInitIsICE();
11901     }
11902 
11903     // Don't emit further diagnostics about constexpr globals since they
11904     // were just diagnosed.
11905     if (!var->isConstexpr() && GlobalStorage &&
11906             var->hasAttr<RequireConstantInitAttr>()) {
11907       // FIXME: Need strict checking in C++03 here.
11908       bool DiagErr = getLangOpts().CPlusPlus11
11909           ? !var->checkInitIsICE() : !checkConstInit();
11910       if (DiagErr) {
11911         auto attr = var->getAttr<RequireConstantInitAttr>();
11912         Diag(var->getLocation(), diag::err_require_constant_init_failed)
11913           << Init->getSourceRange();
11914         Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
11915           << attr->getRange();
11916         if (getLangOpts().CPlusPlus11) {
11917           APValue Value;
11918           SmallVector<PartialDiagnosticAt, 8> Notes;
11919           Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
11920           for (auto &it : Notes)
11921             Diag(it.first, it.second);
11922         } else {
11923           Diag(CacheCulprit->getExprLoc(),
11924                diag::note_invalid_subexpr_in_const_expr)
11925               << CacheCulprit->getSourceRange();
11926         }
11927       }
11928     }
11929     else if (!var->isConstexpr() && IsGlobal &&
11930              !getDiagnostics().isIgnored(diag::warn_global_constructor,
11931                                     var->getLocation())) {
11932       // Warn about globals which don't have a constant initializer.  Don't
11933       // warn about globals with a non-trivial destructor because we already
11934       // warned about them.
11935       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
11936       if (!(RD && !RD->hasTrivialDestructor())) {
11937         if (!checkConstInit())
11938           Diag(var->getLocation(), diag::warn_global_constructor)
11939             << Init->getSourceRange();
11940       }
11941     }
11942   }
11943 
11944   // Require the destructor.
11945   if (const RecordType *recordType = baseType->getAs<RecordType>())
11946     FinalizeVarWithDestructor(var, recordType);
11947 
11948   // If this variable must be emitted, add it as an initializer for the current
11949   // module.
11950   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11951     Context.addModuleInitializer(ModuleScopes.back().Module, var);
11952 }
11953 
11954 /// Determines if a variable's alignment is dependent.
hasDependentAlignment(VarDecl * VD)11955 static bool hasDependentAlignment(VarDecl *VD) {
11956   if (VD->getType()->isDependentType())
11957     return true;
11958   for (auto *I : VD->specific_attrs<AlignedAttr>())
11959     if (I->isAlignmentDependent())
11960       return true;
11961   return false;
11962 }
11963 
11964 /// Check if VD needs to be dllexport/dllimport due to being in a
11965 /// dllexport/import function.
CheckStaticLocalForDllExport(VarDecl * VD)11966 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
11967   assert(VD->isStaticLocal());
11968 
11969   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
11970 
11971   // Find outermost function when VD is in lambda function.
11972   while (FD && !getDLLAttr(FD) &&
11973          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
11974          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
11975     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
11976   }
11977 
11978   if (!FD)
11979     return;
11980 
11981   // Static locals inherit dll attributes from their function.
11982   if (Attr *A = getDLLAttr(FD)) {
11983     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
11984     NewAttr->setInherited(true);
11985     VD->addAttr(NewAttr);
11986   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
11987     auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
11988                                                           getASTContext(),
11989                                                           A->getSpellingListIndex());
11990     NewAttr->setInherited(true);
11991     VD->addAttr(NewAttr);
11992 
11993     // Export this function to enforce exporting this static variable even
11994     // if it is not used in this compilation unit.
11995     if (!FD->hasAttr<DLLExportAttr>())
11996       FD->addAttr(NewAttr);
11997 
11998   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
11999     auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
12000                                                           getASTContext(),
12001                                                           A->getSpellingListIndex());
12002     NewAttr->setInherited(true);
12003     VD->addAttr(NewAttr);
12004   }
12005 }
12006 
12007 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12008 /// any semantic actions necessary after any initializer has been attached.
FinalizeDeclaration(Decl * ThisDecl)12009 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12010   // Note that we are no longer parsing the initializer for this declaration.
12011   ParsingInitForAutoVars.erase(ThisDecl);
12012 
12013   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12014   if (!VD)
12015     return;
12016 
12017   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12018   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12019       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12020     if (PragmaClangBSSSection.Valid)
12021       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12022                                                             PragmaClangBSSSection.SectionName,
12023                                                             PragmaClangBSSSection.PragmaLocation));
12024     if (PragmaClangDataSection.Valid)
12025       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12026                                                              PragmaClangDataSection.SectionName,
12027                                                              PragmaClangDataSection.PragmaLocation));
12028     if (PragmaClangRodataSection.Valid)
12029       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12030                                                                PragmaClangRodataSection.SectionName,
12031                                                                PragmaClangRodataSection.PragmaLocation));
12032   }
12033 
12034   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12035     for (auto *BD : DD->bindings()) {
12036       FinalizeDeclaration(BD);
12037     }
12038   }
12039 
12040   checkAttributesAfterMerging(*this, *VD);
12041 
12042   // Perform TLS alignment check here after attributes attached to the variable
12043   // which may affect the alignment have been processed. Only perform the check
12044   // if the target has a maximum TLS alignment (zero means no constraints).
12045   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12046     // Protect the check so that it's not performed on dependent types and
12047     // dependent alignments (we can't determine the alignment in that case).
12048     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12049         !VD->isInvalidDecl()) {
12050       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12051       if (Context.getDeclAlign(VD) > MaxAlignChars) {
12052         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12053           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12054           << (unsigned)MaxAlignChars.getQuantity();
12055       }
12056     }
12057   }
12058 
12059   if (VD->isStaticLocal()) {
12060     CheckStaticLocalForDllExport(VD);
12061 
12062     if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12063       // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12064       // function, only __shared__ variables or variables without any device
12065       // memory qualifiers may be declared with static storage class.
12066       // Note: It is unclear how a function-scope non-const static variable
12067       // without device memory qualifier is implemented, therefore only static
12068       // const variable without device memory qualifier is allowed.
12069       [&]() {
12070         if (!getLangOpts().CUDA)
12071           return;
12072         if (VD->hasAttr<CUDASharedAttr>())
12073           return;
12074         if (VD->getType().isConstQualified() &&
12075             !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12076           return;
12077         if (CUDADiagIfDeviceCode(VD->getLocation(),
12078                                  diag::err_device_static_local_var)
12079             << CurrentCUDATarget())
12080           VD->setInvalidDecl();
12081       }();
12082     }
12083   }
12084 
12085   // Perform check for initializers of device-side global variables.
12086   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12087   // 7.5). We must also apply the same checks to all __shared__
12088   // variables whether they are local or not. CUDA also allows
12089   // constant initializers for __constant__ and __device__ variables.
12090   if (getLangOpts().CUDA)
12091     checkAllowedCUDAInitializer(VD);
12092 
12093   // Grab the dllimport or dllexport attribute off of the VarDecl.
12094   const InheritableAttr *DLLAttr = getDLLAttr(VD);
12095 
12096   // Imported static data members cannot be defined out-of-line.
12097   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12098     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12099         VD->isThisDeclarationADefinition()) {
12100       // We allow definitions of dllimport class template static data members
12101       // with a warning.
12102       CXXRecordDecl *Context =
12103         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12104       bool IsClassTemplateMember =
12105           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12106           Context->getDescribedClassTemplate();
12107 
12108       Diag(VD->getLocation(),
12109            IsClassTemplateMember
12110                ? diag::warn_attribute_dllimport_static_field_definition
12111                : diag::err_attribute_dllimport_static_field_definition);
12112       Diag(IA->getLocation(), diag::note_attribute);
12113       if (!IsClassTemplateMember)
12114         VD->setInvalidDecl();
12115     }
12116   }
12117 
12118   // dllimport/dllexport variables cannot be thread local, their TLS index
12119   // isn't exported with the variable.
12120   if (DLLAttr && VD->getTLSKind()) {
12121     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12122     if (F && getDLLAttr(F)) {
12123       assert(VD->isStaticLocal());
12124       // But if this is a static local in a dlimport/dllexport function, the
12125       // function will never be inlined, which means the var would never be
12126       // imported, so having it marked import/export is safe.
12127     } else {
12128       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12129                                                                     << DLLAttr;
12130       VD->setInvalidDecl();
12131     }
12132   }
12133 
12134   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12135     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12136       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12137       VD->dropAttr<UsedAttr>();
12138     }
12139   }
12140 
12141   const DeclContext *DC = VD->getDeclContext();
12142   // If there's a #pragma GCC visibility in scope, and this isn't a class
12143   // member, set the visibility of this variable.
12144   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12145     AddPushedVisibilityAttribute(VD);
12146 
12147   // FIXME: Warn on unused var template partial specializations.
12148   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12149     MarkUnusedFileScopedDecl(VD);
12150 
12151   // Now we have parsed the initializer and can update the table of magic
12152   // tag values.
12153   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12154       !VD->getType()->isIntegralOrEnumerationType())
12155     return;
12156 
12157   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12158     const Expr *MagicValueExpr = VD->getInit();
12159     if (!MagicValueExpr) {
12160       continue;
12161     }
12162     llvm::APSInt MagicValueInt;
12163     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12164       Diag(I->getRange().getBegin(),
12165            diag::err_type_tag_for_datatype_not_ice)
12166         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12167       continue;
12168     }
12169     if (MagicValueInt.getActiveBits() > 64) {
12170       Diag(I->getRange().getBegin(),
12171            diag::err_type_tag_for_datatype_too_large)
12172         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12173       continue;
12174     }
12175     uint64_t MagicValue = MagicValueInt.getZExtValue();
12176     RegisterTypeTagForDatatype(I->getArgumentKind(),
12177                                MagicValue,
12178                                I->getMatchingCType(),
12179                                I->getLayoutCompatible(),
12180                                I->getMustBeNull());
12181   }
12182 }
12183 
hasDeducedAuto(DeclaratorDecl * DD)12184 static bool hasDeducedAuto(DeclaratorDecl *DD) {
12185   auto *VD = dyn_cast<VarDecl>(DD);
12186   return VD && !VD->getType()->hasAutoForTrailingReturnType();
12187 }
12188 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)12189 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12190                                                    ArrayRef<Decl *> Group) {
12191   SmallVector<Decl*, 8> Decls;
12192 
12193   if (DS.isTypeSpecOwned())
12194     Decls.push_back(DS.getRepAsDecl());
12195 
12196   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12197   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12198   bool DiagnosedMultipleDecomps = false;
12199   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12200   bool DiagnosedNonDeducedAuto = false;
12201 
12202   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12203     if (Decl *D = Group[i]) {
12204       // For declarators, there are some additional syntactic-ish checks we need
12205       // to perform.
12206       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12207         if (!FirstDeclaratorInGroup)
12208           FirstDeclaratorInGroup = DD;
12209         if (!FirstDecompDeclaratorInGroup)
12210           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12211         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12212             !hasDeducedAuto(DD))
12213           FirstNonDeducedAutoInGroup = DD;
12214 
12215         if (FirstDeclaratorInGroup != DD) {
12216           // A decomposition declaration cannot be combined with any other
12217           // declaration in the same group.
12218           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12219             Diag(FirstDecompDeclaratorInGroup->getLocation(),
12220                  diag::err_decomp_decl_not_alone)
12221                 << FirstDeclaratorInGroup->getSourceRange()
12222                 << DD->getSourceRange();
12223             DiagnosedMultipleDecomps = true;
12224           }
12225 
12226           // A declarator that uses 'auto' in any way other than to declare a
12227           // variable with a deduced type cannot be combined with any other
12228           // declarator in the same group.
12229           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12230             Diag(FirstNonDeducedAutoInGroup->getLocation(),
12231                  diag::err_auto_non_deduced_not_alone)
12232                 << FirstNonDeducedAutoInGroup->getType()
12233                        ->hasAutoForTrailingReturnType()
12234                 << FirstDeclaratorInGroup->getSourceRange()
12235                 << DD->getSourceRange();
12236             DiagnosedNonDeducedAuto = true;
12237           }
12238         }
12239       }
12240 
12241       Decls.push_back(D);
12242     }
12243   }
12244 
12245   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12246     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12247       handleTagNumbering(Tag, S);
12248       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12249           getLangOpts().CPlusPlus)
12250         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12251     }
12252   }
12253 
12254   return BuildDeclaratorGroup(Decls);
12255 }
12256 
12257 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
12258 /// group, performing any necessary semantic checking.
12259 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group)12260 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12261   // C++14 [dcl.spec.auto]p7: (DR1347)
12262   //   If the type that replaces the placeholder type is not the same in each
12263   //   deduction, the program is ill-formed.
12264   if (Group.size() > 1) {
12265     QualType Deduced;
12266     VarDecl *DeducedDecl = nullptr;
12267     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12268       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12269       if (!D || D->isInvalidDecl())
12270         break;
12271       DeducedType *DT = D->getType()->getContainedDeducedType();
12272       if (!DT || DT->getDeducedType().isNull())
12273         continue;
12274       if (Deduced.isNull()) {
12275         Deduced = DT->getDeducedType();
12276         DeducedDecl = D;
12277       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12278         auto *AT = dyn_cast<AutoType>(DT);
12279         Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12280              diag::err_auto_different_deductions)
12281           << (AT ? (unsigned)AT->getKeyword() : 3)
12282           << Deduced << DeducedDecl->getDeclName()
12283           << DT->getDeducedType() << D->getDeclName()
12284           << DeducedDecl->getInit()->getSourceRange()
12285           << D->getInit()->getSourceRange();
12286         D->setInvalidDecl();
12287         break;
12288       }
12289     }
12290   }
12291 
12292   ActOnDocumentableDecls(Group);
12293 
12294   return DeclGroupPtrTy::make(
12295       DeclGroupRef::Create(Context, Group.data(), Group.size()));
12296 }
12297 
ActOnDocumentableDecl(Decl * D)12298 void Sema::ActOnDocumentableDecl(Decl *D) {
12299   ActOnDocumentableDecls(D);
12300 }
12301 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)12302 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12303   // Don't parse the comment if Doxygen diagnostics are ignored.
12304   if (Group.empty() || !Group[0])
12305     return;
12306 
12307   if (Diags.isIgnored(diag::warn_doc_param_not_found,
12308                       Group[0]->getLocation()) &&
12309       Diags.isIgnored(diag::warn_unknown_comment_command_name,
12310                       Group[0]->getLocation()))
12311     return;
12312 
12313   if (Group.size() >= 2) {
12314     // This is a decl group.  Normally it will contain only declarations
12315     // produced from declarator list.  But in case we have any definitions or
12316     // additional declaration references:
12317     //   'typedef struct S {} S;'
12318     //   'typedef struct S *S;'
12319     //   'struct S *pS;'
12320     // FinalizeDeclaratorGroup adds these as separate declarations.
12321     Decl *MaybeTagDecl = Group[0];
12322     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12323       Group = Group.slice(1);
12324     }
12325   }
12326 
12327   // See if there are any new comments that are not attached to a decl.
12328   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12329   if (!Comments.empty() &&
12330       !Comments.back()->isAttached()) {
12331     // There is at least one comment that not attached to a decl.
12332     // Maybe it should be attached to one of these decls?
12333     //
12334     // Note that this way we pick up not only comments that precede the
12335     // declaration, but also comments that *follow* the declaration -- thanks to
12336     // the lookahead in the lexer: we've consumed the semicolon and looked
12337     // ahead through comments.
12338     for (unsigned i = 0, e = Group.size(); i != e; ++i)
12339       Context.getCommentForDecl(Group[i], &PP);
12340   }
12341 }
12342 
12343 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12344 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)12345 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12346   const DeclSpec &DS = D.getDeclSpec();
12347 
12348   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12349 
12350   // C++03 [dcl.stc]p2 also permits 'auto'.
12351   StorageClass SC = SC_None;
12352   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12353     SC = SC_Register;
12354     // In C++11, the 'register' storage class specifier is deprecated.
12355     // In C++17, it is not allowed, but we tolerate it as an extension.
12356     if (getLangOpts().CPlusPlus11) {
12357       Diag(DS.getStorageClassSpecLoc(),
12358            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12359                                      : diag::warn_deprecated_register)
12360         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12361     }
12362   } else if (getLangOpts().CPlusPlus &&
12363              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12364     SC = SC_Auto;
12365   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12366     Diag(DS.getStorageClassSpecLoc(),
12367          diag::err_invalid_storage_class_in_func_decl);
12368     D.getMutableDeclSpec().ClearStorageClassSpecs();
12369   }
12370 
12371   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12372     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12373       << DeclSpec::getSpecifierName(TSCS);
12374   if (DS.isInlineSpecified())
12375     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12376         << getLangOpts().CPlusPlus17;
12377   if (DS.isConstexprSpecified())
12378     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12379       << 0;
12380 
12381   DiagnoseFunctionSpecifiers(DS);
12382 
12383   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12384   QualType parmDeclType = TInfo->getType();
12385 
12386   if (getLangOpts().CPlusPlus) {
12387     // Check that there are no default arguments inside the type of this
12388     // parameter.
12389     CheckExtraCXXDefaultArguments(D);
12390 
12391     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12392     if (D.getCXXScopeSpec().isSet()) {
12393       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12394         << D.getCXXScopeSpec().getRange();
12395       D.getCXXScopeSpec().clear();
12396     }
12397   }
12398 
12399   // Ensure we have a valid name
12400   IdentifierInfo *II = nullptr;
12401   if (D.hasName()) {
12402     II = D.getIdentifier();
12403     if (!II) {
12404       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12405         << GetNameForDeclarator(D).getName();
12406       D.setInvalidType(true);
12407     }
12408   }
12409 
12410   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12411   if (II) {
12412     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12413                    ForVisibleRedeclaration);
12414     LookupName(R, S);
12415     if (R.isSingleResult()) {
12416       NamedDecl *PrevDecl = R.getFoundDecl();
12417       if (PrevDecl->isTemplateParameter()) {
12418         // Maybe we will complain about the shadowed template parameter.
12419         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12420         // Just pretend that we didn't see the previous declaration.
12421         PrevDecl = nullptr;
12422       } else if (S->isDeclScope(PrevDecl)) {
12423         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12424         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12425 
12426         // Recover by removing the name
12427         II = nullptr;
12428         D.SetIdentifier(nullptr, D.getIdentifierLoc());
12429         D.setInvalidType(true);
12430       }
12431     }
12432   }
12433 
12434   // Temporarily put parameter variables in the translation unit, not
12435   // the enclosing context.  This prevents them from accidentally
12436   // looking like class members in C++.
12437   ParmVarDecl *New =
12438       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12439                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12440 
12441   if (D.isInvalidType())
12442     New->setInvalidDecl();
12443 
12444   assert(S->isFunctionPrototypeScope());
12445   assert(S->getFunctionPrototypeDepth() >= 1);
12446   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12447                     S->getNextFunctionPrototypeIndex());
12448 
12449   // Add the parameter declaration into this scope.
12450   S->AddDecl(New);
12451   if (II)
12452     IdResolver.AddDecl(New);
12453 
12454   ProcessDeclAttributes(S, New, D);
12455 
12456   if (D.getDeclSpec().isModulePrivateSpecified())
12457     Diag(New->getLocation(), diag::err_module_private_local)
12458       << 1 << New->getDeclName()
12459       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12460       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12461 
12462   if (New->hasAttr<BlocksAttr>()) {
12463     Diag(New->getLocation(), diag::err_block_on_nonlocal);
12464   }
12465   return New;
12466 }
12467 
12468 /// Synthesizes a variable for a parameter arising from a
12469 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)12470 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12471                                               SourceLocation Loc,
12472                                               QualType T) {
12473   /* FIXME: setting StartLoc == Loc.
12474      Would it be worth to modify callers so as to provide proper source
12475      location for the unnamed parameters, embedding the parameter's type? */
12476   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12477                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
12478                                            SC_None, nullptr);
12479   Param->setImplicit();
12480   return Param;
12481 }
12482 
DiagnoseUnusedParameters(ArrayRef<ParmVarDecl * > Parameters)12483 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12484   // Don't diagnose unused-parameter errors in template instantiations; we
12485   // will already have done so in the template itself.
12486   if (inTemplateInstantiation())
12487     return;
12488 
12489   for (const ParmVarDecl *Parameter : Parameters) {
12490     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12491         !Parameter->hasAttr<UnusedAttr>()) {
12492       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12493         << Parameter->getDeclName();
12494     }
12495   }
12496 }
12497 
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl * > Parameters,QualType ReturnTy,NamedDecl * D)12498 void Sema::DiagnoseSizeOfParametersAndReturnValue(
12499     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12500   if (LangOpts.NumLargeByValueCopy == 0) // No check.
12501     return;
12502 
12503   // Warn if the return value is pass-by-value and larger than the specified
12504   // threshold.
12505   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12506     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12507     if (Size > LangOpts.NumLargeByValueCopy)
12508       Diag(D->getLocation(), diag::warn_return_value_size)
12509           << D->getDeclName() << Size;
12510   }
12511 
12512   // Warn if any parameter is pass-by-value and larger than the specified
12513   // threshold.
12514   for (const ParmVarDecl *Parameter : Parameters) {
12515     QualType T = Parameter->getType();
12516     if (T->isDependentType() || !T.isPODType(Context))
12517       continue;
12518     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12519     if (Size > LangOpts.NumLargeByValueCopy)
12520       Diag(Parameter->getLocation(), diag::warn_parameter_size)
12521           << Parameter->getDeclName() << Size;
12522   }
12523 }
12524 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)12525 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12526                                   SourceLocation NameLoc, IdentifierInfo *Name,
12527                                   QualType T, TypeSourceInfo *TSInfo,
12528                                   StorageClass SC) {
12529   // In ARC, infer a lifetime qualifier for appropriate parameter types.
12530   if (getLangOpts().ObjCAutoRefCount &&
12531       T.getObjCLifetime() == Qualifiers::OCL_None &&
12532       T->isObjCLifetimeType()) {
12533 
12534     Qualifiers::ObjCLifetime lifetime;
12535 
12536     // Special cases for arrays:
12537     //   - if it's const, use __unsafe_unretained
12538     //   - otherwise, it's an error
12539     if (T->isArrayType()) {
12540       if (!T.isConstQualified()) {
12541         DelayedDiagnostics.add(
12542             sema::DelayedDiagnostic::makeForbiddenType(
12543             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12544       }
12545       lifetime = Qualifiers::OCL_ExplicitNone;
12546     } else {
12547       lifetime = T->getObjCARCImplicitLifetime();
12548     }
12549     T = Context.getLifetimeQualifiedType(T, lifetime);
12550   }
12551 
12552   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12553                                          Context.getAdjustedParameterType(T),
12554                                          TSInfo, SC, nullptr);
12555 
12556   // Parameters can not be abstract class types.
12557   // For record types, this is done by the AbstractClassUsageDiagnoser once
12558   // the class has been completely parsed.
12559   if (!CurContext->isRecord() &&
12560       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12561                              AbstractParamType))
12562     New->setInvalidDecl();
12563 
12564   // Parameter declarators cannot be interface types. All ObjC objects are
12565   // passed by reference.
12566   if (T->isObjCObjectType()) {
12567     SourceLocation TypeEndLoc =
12568         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
12569     Diag(NameLoc,
12570          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12571       << FixItHint::CreateInsertion(TypeEndLoc, "*");
12572     T = Context.getObjCObjectPointerType(T);
12573     New->setType(T);
12574   }
12575 
12576   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12577   // duration shall not be qualified by an address-space qualifier."
12578   // Since all parameters have automatic store duration, they can not have
12579   // an address space.
12580   if (T.getAddressSpace() != LangAS::Default &&
12581       // OpenCL allows function arguments declared to be an array of a type
12582       // to be qualified with an address space.
12583       !(getLangOpts().OpenCL &&
12584         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12585     Diag(NameLoc, diag::err_arg_with_address_space);
12586     New->setInvalidDecl();
12587   }
12588 
12589   return New;
12590 }
12591 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)12592 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12593                                            SourceLocation LocAfterDecls) {
12594   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12595 
12596   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12597   // for a K&R function.
12598   if (!FTI.hasPrototype) {
12599     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12600       --i;
12601       if (FTI.Params[i].Param == nullptr) {
12602         SmallString<256> Code;
12603         llvm::raw_svector_ostream(Code)
12604             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
12605         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12606             << FTI.Params[i].Ident
12607             << FixItHint::CreateInsertion(LocAfterDecls, Code);
12608 
12609         // Implicitly declare the argument as type 'int' for lack of a better
12610         // type.
12611         AttributeFactory attrs;
12612         DeclSpec DS(attrs);
12613         const char* PrevSpec; // unused
12614         unsigned DiagID; // unused
12615         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12616                            DiagID, Context.getPrintingPolicy());
12617         // Use the identifier location for the type source range.
12618         DS.SetRangeStart(FTI.Params[i].IdentLoc);
12619         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12620         Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12621         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12622         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12623       }
12624     }
12625   }
12626 }
12627 
12628 Decl *
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)12629 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12630                               MultiTemplateParamsArg TemplateParameterLists,
12631                               SkipBodyInfo *SkipBody) {
12632   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
12633   assert(D.isFunctionDeclarator() && "Not a function declarator!");
12634   Scope *ParentScope = FnBodyScope->getParent();
12635 
12636   D.setFunctionDefinitionKind(FDK_Definition);
12637   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12638   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12639 }
12640 
ActOnFinishInlineFunctionDef(FunctionDecl * D)12641 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12642   Consumer.HandleInlineFunctionDefinition(D);
12643 }
12644 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)12645 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12646                              const FunctionDecl*& PossibleZeroParamPrototype) {
12647   // Don't warn about invalid declarations.
12648   if (FD->isInvalidDecl())
12649     return false;
12650 
12651   // Or declarations that aren't global.
12652   if (!FD->isGlobal())
12653     return false;
12654 
12655   // Don't warn about C++ member functions.
12656   if (isa<CXXMethodDecl>(FD))
12657     return false;
12658 
12659   // Don't warn about 'main'.
12660   if (FD->isMain())
12661     return false;
12662 
12663   // Don't warn about inline functions.
12664   if (FD->isInlined())
12665     return false;
12666 
12667   // Don't warn about function templates.
12668   if (FD->getDescribedFunctionTemplate())
12669     return false;
12670 
12671   // Don't warn about function template specializations.
12672   if (FD->isFunctionTemplateSpecialization())
12673     return false;
12674 
12675   // Don't warn for OpenCL kernels.
12676   if (FD->hasAttr<OpenCLKernelAttr>())
12677     return false;
12678 
12679   // Don't warn on explicitly deleted functions.
12680   if (FD->isDeleted())
12681     return false;
12682 
12683   bool MissingPrototype = true;
12684   for (const FunctionDecl *Prev = FD->getPreviousDecl();
12685        Prev; Prev = Prev->getPreviousDecl()) {
12686     // Ignore any declarations that occur in function or method
12687     // scope, because they aren't visible from the header.
12688     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12689       continue;
12690 
12691     MissingPrototype = !Prev->getType()->isFunctionProtoType();
12692     if (FD->getNumParams() == 0)
12693       PossibleZeroParamPrototype = Prev;
12694     break;
12695   }
12696 
12697   return MissingPrototype;
12698 }
12699 
12700 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition,SkipBodyInfo * SkipBody)12701 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12702                                    const FunctionDecl *EffectiveDefinition,
12703                                    SkipBodyInfo *SkipBody) {
12704   const FunctionDecl *Definition = EffectiveDefinition;
12705   if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12706     // If this is a friend function defined in a class template, it does not
12707     // have a body until it is used, nevertheless it is a definition, see
12708     // [temp.inst]p2:
12709     //
12710     // ... for the purpose of determining whether an instantiated redeclaration
12711     // is valid according to [basic.def.odr] and [class.mem], a declaration that
12712     // corresponds to a definition in the template is considered to be a
12713     // definition.
12714     //
12715     // The following code must produce redefinition error:
12716     //
12717     //     template<typename T> struct C20 { friend void func_20() {} };
12718     //     C20<int> c20i;
12719     //     void func_20() {}
12720     //
12721     for (auto I : FD->redecls()) {
12722       if (I != FD && !I->isInvalidDecl() &&
12723           I->getFriendObjectKind() != Decl::FOK_None) {
12724         if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12725           if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12726             // A merged copy of the same function, instantiated as a member of
12727             // the same class, is OK.
12728             if (declaresSameEntity(OrigFD, Original) &&
12729                 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12730                                    cast<Decl>(FD->getLexicalDeclContext())))
12731               continue;
12732           }
12733 
12734           if (Original->isThisDeclarationADefinition()) {
12735             Definition = I;
12736             break;
12737           }
12738         }
12739       }
12740     }
12741   }
12742 
12743   if (!Definition)
12744     // Similar to friend functions a friend function template may be a
12745     // definition and do not have a body if it is instantiated in a class
12746     // template.
12747     if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
12748       for (auto I : FTD->redecls()) {
12749         auto D = cast<FunctionTemplateDecl>(I);
12750         if (D != FTD) {
12751           assert(!D->isThisDeclarationADefinition() &&
12752                  "More than one definition in redeclaration chain");
12753           if (D->getFriendObjectKind() != Decl::FOK_None)
12754             if (FunctionTemplateDecl *FT =
12755                                        D->getInstantiatedFromMemberTemplate()) {
12756               if (FT->isThisDeclarationADefinition()) {
12757                 Definition = D->getTemplatedDecl();
12758                 break;
12759               }
12760             }
12761         }
12762       }
12763     }
12764 
12765   if (!Definition)
12766     return;
12767 
12768   if (canRedefineFunction(Definition, getLangOpts()))
12769     return;
12770 
12771   // Don't emit an error when this is redefinition of a typo-corrected
12772   // definition.
12773   if (TypoCorrectedFunctionDefinitions.count(Definition))
12774     return;
12775 
12776   // If we don't have a visible definition of the function, and it's inline or
12777   // a template, skip the new definition.
12778   if (SkipBody && !hasVisibleDefinition(Definition) &&
12779       (Definition->getFormalLinkage() == InternalLinkage ||
12780        Definition->isInlined() ||
12781        Definition->getDescribedFunctionTemplate() ||
12782        Definition->getNumTemplateParameterLists())) {
12783     SkipBody->ShouldSkip = true;
12784     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
12785     if (auto *TD = Definition->getDescribedFunctionTemplate())
12786       makeMergedDefinitionVisible(TD);
12787     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12788     return;
12789   }
12790 
12791   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12792       Definition->getStorageClass() == SC_Extern)
12793     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12794         << FD->getDeclName() << getLangOpts().CPlusPlus;
12795   else
12796     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12797 
12798   Diag(Definition->getLocation(), diag::note_previous_definition);
12799   FD->setInvalidDecl();
12800 }
12801 
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)12802 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12803                                    Sema &S) {
12804   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12805 
12806   LambdaScopeInfo *LSI = S.PushLambdaScope();
12807   LSI->CallOperator = CallOperator;
12808   LSI->Lambda = LambdaClass;
12809   LSI->ReturnType = CallOperator->getReturnType();
12810   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12811 
12812   if (LCD == LCD_None)
12813     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12814   else if (LCD == LCD_ByCopy)
12815     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12816   else if (LCD == LCD_ByRef)
12817     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12818   DeclarationNameInfo DNI = CallOperator->getNameInfo();
12819 
12820   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12821   LSI->Mutable = !CallOperator->isConst();
12822 
12823   // Add the captures to the LSI so they can be noted as already
12824   // captured within tryCaptureVar.
12825   auto I = LambdaClass->field_begin();
12826   for (const auto &C : LambdaClass->captures()) {
12827     if (C.capturesVariable()) {
12828       VarDecl *VD = C.getCapturedVar();
12829       if (VD->isInitCapture())
12830         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12831       QualType CaptureType = VD->getType();
12832       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12833       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12834           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12835           /*EllipsisLoc*/C.isPackExpansion()
12836                          ? C.getEllipsisLoc() : SourceLocation(),
12837           CaptureType, /*Expr*/ nullptr);
12838 
12839     } else if (C.capturesThis()) {
12840       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
12841                               /*Expr*/ nullptr,
12842                               C.getCaptureKind() == LCK_StarThis);
12843     } else {
12844       LSI->addVLATypeCapture(C.getLocation(), I->getType());
12845     }
12846     ++I;
12847   }
12848 }
12849 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D,SkipBodyInfo * SkipBody)12850 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12851                                     SkipBodyInfo *SkipBody) {
12852   if (!D) {
12853     // Parsing the function declaration failed in some way. Push on a fake scope
12854     // anyway so we can try to parse the function body.
12855     PushFunctionScope();
12856     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12857     return D;
12858   }
12859 
12860   FunctionDecl *FD = nullptr;
12861 
12862   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12863     FD = FunTmpl->getTemplatedDecl();
12864   else
12865     FD = cast<FunctionDecl>(D);
12866 
12867   // Do not push if it is a lambda because one is already pushed when building
12868   // the lambda in ActOnStartOfLambdaDefinition().
12869   if (!isLambdaCallOperator(FD))
12870     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12871 
12872   // Check for defining attributes before the check for redefinition.
12873   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12874     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12875     FD->dropAttr<AliasAttr>();
12876     FD->setInvalidDecl();
12877   }
12878   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12879     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12880     FD->dropAttr<IFuncAttr>();
12881     FD->setInvalidDecl();
12882   }
12883 
12884   // See if this is a redefinition. If 'will have body' is already set, then
12885   // these checks were already performed when it was set.
12886   if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12887     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12888 
12889     // If we're skipping the body, we're done. Don't enter the scope.
12890     if (SkipBody && SkipBody->ShouldSkip)
12891       return D;
12892   }
12893 
12894   // Mark this function as "will have a body eventually".  This lets users to
12895   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
12896   // this function.
12897   FD->setWillHaveBody();
12898 
12899   // If we are instantiating a generic lambda call operator, push
12900   // a LambdaScopeInfo onto the function stack.  But use the information
12901   // that's already been calculated (ActOnLambdaExpr) to prime the current
12902   // LambdaScopeInfo.
12903   // When the template operator is being specialized, the LambdaScopeInfo,
12904   // has to be properly restored so that tryCaptureVariable doesn't try
12905   // and capture any new variables. In addition when calculating potential
12906   // captures during transformation of nested lambdas, it is necessary to
12907   // have the LSI properly restored.
12908   if (isGenericLambdaCallOperatorSpecialization(FD)) {
12909     assert(inTemplateInstantiation() &&
12910            "There should be an active template instantiation on the stack "
12911            "when instantiating a generic lambda!");
12912     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
12913   } else {
12914     // Enter a new function scope
12915     PushFunctionScope();
12916   }
12917 
12918   // Builtin functions cannot be defined.
12919   if (unsigned BuiltinID = FD->getBuiltinID()) {
12920     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
12921         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
12922       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
12923       FD->setInvalidDecl();
12924     }
12925   }
12926 
12927   // The return type of a function definition must be complete
12928   // (C99 6.9.1p3, C++ [dcl.fct]p6).
12929   QualType ResultType = FD->getReturnType();
12930   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
12931       !FD->isInvalidDecl() &&
12932       RequireCompleteType(FD->getLocation(), ResultType,
12933                           diag::err_func_def_incomplete_result))
12934     FD->setInvalidDecl();
12935 
12936   if (FnBodyScope)
12937     PushDeclContext(FnBodyScope, FD);
12938 
12939   // Check the validity of our function parameters
12940   CheckParmsForFunctionDef(FD->parameters(),
12941                            /*CheckParameterNames=*/true);
12942 
12943   // Add non-parameter declarations already in the function to the current
12944   // scope.
12945   if (FnBodyScope) {
12946     for (Decl *NPD : FD->decls()) {
12947       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
12948       if (!NonParmDecl)
12949         continue;
12950       assert(!isa<ParmVarDecl>(NonParmDecl) &&
12951              "parameters should not be in newly created FD yet");
12952 
12953       // If the decl has a name, make it accessible in the current scope.
12954       if (NonParmDecl->getDeclName())
12955         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
12956 
12957       // Similarly, dive into enums and fish their constants out, making them
12958       // accessible in this scope.
12959       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
12960         for (auto *EI : ED->enumerators())
12961           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
12962       }
12963     }
12964   }
12965 
12966   // Introduce our parameters into the function scope
12967   for (auto Param : FD->parameters()) {
12968     Param->setOwningFunction(FD);
12969 
12970     // If this has an identifier, add it to the scope stack.
12971     if (Param->getIdentifier() && FnBodyScope) {
12972       CheckShadow(FnBodyScope, Param);
12973 
12974       PushOnScopeChains(Param, FnBodyScope);
12975     }
12976   }
12977 
12978   // Ensure that the function's exception specification is instantiated.
12979   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
12980     ResolveExceptionSpec(D->getLocation(), FPT);
12981 
12982   // dllimport cannot be applied to non-inline function definitions.
12983   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
12984       !FD->isTemplateInstantiation()) {
12985     assert(!FD->hasAttr<DLLExportAttr>());
12986     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
12987     FD->setInvalidDecl();
12988     return D;
12989   }
12990   // We want to attach documentation to original Decl (which might be
12991   // a function template).
12992   ActOnDocumentableDecl(D);
12993   if (getCurLexicalContext()->isObjCContainer() &&
12994       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
12995       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
12996     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
12997 
12998   return D;
12999 }
13000 
13001 /// Given the set of return statements within a function body,
13002 /// compute the variables that are subject to the named return value
13003 /// optimization.
13004 ///
13005 /// Each of the variables that is subject to the named return value
13006 /// optimization will be marked as NRVO variables in the AST, and any
13007 /// return statement that has a marked NRVO variable as its NRVO candidate can
13008 /// use the named return value optimization.
13009 ///
13010 /// This function applies a very simplistic algorithm for NRVO: if every return
13011 /// statement in the scope of a variable has the same NRVO candidate, that
13012 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)13013 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13014   ReturnStmt **Returns = Scope->Returns.data();
13015 
13016   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13017     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13018       if (!NRVOCandidate->isNRVOVariable())
13019         Returns[I]->setNRVOCandidate(nullptr);
13020     }
13021   }
13022 }
13023 
canDelayFunctionBody(const Declarator & D)13024 bool Sema::canDelayFunctionBody(const Declarator &D) {
13025   // We can't delay parsing the body of a constexpr function template (yet).
13026   if (D.getDeclSpec().isConstexprSpecified())
13027     return false;
13028 
13029   // We can't delay parsing the body of a function template with a deduced
13030   // return type (yet).
13031   if (D.getDeclSpec().hasAutoTypeSpec()) {
13032     // If the placeholder introduces a non-deduced trailing return type,
13033     // we can still delay parsing it.
13034     if (D.getNumTypeObjects()) {
13035       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13036       if (Outer.Kind == DeclaratorChunk::Function &&
13037           Outer.Fun.hasTrailingReturnType()) {
13038         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13039         return Ty.isNull() || !Ty->isUndeducedType();
13040       }
13041     }
13042     return false;
13043   }
13044 
13045   return true;
13046 }
13047 
canSkipFunctionBody(Decl * D)13048 bool Sema::canSkipFunctionBody(Decl *D) {
13049   // We cannot skip the body of a function (or function template) which is
13050   // constexpr, since we may need to evaluate its body in order to parse the
13051   // rest of the file.
13052   // We cannot skip the body of a function with an undeduced return type,
13053   // because any callers of that function need to know the type.
13054   if (const FunctionDecl *FD = D->getAsFunction()) {
13055     if (FD->isConstexpr())
13056       return false;
13057     // We can't simply call Type::isUndeducedType here, because inside template
13058     // auto can be deduced to a dependent type, which is not considered
13059     // "undeduced".
13060     if (FD->getReturnType()->getContainedDeducedType())
13061       return false;
13062   }
13063   return Consumer.shouldSkipFunctionBody(D);
13064 }
13065 
ActOnSkippedFunctionBody(Decl * Decl)13066 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13067   if (!Decl)
13068     return nullptr;
13069   if (FunctionDecl *FD = Decl->getAsFunction())
13070     FD->setHasSkippedBody();
13071   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13072     MD->setHasSkippedBody();
13073   return Decl;
13074 }
13075 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)13076 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13077   return ActOnFinishFunctionBody(D, BodyArg, false);
13078 }
13079 
13080 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
13081 /// body.
13082 class ExitFunctionBodyRAII {
13083 public:
ExitFunctionBodyRAII(Sema & S,bool IsLambda)13084   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
~ExitFunctionBodyRAII()13085   ~ExitFunctionBodyRAII() {
13086     if (!IsLambda)
13087       S.PopExpressionEvaluationContext();
13088   }
13089 
13090 private:
13091   Sema &S;
13092   bool IsLambda = false;
13093 };
13094 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)13095 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13096                                     bool IsInstantiation) {
13097   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13098 
13099   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13100   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13101 
13102   if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine())
13103     CheckCompletedCoroutineBody(FD, Body);
13104 
13105   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13106   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13107   // meant to pop the context added in ActOnStartOfFunctionDef().
13108   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13109 
13110   if (FD) {
13111     FD->setBody(Body);
13112     FD->setWillHaveBody(false);
13113 
13114     if (getLangOpts().CPlusPlus14) {
13115       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13116           FD->getReturnType()->isUndeducedType()) {
13117         // If the function has a deduced result type but contains no 'return'
13118         // statements, the result type as written must be exactly 'auto', and
13119         // the deduced result type is 'void'.
13120         if (!FD->getReturnType()->getAs<AutoType>()) {
13121           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13122               << FD->getReturnType();
13123           FD->setInvalidDecl();
13124         } else {
13125           // Substitute 'void' for the 'auto' in the type.
13126           TypeLoc ResultType = getReturnTypeLoc(FD);
13127           Context.adjustDeducedFunctionResultType(
13128               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13129         }
13130       }
13131     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13132       // In C++11, we don't use 'auto' deduction rules for lambda call
13133       // operators because we don't support return type deduction.
13134       auto *LSI = getCurLambda();
13135       if (LSI->HasImplicitReturnType) {
13136         deduceClosureReturnType(*LSI);
13137 
13138         // C++11 [expr.prim.lambda]p4:
13139         //   [...] if there are no return statements in the compound-statement
13140         //   [the deduced type is] the type void
13141         QualType RetType =
13142             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13143 
13144         // Update the return type to the deduced type.
13145         const FunctionProtoType *Proto =
13146             FD->getType()->getAs<FunctionProtoType>();
13147         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13148                                             Proto->getExtProtoInfo()));
13149       }
13150     }
13151 
13152     // If the function implicitly returns zero (like 'main') or is naked,
13153     // don't complain about missing return statements.
13154     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13155       WP.disableCheckFallThrough();
13156 
13157     // MSVC permits the use of pure specifier (=0) on function definition,
13158     // defined at class scope, warn about this non-standard construct.
13159     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
13160       Diag(FD->getLocation(), diag::ext_pure_function_definition);
13161 
13162     if (!FD->isInvalidDecl()) {
13163       // Don't diagnose unused parameters of defaulted or deleted functions.
13164       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13165         DiagnoseUnusedParameters(FD->parameters());
13166       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13167                                              FD->getReturnType(), FD);
13168 
13169       // If this is a structor, we need a vtable.
13170       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13171         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13172       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13173         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13174 
13175       // Try to apply the named return value optimization. We have to check
13176       // if we can do this here because lambdas keep return statements around
13177       // to deduce an implicit return type.
13178       if (FD->getReturnType()->isRecordType() &&
13179           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13180         computeNRVO(Body, getCurFunction());
13181     }
13182 
13183     // GNU warning -Wmissing-prototypes:
13184     //   Warn if a global function is defined without a previous
13185     //   prototype declaration. This warning is issued even if the
13186     //   definition itself provides a prototype. The aim is to detect
13187     //   global functions that fail to be declared in header files.
13188     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
13189     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
13190       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13191 
13192       if (PossibleZeroParamPrototype) {
13193         // We found a declaration that is not a prototype,
13194         // but that could be a zero-parameter prototype
13195         if (TypeSourceInfo *TI =
13196                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
13197           TypeLoc TL = TI->getTypeLoc();
13198           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13199             Diag(PossibleZeroParamPrototype->getLocation(),
13200                  diag::note_declaration_not_a_prototype)
13201                 << PossibleZeroParamPrototype
13202                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
13203         }
13204       }
13205 
13206       // GNU warning -Wstrict-prototypes
13207       //   Warn if K&R function is defined without a previous declaration.
13208       //   This warning is issued only if the definition itself does not provide
13209       //   a prototype. Only K&R definitions do not provide a prototype.
13210       //   An empty list in a function declarator that is part of a definition
13211       //   of that function specifies that the function has no parameters
13212       //   (C99 6.7.5.3p14)
13213       if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13214           !LangOpts.CPlusPlus) {
13215         TypeSourceInfo *TI = FD->getTypeSourceInfo();
13216         TypeLoc TL = TI->getTypeLoc();
13217         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13218         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13219       }
13220     }
13221 
13222     // Warn on CPUDispatch with an actual body.
13223     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13224       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13225         if (!CmpndBody->body_empty())
13226           Diag(CmpndBody->body_front()->getBeginLoc(),
13227                diag::warn_dispatch_body_ignored);
13228 
13229     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13230       const CXXMethodDecl *KeyFunction;
13231       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13232           MD->isVirtual() &&
13233           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13234           MD == KeyFunction->getCanonicalDecl()) {
13235         // Update the key-function state if necessary for this ABI.
13236         if (FD->isInlined() &&
13237             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13238           Context.setNonKeyFunction(MD);
13239 
13240           // If the newly-chosen key function is already defined, then we
13241           // need to mark the vtable as used retroactively.
13242           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13243           const FunctionDecl *Definition;
13244           if (KeyFunction && KeyFunction->isDefined(Definition))
13245             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13246         } else {
13247           // We just defined they key function; mark the vtable as used.
13248           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13249         }
13250       }
13251     }
13252 
13253     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
13254            "Function parsing confused");
13255   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13256     assert(MD == getCurMethodDecl() && "Method parsing confused");
13257     MD->setBody(Body);
13258     if (!MD->isInvalidDecl()) {
13259       if (!MD->hasSkippedBody())
13260         DiagnoseUnusedParameters(MD->parameters());
13261       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13262                                              MD->getReturnType(), MD);
13263 
13264       if (Body)
13265         computeNRVO(Body, getCurFunction());
13266     }
13267     if (getCurFunction()->ObjCShouldCallSuper) {
13268       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13269           << MD->getSelector().getAsString();
13270       getCurFunction()->ObjCShouldCallSuper = false;
13271     }
13272     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13273       const ObjCMethodDecl *InitMethod = nullptr;
13274       bool isDesignated =
13275           MD->isDesignatedInitializerForTheInterface(&InitMethod);
13276       assert(isDesignated && InitMethod);
13277       (void)isDesignated;
13278 
13279       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13280         auto IFace = MD->getClassInterface();
13281         if (!IFace)
13282           return false;
13283         auto SuperD = IFace->getSuperClass();
13284         if (!SuperD)
13285           return false;
13286         return SuperD->getIdentifier() ==
13287             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13288       };
13289       // Don't issue this warning for unavailable inits or direct subclasses
13290       // of NSObject.
13291       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13292         Diag(MD->getLocation(),
13293              diag::warn_objc_designated_init_missing_super_call);
13294         Diag(InitMethod->getLocation(),
13295              diag::note_objc_designated_init_marked_here);
13296       }
13297       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13298     }
13299     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13300       // Don't issue this warning for unavaialable inits.
13301       if (!MD->isUnavailable())
13302         Diag(MD->getLocation(),
13303              diag::warn_objc_secondary_init_missing_init_call);
13304       getCurFunction()->ObjCWarnForNoInitDelegation = false;
13305     }
13306   } else {
13307     // Parsing the function declaration failed in some way. Pop the fake scope
13308     // we pushed on.
13309     PopFunctionScopeInfo(ActivePolicy, dcl);
13310     return nullptr;
13311   }
13312 
13313   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13314     DiagnoseUnguardedAvailabilityViolations(dcl);
13315 
13316   assert(!getCurFunction()->ObjCShouldCallSuper &&
13317          "This should only be set for ObjC methods, which should have been "
13318          "handled in the block above.");
13319 
13320   // Verify and clean out per-function state.
13321   if (Body && (!FD || !FD->isDefaulted())) {
13322     // C++ constructors that have function-try-blocks can't have return
13323     // statements in the handlers of that block. (C++ [except.handle]p14)
13324     // Verify this.
13325     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13326       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13327 
13328     // Verify that gotos and switch cases don't jump into scopes illegally.
13329     if (getCurFunction()->NeedsScopeChecking() &&
13330         !PP.isCodeCompletionEnabled())
13331       DiagnoseInvalidJumps(Body);
13332 
13333     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13334       if (!Destructor->getParent()->isDependentType())
13335         CheckDestructor(Destructor);
13336 
13337       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13338                                              Destructor->getParent());
13339     }
13340 
13341     // If any errors have occurred, clear out any temporaries that may have
13342     // been leftover. This ensures that these temporaries won't be picked up for
13343     // deletion in some later function.
13344     if (getDiagnostics().hasErrorOccurred() ||
13345         getDiagnostics().getSuppressAllDiagnostics()) {
13346       DiscardCleanupsInEvaluationContext();
13347     }
13348     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13349         !isa<FunctionTemplateDecl>(dcl)) {
13350       // Since the body is valid, issue any analysis-based warnings that are
13351       // enabled.
13352       ActivePolicy = &WP;
13353     }
13354 
13355     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13356         (!CheckConstexprFunctionDecl(FD) ||
13357          !CheckConstexprFunctionBody(FD, Body)))
13358       FD->setInvalidDecl();
13359 
13360     if (FD && FD->hasAttr<NakedAttr>()) {
13361       for (const Stmt *S : Body->children()) {
13362         // Allow local register variables without initializer as they don't
13363         // require prologue.
13364         bool RegisterVariables = false;
13365         if (auto *DS = dyn_cast<DeclStmt>(S)) {
13366           for (const auto *Decl : DS->decls()) {
13367             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13368               RegisterVariables =
13369                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13370               if (!RegisterVariables)
13371                 break;
13372             }
13373           }
13374         }
13375         if (RegisterVariables)
13376           continue;
13377         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13378           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13379           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13380           FD->setInvalidDecl();
13381           break;
13382         }
13383       }
13384     }
13385 
13386     assert(ExprCleanupObjects.size() ==
13387                ExprEvalContexts.back().NumCleanupObjects &&
13388            "Leftover temporaries in function");
13389     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
13390     assert(MaybeODRUseExprs.empty() &&
13391            "Leftover expressions for odr-use checking");
13392   }
13393 
13394   if (!IsInstantiation)
13395     PopDeclContext();
13396 
13397   PopFunctionScopeInfo(ActivePolicy, dcl);
13398   // If any errors have occurred, clear out any temporaries that may have
13399   // been leftover. This ensures that these temporaries won't be picked up for
13400   // deletion in some later function.
13401   if (getDiagnostics().hasErrorOccurred()) {
13402     DiscardCleanupsInEvaluationContext();
13403   }
13404 
13405   return dcl;
13406 }
13407 
13408 /// When we finish delayed parsing of an attribute, we must attach it to the
13409 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)13410 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
13411                                        ParsedAttributes &Attrs) {
13412   // Always attach attributes to the underlying decl.
13413   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13414     D = TD->getTemplatedDecl();
13415   ProcessDeclAttributeList(S, D, Attrs);
13416 
13417   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13418     if (Method->isStatic())
13419       checkThisInStaticMemberFunctionAttributes(Method);
13420 }
13421 
13422 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13423 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)13424 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
13425                                           IdentifierInfo &II, Scope *S) {
13426   // Find the scope in which the identifier is injected and the corresponding
13427   // DeclContext.
13428   // FIXME: C89 does not say what happens if there is no enclosing block scope.
13429   // In that case, we inject the declaration into the translation unit scope
13430   // instead.
13431   Scope *BlockScope = S;
13432   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13433     BlockScope = BlockScope->getParent();
13434 
13435   Scope *ContextScope = BlockScope;
13436   while (!ContextScope->getEntity())
13437     ContextScope = ContextScope->getParent();
13438   ContextRAII SavedContext(*this, ContextScope->getEntity());
13439 
13440   // Before we produce a declaration for an implicitly defined
13441   // function, see whether there was a locally-scoped declaration of
13442   // this name as a function or variable. If so, use that
13443   // (non-visible) declaration, and complain about it.
13444   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13445   if (ExternCPrev) {
13446     // We still need to inject the function into the enclosing block scope so
13447     // that later (non-call) uses can see it.
13448     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13449 
13450     // C89 footnote 38:
13451     //   If in fact it is not defined as having type "function returning int",
13452     //   the behavior is undefined.
13453     if (!isa<FunctionDecl>(ExternCPrev) ||
13454         !Context.typesAreCompatible(
13455             cast<FunctionDecl>(ExternCPrev)->getType(),
13456             Context.getFunctionNoProtoType(Context.IntTy))) {
13457       Diag(Loc, diag::ext_use_out_of_scope_declaration)
13458           << ExternCPrev << !getLangOpts().C99;
13459       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13460       return ExternCPrev;
13461     }
13462   }
13463 
13464   // Extension in C99.  Legal in C90, but warn about it.
13465   unsigned diag_id;
13466   if (II.getName().startswith("__builtin_"))
13467     diag_id = diag::warn_builtin_unknown;
13468   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13469   else if (getLangOpts().OpenCL)
13470     diag_id = diag::err_opencl_implicit_function_decl;
13471   else if (getLangOpts().C99)
13472     diag_id = diag::ext_implicit_function_decl;
13473   else
13474     diag_id = diag::warn_implicit_function_decl;
13475   Diag(Loc, diag_id) << &II;
13476 
13477   // If we found a prior declaration of this function, don't bother building
13478   // another one. We've already pushed that one into scope, so there's nothing
13479   // more to do.
13480   if (ExternCPrev)
13481     return ExternCPrev;
13482 
13483   // Because typo correction is expensive, only do it if the implicit
13484   // function declaration is going to be treated as an error.
13485   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13486     TypoCorrection Corrected;
13487     if (S &&
13488         (Corrected = CorrectTypo(
13489              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
13490              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
13491       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13492                    /*ErrorRecovery*/false);
13493   }
13494 
13495   // Set a Declarator for the implicit definition: int foo();
13496   const char *Dummy;
13497   AttributeFactory attrFactory;
13498   DeclSpec DS(attrFactory);
13499   unsigned DiagID;
13500   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13501                                   Context.getPrintingPolicy());
13502   (void)Error; // Silence warning.
13503   assert(!Error && "Error setting up implicit decl!");
13504   SourceLocation NoLoc;
13505   Declarator D(DS, DeclaratorContext::BlockContext);
13506   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13507                                              /*IsAmbiguous=*/false,
13508                                              /*LParenLoc=*/NoLoc,
13509                                              /*Params=*/nullptr,
13510                                              /*NumParams=*/0,
13511                                              /*EllipsisLoc=*/NoLoc,
13512                                              /*RParenLoc=*/NoLoc,
13513                                              /*RefQualifierIsLvalueRef=*/true,
13514                                              /*RefQualifierLoc=*/NoLoc,
13515                                              /*MutableLoc=*/NoLoc, EST_None,
13516                                              /*ESpecRange=*/SourceRange(),
13517                                              /*Exceptions=*/nullptr,
13518                                              /*ExceptionRanges=*/nullptr,
13519                                              /*NumExceptions=*/0,
13520                                              /*NoexceptExpr=*/nullptr,
13521                                              /*ExceptionSpecTokens=*/nullptr,
13522                                              /*DeclsInPrototype=*/None, Loc,
13523                                              Loc, D),
13524                 std::move(DS.getAttributes()), SourceLocation());
13525   D.SetIdentifier(&II, Loc);
13526 
13527   // Insert this function into the enclosing block scope.
13528   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13529   FD->setImplicit();
13530 
13531   AddKnownFunctionAttributes(FD);
13532 
13533   return FD;
13534 }
13535 
13536 /// Adds any function attributes that we know a priori based on
13537 /// the declaration of this function.
13538 ///
13539 /// These attributes can apply both to implicitly-declared builtins
13540 /// (like __builtin___printf_chk) or to library-declared functions
13541 /// like NSLog or printf.
13542 ///
13543 /// We need to check for duplicate attributes both here and where user-written
13544 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)13545 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13546   if (FD->isInvalidDecl())
13547     return;
13548 
13549   // If this is a built-in function, map its builtin attributes to
13550   // actual attributes.
13551   if (unsigned BuiltinID = FD->getBuiltinID()) {
13552     // Handle printf-formatting attributes.
13553     unsigned FormatIdx;
13554     bool HasVAListArg;
13555     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13556       if (!FD->hasAttr<FormatAttr>()) {
13557         const char *fmt = "printf";
13558         unsigned int NumParams = FD->getNumParams();
13559         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13560             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13561           fmt = "NSString";
13562         FD->addAttr(FormatAttr::CreateImplicit(Context,
13563                                                &Context.Idents.get(fmt),
13564                                                FormatIdx+1,
13565                                                HasVAListArg ? 0 : FormatIdx+2,
13566                                                FD->getLocation()));
13567       }
13568     }
13569     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13570                                              HasVAListArg)) {
13571      if (!FD->hasAttr<FormatAttr>())
13572        FD->addAttr(FormatAttr::CreateImplicit(Context,
13573                                               &Context.Idents.get("scanf"),
13574                                               FormatIdx+1,
13575                                               HasVAListArg ? 0 : FormatIdx+2,
13576                                               FD->getLocation()));
13577     }
13578 
13579     // Mark const if we don't care about errno and that is the only thing
13580     // preventing the function from being const. This allows IRgen to use LLVM
13581     // intrinsics for such functions.
13582     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13583         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13584       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13585 
13586     // We make "fma" on some platforms const because we know it does not set
13587     // errno in those environments even though it could set errno based on the
13588     // C standard.
13589     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13590     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13591         !FD->hasAttr<ConstAttr>()) {
13592       switch (BuiltinID) {
13593       case Builtin::BI__builtin_fma:
13594       case Builtin::BI__builtin_fmaf:
13595       case Builtin::BI__builtin_fmal:
13596       case Builtin::BIfma:
13597       case Builtin::BIfmaf:
13598       case Builtin::BIfmal:
13599         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13600         break;
13601       default:
13602         break;
13603       }
13604     }
13605 
13606     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13607         !FD->hasAttr<ReturnsTwiceAttr>())
13608       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13609                                          FD->getLocation()));
13610     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13611       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13612     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13613       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13614     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13615       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13616     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13617         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13618       // Add the appropriate attribute, depending on the CUDA compilation mode
13619       // and which target the builtin belongs to. For example, during host
13620       // compilation, aux builtins are __device__, while the rest are __host__.
13621       if (getLangOpts().CUDAIsDevice !=
13622           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13623         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13624       else
13625         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13626     }
13627   }
13628 
13629   // If C++ exceptions are enabled but we are told extern "C" functions cannot
13630   // throw, add an implicit nothrow attribute to any extern "C" function we come
13631   // across.
13632   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13633       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13634     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13635     if (!FPT || FPT->getExceptionSpecType() == EST_None)
13636       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13637   }
13638 
13639   IdentifierInfo *Name = FD->getIdentifier();
13640   if (!Name)
13641     return;
13642   if ((!getLangOpts().CPlusPlus &&
13643        FD->getDeclContext()->isTranslationUnit()) ||
13644       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13645        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13646        LinkageSpecDecl::lang_c)) {
13647     // Okay: this could be a libc/libm/Objective-C function we know
13648     // about.
13649   } else
13650     return;
13651 
13652   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13653     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13654     // target-specific builtins, perhaps?
13655     if (!FD->hasAttr<FormatAttr>())
13656       FD->addAttr(FormatAttr::CreateImplicit(Context,
13657                                              &Context.Idents.get("printf"), 2,
13658                                              Name->isStr("vasprintf") ? 0 : 3,
13659                                              FD->getLocation()));
13660   }
13661 
13662   if (Name->isStr("__CFStringMakeConstantString")) {
13663     // We already have a __builtin___CFStringMakeConstantString,
13664     // but builds that use -fno-constant-cfstrings don't go through that.
13665     if (!FD->hasAttr<FormatArgAttr>())
13666       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13667                                                 FD->getLocation()));
13668   }
13669 }
13670 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)13671 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13672                                     TypeSourceInfo *TInfo) {
13673   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
13674   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
13675 
13676   if (!TInfo) {
13677     assert(D.isInvalidType() && "no declarator info for valid type");
13678     TInfo = Context.getTrivialTypeSourceInfo(T);
13679   }
13680 
13681   // Scope manipulation handled by caller.
13682   TypedefDecl *NewTD =
13683       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
13684                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
13685 
13686   // Bail out immediately if we have an invalid declaration.
13687   if (D.isInvalidType()) {
13688     NewTD->setInvalidDecl();
13689     return NewTD;
13690   }
13691 
13692   if (D.getDeclSpec().isModulePrivateSpecified()) {
13693     if (CurContext->isFunctionOrMethod())
13694       Diag(NewTD->getLocation(), diag::err_module_private_local)
13695         << 2 << NewTD->getDeclName()
13696         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13697         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13698     else
13699       NewTD->setModulePrivate();
13700   }
13701 
13702   // C++ [dcl.typedef]p8:
13703   //   If the typedef declaration defines an unnamed class (or
13704   //   enum), the first typedef-name declared by the declaration
13705   //   to be that class type (or enum type) is used to denote the
13706   //   class type (or enum type) for linkage purposes only.
13707   // We need to check whether the type was declared in the declaration.
13708   switch (D.getDeclSpec().getTypeSpecType()) {
13709   case TST_enum:
13710   case TST_struct:
13711   case TST_interface:
13712   case TST_union:
13713   case TST_class: {
13714     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13715     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13716     break;
13717   }
13718 
13719   default:
13720     break;
13721   }
13722 
13723   return NewTD;
13724 }
13725 
13726 /// Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)13727 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13728   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13729   QualType T = TI->getType();
13730 
13731   if (T->isDependentType())
13732     return false;
13733 
13734   if (const BuiltinType *BT = T->getAs<BuiltinType>())
13735     if (BT->isInteger())
13736       return false;
13737 
13738   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13739   return true;
13740 }
13741 
13742 /// Check whether this is a valid redeclaration of a previous enumeration.
13743 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,bool IsFixed,const EnumDecl * Prev)13744 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13745                                   QualType EnumUnderlyingTy, bool IsFixed,
13746                                   const EnumDecl *Prev) {
13747   if (IsScoped != Prev->isScoped()) {
13748     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13749       << Prev->isScoped();
13750     Diag(Prev->getLocation(), diag::note_previous_declaration);
13751     return true;
13752   }
13753 
13754   if (IsFixed && Prev->isFixed()) {
13755     if (!EnumUnderlyingTy->isDependentType() &&
13756         !Prev->getIntegerType()->isDependentType() &&
13757         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13758                                         Prev->getIntegerType())) {
13759       // TODO: Highlight the underlying type of the redeclaration.
13760       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13761         << EnumUnderlyingTy << Prev->getIntegerType();
13762       Diag(Prev->getLocation(), diag::note_previous_declaration)
13763           << Prev->getIntegerTypeRange();
13764       return true;
13765     }
13766   } else if (IsFixed != Prev->isFixed()) {
13767     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13768       << Prev->isFixed();
13769     Diag(Prev->getLocation(), diag::note_previous_declaration);
13770     return true;
13771   }
13772 
13773   return false;
13774 }
13775 
13776 /// Get diagnostic %select index for tag kind for
13777 /// redeclaration diagnostic message.
13778 /// WARNING: Indexes apply to particular diagnostics only!
13779 ///
13780 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)13781 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13782   switch (Tag) {
13783   case TTK_Struct: return 0;
13784   case TTK_Interface: return 1;
13785   case TTK_Class:  return 2;
13786   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
13787   }
13788 }
13789 
13790 /// Determine if tag kind is a class-key compatible with
13791 /// class for redeclaration (class, struct, or __interface).
13792 ///
13793 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)13794 static bool isClassCompatTagKind(TagTypeKind Tag)
13795 {
13796   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13797 }
13798 
getNonTagTypeDeclKind(const Decl * PrevDecl,TagTypeKind TTK)13799 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13800                                              TagTypeKind TTK) {
13801   if (isa<TypedefDecl>(PrevDecl))
13802     return NTK_Typedef;
13803   else if (isa<TypeAliasDecl>(PrevDecl))
13804     return NTK_TypeAlias;
13805   else if (isa<ClassTemplateDecl>(PrevDecl))
13806     return NTK_Template;
13807   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13808     return NTK_TypeAliasTemplate;
13809   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13810     return NTK_TemplateTemplateArgument;
13811   switch (TTK) {
13812   case TTK_Struct:
13813   case TTK_Interface:
13814   case TTK_Class:
13815     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13816   case TTK_Union:
13817     return NTK_NonUnion;
13818   case TTK_Enum:
13819     return NTK_NonEnum;
13820   }
13821   llvm_unreachable("invalid TTK");
13822 }
13823 
13824 /// Determine whether a tag with a given kind is acceptable
13825 /// as a redeclaration of the given tag declaration.
13826 ///
13827 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo * Name)13828 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13829                                         TagTypeKind NewTag, bool isDefinition,
13830                                         SourceLocation NewTagLoc,
13831                                         const IdentifierInfo *Name) {
13832   // C++ [dcl.type.elab]p3:
13833   //   The class-key or enum keyword present in the
13834   //   elaborated-type-specifier shall agree in kind with the
13835   //   declaration to which the name in the elaborated-type-specifier
13836   //   refers. This rule also applies to the form of
13837   //   elaborated-type-specifier that declares a class-name or
13838   //   friend class since it can be construed as referring to the
13839   //   definition of the class. Thus, in any
13840   //   elaborated-type-specifier, the enum keyword shall be used to
13841   //   refer to an enumeration (7.2), the union class-key shall be
13842   //   used to refer to a union (clause 9), and either the class or
13843   //   struct class-key shall be used to refer to a class (clause 9)
13844   //   declared using the class or struct class-key.
13845   TagTypeKind OldTag = Previous->getTagKind();
13846   if (OldTag != NewTag &&
13847       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
13848     return false;
13849 
13850   // Tags are compatible, but we might still want to warn on mismatched tags.
13851   // Non-class tags can't be mismatched at this point.
13852   if (!isClassCompatTagKind(NewTag))
13853     return true;
13854 
13855   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
13856   // by our warning analysis. We don't want to warn about mismatches with (eg)
13857   // declarations in system headers that are designed to be specialized, but if
13858   // a user asks us to warn, we should warn if their code contains mismatched
13859   // declarations.
13860   auto IsIgnoredLoc = [&](SourceLocation Loc) {
13861     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
13862                                       Loc);
13863   };
13864   if (IsIgnoredLoc(NewTagLoc))
13865     return true;
13866 
13867   auto IsIgnored = [&](const TagDecl *Tag) {
13868     return IsIgnoredLoc(Tag->getLocation());
13869   };
13870   while (IsIgnored(Previous)) {
13871     Previous = Previous->getPreviousDecl();
13872     if (!Previous)
13873       return true;
13874     OldTag = Previous->getTagKind();
13875   }
13876 
13877   bool isTemplate = false;
13878   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
13879     isTemplate = Record->getDescribedClassTemplate();
13880 
13881   if (inTemplateInstantiation()) {
13882     if (OldTag != NewTag) {
13883       // In a template instantiation, do not offer fix-its for tag mismatches
13884       // since they usually mess up the template instead of fixing the problem.
13885       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13886         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13887         << getRedeclDiagFromTagKind(OldTag);
13888       // FIXME: Note previous location?
13889     }
13890     return true;
13891   }
13892 
13893   if (isDefinition) {
13894     // On definitions, check all previous tags and issue a fix-it for each
13895     // one that doesn't match the current tag.
13896     if (Previous->getDefinition()) {
13897       // Don't suggest fix-its for redefinitions.
13898       return true;
13899     }
13900 
13901     bool previousMismatch = false;
13902     for (const TagDecl *I : Previous->redecls()) {
13903       if (I->getTagKind() != NewTag) {
13904         // Ignore previous declarations for which the warning was disabled.
13905         if (IsIgnored(I))
13906           continue;
13907 
13908         if (!previousMismatch) {
13909           previousMismatch = true;
13910           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
13911             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13912             << getRedeclDiagFromTagKind(I->getTagKind());
13913         }
13914         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
13915           << getRedeclDiagFromTagKind(NewTag)
13916           << FixItHint::CreateReplacement(I->getInnerLocStart(),
13917                TypeWithKeyword::getTagTypeKindName(NewTag));
13918       }
13919     }
13920     return true;
13921   }
13922 
13923   // Identify the prevailing tag kind: this is the kind of the definition (if
13924   // there is a non-ignored definition), or otherwise the kind of the prior
13925   // (non-ignored) declaration.
13926   const TagDecl *PrevDef = Previous->getDefinition();
13927   if (PrevDef && IsIgnored(PrevDef))
13928     PrevDef = nullptr;
13929   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
13930   if (Redecl->getTagKind() != NewTag) {
13931     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13932       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13933       << getRedeclDiagFromTagKind(OldTag);
13934     Diag(Redecl->getLocation(), diag::note_previous_use);
13935 
13936     // If there is a previous definition, suggest a fix-it.
13937     if (PrevDef) {
13938       Diag(NewTagLoc, diag::note_struct_class_suggestion)
13939         << getRedeclDiagFromTagKind(Redecl->getTagKind())
13940         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
13941              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
13942     }
13943   }
13944 
13945   return true;
13946 }
13947 
13948 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
13949 /// from an outer enclosing namespace or file scope inside a friend declaration.
13950 /// This should provide the commented out code in the following snippet:
13951 ///   namespace N {
13952 ///     struct X;
13953 ///     namespace M {
13954 ///       struct Y { friend struct /*N::*/ X; };
13955 ///     }
13956 ///   }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)13957 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
13958                                          SourceLocation NameLoc) {
13959   // While the decl is in a namespace, do repeated lookup of that name and see
13960   // if we get the same namespace back.  If we do not, continue until
13961   // translation unit scope, at which point we have a fully qualified NNS.
13962   SmallVector<IdentifierInfo *, 4> Namespaces;
13963   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13964   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
13965     // This tag should be declared in a namespace, which can only be enclosed by
13966     // other namespaces.  Bail if there's an anonymous namespace in the chain.
13967     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
13968     if (!Namespace || Namespace->isAnonymousNamespace())
13969       return FixItHint();
13970     IdentifierInfo *II = Namespace->getIdentifier();
13971     Namespaces.push_back(II);
13972     NamedDecl *Lookup = SemaRef.LookupSingleName(
13973         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
13974     if (Lookup == Namespace)
13975       break;
13976   }
13977 
13978   // Once we have all the namespaces, reverse them to go outermost first, and
13979   // build an NNS.
13980   SmallString<64> Insertion;
13981   llvm::raw_svector_ostream OS(Insertion);
13982   if (DC->isTranslationUnit())
13983     OS << "::";
13984   std::reverse(Namespaces.begin(), Namespaces.end());
13985   for (auto *II : Namespaces)
13986     OS << II->getName() << "::";
13987   return FixItHint::CreateInsertion(NameLoc, Insertion);
13988 }
13989 
13990 /// Determine whether a tag originally declared in context \p OldDC can
13991 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
13992 /// found a declaration in \p OldDC as a previous decl, perhaps through a
13993 /// using-declaration).
isAcceptableTagRedeclContext(Sema & S,DeclContext * OldDC,DeclContext * NewDC)13994 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
13995                                          DeclContext *NewDC) {
13996   OldDC = OldDC->getRedeclContext();
13997   NewDC = NewDC->getRedeclContext();
13998 
13999   if (OldDC->Equals(NewDC))
14000     return true;
14001 
14002   // In MSVC mode, we allow a redeclaration if the contexts are related (either
14003   // encloses the other).
14004   if (S.getLangOpts().MSVCCompat &&
14005       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14006     return true;
14007 
14008   return false;
14009 }
14010 
14011 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
14012 /// former case, Name will be non-null.  In the later case, Name will be null.
14013 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14014 /// reference/declaration/definition of a tag.
14015 ///
14016 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
14017 /// trailing-type-specifier) other than one in an alias-declaration.
14018 ///
14019 /// \param SkipBody If non-null, will be set to indicate if the caller should
14020 /// skip the definition of this tag and treat it as if it were a declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attrs,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,bool IsTemplateParamOrArg,SkipBodyInfo * SkipBody)14021 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14022                      SourceLocation KWLoc, CXXScopeSpec &SS,
14023                      IdentifierInfo *Name, SourceLocation NameLoc,
14024                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
14025                      SourceLocation ModulePrivateLoc,
14026                      MultiTemplateParamsArg TemplateParameterLists,
14027                      bool &OwnedDecl, bool &IsDependent,
14028                      SourceLocation ScopedEnumKWLoc,
14029                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14030                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14031                      SkipBodyInfo *SkipBody) {
14032   // If this is not a definition, it must have a name.
14033   IdentifierInfo *OrigName = Name;
14034   assert((Name != nullptr || TUK == TUK_Definition) &&
14035          "Nameless record must be a definition!");
14036   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
14037 
14038   OwnedDecl = false;
14039   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14040   bool ScopedEnum = ScopedEnumKWLoc.isValid();
14041 
14042   // FIXME: Check member specializations more carefully.
14043   bool isMemberSpecialization = false;
14044   bool Invalid = false;
14045 
14046   // We only need to do this matching if we have template parameters
14047   // or a scope specifier, which also conveniently avoids this work
14048   // for non-C++ cases.
14049   if (TemplateParameterLists.size() > 0 ||
14050       (SS.isNotEmpty() && TUK != TUK_Reference)) {
14051     if (TemplateParameterList *TemplateParams =
14052             MatchTemplateParametersToScopeSpecifier(
14053                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14054                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14055       if (Kind == TTK_Enum) {
14056         Diag(KWLoc, diag::err_enum_template);
14057         return nullptr;
14058       }
14059 
14060       if (TemplateParams->size() > 0) {
14061         // This is a declaration or definition of a class template (which may
14062         // be a member of another template).
14063 
14064         if (Invalid)
14065           return nullptr;
14066 
14067         OwnedDecl = false;
14068         DeclResult Result = CheckClassTemplate(
14069             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14070             AS, ModulePrivateLoc,
14071             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14072             TemplateParameterLists.data(), SkipBody);
14073         return Result.get();
14074       } else {
14075         // The "template<>" header is extraneous.
14076         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14077           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14078         isMemberSpecialization = true;
14079       }
14080     }
14081   }
14082 
14083   // Figure out the underlying type if this a enum declaration. We need to do
14084   // this early, because it's needed to detect if this is an incompatible
14085   // redeclaration.
14086   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14087   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14088 
14089   if (Kind == TTK_Enum) {
14090     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14091       // No underlying type explicitly specified, or we failed to parse the
14092       // type, default to int.
14093       EnumUnderlying = Context.IntTy.getTypePtr();
14094     } else if (UnderlyingType.get()) {
14095       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14096       // integral type; any cv-qualification is ignored.
14097       TypeSourceInfo *TI = nullptr;
14098       GetTypeFromParser(UnderlyingType.get(), &TI);
14099       EnumUnderlying = TI;
14100 
14101       if (CheckEnumUnderlyingType(TI))
14102         // Recover by falling back to int.
14103         EnumUnderlying = Context.IntTy.getTypePtr();
14104 
14105       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14106                                           UPPC_FixedUnderlyingType))
14107         EnumUnderlying = Context.IntTy.getTypePtr();
14108 
14109     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14110       // For MSVC ABI compatibility, unfixed enums must use an underlying type
14111       // of 'int'. However, if this is an unfixed forward declaration, don't set
14112       // the underlying type unless the user enables -fms-compatibility. This
14113       // makes unfixed forward declared enums incomplete and is more conforming.
14114       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14115         EnumUnderlying = Context.IntTy.getTypePtr();
14116     }
14117   }
14118 
14119   DeclContext *SearchDC = CurContext;
14120   DeclContext *DC = CurContext;
14121   bool isStdBadAlloc = false;
14122   bool isStdAlignValT = false;
14123 
14124   RedeclarationKind Redecl = forRedeclarationInCurContext();
14125   if (TUK == TUK_Friend || TUK == TUK_Reference)
14126     Redecl = NotForRedeclaration;
14127 
14128   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14129   /// implemented asks for structural equivalence checking, the returned decl
14130   /// here is passed back to the parser, allowing the tag body to be parsed.
14131   auto createTagFromNewDecl = [&]() -> TagDecl * {
14132     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
14133     // If there is an identifier, use the location of the identifier as the
14134     // location of the decl, otherwise use the location of the struct/union
14135     // keyword.
14136     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14137     TagDecl *New = nullptr;
14138 
14139     if (Kind == TTK_Enum) {
14140       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14141                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14142       // If this is an undefined enum, bail.
14143       if (TUK != TUK_Definition && !Invalid)
14144         return nullptr;
14145       if (EnumUnderlying) {
14146         EnumDecl *ED = cast<EnumDecl>(New);
14147         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14148           ED->setIntegerTypeSourceInfo(TI);
14149         else
14150           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14151         ED->setPromotionType(ED->getIntegerType());
14152       }
14153     } else { // struct/union
14154       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14155                                nullptr);
14156     }
14157 
14158     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14159       // Add alignment attributes if necessary; these attributes are checked
14160       // when the ASTContext lays out the structure.
14161       //
14162       // It is important for implementing the correct semantics that this
14163       // happen here (in ActOnTag). The #pragma pack stack is
14164       // maintained as a result of parser callbacks which can occur at
14165       // many points during the parsing of a struct declaration (because
14166       // the #pragma tokens are effectively skipped over during the
14167       // parsing of the struct).
14168       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14169         AddAlignmentAttributesForRecord(RD);
14170         AddMsStructLayoutForRecord(RD);
14171       }
14172     }
14173     New->setLexicalDeclContext(CurContext);
14174     return New;
14175   };
14176 
14177   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14178   if (Name && SS.isNotEmpty()) {
14179     // We have a nested-name tag ('struct foo::bar').
14180 
14181     // Check for invalid 'foo::'.
14182     if (SS.isInvalid()) {
14183       Name = nullptr;
14184       goto CreateNewDecl;
14185     }
14186 
14187     // If this is a friend or a reference to a class in a dependent
14188     // context, don't try to make a decl for it.
14189     if (TUK == TUK_Friend || TUK == TUK_Reference) {
14190       DC = computeDeclContext(SS, false);
14191       if (!DC) {
14192         IsDependent = true;
14193         return nullptr;
14194       }
14195     } else {
14196       DC = computeDeclContext(SS, true);
14197       if (!DC) {
14198         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14199           << SS.getRange();
14200         return nullptr;
14201       }
14202     }
14203 
14204     if (RequireCompleteDeclContext(SS, DC))
14205       return nullptr;
14206 
14207     SearchDC = DC;
14208     // Look-up name inside 'foo::'.
14209     LookupQualifiedName(Previous, DC);
14210 
14211     if (Previous.isAmbiguous())
14212       return nullptr;
14213 
14214     if (Previous.empty()) {
14215       // Name lookup did not find anything. However, if the
14216       // nested-name-specifier refers to the current instantiation,
14217       // and that current instantiation has any dependent base
14218       // classes, we might find something at instantiation time: treat
14219       // this as a dependent elaborated-type-specifier.
14220       // But this only makes any sense for reference-like lookups.
14221       if (Previous.wasNotFoundInCurrentInstantiation() &&
14222           (TUK == TUK_Reference || TUK == TUK_Friend)) {
14223         IsDependent = true;
14224         return nullptr;
14225       }
14226 
14227       // A tag 'foo::bar' must already exist.
14228       Diag(NameLoc, diag::err_not_tag_in_scope)
14229         << Kind << Name << DC << SS.getRange();
14230       Name = nullptr;
14231       Invalid = true;
14232       goto CreateNewDecl;
14233     }
14234   } else if (Name) {
14235     // C++14 [class.mem]p14:
14236     //   If T is the name of a class, then each of the following shall have a
14237     //   name different from T:
14238     //    -- every member of class T that is itself a type
14239     if (TUK != TUK_Reference && TUK != TUK_Friend &&
14240         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14241       return nullptr;
14242 
14243     // If this is a named struct, check to see if there was a previous forward
14244     // declaration or definition.
14245     // FIXME: We're looking into outer scopes here, even when we
14246     // shouldn't be. Doing so can result in ambiguities that we
14247     // shouldn't be diagnosing.
14248     LookupName(Previous, S);
14249 
14250     // When declaring or defining a tag, ignore ambiguities introduced
14251     // by types using'ed into this scope.
14252     if (Previous.isAmbiguous() &&
14253         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14254       LookupResult::Filter F = Previous.makeFilter();
14255       while (F.hasNext()) {
14256         NamedDecl *ND = F.next();
14257         if (!ND->getDeclContext()->getRedeclContext()->Equals(
14258                 SearchDC->getRedeclContext()))
14259           F.erase();
14260       }
14261       F.done();
14262     }
14263 
14264     // C++11 [namespace.memdef]p3:
14265     //   If the name in a friend declaration is neither qualified nor
14266     //   a template-id and the declaration is a function or an
14267     //   elaborated-type-specifier, the lookup to determine whether
14268     //   the entity has been previously declared shall not consider
14269     //   any scopes outside the innermost enclosing namespace.
14270     //
14271     // MSVC doesn't implement the above rule for types, so a friend tag
14272     // declaration may be a redeclaration of a type declared in an enclosing
14273     // scope.  They do implement this rule for friend functions.
14274     //
14275     // Does it matter that this should be by scope instead of by
14276     // semantic context?
14277     if (!Previous.empty() && TUK == TUK_Friend) {
14278       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14279       LookupResult::Filter F = Previous.makeFilter();
14280       bool FriendSawTagOutsideEnclosingNamespace = false;
14281       while (F.hasNext()) {
14282         NamedDecl *ND = F.next();
14283         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14284         if (DC->isFileContext() &&
14285             !EnclosingNS->Encloses(ND->getDeclContext())) {
14286           if (getLangOpts().MSVCCompat)
14287             FriendSawTagOutsideEnclosingNamespace = true;
14288           else
14289             F.erase();
14290         }
14291       }
14292       F.done();
14293 
14294       // Diagnose this MSVC extension in the easy case where lookup would have
14295       // unambiguously found something outside the enclosing namespace.
14296       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14297         NamedDecl *ND = Previous.getFoundDecl();
14298         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14299             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14300       }
14301     }
14302 
14303     // Note:  there used to be some attempt at recovery here.
14304     if (Previous.isAmbiguous())
14305       return nullptr;
14306 
14307     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14308       // FIXME: This makes sure that we ignore the contexts associated
14309       // with C structs, unions, and enums when looking for a matching
14310       // tag declaration or definition. See the similar lookup tweak
14311       // in Sema::LookupName; is there a better way to deal with this?
14312       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14313         SearchDC = SearchDC->getParent();
14314     }
14315   }
14316 
14317   if (Previous.isSingleResult() &&
14318       Previous.getFoundDecl()->isTemplateParameter()) {
14319     // Maybe we will complain about the shadowed template parameter.
14320     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14321     // Just pretend that we didn't see the previous declaration.
14322     Previous.clear();
14323   }
14324 
14325   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14326       DC->Equals(getStdNamespace())) {
14327     if (Name->isStr("bad_alloc")) {
14328       // This is a declaration of or a reference to "std::bad_alloc".
14329       isStdBadAlloc = true;
14330 
14331       // If std::bad_alloc has been implicitly declared (but made invisible to
14332       // name lookup), fill in this implicit declaration as the previous
14333       // declaration, so that the declarations get chained appropriately.
14334       if (Previous.empty() && StdBadAlloc)
14335         Previous.addDecl(getStdBadAlloc());
14336     } else if (Name->isStr("align_val_t")) {
14337       isStdAlignValT = true;
14338       if (Previous.empty() && StdAlignValT)
14339         Previous.addDecl(getStdAlignValT());
14340     }
14341   }
14342 
14343   // If we didn't find a previous declaration, and this is a reference
14344   // (or friend reference), move to the correct scope.  In C++, we
14345   // also need to do a redeclaration lookup there, just in case
14346   // there's a shadow friend decl.
14347   if (Name && Previous.empty() &&
14348       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14349     if (Invalid) goto CreateNewDecl;
14350     assert(SS.isEmpty());
14351 
14352     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14353       // C++ [basic.scope.pdecl]p5:
14354       //   -- for an elaborated-type-specifier of the form
14355       //
14356       //          class-key identifier
14357       //
14358       //      if the elaborated-type-specifier is used in the
14359       //      decl-specifier-seq or parameter-declaration-clause of a
14360       //      function defined in namespace scope, the identifier is
14361       //      declared as a class-name in the namespace that contains
14362       //      the declaration; otherwise, except as a friend
14363       //      declaration, the identifier is declared in the smallest
14364       //      non-class, non-function-prototype scope that contains the
14365       //      declaration.
14366       //
14367       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14368       // C structs and unions.
14369       //
14370       // It is an error in C++ to declare (rather than define) an enum
14371       // type, including via an elaborated type specifier.  We'll
14372       // diagnose that later; for now, declare the enum in the same
14373       // scope as we would have picked for any other tag type.
14374       //
14375       // GNU C also supports this behavior as part of its incomplete
14376       // enum types extension, while GNU C++ does not.
14377       //
14378       // Find the context where we'll be declaring the tag.
14379       // FIXME: We would like to maintain the current DeclContext as the
14380       // lexical context,
14381       SearchDC = getTagInjectionContext(SearchDC);
14382 
14383       // Find the scope where we'll be declaring the tag.
14384       S = getTagInjectionScope(S, getLangOpts());
14385     } else {
14386       assert(TUK == TUK_Friend);
14387       // C++ [namespace.memdef]p3:
14388       //   If a friend declaration in a non-local class first declares a
14389       //   class or function, the friend class or function is a member of
14390       //   the innermost enclosing namespace.
14391       SearchDC = SearchDC->getEnclosingNamespaceContext();
14392     }
14393 
14394     // In C++, we need to do a redeclaration lookup to properly
14395     // diagnose some problems.
14396     // FIXME: redeclaration lookup is also used (with and without C++) to find a
14397     // hidden declaration so that we don't get ambiguity errors when using a
14398     // type declared by an elaborated-type-specifier.  In C that is not correct
14399     // and we should instead merge compatible types found by lookup.
14400     if (getLangOpts().CPlusPlus) {
14401       Previous.setRedeclarationKind(forRedeclarationInCurContext());
14402       LookupQualifiedName(Previous, SearchDC);
14403     } else {
14404       Previous.setRedeclarationKind(forRedeclarationInCurContext());
14405       LookupName(Previous, S);
14406     }
14407   }
14408 
14409   // If we have a known previous declaration to use, then use it.
14410   if (Previous.empty() && SkipBody && SkipBody->Previous)
14411     Previous.addDecl(SkipBody->Previous);
14412 
14413   if (!Previous.empty()) {
14414     NamedDecl *PrevDecl = Previous.getFoundDecl();
14415     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14416 
14417     // It's okay to have a tag decl in the same scope as a typedef
14418     // which hides a tag decl in the same scope.  Finding this
14419     // insanity with a redeclaration lookup can only actually happen
14420     // in C++.
14421     //
14422     // This is also okay for elaborated-type-specifiers, which is
14423     // technically forbidden by the current standard but which is
14424     // okay according to the likely resolution of an open issue;
14425     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14426     if (getLangOpts().CPlusPlus) {
14427       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14428         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14429           TagDecl *Tag = TT->getDecl();
14430           if (Tag->getDeclName() == Name &&
14431               Tag->getDeclContext()->getRedeclContext()
14432                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
14433             PrevDecl = Tag;
14434             Previous.clear();
14435             Previous.addDecl(Tag);
14436             Previous.resolveKind();
14437           }
14438         }
14439       }
14440     }
14441 
14442     // If this is a redeclaration of a using shadow declaration, it must
14443     // declare a tag in the same context. In MSVC mode, we allow a
14444     // redefinition if either context is within the other.
14445     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14446       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14447       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14448           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14449           !(OldTag && isAcceptableTagRedeclContext(
14450                           *this, OldTag->getDeclContext(), SearchDC))) {
14451         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14452         Diag(Shadow->getTargetDecl()->getLocation(),
14453              diag::note_using_decl_target);
14454         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14455             << 0;
14456         // Recover by ignoring the old declaration.
14457         Previous.clear();
14458         goto CreateNewDecl;
14459       }
14460     }
14461 
14462     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14463       // If this is a use of a previous tag, or if the tag is already declared
14464       // in the same scope (so that the definition/declaration completes or
14465       // rementions the tag), reuse the decl.
14466       if (TUK == TUK_Reference || TUK == TUK_Friend ||
14467           isDeclInScope(DirectPrevDecl, SearchDC, S,
14468                         SS.isNotEmpty() || isMemberSpecialization)) {
14469         // Make sure that this wasn't declared as an enum and now used as a
14470         // struct or something similar.
14471         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14472                                           TUK == TUK_Definition, KWLoc,
14473                                           Name)) {
14474           bool SafeToContinue
14475             = (PrevTagDecl->getTagKind() != TTK_Enum &&
14476                Kind != TTK_Enum);
14477           if (SafeToContinue)
14478             Diag(KWLoc, diag::err_use_with_wrong_tag)
14479               << Name
14480               << FixItHint::CreateReplacement(SourceRange(KWLoc),
14481                                               PrevTagDecl->getKindName());
14482           else
14483             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14484           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14485 
14486           if (SafeToContinue)
14487             Kind = PrevTagDecl->getTagKind();
14488           else {
14489             // Recover by making this an anonymous redefinition.
14490             Name = nullptr;
14491             Previous.clear();
14492             Invalid = true;
14493           }
14494         }
14495 
14496         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14497           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14498 
14499           // If this is an elaborated-type-specifier for a scoped enumeration,
14500           // the 'class' keyword is not necessary and not permitted.
14501           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14502             if (ScopedEnum)
14503               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14504                 << PrevEnum->isScoped()
14505                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14506             return PrevTagDecl;
14507           }
14508 
14509           QualType EnumUnderlyingTy;
14510           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14511             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14512           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14513             EnumUnderlyingTy = QualType(T, 0);
14514 
14515           // All conflicts with previous declarations are recovered by
14516           // returning the previous declaration, unless this is a definition,
14517           // in which case we want the caller to bail out.
14518           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14519                                      ScopedEnum, EnumUnderlyingTy,
14520                                      IsFixed, PrevEnum))
14521             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14522         }
14523 
14524         // C++11 [class.mem]p1:
14525         //   A member shall not be declared twice in the member-specification,
14526         //   except that a nested class or member class template can be declared
14527         //   and then later defined.
14528         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14529             S->isDeclScope(PrevDecl)) {
14530           Diag(NameLoc, diag::ext_member_redeclared);
14531           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14532         }
14533 
14534         if (!Invalid) {
14535           // If this is a use, just return the declaration we found, unless
14536           // we have attributes.
14537           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14538             if (!Attrs.empty()) {
14539               // FIXME: Diagnose these attributes. For now, we create a new
14540               // declaration to hold them.
14541             } else if (TUK == TUK_Reference &&
14542                        (PrevTagDecl->getFriendObjectKind() ==
14543                             Decl::FOK_Undeclared ||
14544                         PrevDecl->getOwningModule() != getCurrentModule()) &&
14545                        SS.isEmpty()) {
14546               // This declaration is a reference to an existing entity, but
14547               // has different visibility from that entity: it either makes
14548               // a friend visible or it makes a type visible in a new module.
14549               // In either case, create a new declaration. We only do this if
14550               // the declaration would have meant the same thing if no prior
14551               // declaration were found, that is, if it was found in the same
14552               // scope where we would have injected a declaration.
14553               if (!getTagInjectionContext(CurContext)->getRedeclContext()
14554                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14555                 return PrevTagDecl;
14556               // This is in the injected scope, create a new declaration in
14557               // that scope.
14558               S = getTagInjectionScope(S, getLangOpts());
14559             } else {
14560               return PrevTagDecl;
14561             }
14562           }
14563 
14564           // Diagnose attempts to redefine a tag.
14565           if (TUK == TUK_Definition) {
14566             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14567               // If we're defining a specialization and the previous definition
14568               // is from an implicit instantiation, don't emit an error
14569               // here; we'll catch this in the general case below.
14570               bool IsExplicitSpecializationAfterInstantiation = false;
14571               if (isMemberSpecialization) {
14572                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14573                   IsExplicitSpecializationAfterInstantiation =
14574                     RD->getTemplateSpecializationKind() !=
14575                     TSK_ExplicitSpecialization;
14576                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14577                   IsExplicitSpecializationAfterInstantiation =
14578                     ED->getTemplateSpecializationKind() !=
14579                     TSK_ExplicitSpecialization;
14580               }
14581 
14582               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14583               // not keep more that one definition around (merge them). However,
14584               // ensure the decl passes the structural compatibility check in
14585               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14586               NamedDecl *Hidden = nullptr;
14587               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14588                 // There is a definition of this tag, but it is not visible. We
14589                 // explicitly make use of C++'s one definition rule here, and
14590                 // assume that this definition is identical to the hidden one
14591                 // we already have. Make the existing definition visible and
14592                 // use it in place of this one.
14593                 if (!getLangOpts().CPlusPlus) {
14594                   // Postpone making the old definition visible until after we
14595                   // complete parsing the new one and do the structural
14596                   // comparison.
14597                   SkipBody->CheckSameAsPrevious = true;
14598                   SkipBody->New = createTagFromNewDecl();
14599                   SkipBody->Previous = Def;
14600                   return Def;
14601                 } else {
14602                   SkipBody->ShouldSkip = true;
14603                   SkipBody->Previous = Def;
14604                   makeMergedDefinitionVisible(Hidden);
14605                   // Carry on and handle it like a normal definition. We'll
14606                   // skip starting the definitiion later.
14607                 }
14608               } else if (!IsExplicitSpecializationAfterInstantiation) {
14609                 // A redeclaration in function prototype scope in C isn't
14610                 // visible elsewhere, so merely issue a warning.
14611                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14612                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14613                 else
14614                   Diag(NameLoc, diag::err_redefinition) << Name;
14615                 notePreviousDefinition(Def,
14616                                        NameLoc.isValid() ? NameLoc : KWLoc);
14617                 // If this is a redefinition, recover by making this
14618                 // struct be anonymous, which will make any later
14619                 // references get the previous definition.
14620                 Name = nullptr;
14621                 Previous.clear();
14622                 Invalid = true;
14623               }
14624             } else {
14625               // If the type is currently being defined, complain
14626               // about a nested redefinition.
14627               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14628               if (TD->isBeingDefined()) {
14629                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14630                 Diag(PrevTagDecl->getLocation(),
14631                      diag::note_previous_definition);
14632                 Name = nullptr;
14633                 Previous.clear();
14634                 Invalid = true;
14635               }
14636             }
14637 
14638             // Okay, this is definition of a previously declared or referenced
14639             // tag. We're going to create a new Decl for it.
14640           }
14641 
14642           // Okay, we're going to make a redeclaration.  If this is some kind
14643           // of reference, make sure we build the redeclaration in the same DC
14644           // as the original, and ignore the current access specifier.
14645           if (TUK == TUK_Friend || TUK == TUK_Reference) {
14646             SearchDC = PrevTagDecl->getDeclContext();
14647             AS = AS_none;
14648           }
14649         }
14650         // If we get here we have (another) forward declaration or we
14651         // have a definition.  Just create a new decl.
14652 
14653       } else {
14654         // If we get here, this is a definition of a new tag type in a nested
14655         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14656         // new decl/type.  We set PrevDecl to NULL so that the entities
14657         // have distinct types.
14658         Previous.clear();
14659       }
14660       // If we get here, we're going to create a new Decl. If PrevDecl
14661       // is non-NULL, it's a definition of the tag declared by
14662       // PrevDecl. If it's NULL, we have a new definition.
14663 
14664     // Otherwise, PrevDecl is not a tag, but was found with tag
14665     // lookup.  This is only actually possible in C++, where a few
14666     // things like templates still live in the tag namespace.
14667     } else {
14668       // Use a better diagnostic if an elaborated-type-specifier
14669       // found the wrong kind of type on the first
14670       // (non-redeclaration) lookup.
14671       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14672           !Previous.isForRedeclaration()) {
14673         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14674         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14675                                                        << Kind;
14676         Diag(PrevDecl->getLocation(), diag::note_declared_at);
14677         Invalid = true;
14678 
14679       // Otherwise, only diagnose if the declaration is in scope.
14680       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14681                                 SS.isNotEmpty() || isMemberSpecialization)) {
14682         // do nothing
14683 
14684       // Diagnose implicit declarations introduced by elaborated types.
14685       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14686         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14687         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14688         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14689         Invalid = true;
14690 
14691       // Otherwise it's a declaration.  Call out a particularly common
14692       // case here.
14693       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14694         unsigned Kind = 0;
14695         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14696         Diag(NameLoc, diag::err_tag_definition_of_typedef)
14697           << Name << Kind << TND->getUnderlyingType();
14698         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14699         Invalid = true;
14700 
14701       // Otherwise, diagnose.
14702       } else {
14703         // The tag name clashes with something else in the target scope,
14704         // issue an error and recover by making this tag be anonymous.
14705         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14706         notePreviousDefinition(PrevDecl, NameLoc);
14707         Name = nullptr;
14708         Invalid = true;
14709       }
14710 
14711       // The existing declaration isn't relevant to us; we're in a
14712       // new scope, so clear out the previous declaration.
14713       Previous.clear();
14714     }
14715   }
14716 
14717 CreateNewDecl:
14718 
14719   TagDecl *PrevDecl = nullptr;
14720   if (Previous.isSingleResult())
14721     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14722 
14723   // If there is an identifier, use the location of the identifier as the
14724   // location of the decl, otherwise use the location of the struct/union
14725   // keyword.
14726   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14727 
14728   // Otherwise, create a new declaration. If there is a previous
14729   // declaration of the same entity, the two will be linked via
14730   // PrevDecl.
14731   TagDecl *New;
14732 
14733   if (Kind == TTK_Enum) {
14734     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14735     // enum X { A, B, C } D;    D should chain to X.
14736     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14737                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14738                            ScopedEnumUsesClassTag, IsFixed);
14739 
14740     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14741       StdAlignValT = cast<EnumDecl>(New);
14742 
14743     // If this is an undefined enum, warn.
14744     if (TUK != TUK_Definition && !Invalid) {
14745       TagDecl *Def;
14746       if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC) &&
14747           cast<EnumDecl>(New)->isFixed()) {
14748         // C++0x: 7.2p2: opaque-enum-declaration.
14749         // Conflicts are diagnosed above. Do nothing.
14750       }
14751       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14752         Diag(Loc, diag::ext_forward_ref_enum_def)
14753           << New;
14754         Diag(Def->getLocation(), diag::note_previous_definition);
14755       } else {
14756         unsigned DiagID = diag::ext_forward_ref_enum;
14757         if (getLangOpts().MSVCCompat)
14758           DiagID = diag::ext_ms_forward_ref_enum;
14759         else if (getLangOpts().CPlusPlus)
14760           DiagID = diag::err_forward_ref_enum;
14761         Diag(Loc, DiagID);
14762       }
14763     }
14764 
14765     if (EnumUnderlying) {
14766       EnumDecl *ED = cast<EnumDecl>(New);
14767       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14768         ED->setIntegerTypeSourceInfo(TI);
14769       else
14770         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14771       ED->setPromotionType(ED->getIntegerType());
14772       assert(ED->isComplete() && "enum with type should be complete");
14773     }
14774   } else {
14775     // struct/union/class
14776 
14777     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14778     // struct X { int A; } D;    D should chain to X.
14779     if (getLangOpts().CPlusPlus) {
14780       // FIXME: Look for a way to use RecordDecl for simple structs.
14781       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14782                                   cast_or_null<CXXRecordDecl>(PrevDecl));
14783 
14784       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14785         StdBadAlloc = cast<CXXRecordDecl>(New);
14786     } else
14787       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14788                                cast_or_null<RecordDecl>(PrevDecl));
14789   }
14790 
14791   // C++11 [dcl.type]p3:
14792   //   A type-specifier-seq shall not define a class or enumeration [...].
14793   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14794       TUK == TUK_Definition) {
14795     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14796       << Context.getTagDeclType(New);
14797     Invalid = true;
14798   }
14799 
14800   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14801       DC->getDeclKind() == Decl::Enum) {
14802     Diag(New->getLocation(), diag::err_type_defined_in_enum)
14803       << Context.getTagDeclType(New);
14804     Invalid = true;
14805   }
14806 
14807   // Maybe add qualifier info.
14808   if (SS.isNotEmpty()) {
14809     if (SS.isSet()) {
14810       // If this is either a declaration or a definition, check the
14811       // nested-name-specifier against the current context.
14812       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14813           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14814                                        isMemberSpecialization))
14815         Invalid = true;
14816 
14817       New->setQualifierInfo(SS.getWithLocInContext(Context));
14818       if (TemplateParameterLists.size() > 0) {
14819         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14820       }
14821     }
14822     else
14823       Invalid = true;
14824   }
14825 
14826   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14827     // Add alignment attributes if necessary; these attributes are checked when
14828     // the ASTContext lays out the structure.
14829     //
14830     // It is important for implementing the correct semantics that this
14831     // happen here (in ActOnTag). The #pragma pack stack is
14832     // maintained as a result of parser callbacks which can occur at
14833     // many points during the parsing of a struct declaration (because
14834     // the #pragma tokens are effectively skipped over during the
14835     // parsing of the struct).
14836     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14837       AddAlignmentAttributesForRecord(RD);
14838       AddMsStructLayoutForRecord(RD);
14839     }
14840   }
14841 
14842   if (ModulePrivateLoc.isValid()) {
14843     if (isMemberSpecialization)
14844       Diag(New->getLocation(), diag::err_module_private_specialization)
14845         << 2
14846         << FixItHint::CreateRemoval(ModulePrivateLoc);
14847     // __module_private__ does not apply to local classes. However, we only
14848     // diagnose this as an error when the declaration specifiers are
14849     // freestanding. Here, we just ignore the __module_private__.
14850     else if (!SearchDC->isFunctionOrMethod())
14851       New->setModulePrivate();
14852   }
14853 
14854   // If this is a specialization of a member class (of a class template),
14855   // check the specialization.
14856   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14857     Invalid = true;
14858 
14859   // If we're declaring or defining a tag in function prototype scope in C,
14860   // note that this type can only be used within the function and add it to
14861   // the list of decls to inject into the function definition scope.
14862   if ((Name || Kind == TTK_Enum) &&
14863       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
14864     if (getLangOpts().CPlusPlus) {
14865       // C++ [dcl.fct]p6:
14866       //   Types shall not be defined in return or parameter types.
14867       if (TUK == TUK_Definition && !IsTypeSpecifier) {
14868         Diag(Loc, diag::err_type_defined_in_param_type)
14869             << Name;
14870         Invalid = true;
14871       }
14872     } else if (!PrevDecl) {
14873       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
14874     }
14875   }
14876 
14877   if (Invalid)
14878     New->setInvalidDecl();
14879 
14880   // Set the lexical context. If the tag has a C++ scope specifier, the
14881   // lexical context will be different from the semantic context.
14882   New->setLexicalDeclContext(CurContext);
14883 
14884   // Mark this as a friend decl if applicable.
14885   // In Microsoft mode, a friend declaration also acts as a forward
14886   // declaration so we always pass true to setObjectOfFriendDecl to make
14887   // the tag name visible.
14888   if (TUK == TUK_Friend)
14889     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
14890 
14891   // Set the access specifier.
14892   if (!Invalid && SearchDC->isRecord())
14893     SetMemberAccessSpecifier(New, PrevDecl, AS);
14894 
14895   if (PrevDecl)
14896     CheckRedeclarationModuleOwnership(New, PrevDecl);
14897 
14898   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
14899     New->startDefinition();
14900 
14901   ProcessDeclAttributeList(S, New, Attrs);
14902   AddPragmaAttributes(S, New);
14903 
14904   // If this has an identifier, add it to the scope stack.
14905   if (TUK == TUK_Friend) {
14906     // We might be replacing an existing declaration in the lookup tables;
14907     // if so, borrow its access specifier.
14908     if (PrevDecl)
14909       New->setAccess(PrevDecl->getAccess());
14910 
14911     DeclContext *DC = New->getDeclContext()->getRedeclContext();
14912     DC->makeDeclVisibleInContext(New);
14913     if (Name) // can be null along some error paths
14914       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14915         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
14916   } else if (Name) {
14917     S = getNonFieldDeclScope(S);
14918     PushOnScopeChains(New, S, true);
14919   } else {
14920     CurContext->addDecl(New);
14921   }
14922 
14923   // If this is the C FILE type, notify the AST context.
14924   if (IdentifierInfo *II = New->getIdentifier())
14925     if (!New->isInvalidDecl() &&
14926         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
14927         II->isStr("FILE"))
14928       Context.setFILEDecl(New);
14929 
14930   if (PrevDecl)
14931     mergeDeclAttributes(New, PrevDecl);
14932 
14933   // If there's a #pragma GCC visibility in scope, set the visibility of this
14934   // record.
14935   AddPushedVisibilityAttribute(New);
14936 
14937   if (isMemberSpecialization && !New->isInvalidDecl())
14938     CompleteMemberSpecialization(New, Previous);
14939 
14940   OwnedDecl = true;
14941   // In C++, don't return an invalid declaration. We can't recover well from
14942   // the cases where we make the type anonymous.
14943   if (Invalid && getLangOpts().CPlusPlus) {
14944     if (New->isBeingDefined())
14945       if (auto RD = dyn_cast<RecordDecl>(New))
14946         RD->completeDefinition();
14947     return nullptr;
14948   } else if (SkipBody && SkipBody->ShouldSkip) {
14949     return SkipBody->Previous;
14950   } else {
14951     return New;
14952   }
14953 }
14954 
ActOnTagStartDefinition(Scope * S,Decl * TagD)14955 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
14956   AdjustDeclIfTemplate(TagD);
14957   TagDecl *Tag = cast<TagDecl>(TagD);
14958 
14959   // Enter the tag context.
14960   PushDeclContext(S, Tag);
14961 
14962   ActOnDocumentableDecl(TagD);
14963 
14964   // If there's a #pragma GCC visibility in scope, set the visibility of this
14965   // record.
14966   AddPushedVisibilityAttribute(Tag);
14967 }
14968 
ActOnDuplicateDefinition(DeclSpec & DS,Decl * Prev,SkipBodyInfo & SkipBody)14969 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
14970                                     SkipBodyInfo &SkipBody) {
14971   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
14972     return false;
14973 
14974   // Make the previous decl visible.
14975   makeMergedDefinitionVisible(SkipBody.Previous);
14976   return true;
14977 }
14978 
ActOnObjCContainerStartDefinition(Decl * IDecl)14979 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
14980   assert(isa<ObjCContainerDecl>(IDecl) &&
14981          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
14982   DeclContext *OCD = cast<DeclContext>(IDecl);
14983   assert(getContainingDC(OCD) == CurContext &&
14984       "The next DeclContext should be lexically contained in the current one.");
14985   CurContext = OCD;
14986   return IDecl;
14987 }
14988 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)14989 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
14990                                            SourceLocation FinalLoc,
14991                                            bool IsFinalSpelledSealed,
14992                                            SourceLocation LBraceLoc) {
14993   AdjustDeclIfTemplate(TagD);
14994   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
14995 
14996   FieldCollector->StartClass();
14997 
14998   if (!Record->getIdentifier())
14999     return;
15000 
15001   if (FinalLoc.isValid())
15002     Record->addAttr(new (Context)
15003                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15004 
15005   // C++ [class]p2:
15006   //   [...] The class-name is also inserted into the scope of the
15007   //   class itself; this is known as the injected-class-name. For
15008   //   purposes of access checking, the injected-class-name is treated
15009   //   as if it were a public member name.
15010   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15011       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15012       Record->getLocation(), Record->getIdentifier(),
15013       /*PrevDecl=*/nullptr,
15014       /*DelayTypeCreation=*/true);
15015   Context.getTypeDeclType(InjectedClassName, Record);
15016   InjectedClassName->setImplicit();
15017   InjectedClassName->setAccess(AS_public);
15018   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15019       InjectedClassName->setDescribedClassTemplate(Template);
15020   PushOnScopeChains(InjectedClassName, S);
15021   assert(InjectedClassName->isInjectedClassName() &&
15022          "Broken injected-class-name");
15023 }
15024 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceRange BraceRange)15025 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15026                                     SourceRange BraceRange) {
15027   AdjustDeclIfTemplate(TagD);
15028   TagDecl *Tag = cast<TagDecl>(TagD);
15029   Tag->setBraceRange(BraceRange);
15030 
15031   // Make sure we "complete" the definition even it is invalid.
15032   if (Tag->isBeingDefined()) {
15033     assert(Tag->isInvalidDecl() && "We should already have completed it");
15034     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15035       RD->completeDefinition();
15036   }
15037 
15038   if (isa<CXXRecordDecl>(Tag)) {
15039     FieldCollector->FinishClass();
15040   }
15041 
15042   // Exit this scope of this tag's definition.
15043   PopDeclContext();
15044 
15045   if (getCurLexicalContext()->isObjCContainer() &&
15046       Tag->getDeclContext()->isFileContext())
15047     Tag->setTopLevelDeclInObjCContainer();
15048 
15049   // Notify the consumer that we've defined a tag.
15050   if (!Tag->isInvalidDecl())
15051     Consumer.HandleTagDeclDefinition(Tag);
15052 }
15053 
ActOnObjCContainerFinishDefinition()15054 void Sema::ActOnObjCContainerFinishDefinition() {
15055   // Exit this scope of this interface definition.
15056   PopDeclContext();
15057 }
15058 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)15059 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15060   assert(DC == CurContext && "Mismatch of container contexts");
15061   OriginalLexicalContext = DC;
15062   ActOnObjCContainerFinishDefinition();
15063 }
15064 
ActOnObjCReenterContainerContext(DeclContext * DC)15065 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15066   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15067   OriginalLexicalContext = nullptr;
15068 }
15069 
ActOnTagDefinitionError(Scope * S,Decl * TagD)15070 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15071   AdjustDeclIfTemplate(TagD);
15072   TagDecl *Tag = cast<TagDecl>(TagD);
15073   Tag->setInvalidDecl();
15074 
15075   // Make sure we "complete" the definition even it is invalid.
15076   if (Tag->isBeingDefined()) {
15077     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15078       RD->completeDefinition();
15079   }
15080 
15081   // We're undoing ActOnTagStartDefinition here, not
15082   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15083   // the FieldCollector.
15084 
15085   PopDeclContext();
15086 }
15087 
15088 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)15089 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15090                                 IdentifierInfo *FieldName,
15091                                 QualType FieldTy, bool IsMsStruct,
15092                                 Expr *BitWidth, bool *ZeroWidth) {
15093   // Default to true; that shouldn't confuse checks for emptiness
15094   if (ZeroWidth)
15095     *ZeroWidth = true;
15096 
15097   // C99 6.7.2.1p4 - verify the field type.
15098   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15099   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15100     // Handle incomplete types with specific error.
15101     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15102       return ExprError();
15103     if (FieldName)
15104       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15105         << FieldName << FieldTy << BitWidth->getSourceRange();
15106     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15107       << FieldTy << BitWidth->getSourceRange();
15108   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15109                                              UPPC_BitFieldWidth))
15110     return ExprError();
15111 
15112   // If the bit-width is type- or value-dependent, don't try to check
15113   // it now.
15114   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15115     return BitWidth;
15116 
15117   llvm::APSInt Value;
15118   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15119   if (ICE.isInvalid())
15120     return ICE;
15121   BitWidth = ICE.get();
15122 
15123   if (Value != 0 && ZeroWidth)
15124     *ZeroWidth = false;
15125 
15126   // Zero-width bitfield is ok for anonymous field.
15127   if (Value == 0 && FieldName)
15128     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15129 
15130   if (Value.isSigned() && Value.isNegative()) {
15131     if (FieldName)
15132       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15133                << FieldName << Value.toString(10);
15134     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15135       << Value.toString(10);
15136   }
15137 
15138   if (!FieldTy->isDependentType()) {
15139     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15140     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15141     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15142 
15143     // Over-wide bitfields are an error in C or when using the MSVC bitfield
15144     // ABI.
15145     bool CStdConstraintViolation =
15146         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15147     bool MSBitfieldViolation =
15148         Value.ugt(TypeStorageSize) &&
15149         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15150     if (CStdConstraintViolation || MSBitfieldViolation) {
15151       unsigned DiagWidth =
15152           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15153       if (FieldName)
15154         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15155                << FieldName << (unsigned)Value.getZExtValue()
15156                << !CStdConstraintViolation << DiagWidth;
15157 
15158       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15159              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15160              << DiagWidth;
15161     }
15162 
15163     // Warn on types where the user might conceivably expect to get all
15164     // specified bits as value bits: that's all integral types other than
15165     // 'bool'.
15166     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15167       if (FieldName)
15168         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15169             << FieldName << (unsigned)Value.getZExtValue()
15170             << (unsigned)TypeWidth;
15171       else
15172         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15173             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15174     }
15175   }
15176 
15177   return BitWidth;
15178 }
15179 
15180 /// ActOnField - Each field of a C struct/union is passed into this in order
15181 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)15182 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15183                        Declarator &D, Expr *BitfieldWidth) {
15184   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15185                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15186                                /*InitStyle=*/ICIS_NoInit, AS_public);
15187   return Res;
15188 }
15189 
15190 /// HandleField - Analyze a field of a C struct or a C++ data member.
15191 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)15192 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15193                              SourceLocation DeclStart,
15194                              Declarator &D, Expr *BitWidth,
15195                              InClassInitStyle InitStyle,
15196                              AccessSpecifier AS) {
15197   if (D.isDecompositionDeclarator()) {
15198     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15199     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15200       << Decomp.getSourceRange();
15201     return nullptr;
15202   }
15203 
15204   IdentifierInfo *II = D.getIdentifier();
15205   SourceLocation Loc = DeclStart;
15206   if (II) Loc = D.getIdentifierLoc();
15207 
15208   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15209   QualType T = TInfo->getType();
15210   if (getLangOpts().CPlusPlus) {
15211     CheckExtraCXXDefaultArguments(D);
15212 
15213     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15214                                         UPPC_DataMemberType)) {
15215       D.setInvalidType();
15216       T = Context.IntTy;
15217       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15218     }
15219   }
15220 
15221   DiagnoseFunctionSpecifiers(D.getDeclSpec());
15222 
15223   if (D.getDeclSpec().isInlineSpecified())
15224     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15225         << getLangOpts().CPlusPlus17;
15226   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15227     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15228          diag::err_invalid_thread)
15229       << DeclSpec::getSpecifierName(TSCS);
15230 
15231   // Check to see if this name was declared as a member previously
15232   NamedDecl *PrevDecl = nullptr;
15233   LookupResult Previous(*this, II, Loc, LookupMemberName,
15234                         ForVisibleRedeclaration);
15235   LookupName(Previous, S);
15236   switch (Previous.getResultKind()) {
15237     case LookupResult::Found:
15238     case LookupResult::FoundUnresolvedValue:
15239       PrevDecl = Previous.getAsSingle<NamedDecl>();
15240       break;
15241 
15242     case LookupResult::FoundOverloaded:
15243       PrevDecl = Previous.getRepresentativeDecl();
15244       break;
15245 
15246     case LookupResult::NotFound:
15247     case LookupResult::NotFoundInCurrentInstantiation:
15248     case LookupResult::Ambiguous:
15249       break;
15250   }
15251   Previous.suppressDiagnostics();
15252 
15253   if (PrevDecl && PrevDecl->isTemplateParameter()) {
15254     // Maybe we will complain about the shadowed template parameter.
15255     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15256     // Just pretend that we didn't see the previous declaration.
15257     PrevDecl = nullptr;
15258   }
15259 
15260   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15261     PrevDecl = nullptr;
15262 
15263   bool Mutable
15264     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15265   SourceLocation TSSL = D.getBeginLoc();
15266   FieldDecl *NewFD
15267     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15268                      TSSL, AS, PrevDecl, &D);
15269 
15270   if (NewFD->isInvalidDecl())
15271     Record->setInvalidDecl();
15272 
15273   if (D.getDeclSpec().isModulePrivateSpecified())
15274     NewFD->setModulePrivate();
15275 
15276   if (NewFD->isInvalidDecl() && PrevDecl) {
15277     // Don't introduce NewFD into scope; there's already something
15278     // with the same name in the same scope.
15279   } else if (II) {
15280     PushOnScopeChains(NewFD, S);
15281   } else
15282     Record->addDecl(NewFD);
15283 
15284   return NewFD;
15285 }
15286 
15287 /// Build a new FieldDecl and check its well-formedness.
15288 ///
15289 /// This routine builds a new FieldDecl given the fields name, type,
15290 /// record, etc. \p PrevDecl should refer to any previous declaration
15291 /// with the same name and in the same scope as the field to be
15292 /// created.
15293 ///
15294 /// \returns a new FieldDecl.
15295 ///
15296 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)15297 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15298                                 TypeSourceInfo *TInfo,
15299                                 RecordDecl *Record, SourceLocation Loc,
15300                                 bool Mutable, Expr *BitWidth,
15301                                 InClassInitStyle InitStyle,
15302                                 SourceLocation TSSL,
15303                                 AccessSpecifier AS, NamedDecl *PrevDecl,
15304                                 Declarator *D) {
15305   IdentifierInfo *II = Name.getAsIdentifierInfo();
15306   bool InvalidDecl = false;
15307   if (D) InvalidDecl = D->isInvalidType();
15308 
15309   // If we receive a broken type, recover by assuming 'int' and
15310   // marking this declaration as invalid.
15311   if (T.isNull()) {
15312     InvalidDecl = true;
15313     T = Context.IntTy;
15314   }
15315 
15316   QualType EltTy = Context.getBaseElementType(T);
15317   if (!EltTy->isDependentType()) {
15318     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15319       // Fields of incomplete type force their record to be invalid.
15320       Record->setInvalidDecl();
15321       InvalidDecl = true;
15322     } else {
15323       NamedDecl *Def;
15324       EltTy->isIncompleteType(&Def);
15325       if (Def && Def->isInvalidDecl()) {
15326         Record->setInvalidDecl();
15327         InvalidDecl = true;
15328       }
15329     }
15330   }
15331 
15332   // TR 18037 does not allow fields to be declared with address space
15333   if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15334       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15335     Diag(Loc, diag::err_field_with_address_space);
15336     Record->setInvalidDecl();
15337     InvalidDecl = true;
15338   }
15339 
15340   if (LangOpts.OpenCL) {
15341     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15342     // used as structure or union field: image, sampler, event or block types.
15343     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15344         T->isBlockPointerType()) {
15345       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15346       Record->setInvalidDecl();
15347       InvalidDecl = true;
15348     }
15349     // OpenCL v1.2 s6.9.c: bitfields are not supported.
15350     if (BitWidth) {
15351       Diag(Loc, diag::err_opencl_bitfields);
15352       InvalidDecl = true;
15353     }
15354   }
15355 
15356   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15357   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15358       T.hasQualifiers()) {
15359     InvalidDecl = true;
15360     Diag(Loc, diag::err_anon_bitfield_qualifiers);
15361   }
15362 
15363   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15364   // than a variably modified type.
15365   if (!InvalidDecl && T->isVariablyModifiedType()) {
15366     bool SizeIsNegative;
15367     llvm::APSInt Oversized;
15368 
15369     TypeSourceInfo *FixedTInfo =
15370       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
15371                                                     SizeIsNegative,
15372                                                     Oversized);
15373     if (FixedTInfo) {
15374       Diag(Loc, diag::warn_illegal_constant_array_size);
15375       TInfo = FixedTInfo;
15376       T = FixedTInfo->getType();
15377     } else {
15378       if (SizeIsNegative)
15379         Diag(Loc, diag::err_typecheck_negative_array_size);
15380       else if (Oversized.getBoolValue())
15381         Diag(Loc, diag::err_array_too_large)
15382           << Oversized.toString(10);
15383       else
15384         Diag(Loc, diag::err_typecheck_field_variable_size);
15385       InvalidDecl = true;
15386     }
15387   }
15388 
15389   // Fields can not have abstract class types
15390   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15391                                              diag::err_abstract_type_in_decl,
15392                                              AbstractFieldType))
15393     InvalidDecl = true;
15394 
15395   bool ZeroWidth = false;
15396   if (InvalidDecl)
15397     BitWidth = nullptr;
15398   // If this is declared as a bit-field, check the bit-field.
15399   if (BitWidth) {
15400     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15401                               &ZeroWidth).get();
15402     if (!BitWidth) {
15403       InvalidDecl = true;
15404       BitWidth = nullptr;
15405       ZeroWidth = false;
15406     }
15407   }
15408 
15409   // Check that 'mutable' is consistent with the type of the declaration.
15410   if (!InvalidDecl && Mutable) {
15411     unsigned DiagID = 0;
15412     if (T->isReferenceType())
15413       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15414                                         : diag::err_mutable_reference;
15415     else if (T.isConstQualified())
15416       DiagID = diag::err_mutable_const;
15417 
15418     if (DiagID) {
15419       SourceLocation ErrLoc = Loc;
15420       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15421         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15422       Diag(ErrLoc, DiagID);
15423       if (DiagID != diag::ext_mutable_reference) {
15424         Mutable = false;
15425         InvalidDecl = true;
15426       }
15427     }
15428   }
15429 
15430   // C++11 [class.union]p8 (DR1460):
15431   //   At most one variant member of a union may have a
15432   //   brace-or-equal-initializer.
15433   if (InitStyle != ICIS_NoInit)
15434     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15435 
15436   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15437                                        BitWidth, Mutable, InitStyle);
15438   if (InvalidDecl)
15439     NewFD->setInvalidDecl();
15440 
15441   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15442     Diag(Loc, diag::err_duplicate_member) << II;
15443     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15444     NewFD->setInvalidDecl();
15445   }
15446 
15447   if (!InvalidDecl && getLangOpts().CPlusPlus) {
15448     if (Record->isUnion()) {
15449       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15450         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15451         if (RDecl->getDefinition()) {
15452           // C++ [class.union]p1: An object of a class with a non-trivial
15453           // constructor, a non-trivial copy constructor, a non-trivial
15454           // destructor, or a non-trivial copy assignment operator
15455           // cannot be a member of a union, nor can an array of such
15456           // objects.
15457           if (CheckNontrivialField(NewFD))
15458             NewFD->setInvalidDecl();
15459         }
15460       }
15461 
15462       // C++ [class.union]p1: If a union contains a member of reference type,
15463       // the program is ill-formed, except when compiling with MSVC extensions
15464       // enabled.
15465       if (EltTy->isReferenceType()) {
15466         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15467                                     diag::ext_union_member_of_reference_type :
15468                                     diag::err_union_member_of_reference_type)
15469           << NewFD->getDeclName() << EltTy;
15470         if (!getLangOpts().MicrosoftExt)
15471           NewFD->setInvalidDecl();
15472       }
15473     }
15474   }
15475 
15476   // FIXME: We need to pass in the attributes given an AST
15477   // representation, not a parser representation.
15478   if (D) {
15479     // FIXME: The current scope is almost... but not entirely... correct here.
15480     ProcessDeclAttributes(getCurScope(), NewFD, *D);
15481 
15482     if (NewFD->hasAttrs())
15483       CheckAlignasUnderalignment(NewFD);
15484   }
15485 
15486   // In auto-retain/release, infer strong retension for fields of
15487   // retainable type.
15488   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15489     NewFD->setInvalidDecl();
15490 
15491   if (T.isObjCGCWeak())
15492     Diag(Loc, diag::warn_attribute_weak_on_field);
15493 
15494   NewFD->setAccess(AS);
15495   return NewFD;
15496 }
15497 
CheckNontrivialField(FieldDecl * FD)15498 bool Sema::CheckNontrivialField(FieldDecl *FD) {
15499   assert(FD);
15500   assert(getLangOpts().CPlusPlus && "valid check only for C++");
15501 
15502   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15503     return false;
15504 
15505   QualType EltTy = Context.getBaseElementType(FD->getType());
15506   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15507     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15508     if (RDecl->getDefinition()) {
15509       // We check for copy constructors before constructors
15510       // because otherwise we'll never get complaints about
15511       // copy constructors.
15512 
15513       CXXSpecialMember member = CXXInvalid;
15514       // We're required to check for any non-trivial constructors. Since the
15515       // implicit default constructor is suppressed if there are any
15516       // user-declared constructors, we just need to check that there is a
15517       // trivial default constructor and a trivial copy constructor. (We don't
15518       // worry about move constructors here, since this is a C++98 check.)
15519       if (RDecl->hasNonTrivialCopyConstructor())
15520         member = CXXCopyConstructor;
15521       else if (!RDecl->hasTrivialDefaultConstructor())
15522         member = CXXDefaultConstructor;
15523       else if (RDecl->hasNonTrivialCopyAssignment())
15524         member = CXXCopyAssignment;
15525       else if (RDecl->hasNonTrivialDestructor())
15526         member = CXXDestructor;
15527 
15528       if (member != CXXInvalid) {
15529         if (!getLangOpts().CPlusPlus11 &&
15530             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15531           // Objective-C++ ARC: it is an error to have a non-trivial field of
15532           // a union. However, system headers in Objective-C programs
15533           // occasionally have Objective-C lifetime objects within unions,
15534           // and rather than cause the program to fail, we make those
15535           // members unavailable.
15536           SourceLocation Loc = FD->getLocation();
15537           if (getSourceManager().isInSystemHeader(Loc)) {
15538             if (!FD->hasAttr<UnavailableAttr>())
15539               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15540                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15541             return false;
15542           }
15543         }
15544 
15545         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15546                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15547                diag::err_illegal_union_or_anon_struct_member)
15548           << FD->getParent()->isUnion() << FD->getDeclName() << member;
15549         DiagnoseNontrivial(RDecl, member);
15550         return !getLangOpts().CPlusPlus11;
15551       }
15552     }
15553   }
15554 
15555   return false;
15556 }
15557 
15558 /// TranslateIvarVisibility - Translate visibility from a token ID to an
15559 ///  AST enum value.
15560 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)15561 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15562   switch (ivarVisibility) {
15563   default: llvm_unreachable("Unknown visitibility kind");
15564   case tok::objc_private: return ObjCIvarDecl::Private;
15565   case tok::objc_public: return ObjCIvarDecl::Public;
15566   case tok::objc_protected: return ObjCIvarDecl::Protected;
15567   case tok::objc_package: return ObjCIvarDecl::Package;
15568   }
15569 }
15570 
15571 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
15572 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)15573 Decl *Sema::ActOnIvar(Scope *S,
15574                                 SourceLocation DeclStart,
15575                                 Declarator &D, Expr *BitfieldWidth,
15576                                 tok::ObjCKeywordKind Visibility) {
15577 
15578   IdentifierInfo *II = D.getIdentifier();
15579   Expr *BitWidth = (Expr*)BitfieldWidth;
15580   SourceLocation Loc = DeclStart;
15581   if (II) Loc = D.getIdentifierLoc();
15582 
15583   // FIXME: Unnamed fields can be handled in various different ways, for
15584   // example, unnamed unions inject all members into the struct namespace!
15585 
15586   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15587   QualType T = TInfo->getType();
15588 
15589   if (BitWidth) {
15590     // 6.7.2.1p3, 6.7.2.1p4
15591     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15592     if (!BitWidth)
15593       D.setInvalidType();
15594   } else {
15595     // Not a bitfield.
15596 
15597     // validate II.
15598 
15599   }
15600   if (T->isReferenceType()) {
15601     Diag(Loc, diag::err_ivar_reference_type);
15602     D.setInvalidType();
15603   }
15604   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15605   // than a variably modified type.
15606   else if (T->isVariablyModifiedType()) {
15607     Diag(Loc, diag::err_typecheck_ivar_variable_size);
15608     D.setInvalidType();
15609   }
15610 
15611   // Get the visibility (access control) for this ivar.
15612   ObjCIvarDecl::AccessControl ac =
15613     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15614                                         : ObjCIvarDecl::None;
15615   // Must set ivar's DeclContext to its enclosing interface.
15616   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15617   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15618     return nullptr;
15619   ObjCContainerDecl *EnclosingContext;
15620   if (ObjCImplementationDecl *IMPDecl =
15621       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15622     if (LangOpts.ObjCRuntime.isFragile()) {
15623     // Case of ivar declared in an implementation. Context is that of its class.
15624       EnclosingContext = IMPDecl->getClassInterface();
15625       assert(EnclosingContext && "Implementation has no class interface!");
15626     }
15627     else
15628       EnclosingContext = EnclosingDecl;
15629   } else {
15630     if (ObjCCategoryDecl *CDecl =
15631         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15632       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15633         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15634         return nullptr;
15635       }
15636     }
15637     EnclosingContext = EnclosingDecl;
15638   }
15639 
15640   // Construct the decl.
15641   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15642                                              DeclStart, Loc, II, T,
15643                                              TInfo, ac, (Expr *)BitfieldWidth);
15644 
15645   if (II) {
15646     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15647                                            ForVisibleRedeclaration);
15648     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15649         && !isa<TagDecl>(PrevDecl)) {
15650       Diag(Loc, diag::err_duplicate_member) << II;
15651       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15652       NewID->setInvalidDecl();
15653     }
15654   }
15655 
15656   // Process attributes attached to the ivar.
15657   ProcessDeclAttributes(S, NewID, D);
15658 
15659   if (D.isInvalidType())
15660     NewID->setInvalidDecl();
15661 
15662   // In ARC, infer 'retaining' for ivars of retainable type.
15663   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15664     NewID->setInvalidDecl();
15665 
15666   if (D.getDeclSpec().isModulePrivateSpecified())
15667     NewID->setModulePrivate();
15668 
15669   if (II) {
15670     // FIXME: When interfaces are DeclContexts, we'll need to add
15671     // these to the interface.
15672     S->AddDecl(NewID);
15673     IdResolver.AddDecl(NewID);
15674   }
15675 
15676   if (LangOpts.ObjCRuntime.isNonFragile() &&
15677       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15678     Diag(Loc, diag::warn_ivars_in_interface);
15679 
15680   return NewID;
15681 }
15682 
15683 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15684 /// class and class extensions. For every class \@interface and class
15685 /// extension \@interface, if the last ivar is a bitfield of any type,
15686 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)15687 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15688                              SmallVectorImpl<Decl *> &AllIvarDecls) {
15689   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15690     return;
15691 
15692   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15693   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15694 
15695   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15696     return;
15697   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15698   if (!ID) {
15699     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15700       if (!CD->IsClassExtension())
15701         return;
15702     }
15703     // No need to add this to end of @implementation.
15704     else
15705       return;
15706   }
15707   // All conditions are met. Add a new bitfield to the tail end of ivars.
15708   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15709   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15710 
15711   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15712                               DeclLoc, DeclLoc, nullptr,
15713                               Context.CharTy,
15714                               Context.getTrivialTypeSourceInfo(Context.CharTy,
15715                                                                DeclLoc),
15716                               ObjCIvarDecl::Private, BW,
15717                               true);
15718   AllIvarDecls.push_back(Ivar);
15719 }
15720 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,const ParsedAttributesView & Attrs)15721 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15722                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
15723                        SourceLocation RBrac,
15724                        const ParsedAttributesView &Attrs) {
15725   assert(EnclosingDecl && "missing record or interface decl");
15726 
15727   // If this is an Objective-C @implementation or category and we have
15728   // new fields here we should reset the layout of the interface since
15729   // it will now change.
15730   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15731     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15732     switch (DC->getKind()) {
15733     default: break;
15734     case Decl::ObjCCategory:
15735       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15736       break;
15737     case Decl::ObjCImplementation:
15738       Context.
15739         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15740       break;
15741     }
15742   }
15743 
15744   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15745   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
15746 
15747   // Start counting up the number of named members; make sure to include
15748   // members of anonymous structs and unions in the total.
15749   unsigned NumNamedMembers = 0;
15750   if (Record) {
15751     for (const auto *I : Record->decls()) {
15752       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15753         if (IFD->getDeclName())
15754           ++NumNamedMembers;
15755     }
15756   }
15757 
15758   // Verify that all the fields are okay.
15759   SmallVector<FieldDecl*, 32> RecFields;
15760 
15761   bool ObjCFieldLifetimeErrReported = false;
15762   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15763        i != end; ++i) {
15764     FieldDecl *FD = cast<FieldDecl>(*i);
15765 
15766     // Get the type for the field.
15767     const Type *FDTy = FD->getType().getTypePtr();
15768 
15769     if (!FD->isAnonymousStructOrUnion()) {
15770       // Remember all fields written by the user.
15771       RecFields.push_back(FD);
15772     }
15773 
15774     // If the field is already invalid for some reason, don't emit more
15775     // diagnostics about it.
15776     if (FD->isInvalidDecl()) {
15777       EnclosingDecl->setInvalidDecl();
15778       continue;
15779     }
15780 
15781     // C99 6.7.2.1p2:
15782     //   A structure or union shall not contain a member with
15783     //   incomplete or function type (hence, a structure shall not
15784     //   contain an instance of itself, but may contain a pointer to
15785     //   an instance of itself), except that the last member of a
15786     //   structure with more than one named member may have incomplete
15787     //   array type; such a structure (and any union containing,
15788     //   possibly recursively, a member that is such a structure)
15789     //   shall not be a member of a structure or an element of an
15790     //   array.
15791     bool IsLastField = (i + 1 == Fields.end());
15792     if (FDTy->isFunctionType()) {
15793       // Field declared as a function.
15794       Diag(FD->getLocation(), diag::err_field_declared_as_function)
15795         << FD->getDeclName();
15796       FD->setInvalidDecl();
15797       EnclosingDecl->setInvalidDecl();
15798       continue;
15799     } else if (FDTy->isIncompleteArrayType() &&
15800                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15801       if (Record) {
15802         // Flexible array member.
15803         // Microsoft and g++ is more permissive regarding flexible array.
15804         // It will accept flexible array in union and also
15805         // as the sole element of a struct/class.
15806         unsigned DiagID = 0;
15807         if (!Record->isUnion() && !IsLastField) {
15808           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15809             << FD->getDeclName() << FD->getType() << Record->getTagKind();
15810           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15811           FD->setInvalidDecl();
15812           EnclosingDecl->setInvalidDecl();
15813           continue;
15814         } else if (Record->isUnion())
15815           DiagID = getLangOpts().MicrosoftExt
15816                        ? diag::ext_flexible_array_union_ms
15817                        : getLangOpts().CPlusPlus
15818                              ? diag::ext_flexible_array_union_gnu
15819                              : diag::err_flexible_array_union;
15820         else if (NumNamedMembers < 1)
15821           DiagID = getLangOpts().MicrosoftExt
15822                        ? diag::ext_flexible_array_empty_aggregate_ms
15823                        : getLangOpts().CPlusPlus
15824                              ? diag::ext_flexible_array_empty_aggregate_gnu
15825                              : diag::err_flexible_array_empty_aggregate;
15826 
15827         if (DiagID)
15828           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15829                                           << Record->getTagKind();
15830         // While the layout of types that contain virtual bases is not specified
15831         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15832         // virtual bases after the derived members.  This would make a flexible
15833         // array member declared at the end of an object not adjacent to the end
15834         // of the type.
15835         if (CXXRecord && CXXRecord->getNumVBases() != 0)
15836           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15837               << FD->getDeclName() << Record->getTagKind();
15838         if (!getLangOpts().C99)
15839           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15840             << FD->getDeclName() << Record->getTagKind();
15841 
15842         // If the element type has a non-trivial destructor, we would not
15843         // implicitly destroy the elements, so disallow it for now.
15844         //
15845         // FIXME: GCC allows this. We should probably either implicitly delete
15846         // the destructor of the containing class, or just allow this.
15847         QualType BaseElem = Context.getBaseElementType(FD->getType());
15848         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15849           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15850             << FD->getDeclName() << FD->getType();
15851           FD->setInvalidDecl();
15852           EnclosingDecl->setInvalidDecl();
15853           continue;
15854         }
15855         // Okay, we have a legal flexible array member at the end of the struct.
15856         Record->setHasFlexibleArrayMember(true);
15857       } else {
15858         // In ObjCContainerDecl ivars with incomplete array type are accepted,
15859         // unless they are followed by another ivar. That check is done
15860         // elsewhere, after synthesized ivars are known.
15861       }
15862     } else if (!FDTy->isDependentType() &&
15863                RequireCompleteType(FD->getLocation(), FD->getType(),
15864                                    diag::err_field_incomplete)) {
15865       // Incomplete type
15866       FD->setInvalidDecl();
15867       EnclosingDecl->setInvalidDecl();
15868       continue;
15869     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
15870       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
15871         // A type which contains a flexible array member is considered to be a
15872         // flexible array member.
15873         Record->setHasFlexibleArrayMember(true);
15874         if (!Record->isUnion()) {
15875           // If this is a struct/class and this is not the last element, reject
15876           // it.  Note that GCC supports variable sized arrays in the middle of
15877           // structures.
15878           if (!IsLastField)
15879             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
15880               << FD->getDeclName() << FD->getType();
15881           else {
15882             // We support flexible arrays at the end of structs in
15883             // other structs as an extension.
15884             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
15885               << FD->getDeclName();
15886           }
15887         }
15888       }
15889       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
15890           RequireNonAbstractType(FD->getLocation(), FD->getType(),
15891                                  diag::err_abstract_type_in_decl,
15892                                  AbstractIvarType)) {
15893         // Ivars can not have abstract class types
15894         FD->setInvalidDecl();
15895       }
15896       if (Record && FDTTy->getDecl()->hasObjectMember())
15897         Record->setHasObjectMember(true);
15898       if (Record && FDTTy->getDecl()->hasVolatileMember())
15899         Record->setHasVolatileMember(true);
15900     } else if (FDTy->isObjCObjectType()) {
15901       /// A field cannot be an Objective-c object
15902       Diag(FD->getLocation(), diag::err_statically_allocated_object)
15903         << FixItHint::CreateInsertion(FD->getLocation(), "*");
15904       QualType T = Context.getObjCObjectPointerType(FD->getType());
15905       FD->setType(T);
15906     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
15907                Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) {
15908       // It's an error in ARC or Weak if a field has lifetime.
15909       // We don't want to report this in a system header, though,
15910       // so we just make the field unavailable.
15911       // FIXME: that's really not sufficient; we need to make the type
15912       // itself invalid to, say, initialize or copy.
15913       QualType T = FD->getType();
15914       if (T.hasNonTrivialObjCLifetime()) {
15915         SourceLocation loc = FD->getLocation();
15916         if (getSourceManager().isInSystemHeader(loc)) {
15917           if (!FD->hasAttr<UnavailableAttr>()) {
15918             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15919                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
15920           }
15921         } else {
15922           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
15923             << T->isBlockPointerType() << Record->getTagKind();
15924         }
15925         ObjCFieldLifetimeErrReported = true;
15926       }
15927     } else if (getLangOpts().ObjC &&
15928                getLangOpts().getGC() != LangOptions::NonGC &&
15929                Record && !Record->hasObjectMember()) {
15930       if (FD->getType()->isObjCObjectPointerType() ||
15931           FD->getType().isObjCGCStrong())
15932         Record->setHasObjectMember(true);
15933       else if (Context.getAsArrayType(FD->getType())) {
15934         QualType BaseType = Context.getBaseElementType(FD->getType());
15935         if (BaseType->isRecordType() &&
15936             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
15937           Record->setHasObjectMember(true);
15938         else if (BaseType->isObjCObjectPointerType() ||
15939                  BaseType.isObjCGCStrong())
15940                Record->setHasObjectMember(true);
15941       }
15942     }
15943 
15944     if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
15945       QualType FT = FD->getType();
15946       if (FT.isNonTrivialToPrimitiveDefaultInitialize())
15947         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
15948       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
15949       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
15950         Record->setNonTrivialToPrimitiveCopy(true);
15951       if (FT.isDestructedType()) {
15952         Record->setNonTrivialToPrimitiveDestroy(true);
15953         Record->setParamDestroyedInCallee(true);
15954       }
15955 
15956       if (const auto *RT = FT->getAs<RecordType>()) {
15957         if (RT->getDecl()->getArgPassingRestrictions() ==
15958             RecordDecl::APK_CanNeverPassInRegs)
15959           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15960       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
15961         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15962     }
15963 
15964     if (Record && FD->getType().isVolatileQualified())
15965       Record->setHasVolatileMember(true);
15966     // Keep track of the number of named members.
15967     if (FD->getIdentifier())
15968       ++NumNamedMembers;
15969   }
15970 
15971   // Okay, we successfully defined 'Record'.
15972   if (Record) {
15973     bool Completed = false;
15974     if (CXXRecord) {
15975       if (!CXXRecord->isInvalidDecl()) {
15976         // Set access bits correctly on the directly-declared conversions.
15977         for (CXXRecordDecl::conversion_iterator
15978                I = CXXRecord->conversion_begin(),
15979                E = CXXRecord->conversion_end(); I != E; ++I)
15980           I.setAccess((*I)->getAccess());
15981       }
15982 
15983       if (!CXXRecord->isDependentType()) {
15984         // Add any implicitly-declared members to this class.
15985         AddImplicitlyDeclaredMembersToClass(CXXRecord);
15986 
15987         if (!CXXRecord->isInvalidDecl()) {
15988           // If we have virtual base classes, we may end up finding multiple
15989           // final overriders for a given virtual function. Check for this
15990           // problem now.
15991           if (CXXRecord->getNumVBases()) {
15992             CXXFinalOverriderMap FinalOverriders;
15993             CXXRecord->getFinalOverriders(FinalOverriders);
15994 
15995             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
15996                                              MEnd = FinalOverriders.end();
15997                  M != MEnd; ++M) {
15998               for (OverridingMethods::iterator SO = M->second.begin(),
15999                                             SOEnd = M->second.end();
16000                    SO != SOEnd; ++SO) {
16001                 assert(SO->second.size() > 0 &&
16002                        "Virtual function without overriding functions?");
16003                 if (SO->second.size() == 1)
16004                   continue;
16005 
16006                 // C++ [class.virtual]p2:
16007                 //   In a derived class, if a virtual member function of a base
16008                 //   class subobject has more than one final overrider the
16009                 //   program is ill-formed.
16010                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16011                   << (const NamedDecl *)M->first << Record;
16012                 Diag(M->first->getLocation(),
16013                      diag::note_overridden_virtual_function);
16014                 for (OverridingMethods::overriding_iterator
16015                           OM = SO->second.begin(),
16016                        OMEnd = SO->second.end();
16017                      OM != OMEnd; ++OM)
16018                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
16019                     << (const NamedDecl *)M->first << OM->Method->getParent();
16020 
16021                 Record->setInvalidDecl();
16022               }
16023             }
16024             CXXRecord->completeDefinition(&FinalOverriders);
16025             Completed = true;
16026           }
16027         }
16028       }
16029     }
16030 
16031     if (!Completed)
16032       Record->completeDefinition();
16033 
16034     // Handle attributes before checking the layout.
16035     ProcessDeclAttributeList(S, Record, Attrs);
16036 
16037     // We may have deferred checking for a deleted destructor. Check now.
16038     if (CXXRecord) {
16039       auto *Dtor = CXXRecord->getDestructor();
16040       if (Dtor && Dtor->isImplicit() &&
16041           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16042         CXXRecord->setImplicitDestructorIsDeleted();
16043         SetDeclDeleted(Dtor, CXXRecord->getLocation());
16044       }
16045     }
16046 
16047     if (Record->hasAttrs()) {
16048       CheckAlignasUnderalignment(Record);
16049 
16050       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16051         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16052                                            IA->getRange(), IA->getBestCase(),
16053                                            IA->getSemanticSpelling());
16054     }
16055 
16056     // Check if the structure/union declaration is a type that can have zero
16057     // size in C. For C this is a language extension, for C++ it may cause
16058     // compatibility problems.
16059     bool CheckForZeroSize;
16060     if (!getLangOpts().CPlusPlus) {
16061       CheckForZeroSize = true;
16062     } else {
16063       // For C++ filter out types that cannot be referenced in C code.
16064       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16065       CheckForZeroSize =
16066           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16067           !CXXRecord->isDependentType() &&
16068           CXXRecord->isCLike();
16069     }
16070     if (CheckForZeroSize) {
16071       bool ZeroSize = true;
16072       bool IsEmpty = true;
16073       unsigned NonBitFields = 0;
16074       for (RecordDecl::field_iterator I = Record->field_begin(),
16075                                       E = Record->field_end();
16076            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16077         IsEmpty = false;
16078         if (I->isUnnamedBitfield()) {
16079           if (!I->isZeroLengthBitField(Context))
16080             ZeroSize = false;
16081         } else {
16082           ++NonBitFields;
16083           QualType FieldType = I->getType();
16084           if (FieldType->isIncompleteType() ||
16085               !Context.getTypeSizeInChars(FieldType).isZero())
16086             ZeroSize = false;
16087         }
16088       }
16089 
16090       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16091       // allowed in C++, but warn if its declaration is inside
16092       // extern "C" block.
16093       if (ZeroSize) {
16094         Diag(RecLoc, getLangOpts().CPlusPlus ?
16095                          diag::warn_zero_size_struct_union_in_extern_c :
16096                          diag::warn_zero_size_struct_union_compat)
16097           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16098       }
16099 
16100       // Structs without named members are extension in C (C99 6.7.2.1p7),
16101       // but are accepted by GCC.
16102       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16103         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16104                                diag::ext_no_named_members_in_struct_union)
16105           << Record->isUnion();
16106       }
16107     }
16108   } else {
16109     ObjCIvarDecl **ClsFields =
16110       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16111     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16112       ID->setEndOfDefinitionLoc(RBrac);
16113       // Add ivar's to class's DeclContext.
16114       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16115         ClsFields[i]->setLexicalDeclContext(ID);
16116         ID->addDecl(ClsFields[i]);
16117       }
16118       // Must enforce the rule that ivars in the base classes may not be
16119       // duplicates.
16120       if (ID->getSuperClass())
16121         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16122     } else if (ObjCImplementationDecl *IMPDecl =
16123                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16124       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
16125       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16126         // Ivar declared in @implementation never belongs to the implementation.
16127         // Only it is in implementation's lexical context.
16128         ClsFields[I]->setLexicalDeclContext(IMPDecl);
16129       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16130       IMPDecl->setIvarLBraceLoc(LBrac);
16131       IMPDecl->setIvarRBraceLoc(RBrac);
16132     } else if (ObjCCategoryDecl *CDecl =
16133                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16134       // case of ivars in class extension; all other cases have been
16135       // reported as errors elsewhere.
16136       // FIXME. Class extension does not have a LocEnd field.
16137       // CDecl->setLocEnd(RBrac);
16138       // Add ivar's to class extension's DeclContext.
16139       // Diagnose redeclaration of private ivars.
16140       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16141       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16142         if (IDecl) {
16143           if (const ObjCIvarDecl *ClsIvar =
16144               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16145             Diag(ClsFields[i]->getLocation(),
16146                  diag::err_duplicate_ivar_declaration);
16147             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16148             continue;
16149           }
16150           for (const auto *Ext : IDecl->known_extensions()) {
16151             if (const ObjCIvarDecl *ClsExtIvar
16152                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16153               Diag(ClsFields[i]->getLocation(),
16154                    diag::err_duplicate_ivar_declaration);
16155               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16156               continue;
16157             }
16158           }
16159         }
16160         ClsFields[i]->setLexicalDeclContext(CDecl);
16161         CDecl->addDecl(ClsFields[i]);
16162       }
16163       CDecl->setIvarLBraceLoc(LBrac);
16164       CDecl->setIvarRBraceLoc(RBrac);
16165     }
16166   }
16167 }
16168 
16169 /// Determine whether the given integral value is representable within
16170 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)16171 static bool isRepresentableIntegerValue(ASTContext &Context,
16172                                         llvm::APSInt &Value,
16173                                         QualType T) {
16174   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
16175          "Integral type required!");
16176   unsigned BitWidth = Context.getIntWidth(T);
16177 
16178   if (Value.isUnsigned() || Value.isNonNegative()) {
16179     if (T->isSignedIntegerOrEnumerationType())
16180       --BitWidth;
16181     return Value.getActiveBits() <= BitWidth;
16182   }
16183   return Value.getMinSignedBits() <= BitWidth;
16184 }
16185 
16186 // Given an integral type, return the next larger integral type
16187 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)16188 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16189   // FIXME: Int128/UInt128 support, which also needs to be introduced into
16190   // enum checking below.
16191   assert((T->isIntegralType(Context) ||
16192          T->isEnumeralType()) && "Integral type required!");
16193   const unsigned NumTypes = 4;
16194   QualType SignedIntegralTypes[NumTypes] = {
16195     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16196   };
16197   QualType UnsignedIntegralTypes[NumTypes] = {
16198     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16199     Context.UnsignedLongLongTy
16200   };
16201 
16202   unsigned BitWidth = Context.getTypeSize(T);
16203   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16204                                                         : UnsignedIntegralTypes;
16205   for (unsigned I = 0; I != NumTypes; ++I)
16206     if (Context.getTypeSize(Types[I]) > BitWidth)
16207       return Types[I];
16208 
16209   return QualType();
16210 }
16211 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)16212 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16213                                           EnumConstantDecl *LastEnumConst,
16214                                           SourceLocation IdLoc,
16215                                           IdentifierInfo *Id,
16216                                           Expr *Val) {
16217   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16218   llvm::APSInt EnumVal(IntWidth);
16219   QualType EltTy;
16220 
16221   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16222     Val = nullptr;
16223 
16224   if (Val)
16225     Val = DefaultLvalueConversion(Val).get();
16226 
16227   if (Val) {
16228     if (Enum->isDependentType() || Val->isTypeDependent())
16229       EltTy = Context.DependentTy;
16230     else {
16231       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16232           !getLangOpts().MSVCCompat) {
16233         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16234         // constant-expression in the enumerator-definition shall be a converted
16235         // constant expression of the underlying type.
16236         EltTy = Enum->getIntegerType();
16237         ExprResult Converted =
16238           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16239                                            CCEK_Enumerator);
16240         if (Converted.isInvalid())
16241           Val = nullptr;
16242         else
16243           Val = Converted.get();
16244       } else if (!Val->isValueDependent() &&
16245                  !(Val = VerifyIntegerConstantExpression(Val,
16246                                                          &EnumVal).get())) {
16247         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16248       } else {
16249         if (Enum->isComplete()) {
16250           EltTy = Enum->getIntegerType();
16251 
16252           // In Obj-C and Microsoft mode, require the enumeration value to be
16253           // representable in the underlying type of the enumeration. In C++11,
16254           // we perform a non-narrowing conversion as part of converted constant
16255           // expression checking.
16256           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16257             if (getLangOpts().MSVCCompat) {
16258               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16259               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16260             } else
16261               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16262           } else
16263             Val = ImpCastExprToType(Val, EltTy,
16264                                     EltTy->isBooleanType() ?
16265                                     CK_IntegralToBoolean : CK_IntegralCast)
16266                     .get();
16267         } else if (getLangOpts().CPlusPlus) {
16268           // C++11 [dcl.enum]p5:
16269           //   If the underlying type is not fixed, the type of each enumerator
16270           //   is the type of its initializing value:
16271           //     - If an initializer is specified for an enumerator, the
16272           //       initializing value has the same type as the expression.
16273           EltTy = Val->getType();
16274         } else {
16275           // C99 6.7.2.2p2:
16276           //   The expression that defines the value of an enumeration constant
16277           //   shall be an integer constant expression that has a value
16278           //   representable as an int.
16279 
16280           // Complain if the value is not representable in an int.
16281           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16282             Diag(IdLoc, diag::ext_enum_value_not_int)
16283               << EnumVal.toString(10) << Val->getSourceRange()
16284               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16285           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16286             // Force the type of the expression to 'int'.
16287             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16288           }
16289           EltTy = Val->getType();
16290         }
16291       }
16292     }
16293   }
16294 
16295   if (!Val) {
16296     if (Enum->isDependentType())
16297       EltTy = Context.DependentTy;
16298     else if (!LastEnumConst) {
16299       // C++0x [dcl.enum]p5:
16300       //   If the underlying type is not fixed, the type of each enumerator
16301       //   is the type of its initializing value:
16302       //     - If no initializer is specified for the first enumerator, the
16303       //       initializing value has an unspecified integral type.
16304       //
16305       // GCC uses 'int' for its unspecified integral type, as does
16306       // C99 6.7.2.2p3.
16307       if (Enum->isFixed()) {
16308         EltTy = Enum->getIntegerType();
16309       }
16310       else {
16311         EltTy = Context.IntTy;
16312       }
16313     } else {
16314       // Assign the last value + 1.
16315       EnumVal = LastEnumConst->getInitVal();
16316       ++EnumVal;
16317       EltTy = LastEnumConst->getType();
16318 
16319       // Check for overflow on increment.
16320       if (EnumVal < LastEnumConst->getInitVal()) {
16321         // C++0x [dcl.enum]p5:
16322         //   If the underlying type is not fixed, the type of each enumerator
16323         //   is the type of its initializing value:
16324         //
16325         //     - Otherwise the type of the initializing value is the same as
16326         //       the type of the initializing value of the preceding enumerator
16327         //       unless the incremented value is not representable in that type,
16328         //       in which case the type is an unspecified integral type
16329         //       sufficient to contain the incremented value. If no such type
16330         //       exists, the program is ill-formed.
16331         QualType T = getNextLargerIntegralType(Context, EltTy);
16332         if (T.isNull() || Enum->isFixed()) {
16333           // There is no integral type larger enough to represent this
16334           // value. Complain, then allow the value to wrap around.
16335           EnumVal = LastEnumConst->getInitVal();
16336           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16337           ++EnumVal;
16338           if (Enum->isFixed())
16339             // When the underlying type is fixed, this is ill-formed.
16340             Diag(IdLoc, diag::err_enumerator_wrapped)
16341               << EnumVal.toString(10)
16342               << EltTy;
16343           else
16344             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16345               << EnumVal.toString(10);
16346         } else {
16347           EltTy = T;
16348         }
16349 
16350         // Retrieve the last enumerator's value, extent that type to the
16351         // type that is supposed to be large enough to represent the incremented
16352         // value, then increment.
16353         EnumVal = LastEnumConst->getInitVal();
16354         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16355         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16356         ++EnumVal;
16357 
16358         // If we're not in C++, diagnose the overflow of enumerator values,
16359         // which in C99 means that the enumerator value is not representable in
16360         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16361         // permits enumerator values that are representable in some larger
16362         // integral type.
16363         if (!getLangOpts().CPlusPlus && !T.isNull())
16364           Diag(IdLoc, diag::warn_enum_value_overflow);
16365       } else if (!getLangOpts().CPlusPlus &&
16366                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16367         // Enforce C99 6.7.2.2p2 even when we compute the next value.
16368         Diag(IdLoc, diag::ext_enum_value_not_int)
16369           << EnumVal.toString(10) << 1;
16370       }
16371     }
16372   }
16373 
16374   if (!EltTy->isDependentType()) {
16375     // Make the enumerator value match the signedness and size of the
16376     // enumerator's type.
16377     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16378     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16379   }
16380 
16381   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16382                                   Val, EnumVal);
16383 }
16384 
shouldSkipAnonEnumBody(Scope * S,IdentifierInfo * II,SourceLocation IILoc)16385 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
16386                                                 SourceLocation IILoc) {
16387   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16388       !getLangOpts().CPlusPlus)
16389     return SkipBodyInfo();
16390 
16391   // We have an anonymous enum definition. Look up the first enumerator to
16392   // determine if we should merge the definition with an existing one and
16393   // skip the body.
16394   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16395                                          forRedeclarationInCurContext());
16396   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16397   if (!PrevECD)
16398     return SkipBodyInfo();
16399 
16400   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16401   NamedDecl *Hidden;
16402   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16403     SkipBodyInfo Skip;
16404     Skip.Previous = Hidden;
16405     return Skip;
16406   }
16407 
16408   return SkipBodyInfo();
16409 }
16410 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,const ParsedAttributesView & Attrs,SourceLocation EqualLoc,Expr * Val)16411 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16412                               SourceLocation IdLoc, IdentifierInfo *Id,
16413                               const ParsedAttributesView &Attrs,
16414                               SourceLocation EqualLoc, Expr *Val) {
16415   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16416   EnumConstantDecl *LastEnumConst =
16417     cast_or_null<EnumConstantDecl>(lastEnumConst);
16418 
16419   // The scope passed in may not be a decl scope.  Zip up the scope tree until
16420   // we find one that is.
16421   S = getNonFieldDeclScope(S);
16422 
16423   // Verify that there isn't already something declared with this name in this
16424   // scope.
16425   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16426   LookupName(R, S);
16427   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16428 
16429   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16430     // Maybe we will complain about the shadowed template parameter.
16431     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16432     // Just pretend that we didn't see the previous declaration.
16433     PrevDecl = nullptr;
16434   }
16435 
16436   // C++ [class.mem]p15:
16437   // If T is the name of a class, then each of the following shall have a name
16438   // different from T:
16439   // - every enumerator of every member of class T that is an unscoped
16440   // enumerated type
16441   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16442     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16443                             DeclarationNameInfo(Id, IdLoc));
16444 
16445   EnumConstantDecl *New =
16446     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16447   if (!New)
16448     return nullptr;
16449 
16450   if (PrevDecl) {
16451     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16452       // Check for other kinds of shadowing not already handled.
16453       CheckShadow(New, PrevDecl, R);
16454     }
16455 
16456     // When in C++, we may get a TagDecl with the same name; in this case the
16457     // enum constant will 'hide' the tag.
16458     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
16459            "Received TagDecl when not in C++!");
16460     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16461       if (isa<EnumConstantDecl>(PrevDecl))
16462         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16463       else
16464         Diag(IdLoc, diag::err_redefinition) << Id;
16465       notePreviousDefinition(PrevDecl, IdLoc);
16466       return nullptr;
16467     }
16468   }
16469 
16470   // Process attributes.
16471   ProcessDeclAttributeList(S, New, Attrs);
16472   AddPragmaAttributes(S, New);
16473 
16474   // Register this decl in the current scope stack.
16475   New->setAccess(TheEnumDecl->getAccess());
16476   PushOnScopeChains(New, S);
16477 
16478   ActOnDocumentableDecl(New);
16479 
16480   return New;
16481 }
16482 
16483 // Returns true when the enum initial expression does not trigger the
16484 // duplicate enum warning.  A few common cases are exempted as follows:
16485 // Element2 = Element1
16486 // Element2 = Element1 + 1
16487 // Element2 = Element1 - 1
16488 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)16489 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16490   Expr *InitExpr = ECD->getInitExpr();
16491   if (!InitExpr)
16492     return true;
16493   InitExpr = InitExpr->IgnoreImpCasts();
16494 
16495   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16496     if (!BO->isAdditiveOp())
16497       return true;
16498     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16499     if (!IL)
16500       return true;
16501     if (IL->getValue() != 1)
16502       return true;
16503 
16504     InitExpr = BO->getLHS();
16505   }
16506 
16507   // This checks if the elements are from the same enum.
16508   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16509   if (!DRE)
16510     return true;
16511 
16512   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16513   if (!EnumConstant)
16514     return true;
16515 
16516   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16517       Enum)
16518     return true;
16519 
16520   return false;
16521 }
16522 
16523 // Emits a warning when an element is implicitly set a value that
16524 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)16525 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16526                                         EnumDecl *Enum, QualType EnumType) {
16527   // Avoid anonymous enums
16528   if (!Enum->getIdentifier())
16529     return;
16530 
16531   // Only check for small enums.
16532   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16533     return;
16534 
16535   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16536     return;
16537 
16538   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16539   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16540 
16541   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16542   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
16543 
16544   // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16545   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16546     llvm::APSInt Val = D->getInitVal();
16547     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16548   };
16549 
16550   DuplicatesVector DupVector;
16551   ValueToVectorMap EnumMap;
16552 
16553   // Populate the EnumMap with all values represented by enum constants without
16554   // an initializer.
16555   for (auto *Element : Elements) {
16556     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16557 
16558     // Null EnumConstantDecl means a previous diagnostic has been emitted for
16559     // this constant.  Skip this enum since it may be ill-formed.
16560     if (!ECD) {
16561       return;
16562     }
16563 
16564     // Constants with initalizers are handled in the next loop.
16565     if (ECD->getInitExpr())
16566       continue;
16567 
16568     // Duplicate values are handled in the next loop.
16569     EnumMap.insert({EnumConstantToKey(ECD), ECD});
16570   }
16571 
16572   if (EnumMap.size() == 0)
16573     return;
16574 
16575   // Create vectors for any values that has duplicates.
16576   for (auto *Element : Elements) {
16577     // The last loop returned if any constant was null.
16578     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16579     if (!ValidDuplicateEnum(ECD, Enum))
16580       continue;
16581 
16582     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16583     if (Iter == EnumMap.end())
16584       continue;
16585 
16586     DeclOrVector& Entry = Iter->second;
16587     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16588       // Ensure constants are different.
16589       if (D == ECD)
16590         continue;
16591 
16592       // Create new vector and push values onto it.
16593       auto Vec = llvm::make_unique<ECDVector>();
16594       Vec->push_back(D);
16595       Vec->push_back(ECD);
16596 
16597       // Update entry to point to the duplicates vector.
16598       Entry = Vec.get();
16599 
16600       // Store the vector somewhere we can consult later for quick emission of
16601       // diagnostics.
16602       DupVector.emplace_back(std::move(Vec));
16603       continue;
16604     }
16605 
16606     ECDVector *Vec = Entry.get<ECDVector*>();
16607     // Make sure constants are not added more than once.
16608     if (*Vec->begin() == ECD)
16609       continue;
16610 
16611     Vec->push_back(ECD);
16612   }
16613 
16614   // Emit diagnostics.
16615   for (const auto &Vec : DupVector) {
16616     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
16617 
16618     // Emit warning for one enum constant.
16619     auto *FirstECD = Vec->front();
16620     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16621       << FirstECD << FirstECD->getInitVal().toString(10)
16622       << FirstECD->getSourceRange();
16623 
16624     // Emit one note for each of the remaining enum constants with
16625     // the same value.
16626     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16627       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16628         << ECD << ECD->getInitVal().toString(10)
16629         << ECD->getSourceRange();
16630   }
16631 }
16632 
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const16633 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16634                              bool AllowMask) const {
16635   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
16636   assert(ED->isCompleteDefinition() && "expected enum definition");
16637 
16638   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16639   llvm::APInt &FlagBits = R.first->second;
16640 
16641   if (R.second) {
16642     for (auto *E : ED->enumerators()) {
16643       const auto &EVal = E->getInitVal();
16644       // Only single-bit enumerators introduce new flag values.
16645       if (EVal.isPowerOf2())
16646         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16647     }
16648   }
16649 
16650   // A value is in a flag enum if either its bits are a subset of the enum's
16651   // flag bits (the first condition) or we are allowing masks and the same is
16652   // true of its complement (the second condition). When masks are allowed, we
16653   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16654   //
16655   // While it's true that any value could be used as a mask, the assumption is
16656   // that a mask will have all of the insignificant bits set. Anything else is
16657   // likely a logic error.
16658   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16659   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16660 }
16661 
ActOnEnumBody(SourceLocation EnumLoc,SourceRange BraceRange,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,const ParsedAttributesView & Attrs)16662 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16663                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
16664                          const ParsedAttributesView &Attrs) {
16665   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16666   QualType EnumType = Context.getTypeDeclType(Enum);
16667 
16668   ProcessDeclAttributeList(S, Enum, Attrs);
16669 
16670   if (Enum->isDependentType()) {
16671     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16672       EnumConstantDecl *ECD =
16673         cast_or_null<EnumConstantDecl>(Elements[i]);
16674       if (!ECD) continue;
16675 
16676       ECD->setType(EnumType);
16677     }
16678 
16679     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16680     return;
16681   }
16682 
16683   // TODO: If the result value doesn't fit in an int, it must be a long or long
16684   // long value.  ISO C does not support this, but GCC does as an extension,
16685   // emit a warning.
16686   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16687   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16688   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16689 
16690   // Verify that all the values are okay, compute the size of the values, and
16691   // reverse the list.
16692   unsigned NumNegativeBits = 0;
16693   unsigned NumPositiveBits = 0;
16694 
16695   // Keep track of whether all elements have type int.
16696   bool AllElementsInt = true;
16697 
16698   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16699     EnumConstantDecl *ECD =
16700       cast_or_null<EnumConstantDecl>(Elements[i]);
16701     if (!ECD) continue;  // Already issued a diagnostic.
16702 
16703     const llvm::APSInt &InitVal = ECD->getInitVal();
16704 
16705     // Keep track of the size of positive and negative values.
16706     if (InitVal.isUnsigned() || InitVal.isNonNegative())
16707       NumPositiveBits = std::max(NumPositiveBits,
16708                                  (unsigned)InitVal.getActiveBits());
16709     else
16710       NumNegativeBits = std::max(NumNegativeBits,
16711                                  (unsigned)InitVal.getMinSignedBits());
16712 
16713     // Keep track of whether every enum element has type int (very common).
16714     if (AllElementsInt)
16715       AllElementsInt = ECD->getType() == Context.IntTy;
16716   }
16717 
16718   // Figure out the type that should be used for this enum.
16719   QualType BestType;
16720   unsigned BestWidth;
16721 
16722   // C++0x N3000 [conv.prom]p3:
16723   //   An rvalue of an unscoped enumeration type whose underlying
16724   //   type is not fixed can be converted to an rvalue of the first
16725   //   of the following types that can represent all the values of
16726   //   the enumeration: int, unsigned int, long int, unsigned long
16727   //   int, long long int, or unsigned long long int.
16728   // C99 6.4.4.3p2:
16729   //   An identifier declared as an enumeration constant has type int.
16730   // The C99 rule is modified by a gcc extension
16731   QualType BestPromotionType;
16732 
16733   bool Packed = Enum->hasAttr<PackedAttr>();
16734   // -fshort-enums is the equivalent to specifying the packed attribute on all
16735   // enum definitions.
16736   if (LangOpts.ShortEnums)
16737     Packed = true;
16738 
16739   // If the enum already has a type because it is fixed or dictated by the
16740   // target, promote that type instead of analyzing the enumerators.
16741   if (Enum->isComplete()) {
16742     BestType = Enum->getIntegerType();
16743     if (BestType->isPromotableIntegerType())
16744       BestPromotionType = Context.getPromotedIntegerType(BestType);
16745     else
16746       BestPromotionType = BestType;
16747 
16748     BestWidth = Context.getIntWidth(BestType);
16749   }
16750   else if (NumNegativeBits) {
16751     // If there is a negative value, figure out the smallest integer type (of
16752     // int/long/longlong) that fits.
16753     // If it's packed, check also if it fits a char or a short.
16754     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16755       BestType = Context.SignedCharTy;
16756       BestWidth = CharWidth;
16757     } else if (Packed && NumNegativeBits <= ShortWidth &&
16758                NumPositiveBits < ShortWidth) {
16759       BestType = Context.ShortTy;
16760       BestWidth = ShortWidth;
16761     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16762       BestType = Context.IntTy;
16763       BestWidth = IntWidth;
16764     } else {
16765       BestWidth = Context.getTargetInfo().getLongWidth();
16766 
16767       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16768         BestType = Context.LongTy;
16769       } else {
16770         BestWidth = Context.getTargetInfo().getLongLongWidth();
16771 
16772         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16773           Diag(Enum->getLocation(), diag::ext_enum_too_large);
16774         BestType = Context.LongLongTy;
16775       }
16776     }
16777     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16778   } else {
16779     // If there is no negative value, figure out the smallest type that fits
16780     // all of the enumerator values.
16781     // If it's packed, check also if it fits a char or a short.
16782     if (Packed && NumPositiveBits <= CharWidth) {
16783       BestType = Context.UnsignedCharTy;
16784       BestPromotionType = Context.IntTy;
16785       BestWidth = CharWidth;
16786     } else if (Packed && NumPositiveBits <= ShortWidth) {
16787       BestType = Context.UnsignedShortTy;
16788       BestPromotionType = Context.IntTy;
16789       BestWidth = ShortWidth;
16790     } else if (NumPositiveBits <= IntWidth) {
16791       BestType = Context.UnsignedIntTy;
16792       BestWidth = IntWidth;
16793       BestPromotionType
16794         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16795                            ? Context.UnsignedIntTy : Context.IntTy;
16796     } else if (NumPositiveBits <=
16797                (BestWidth = Context.getTargetInfo().getLongWidth())) {
16798       BestType = Context.UnsignedLongTy;
16799       BestPromotionType
16800         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16801                            ? Context.UnsignedLongTy : Context.LongTy;
16802     } else {
16803       BestWidth = Context.getTargetInfo().getLongLongWidth();
16804       assert(NumPositiveBits <= BestWidth &&
16805              "How could an initializer get larger than ULL?");
16806       BestType = Context.UnsignedLongLongTy;
16807       BestPromotionType
16808         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16809                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
16810     }
16811   }
16812 
16813   // Loop over all of the enumerator constants, changing their types to match
16814   // the type of the enum if needed.
16815   for (auto *D : Elements) {
16816     auto *ECD = cast_or_null<EnumConstantDecl>(D);
16817     if (!ECD) continue;  // Already issued a diagnostic.
16818 
16819     // Standard C says the enumerators have int type, but we allow, as an
16820     // extension, the enumerators to be larger than int size.  If each
16821     // enumerator value fits in an int, type it as an int, otherwise type it the
16822     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
16823     // that X has type 'int', not 'unsigned'.
16824 
16825     // Determine whether the value fits into an int.
16826     llvm::APSInt InitVal = ECD->getInitVal();
16827 
16828     // If it fits into an integer type, force it.  Otherwise force it to match
16829     // the enum decl type.
16830     QualType NewTy;
16831     unsigned NewWidth;
16832     bool NewSign;
16833     if (!getLangOpts().CPlusPlus &&
16834         !Enum->isFixed() &&
16835         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16836       NewTy = Context.IntTy;
16837       NewWidth = IntWidth;
16838       NewSign = true;
16839     } else if (ECD->getType() == BestType) {
16840       // Already the right type!
16841       if (getLangOpts().CPlusPlus)
16842         // C++ [dcl.enum]p4: Following the closing brace of an
16843         // enum-specifier, each enumerator has the type of its
16844         // enumeration.
16845         ECD->setType(EnumType);
16846       continue;
16847     } else {
16848       NewTy = BestType;
16849       NewWidth = BestWidth;
16850       NewSign = BestType->isSignedIntegerOrEnumerationType();
16851     }
16852 
16853     // Adjust the APSInt value.
16854     InitVal = InitVal.extOrTrunc(NewWidth);
16855     InitVal.setIsSigned(NewSign);
16856     ECD->setInitVal(InitVal);
16857 
16858     // Adjust the Expr initializer and type.
16859     if (ECD->getInitExpr() &&
16860         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
16861       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
16862                                                 CK_IntegralCast,
16863                                                 ECD->getInitExpr(),
16864                                                 /*base paths*/ nullptr,
16865                                                 VK_RValue));
16866     if (getLangOpts().CPlusPlus)
16867       // C++ [dcl.enum]p4: Following the closing brace of an
16868       // enum-specifier, each enumerator has the type of its
16869       // enumeration.
16870       ECD->setType(EnumType);
16871     else
16872       ECD->setType(NewTy);
16873   }
16874 
16875   Enum->completeDefinition(BestType, BestPromotionType,
16876                            NumPositiveBits, NumNegativeBits);
16877 
16878   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
16879 
16880   if (Enum->isClosedFlag()) {
16881     for (Decl *D : Elements) {
16882       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
16883       if (!ECD) continue;  // Already issued a diagnostic.
16884 
16885       llvm::APSInt InitVal = ECD->getInitVal();
16886       if (InitVal != 0 && !InitVal.isPowerOf2() &&
16887           !IsValueInFlagEnum(Enum, InitVal, true))
16888         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
16889           << ECD << Enum;
16890     }
16891   }
16892 
16893   // Now that the enum type is defined, ensure it's not been underaligned.
16894   if (Enum->hasAttrs())
16895     CheckAlignasUnderalignment(Enum);
16896 }
16897 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)16898 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
16899                                   SourceLocation StartLoc,
16900                                   SourceLocation EndLoc) {
16901   StringLiteral *AsmString = cast<StringLiteral>(expr);
16902 
16903   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
16904                                                    AsmString, StartLoc,
16905                                                    EndLoc);
16906   CurContext->addDecl(New);
16907   return New;
16908 }
16909 
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC,bool FromInclude=false)16910 static void checkModuleImportContext(Sema &S, Module *M,
16911                                      SourceLocation ImportLoc, DeclContext *DC,
16912                                      bool FromInclude = false) {
16913   SourceLocation ExternCLoc;
16914 
16915   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
16916     switch (LSD->getLanguage()) {
16917     case LinkageSpecDecl::lang_c:
16918       if (ExternCLoc.isInvalid())
16919         ExternCLoc = LSD->getBeginLoc();
16920       break;
16921     case LinkageSpecDecl::lang_cxx:
16922       break;
16923     }
16924     DC = LSD->getParent();
16925   }
16926 
16927   while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
16928     DC = DC->getParent();
16929 
16930   if (!isa<TranslationUnitDecl>(DC)) {
16931     S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
16932                           ? diag::ext_module_import_not_at_top_level_noop
16933                           : diag::err_module_import_not_at_top_level_fatal)
16934         << M->getFullModuleName() << DC;
16935     S.Diag(cast<Decl>(DC)->getBeginLoc(),
16936            diag::note_module_import_not_at_top_level)
16937         << DC;
16938   } else if (!M->IsExternC && ExternCLoc.isValid()) {
16939     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
16940       << M->getFullModuleName();
16941     S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
16942   }
16943 }
16944 
ActOnModuleDecl(SourceLocation StartLoc,SourceLocation ModuleLoc,ModuleDeclKind MDK,ModuleIdPath Path)16945 Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc,
16946                                            SourceLocation ModuleLoc,
16947                                            ModuleDeclKind MDK,
16948                                            ModuleIdPath Path) {
16949   assert(getLangOpts().ModulesTS &&
16950          "should only have module decl in modules TS");
16951 
16952   // A module implementation unit requires that we are not compiling a module
16953   // of any kind. A module interface unit requires that we are not compiling a
16954   // module map.
16955   switch (getLangOpts().getCompilingModule()) {
16956   case LangOptions::CMK_None:
16957     // It's OK to compile a module interface as a normal translation unit.
16958     break;
16959 
16960   case LangOptions::CMK_ModuleInterface:
16961     if (MDK != ModuleDeclKind::Implementation)
16962       break;
16963 
16964     // We were asked to compile a module interface unit but this is a module
16965     // implementation unit. That indicates the 'export' is missing.
16966     Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
16967       << FixItHint::CreateInsertion(ModuleLoc, "export ");
16968     MDK = ModuleDeclKind::Interface;
16969     break;
16970 
16971   case LangOptions::CMK_ModuleMap:
16972     Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
16973     return nullptr;
16974 
16975   case LangOptions::CMK_HeaderModule:
16976     Diag(ModuleLoc, diag::err_module_decl_in_header_module);
16977     return nullptr;
16978   }
16979 
16980   assert(ModuleScopes.size() == 1 && "expected to be at global module scope");
16981 
16982   // FIXME: Most of this work should be done by the preprocessor rather than
16983   // here, in order to support macro import.
16984 
16985   // Only one module-declaration is permitted per source file.
16986   if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) {
16987     Diag(ModuleLoc, diag::err_module_redeclaration);
16988     Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
16989          diag::note_prev_module_declaration);
16990     return nullptr;
16991   }
16992 
16993   // Flatten the dots in a module name. Unlike Clang's hierarchical module map
16994   // modules, the dots here are just another character that can appear in a
16995   // module name.
16996   std::string ModuleName;
16997   for (auto &Piece : Path) {
16998     if (!ModuleName.empty())
16999       ModuleName += ".";
17000     ModuleName += Piece.first->getName();
17001   }
17002 
17003   // If a module name was explicitly specified on the command line, it must be
17004   // correct.
17005   if (!getLangOpts().CurrentModule.empty() &&
17006       getLangOpts().CurrentModule != ModuleName) {
17007     Diag(Path.front().second, diag::err_current_module_name_mismatch)
17008         << SourceRange(Path.front().second, Path.back().second)
17009         << getLangOpts().CurrentModule;
17010     return nullptr;
17011   }
17012   const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
17013 
17014   auto &Map = PP.getHeaderSearchInfo().getModuleMap();
17015   Module *Mod;
17016 
17017   switch (MDK) {
17018   case ModuleDeclKind::Interface: {
17019     // We can't have parsed or imported a definition of this module or parsed a
17020     // module map defining it already.
17021     if (auto *M = Map.findModule(ModuleName)) {
17022       Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
17023       if (M->DefinitionLoc.isValid())
17024         Diag(M->DefinitionLoc, diag::note_prev_module_definition);
17025       else if (const auto *FE = M->getASTFile())
17026         Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
17027             << FE->getName();
17028       Mod = M;
17029       break;
17030     }
17031 
17032     // Create a Module for the module that we're defining.
17033     Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
17034                                            ModuleScopes.front().Module);
17035     assert(Mod && "module creation should not fail");
17036     break;
17037   }
17038 
17039   case ModuleDeclKind::Partition:
17040     // FIXME: Check we are in a submodule of the named module.
17041     return nullptr;
17042 
17043   case ModuleDeclKind::Implementation:
17044     std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
17045         PP.getIdentifierInfo(ModuleName), Path[0].second);
17046     Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
17047                                        Module::AllVisible,
17048                                        /*IsIncludeDirective=*/false);
17049     if (!Mod) {
17050       Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
17051       // Create an empty module interface unit for error recovery.
17052       Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
17053                                              ModuleScopes.front().Module);
17054     }
17055     break;
17056   }
17057 
17058   // Switch from the global module to the named module.
17059   ModuleScopes.back().Module = Mod;
17060   ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
17061   VisibleModules.setVisible(Mod, ModuleLoc);
17062 
17063   // From now on, we have an owning module for all declarations we see.
17064   // However, those declarations are module-private unless explicitly
17065   // exported.
17066   auto *TU = Context.getTranslationUnitDecl();
17067   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
17068   TU->setLocalOwningModule(Mod);
17069 
17070   // FIXME: Create a ModuleDecl.
17071   return nullptr;
17072 }
17073 
ActOnModuleImport(SourceLocation StartLoc,SourceLocation ImportLoc,ModuleIdPath Path)17074 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
17075                                    SourceLocation ImportLoc,
17076                                    ModuleIdPath Path) {
17077   // Flatten the module path for a Modules TS module name.
17078   std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
17079   if (getLangOpts().ModulesTS) {
17080     std::string ModuleName;
17081     for (auto &Piece : Path) {
17082       if (!ModuleName.empty())
17083         ModuleName += ".";
17084       ModuleName += Piece.first->getName();
17085     }
17086     ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
17087     Path = ModuleIdPath(ModuleNameLoc);
17088   }
17089 
17090   Module *Mod =
17091       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
17092                                    /*IsIncludeDirective=*/false);
17093   if (!Mod)
17094     return true;
17095 
17096   VisibleModules.setVisible(Mod, ImportLoc);
17097 
17098   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
17099 
17100   // FIXME: we should support importing a submodule within a different submodule
17101   // of the same top-level module. Until we do, make it an error rather than
17102   // silently ignoring the import.
17103   // Import-from-implementation is valid in the Modules TS. FIXME: Should we
17104   // warn on a redundant import of the current module?
17105   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
17106       (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS))
17107     Diag(ImportLoc, getLangOpts().isCompilingModule()
17108                         ? diag::err_module_self_import
17109                         : diag::err_module_import_in_implementation)
17110         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
17111 
17112   SmallVector<SourceLocation, 2> IdentifierLocs;
17113   Module *ModCheck = Mod;
17114   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
17115     // If we've run out of module parents, just drop the remaining identifiers.
17116     // We need the length to be consistent.
17117     if (!ModCheck)
17118       break;
17119     ModCheck = ModCheck->Parent;
17120 
17121     IdentifierLocs.push_back(Path[I].second);
17122   }
17123 
17124   ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
17125                                           Mod, IdentifierLocs);
17126   if (!ModuleScopes.empty())
17127     Context.addModuleInitializer(ModuleScopes.back().Module, Import);
17128   CurContext->addDecl(Import);
17129 
17130   // Re-export the module if needed.
17131   if (Import->isExported() &&
17132       !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface)
17133     getCurrentModule()->Exports.emplace_back(Mod, false);
17134 
17135   return Import;
17136 }
17137 
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)17138 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
17139   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
17140   BuildModuleInclude(DirectiveLoc, Mod);
17141 }
17142 
BuildModuleInclude(SourceLocation DirectiveLoc,Module * Mod)17143 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
17144   // Determine whether we're in the #include buffer for a module. The #includes
17145   // in that buffer do not qualify as module imports; they're just an
17146   // implementation detail of us building the module.
17147   //
17148   // FIXME: Should we even get ActOnModuleInclude calls for those?
17149   bool IsInModuleIncludes =
17150       TUKind == TU_Module &&
17151       getSourceManager().isWrittenInMainFile(DirectiveLoc);
17152 
17153   bool ShouldAddImport = !IsInModuleIncludes;
17154 
17155   // If this module import was due to an inclusion directive, create an
17156   // implicit import declaration to capture it in the AST.
17157   if (ShouldAddImport) {
17158     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
17159     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
17160                                                      DirectiveLoc, Mod,
17161                                                      DirectiveLoc);
17162     if (!ModuleScopes.empty())
17163       Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
17164     TU->addDecl(ImportD);
17165     Consumer.HandleImplicitImportDecl(ImportD);
17166   }
17167 
17168   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
17169   VisibleModules.setVisible(Mod, DirectiveLoc);
17170 }
17171 
ActOnModuleBegin(SourceLocation DirectiveLoc,Module * Mod)17172 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
17173   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
17174 
17175   ModuleScopes.push_back({});
17176   ModuleScopes.back().Module = Mod;
17177   if (getLangOpts().ModulesLocalVisibility)
17178     ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
17179 
17180   VisibleModules.setVisible(Mod, DirectiveLoc);
17181 
17182   // The enclosing context is now part of this module.
17183   // FIXME: Consider creating a child DeclContext to hold the entities
17184   // lexically within the module.
17185   if (getLangOpts().trackLocalOwningModule()) {
17186     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
17187       cast<Decl>(DC)->setModuleOwnershipKind(
17188           getLangOpts().ModulesLocalVisibility
17189               ? Decl::ModuleOwnershipKind::VisibleWhenImported
17190               : Decl::ModuleOwnershipKind::Visible);
17191       cast<Decl>(DC)->setLocalOwningModule(Mod);
17192     }
17193   }
17194 }
17195 
ActOnModuleEnd(SourceLocation EomLoc,Module * Mod)17196 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
17197   if (getLangOpts().ModulesLocalVisibility) {
17198     VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
17199     // Leaving a module hides namespace names, so our visible namespace cache
17200     // is now out of date.
17201     VisibleNamespaceCache.clear();
17202   }
17203 
17204   assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
17205          "left the wrong module scope");
17206   ModuleScopes.pop_back();
17207 
17208   // We got to the end of processing a local module. Create an
17209   // ImportDecl as we would for an imported module.
17210   FileID File = getSourceManager().getFileID(EomLoc);
17211   SourceLocation DirectiveLoc;
17212   if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
17213     // We reached the end of a #included module header. Use the #include loc.
17214     assert(File != getSourceManager().getMainFileID() &&
17215            "end of submodule in main source file");
17216     DirectiveLoc = getSourceManager().getIncludeLoc(File);
17217   } else {
17218     // We reached an EOM pragma. Use the pragma location.
17219     DirectiveLoc = EomLoc;
17220   }
17221   BuildModuleInclude(DirectiveLoc, Mod);
17222 
17223   // Any further declarations are in whatever module we returned to.
17224   if (getLangOpts().trackLocalOwningModule()) {
17225     // The parser guarantees that this is the same context that we entered
17226     // the module within.
17227     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
17228       cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
17229       if (!getCurrentModule())
17230         cast<Decl>(DC)->setModuleOwnershipKind(
17231             Decl::ModuleOwnershipKind::Unowned);
17232     }
17233   }
17234 }
17235 
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)17236 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
17237                                                       Module *Mod) {
17238   // Bail if we're not allowed to implicitly import a module here.
17239   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
17240       VisibleModules.isVisible(Mod))
17241     return;
17242 
17243   // Create the implicit import declaration.
17244   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
17245   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
17246                                                    Loc, Mod, Loc);
17247   TU->addDecl(ImportD);
17248   Consumer.HandleImplicitImportDecl(ImportD);
17249 
17250   // Make the module visible.
17251   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
17252   VisibleModules.setVisible(Mod, Loc);
17253 }
17254 
17255 /// We have parsed the start of an export declaration, including the '{'
17256 /// (if present).
ActOnStartExportDecl(Scope * S,SourceLocation ExportLoc,SourceLocation LBraceLoc)17257 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
17258                                  SourceLocation LBraceLoc) {
17259   ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
17260 
17261   // C++ Modules TS draft:
17262   //   An export-declaration shall appear in the purview of a module other than
17263   //   the global module.
17264   if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface)
17265     Diag(ExportLoc, diag::err_export_not_in_module_interface);
17266 
17267   //   An export-declaration [...] shall not contain more than one
17268   //   export keyword.
17269   //
17270   // The intent here is that an export-declaration cannot appear within another
17271   // export-declaration.
17272   if (D->isExported())
17273     Diag(ExportLoc, diag::err_export_within_export);
17274 
17275   CurContext->addDecl(D);
17276   PushDeclContext(S, D);
17277   D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
17278   return D;
17279 }
17280 
17281 /// Complete the definition of an export declaration.
ActOnFinishExportDecl(Scope * S,Decl * D,SourceLocation RBraceLoc)17282 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
17283   auto *ED = cast<ExportDecl>(D);
17284   if (RBraceLoc.isValid())
17285     ED->setRBraceLoc(RBraceLoc);
17286 
17287   // FIXME: Diagnose export of internal-linkage declaration (including
17288   // anonymous namespace).
17289 
17290   PopDeclContext();
17291   return D;
17292 }
17293 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)17294 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17295                                       IdentifierInfo* AliasName,
17296                                       SourceLocation PragmaLoc,
17297                                       SourceLocation NameLoc,
17298                                       SourceLocation AliasNameLoc) {
17299   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17300                                          LookupOrdinaryName);
17301   AsmLabelAttr *Attr =
17302       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17303 
17304   // If a declaration that:
17305   // 1) declares a function or a variable
17306   // 2) has external linkage
17307   // already exists, add a label attribute to it.
17308   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17309     if (isDeclExternC(PrevDecl))
17310       PrevDecl->addAttr(Attr);
17311     else
17312       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17313           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17314   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17315   } else
17316     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17317 }
17318 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)17319 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17320                              SourceLocation PragmaLoc,
17321                              SourceLocation NameLoc) {
17322   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17323 
17324   if (PrevDecl) {
17325     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17326   } else {
17327     (void)WeakUndeclaredIdentifiers.insert(
17328       std::pair<IdentifierInfo*,WeakInfo>
17329         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17330   }
17331 }
17332 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)17333 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17334                                 IdentifierInfo* AliasName,
17335                                 SourceLocation PragmaLoc,
17336                                 SourceLocation NameLoc,
17337                                 SourceLocation AliasNameLoc) {
17338   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17339                                     LookupOrdinaryName);
17340   WeakInfo W = WeakInfo(Name, NameLoc);
17341 
17342   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17343     if (!PrevDecl->hasAttr<AliasAttr>())
17344       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17345         DeclApplyPragmaWeak(TUScope, ND, W);
17346   } else {
17347     (void)WeakUndeclaredIdentifiers.insert(
17348       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17349   }
17350 }
17351 
getObjCDeclContext() const17352 Decl *Sema::getObjCDeclContext() const {
17353   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17354 }
17355