1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/ProgramPoint.h"
32 #include "clang/CrossTU/CrossTranslationUnit.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
getResultType() const70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
isCallback(QualType T)97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
isVoidPointerToNonConst(QualType T)121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
hasNonNullArgumentsWithType(bool (* Condition)(QualType)) const131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
hasNonZeroCallbackArg() const154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
hasVoidPointerToNonConstArg() const158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
isGlobalCFunction(StringRef FunctionName) const162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
getCalleeAnalysisDeclContext() const170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   // TODO: For now we skip functions without definitions, even if we have
176   // our own getDecl(), because it's hard to find out which re-declaration
177   // is going to be used, and usually clients don't really care about this
178   // situation because there's a loss of precision anyway because we cannot
179   // inline the call.
180   RuntimeDefinition RD = getRuntimeDefinition();
181   if (!RD.getDecl())
182     return nullptr;
183 
184   AnalysisDeclContext *ADC =
185       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186 
187   // TODO: For now we skip virtual functions, because this also rises
188   // the problem of which decl to use, but now it's across different classes.
189   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190     return nullptr;
191 
192   return ADC;
193 }
194 
getCalleeStackFrame() const195 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
196   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
197   if (!ADC)
198     return nullptr;
199 
200   const Expr *E = getOriginExpr();
201   if (!E)
202     return nullptr;
203 
204   // Recover CFG block via reverse lookup.
205   // TODO: If we were to keep CFG element information as part of the CallEvent
206   // instead of doing this reverse lookup, we would be able to build the stack
207   // frame for non-expression-based calls, and also we wouldn't need the reverse
208   // lookup.
209   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
210   const CFGBlock *B = Map->getBlock(E);
211   assert(B);
212 
213   // Also recover CFG index by scanning the CFG block.
214   unsigned Idx = 0, Sz = B->size();
215   for (; Idx < Sz; ++Idx)
216     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
217       if (StmtElem->getStmt() == E)
218         break;
219   assert(Idx < Sz);
220 
221   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
222 }
223 
getParameterLocation(unsigned Index) const224 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
225   const StackFrameContext *SFC = getCalleeStackFrame();
226   // We cannot construct a VarRegion without a stack frame.
227   if (!SFC)
228     return nullptr;
229 
230   // Retrieve parameters of the definition, which are different from
231   // CallEvent's parameters() because getDecl() isn't necessarily
232   // the definition. SFC contains the definition that would be used
233   // during analysis.
234   const Decl *D = SFC->getDecl();
235 
236   // TODO: Refactor into a virtual method of CallEvent, like parameters().
237   const ParmVarDecl *PVD = nullptr;
238   if (const auto *FD = dyn_cast<FunctionDecl>(D))
239     PVD = FD->parameters()[Index];
240   else if (const auto *BD = dyn_cast<BlockDecl>(D))
241     PVD = BD->parameters()[Index];
242   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
243     PVD = MD->parameters()[Index];
244   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
245     PVD = CD->parameters()[Index];
246   assert(PVD && "Unexpected Decl kind!");
247 
248   const VarRegion *VR =
249       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
250 
251   // This sanity check would fail if our parameter declaration doesn't
252   // correspond to the stack frame's function declaration.
253   assert(VR->getStackFrame() == SFC);
254 
255   return VR;
256 }
257 
258 /// Returns true if a type is a pointer-to-const or reference-to-const
259 /// with no further indirection.
isPointerToConst(QualType Ty)260 static bool isPointerToConst(QualType Ty) {
261   QualType PointeeTy = Ty->getPointeeType();
262   if (PointeeTy == QualType())
263     return false;
264   if (!PointeeTy.isConstQualified())
265     return false;
266   if (PointeeTy->isAnyPointerType())
267     return false;
268   return true;
269 }
270 
271 // Try to retrieve the function declaration and find the function parameter
272 // types which are pointers/references to a non-pointer const.
273 // We will not invalidate the corresponding argument regions.
findPtrToConstParams(llvm::SmallSet<unsigned,4> & PreserveArgs,const CallEvent & Call)274 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
275                                  const CallEvent &Call) {
276   unsigned Idx = 0;
277   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
278                                       E = Call.param_type_end();
279        I != E; ++I, ++Idx) {
280     if (isPointerToConst(*I))
281       PreserveArgs.insert(Idx);
282   }
283 }
284 
invalidateRegions(unsigned BlockCount,ProgramStateRef Orig) const285 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
286                                              ProgramStateRef Orig) const {
287   ProgramStateRef Result = (Orig ? Orig : getState());
288 
289   // Don't invalidate anything if the callee is marked pure/const.
290   if (const Decl *callee = getDecl())
291     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
292       return Result;
293 
294   SmallVector<SVal, 8> ValuesToInvalidate;
295   RegionAndSymbolInvalidationTraits ETraits;
296 
297   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
298 
299   // Indexes of arguments whose values will be preserved by the call.
300   llvm::SmallSet<unsigned, 4> PreserveArgs;
301   if (!argumentsMayEscape())
302     findPtrToConstParams(PreserveArgs, *this);
303 
304   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
305     // Mark this region for invalidation.  We batch invalidate regions
306     // below for efficiency.
307     if (PreserveArgs.count(Idx))
308       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
309         ETraits.setTrait(MR->getBaseRegion(),
310                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
311         // TODO: Factor this out + handle the lower level const pointers.
312 
313     ValuesToInvalidate.push_back(getArgSVal(Idx));
314 
315     // If a function accepts an object by argument (which would of course be a
316     // temporary that isn't lifetime-extended), invalidate the object itself,
317     // not only other objects reachable from it. This is necessary because the
318     // destructor has access to the temporary object after the call.
319     // TODO: Support placement arguments once we start
320     // constructing them directly.
321     // TODO: This is unnecessary when there's no destructor, but that's
322     // currently hard to figure out.
323     if (getKind() != CE_CXXAllocator)
324       if (isArgumentConstructedDirectly(Idx))
325         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
326           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
327             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
328   }
329 
330   // Invalidate designated regions using the batch invalidation API.
331   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
332   //  global variables.
333   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
334                                    BlockCount, getLocationContext(),
335                                    /*CausedByPointerEscape*/ true,
336                                    /*Symbols=*/nullptr, this, &ETraits);
337 }
338 
getProgramPoint(bool IsPreVisit,const ProgramPointTag * Tag) const339 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
340                                         const ProgramPointTag *Tag) const {
341   if (const Expr *E = getOriginExpr()) {
342     if (IsPreVisit)
343       return PreStmt(E, getLocationContext(), Tag);
344     return PostStmt(E, getLocationContext(), Tag);
345   }
346 
347   const Decl *D = getDecl();
348   assert(D && "Cannot get a program point without a statement or decl");
349 
350   SourceLocation Loc = getSourceRange().getBegin();
351   if (IsPreVisit)
352     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
353   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
354 }
355 
isCalled(const CallDescription & CD) const356 bool CallEvent::isCalled(const CallDescription &CD) const {
357   // FIXME: Add ObjC Message support.
358   if (getKind() == CE_ObjCMessage)
359     return false;
360   if (!CD.IsLookupDone) {
361     CD.IsLookupDone = true;
362     CD.II = &getState()->getStateManager().getContext().Idents.get(
363         CD.getFunctionName());
364   }
365   const IdentifierInfo *II = getCalleeIdentifier();
366   if (!II || II != CD.II)
367     return false;
368 
369   const Decl *D = getDecl();
370   // If CallDescription provides prefix names, use them to improve matching
371   // accuracy.
372   if (CD.QualifiedName.size() > 1 && D) {
373     const DeclContext *Ctx = D->getDeclContext();
374     // See if we'll be able to match them all.
375     size_t NumUnmatched = CD.QualifiedName.size() - 1;
376     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
377       if (NumUnmatched == 0)
378         break;
379 
380       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
381         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
382           --NumUnmatched;
383         continue;
384       }
385 
386       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
387         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
388           --NumUnmatched;
389         continue;
390       }
391     }
392 
393     if (NumUnmatched > 0)
394       return false;
395   }
396 
397   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
398           CD.RequiredArgs == getNumArgs());
399 }
400 
getArgSVal(unsigned Index) const401 SVal CallEvent::getArgSVal(unsigned Index) const {
402   const Expr *ArgE = getArgExpr(Index);
403   if (!ArgE)
404     return UnknownVal();
405   return getSVal(ArgE);
406 }
407 
getArgSourceRange(unsigned Index) const408 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
409   const Expr *ArgE = getArgExpr(Index);
410   if (!ArgE)
411     return {};
412   return ArgE->getSourceRange();
413 }
414 
getReturnValue() const415 SVal CallEvent::getReturnValue() const {
416   const Expr *E = getOriginExpr();
417   if (!E)
418     return UndefinedVal();
419   return getSVal(E);
420 }
421 
dump() const422 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
423 
dump(raw_ostream & Out) const424 void CallEvent::dump(raw_ostream &Out) const {
425   ASTContext &Ctx = getState()->getStateManager().getContext();
426   if (const Expr *E = getOriginExpr()) {
427     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
428     Out << "\n";
429     return;
430   }
431 
432   if (const Decl *D = getDecl()) {
433     Out << "Call to ";
434     D->print(Out, Ctx.getPrintingPolicy());
435     return;
436   }
437 
438   // FIXME: a string representation of the kind would be nice.
439   Out << "Unknown call (type " << getKind() << ")";
440 }
441 
isCallStmt(const Stmt * S)442 bool CallEvent::isCallStmt(const Stmt *S) {
443   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
444                           || isa<CXXConstructExpr>(S)
445                           || isa<CXXNewExpr>(S);
446 }
447 
getDeclaredResultType(const Decl * D)448 QualType CallEvent::getDeclaredResultType(const Decl *D) {
449   assert(D);
450   if (const auto *FD = dyn_cast<FunctionDecl>(D))
451     return FD->getReturnType();
452   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
453     return MD->getReturnType();
454   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
455     // Blocks are difficult because the return type may not be stored in the
456     // BlockDecl itself. The AST should probably be enhanced, but for now we
457     // just do what we can.
458     // If the block is declared without an explicit argument list, the
459     // signature-as-written just includes the return type, not the entire
460     // function type.
461     // FIXME: All blocks should have signatures-as-written, even if the return
462     // type is inferred. (That's signified with a dependent result type.)
463     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
464       QualType Ty = TSI->getType();
465       if (const FunctionType *FT = Ty->getAs<FunctionType>())
466         Ty = FT->getReturnType();
467       if (!Ty->isDependentType())
468         return Ty;
469     }
470 
471     return {};
472   }
473 
474   llvm_unreachable("unknown callable kind");
475 }
476 
isVariadic(const Decl * D)477 bool CallEvent::isVariadic(const Decl *D) {
478   assert(D);
479 
480   if (const auto *FD = dyn_cast<FunctionDecl>(D))
481     return FD->isVariadic();
482   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
483     return MD->isVariadic();
484   if (const auto *BD = dyn_cast<BlockDecl>(D))
485     return BD->isVariadic();
486 
487   llvm_unreachable("unknown callable kind");
488 }
489 
addParameterValuesToBindings(const StackFrameContext * CalleeCtx,CallEvent::BindingsTy & Bindings,SValBuilder & SVB,const CallEvent & Call,ArrayRef<ParmVarDecl * > parameters)490 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
491                                          CallEvent::BindingsTy &Bindings,
492                                          SValBuilder &SVB,
493                                          const CallEvent &Call,
494                                          ArrayRef<ParmVarDecl*> parameters) {
495   MemRegionManager &MRMgr = SVB.getRegionManager();
496 
497   // If the function has fewer parameters than the call has arguments, we simply
498   // do not bind any values to them.
499   unsigned NumArgs = Call.getNumArgs();
500   unsigned Idx = 0;
501   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
502   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
503     const ParmVarDecl *ParamDecl = *I;
504     assert(ParamDecl && "Formal parameter has no decl?");
505 
506     // TODO: Support allocator calls.
507     if (Call.getKind() != CE_CXXAllocator)
508       if (Call.isArgumentConstructedDirectly(Idx))
509         continue;
510 
511     // TODO: Allocators should receive the correct size and possibly alignment,
512     // determined in compile-time but not represented as arg-expressions,
513     // which makes getArgSVal() fail and return UnknownVal.
514     SVal ArgVal = Call.getArgSVal(Idx);
515     if (!ArgVal.isUnknown()) {
516       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
517       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
518     }
519   }
520 
521   // FIXME: Variadic arguments are not handled at all right now.
522 }
523 
parameters() const524 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
525   const FunctionDecl *D = getDecl();
526   if (!D)
527     return None;
528   return D->parameters();
529 }
530 
getRuntimeDefinition() const531 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
532   const FunctionDecl *FD = getDecl();
533   if (!FD)
534     return {};
535 
536   // Note that the AnalysisDeclContext will have the FunctionDecl with
537   // the definition (if one exists).
538   AnalysisDeclContext *AD =
539     getLocationContext()->getAnalysisDeclContext()->
540     getManager()->getContext(FD);
541   bool IsAutosynthesized;
542   Stmt* Body = AD->getBody(IsAutosynthesized);
543   LLVM_DEBUG({
544     if (IsAutosynthesized)
545       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
546                    << "\n";
547   });
548   if (Body) {
549     const Decl* Decl = AD->getDecl();
550     return RuntimeDefinition(Decl);
551   }
552 
553   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
554   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
555 
556   // Try to get CTU definition only if CTUDir is provided.
557   if (!Opts.IsNaiveCTUEnabled)
558     return {};
559 
560   cross_tu::CrossTranslationUnitContext &CTUCtx =
561       *Engine.getCrossTranslationUnitContext();
562   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
563       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
564                                   Opts.DisplayCTUProgress);
565 
566   if (!CTUDeclOrError) {
567     handleAllErrors(CTUDeclOrError.takeError(),
568                     [&](const cross_tu::IndexError &IE) {
569                       CTUCtx.emitCrossTUDiagnostics(IE);
570                     });
571     return {};
572   }
573 
574   return RuntimeDefinition(*CTUDeclOrError);
575 }
576 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const577 void AnyFunctionCall::getInitialStackFrameContents(
578                                         const StackFrameContext *CalleeCtx,
579                                         BindingsTy &Bindings) const {
580   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
581   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
582   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
583                                D->parameters());
584 }
585 
argumentsMayEscape() const586 bool AnyFunctionCall::argumentsMayEscape() const {
587   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
588     return true;
589 
590   const FunctionDecl *D = getDecl();
591   if (!D)
592     return true;
593 
594   const IdentifierInfo *II = D->getIdentifier();
595   if (!II)
596     return false;
597 
598   // This set of "escaping" APIs is
599 
600   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
601   //   value into thread local storage. The value can later be retrieved with
602   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
603   //   parameter is 'const void *', the region escapes through the call.
604   if (II->isStr("pthread_setspecific"))
605     return true;
606 
607   // - xpc_connection_set_context stores a value which can be retrieved later
608   //   with xpc_connection_get_context.
609   if (II->isStr("xpc_connection_set_context"))
610     return true;
611 
612   // - funopen - sets a buffer for future IO calls.
613   if (II->isStr("funopen"))
614     return true;
615 
616   // - __cxa_demangle - can reallocate memory and can return the pointer to
617   // the input buffer.
618   if (II->isStr("__cxa_demangle"))
619     return true;
620 
621   StringRef FName = II->getName();
622 
623   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
624   //   buffer even if it is const.
625   if (FName.endswith("NoCopy"))
626     return true;
627 
628   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
629   //   be deallocated by NSMapRemove.
630   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
631     return true;
632 
633   // - Many CF containers allow objects to escape through custom
634   //   allocators/deallocators upon container construction. (PR12101)
635   if (FName.startswith("CF") || FName.startswith("CG")) {
636     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
637            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
638            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
639            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
640            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
641            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
642   }
643 
644   return false;
645 }
646 
getDecl() const647 const FunctionDecl *SimpleFunctionCall::getDecl() const {
648   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
649   if (D)
650     return D;
651 
652   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
653 }
654 
getDecl() const655 const FunctionDecl *CXXInstanceCall::getDecl() const {
656   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
657   if (!CE)
658     return AnyFunctionCall::getDecl();
659 
660   const FunctionDecl *D = CE->getDirectCallee();
661   if (D)
662     return D;
663 
664   return getSVal(CE->getCallee()).getAsFunctionDecl();
665 }
666 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const667 void CXXInstanceCall::getExtraInvalidatedValues(
668     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
669   SVal ThisVal = getCXXThisVal();
670   Values.push_back(ThisVal);
671 
672   // Don't invalidate if the method is const and there are no mutable fields.
673   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
674     if (!D->isConst())
675       return;
676     // Get the record decl for the class of 'This'. D->getParent() may return a
677     // base class decl, rather than the class of the instance which needs to be
678     // checked for mutable fields.
679     // TODO: We might as well look at the dynamic type of the object.
680     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
681     QualType T = Ex->getType();
682     if (T->isPointerType()) // Arrow or implicit-this syntax?
683       T = T->getPointeeType();
684     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
685     assert(ParentRecord);
686     if (ParentRecord->hasMutableFields())
687       return;
688     // Preserve CXXThis.
689     const MemRegion *ThisRegion = ThisVal.getAsRegion();
690     if (!ThisRegion)
691       return;
692 
693     ETraits->setTrait(ThisRegion->getBaseRegion(),
694                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
695   }
696 }
697 
getCXXThisVal() const698 SVal CXXInstanceCall::getCXXThisVal() const {
699   const Expr *Base = getCXXThisExpr();
700   // FIXME: This doesn't handle an overloaded ->* operator.
701   if (!Base)
702     return UnknownVal();
703 
704   SVal ThisVal = getSVal(Base);
705   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
706   return ThisVal;
707 }
708 
getRuntimeDefinition() const709 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
710   // Do we have a decl at all?
711   const Decl *D = getDecl();
712   if (!D)
713     return {};
714 
715   // If the method is non-virtual, we know we can inline it.
716   const auto *MD = cast<CXXMethodDecl>(D);
717   if (!MD->isVirtual())
718     return AnyFunctionCall::getRuntimeDefinition();
719 
720   // Do we know the implicit 'this' object being called?
721   const MemRegion *R = getCXXThisVal().getAsRegion();
722   if (!R)
723     return {};
724 
725   // Do we know anything about the type of 'this'?
726   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
727   if (!DynType.isValid())
728     return {};
729 
730   // Is the type a C++ class? (This is mostly a defensive check.)
731   QualType RegionType = DynType.getType()->getPointeeType();
732   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
733 
734   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
735   if (!RD || !RD->hasDefinition())
736     return {};
737 
738   // Find the decl for this method in that class.
739   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
740   if (!Result) {
741     // We might not even get the original statically-resolved method due to
742     // some particularly nasty casting (e.g. casts to sister classes).
743     // However, we should at least be able to search up and down our own class
744     // hierarchy, and some real bugs have been caught by checking this.
745     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
746 
747     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
748     // the static type. However, because we currently don't update
749     // DynamicTypeInfo when an object is cast, we can't actually be sure the
750     // DynamicTypeInfo is up to date. This assert should be re-enabled once
751     // this is fixed. <rdar://problem/12287087>
752     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
753 
754     return {};
755   }
756 
757   // Does the decl that we found have an implementation?
758   const FunctionDecl *Definition;
759   if (!Result->hasBody(Definition))
760     return {};
761 
762   // We found a definition. If we're not sure that this devirtualization is
763   // actually what will happen at runtime, make sure to provide the region so
764   // that ExprEngine can decide what to do with it.
765   if (DynType.canBeASubClass())
766     return RuntimeDefinition(Definition, R->StripCasts());
767   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
768 }
769 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const770 void CXXInstanceCall::getInitialStackFrameContents(
771                                             const StackFrameContext *CalleeCtx,
772                                             BindingsTy &Bindings) const {
773   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
774 
775   // Handle the binding of 'this' in the new stack frame.
776   SVal ThisVal = getCXXThisVal();
777   if (!ThisVal.isUnknown()) {
778     ProgramStateManager &StateMgr = getState()->getStateManager();
779     SValBuilder &SVB = StateMgr.getSValBuilder();
780 
781     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
782     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
783 
784     // If we devirtualized to a different member function, we need to make sure
785     // we have the proper layering of CXXBaseObjectRegions.
786     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
787       ASTContext &Ctx = SVB.getContext();
788       const CXXRecordDecl *Class = MD->getParent();
789       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
790 
791       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
792       bool Failed;
793       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
794       if (Failed) {
795         // We might have suffered some sort of placement new earlier, so
796         // we're constructing in a completely unexpected storage.
797         // Fall back to a generic pointer cast for this-value.
798         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
799         const CXXRecordDecl *StaticClass = StaticMD->getParent();
800         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
801         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
802       }
803     }
804 
805     if (!ThisVal.isUnknown())
806       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
807   }
808 }
809 
getCXXThisExpr() const810 const Expr *CXXMemberCall::getCXXThisExpr() const {
811   return getOriginExpr()->getImplicitObjectArgument();
812 }
813 
getRuntimeDefinition() const814 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
815   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
816   // id-expression in the class member access expression is a qualified-id,
817   // that function is called. Otherwise, its final overrider in the dynamic type
818   // of the object expression is called.
819   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
820     if (ME->hasQualifier())
821       return AnyFunctionCall::getRuntimeDefinition();
822 
823   return CXXInstanceCall::getRuntimeDefinition();
824 }
825 
getCXXThisExpr() const826 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
827   return getOriginExpr()->getArg(0);
828 }
829 
getBlockRegion() const830 const BlockDataRegion *BlockCall::getBlockRegion() const {
831   const Expr *Callee = getOriginExpr()->getCallee();
832   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
833 
834   return dyn_cast_or_null<BlockDataRegion>(DataReg);
835 }
836 
parameters() const837 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
838   const BlockDecl *D = getDecl();
839   if (!D)
840     return None;
841   return D->parameters();
842 }
843 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const844 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
845                   RegionAndSymbolInvalidationTraits *ETraits) const {
846   // FIXME: This also needs to invalidate captured globals.
847   if (const MemRegion *R = getBlockRegion())
848     Values.push_back(loc::MemRegionVal(R));
849 }
850 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const851 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
852                                              BindingsTy &Bindings) const {
853   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
854   ArrayRef<ParmVarDecl*> Params;
855   if (isConversionFromLambda()) {
856     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
857     Params = LambdaOperatorDecl->parameters();
858 
859     // For blocks converted from a C++ lambda, the callee declaration is the
860     // operator() method on the lambda so we bind "this" to
861     // the lambda captured by the block.
862     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
863     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
864     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
865     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
866   } else {
867     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
868   }
869 
870   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
871                                Params);
872 }
873 
getCXXThisVal() const874 SVal CXXConstructorCall::getCXXThisVal() const {
875   if (Data)
876     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
877   return UnknownVal();
878 }
879 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const880 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
881                            RegionAndSymbolInvalidationTraits *ETraits) const {
882   if (Data) {
883     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
884     if (SymbolRef Sym = MV.getAsSymbol(true))
885       ETraits->setTrait(Sym,
886                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
887     Values.push_back(MV);
888   }
889 }
890 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const891 void CXXConstructorCall::getInitialStackFrameContents(
892                                              const StackFrameContext *CalleeCtx,
893                                              BindingsTy &Bindings) const {
894   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
895 
896   SVal ThisVal = getCXXThisVal();
897   if (!ThisVal.isUnknown()) {
898     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
899     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
900     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
901     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
902   }
903 }
904 
getCXXThisVal() const905 SVal CXXDestructorCall::getCXXThisVal() const {
906   if (Data)
907     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
908   return UnknownVal();
909 }
910 
getRuntimeDefinition() const911 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
912   // Base destructors are always called non-virtually.
913   // Skip CXXInstanceCall's devirtualization logic in this case.
914   if (isBaseDestructor())
915     return AnyFunctionCall::getRuntimeDefinition();
916 
917   return CXXInstanceCall::getRuntimeDefinition();
918 }
919 
parameters() const920 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
921   const ObjCMethodDecl *D = getDecl();
922   if (!D)
923     return None;
924   return D->parameters();
925 }
926 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const927 void ObjCMethodCall::getExtraInvalidatedValues(
928     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
929 
930   // If the method call is a setter for property known to be backed by
931   // an instance variable, don't invalidate the entire receiver, just
932   // the storage for that instance variable.
933   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
934     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
935       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
936       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
937         ETraits->setTrait(
938           IvarRegion,
939           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
940         ETraits->setTrait(
941           IvarRegion,
942           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
943         Values.push_back(IvarLVal);
944       }
945       return;
946     }
947   }
948 
949   Values.push_back(getReceiverSVal());
950 }
951 
getSelfSVal() const952 SVal ObjCMethodCall::getSelfSVal() const {
953   const LocationContext *LCtx = getLocationContext();
954   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
955   if (!SelfDecl)
956     return SVal();
957   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
958 }
959 
getReceiverSVal() const960 SVal ObjCMethodCall::getReceiverSVal() const {
961   // FIXME: Is this the best way to handle class receivers?
962   if (!isInstanceMessage())
963     return UnknownVal();
964 
965   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
966     return getSVal(RecE);
967 
968   // An instance message with no expression means we are sending to super.
969   // In this case the object reference is the same as 'self'.
970   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
971   SVal SelfVal = getSelfSVal();
972   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
973   return SelfVal;
974 }
975 
isReceiverSelfOrSuper() const976 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
977   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
978       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
979       return true;
980 
981   if (!isInstanceMessage())
982     return false;
983 
984   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
985 
986   return (RecVal == getSelfSVal());
987 }
988 
getSourceRange() const989 SourceRange ObjCMethodCall::getSourceRange() const {
990   switch (getMessageKind()) {
991   case OCM_Message:
992     return getOriginExpr()->getSourceRange();
993   case OCM_PropertyAccess:
994   case OCM_Subscript:
995     return getContainingPseudoObjectExpr()->getSourceRange();
996   }
997   llvm_unreachable("unknown message kind");
998 }
999 
1000 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1001 
getContainingPseudoObjectExpr() const1002 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1003   assert(Data && "Lazy lookup not yet performed.");
1004   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1005   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1006 }
1007 
1008 static const Expr *
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr * POE)1009 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1010   const Expr *Syntactic = POE->getSyntacticForm();
1011 
1012   // This handles the funny case of assigning to the result of a getter.
1013   // This can happen if the getter returns a non-const reference.
1014   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1015     Syntactic = BO->getLHS();
1016 
1017   return Syntactic;
1018 }
1019 
getMessageKind() const1020 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1021   if (!Data) {
1022     // Find the parent, ignoring implicit casts.
1023     ParentMap &PM = getLocationContext()->getParentMap();
1024     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1025 
1026     // Check if parent is a PseudoObjectExpr.
1027     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1028       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1029 
1030       ObjCMessageKind K;
1031       switch (Syntactic->getStmtClass()) {
1032       case Stmt::ObjCPropertyRefExprClass:
1033         K = OCM_PropertyAccess;
1034         break;
1035       case Stmt::ObjCSubscriptRefExprClass:
1036         K = OCM_Subscript;
1037         break;
1038       default:
1039         // FIXME: Can this ever happen?
1040         K = OCM_Message;
1041         break;
1042       }
1043 
1044       if (K != OCM_Message) {
1045         const_cast<ObjCMethodCall *>(this)->Data
1046           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1047         assert(getMessageKind() == K);
1048         return K;
1049       }
1050     }
1051 
1052     const_cast<ObjCMethodCall *>(this)->Data
1053       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1054     assert(getMessageKind() == OCM_Message);
1055     return OCM_Message;
1056   }
1057 
1058   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1059   if (!Info.getPointer())
1060     return OCM_Message;
1061   return static_cast<ObjCMessageKind>(Info.getInt());
1062 }
1063 
getAccessedProperty() const1064 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1065   // Look for properties accessed with property syntax (foo.bar = ...)
1066   if ( getMessageKind() == OCM_PropertyAccess) {
1067     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1068     assert(POE && "Property access without PseudoObjectExpr?");
1069 
1070     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1071     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1072 
1073     if (RefExpr->isExplicitProperty())
1074       return RefExpr->getExplicitProperty();
1075   }
1076 
1077   // Look for properties accessed with method syntax ([foo setBar:...]).
1078   const ObjCMethodDecl *MD = getDecl();
1079   if (!MD || !MD->isPropertyAccessor())
1080     return nullptr;
1081 
1082   // Note: This is potentially quite slow.
1083   return MD->findPropertyDecl();
1084 }
1085 
canBeOverridenInSubclass(ObjCInterfaceDecl * IDecl,Selector Sel) const1086 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1087                                              Selector Sel) const {
1088   assert(IDecl);
1089   AnalysisManager &AMgr =
1090       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1091   // If the class interface is declared inside the main file, assume it is not
1092   // subcassed.
1093   // TODO: It could actually be subclassed if the subclass is private as well.
1094   // This is probably very rare.
1095   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1096   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1097     return false;
1098 
1099   // Assume that property accessors are not overridden.
1100   if (getMessageKind() == OCM_PropertyAccess)
1101     return false;
1102 
1103   // We assume that if the method is public (declared outside of main file) or
1104   // has a parent which publicly declares the method, the method could be
1105   // overridden in a subclass.
1106 
1107   // Find the first declaration in the class hierarchy that declares
1108   // the selector.
1109   ObjCMethodDecl *D = nullptr;
1110   while (true) {
1111     D = IDecl->lookupMethod(Sel, true);
1112 
1113     // Cannot find a public definition.
1114     if (!D)
1115       return false;
1116 
1117     // If outside the main file,
1118     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1119       return true;
1120 
1121     if (D->isOverriding()) {
1122       // Search in the superclass on the next iteration.
1123       IDecl = D->getClassInterface();
1124       if (!IDecl)
1125         return false;
1126 
1127       IDecl = IDecl->getSuperClass();
1128       if (!IDecl)
1129         return false;
1130 
1131       continue;
1132     }
1133 
1134     return false;
1135   };
1136 
1137   llvm_unreachable("The while loop should always terminate.");
1138 }
1139 
findDefiningRedecl(const ObjCMethodDecl * MD)1140 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1141   if (!MD)
1142     return MD;
1143 
1144   // Find the redeclaration that defines the method.
1145   if (!MD->hasBody()) {
1146     for (auto I : MD->redecls())
1147       if (I->hasBody())
1148         MD = cast<ObjCMethodDecl>(I);
1149   }
1150   return MD;
1151 }
1152 
isCallToSelfClass(const ObjCMessageExpr * ME)1153 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1154   const Expr* InstRec = ME->getInstanceReceiver();
1155   if (!InstRec)
1156     return false;
1157   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1158 
1159   // Check that receiver is called 'self'.
1160   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1161       !InstRecIg->getFoundDecl()->getName().equals("self"))
1162     return false;
1163 
1164   // Check that the method name is 'class'.
1165   if (ME->getSelector().getNumArgs() != 0 ||
1166       !ME->getSelector().getNameForSlot(0).equals("class"))
1167     return false;
1168 
1169   return true;
1170 }
1171 
getRuntimeDefinition() const1172 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1173   const ObjCMessageExpr *E = getOriginExpr();
1174   assert(E);
1175   Selector Sel = E->getSelector();
1176 
1177   if (E->isInstanceMessage()) {
1178     // Find the receiver type.
1179     const ObjCObjectPointerType *ReceiverT = nullptr;
1180     bool CanBeSubClassed = false;
1181     QualType SupersType = E->getSuperType();
1182     const MemRegion *Receiver = nullptr;
1183 
1184     if (!SupersType.isNull()) {
1185       // The receiver is guaranteed to be 'super' in this case.
1186       // Super always means the type of immediate predecessor to the method
1187       // where the call occurs.
1188       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1189     } else {
1190       Receiver = getReceiverSVal().getAsRegion();
1191       if (!Receiver)
1192         return {};
1193 
1194       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1195       if (!DTI.isValid()) {
1196         assert(isa<AllocaRegion>(Receiver) &&
1197                "Unhandled untyped region class!");
1198         return {};
1199       }
1200 
1201       QualType DynType = DTI.getType();
1202       CanBeSubClassed = DTI.canBeASubClass();
1203       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1204 
1205       if (ReceiverT && CanBeSubClassed)
1206         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1207           if (!canBeOverridenInSubclass(IDecl, Sel))
1208             CanBeSubClassed = false;
1209     }
1210 
1211     // Handle special cases of '[self classMethod]' and
1212     // '[[self class] classMethod]', which are treated by the compiler as
1213     // instance (not class) messages. We will statically dispatch to those.
1214     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1215       // For [self classMethod], return the compiler visible declaration.
1216       if (PT->getObjectType()->isObjCClass() &&
1217           Receiver == getSelfSVal().getAsRegion())
1218         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1219 
1220       // Similarly, handle [[self class] classMethod].
1221       // TODO: We are currently doing a syntactic match for this pattern with is
1222       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1223       // shows. A better way would be to associate the meta type with the symbol
1224       // using the dynamic type info tracking and use it here. We can add a new
1225       // SVal for ObjC 'Class' values that know what interface declaration they
1226       // come from. Then 'self' in a class method would be filled in with
1227       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1228       // do proper dynamic dispatch for class methods just like we do for
1229       // instance methods now.
1230       if (E->getInstanceReceiver())
1231         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1232           if (isCallToSelfClass(M))
1233             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1234     }
1235 
1236     // Lookup the instance method implementation.
1237     if (ReceiverT)
1238       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1239         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1240         // when in many cases it returns null.  We cache the results so
1241         // that repeated queries on the same ObjCIntefaceDecl and Selector
1242         // don't incur the same cost.  On some test cases, we can see the
1243         // same query being issued thousands of times.
1244         //
1245         // NOTE: This cache is essentially a "global" variable, but it
1246         // only gets lazily created when we get here.  The value of the
1247         // cache probably comes from it being global across ExprEngines,
1248         // where the same queries may get issued.  If we are worried about
1249         // concurrency, or possibly loading/unloading ASTs, etc., we may
1250         // need to revisit this someday.  In terms of memory, this table
1251         // stays around until clang quits, which also may be bad if we
1252         // need to release memory.
1253         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1254         using PrivateMethodCache =
1255             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1256 
1257         static PrivateMethodCache PMC;
1258         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1259 
1260         // Query lookupPrivateMethod() if the cache does not hit.
1261         if (!Val.hasValue()) {
1262           Val = IDecl->lookupPrivateMethod(Sel);
1263 
1264           // If the method is a property accessor, we should try to "inline" it
1265           // even if we don't actually have an implementation.
1266           if (!*Val)
1267             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1268               if (CompileTimeMD->isPropertyAccessor()) {
1269                 if (!CompileTimeMD->getSelfDecl() &&
1270                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1271                   // If the method is an accessor in a category, and it doesn't
1272                   // have a self declaration, first
1273                   // try to find the method in a class extension. This
1274                   // works around a bug in Sema where multiple accessors
1275                   // are synthesized for properties in class
1276                   // extensions that are redeclared in a category and the
1277                   // the implicit parameters are not filled in for
1278                   // the method on the category.
1279                   // This ensures we find the accessor in the extension, which
1280                   // has the implicit parameters filled in.
1281                   auto *ID = CompileTimeMD->getClassInterface();
1282                   for (auto *CatDecl : ID->visible_extensions()) {
1283                     Val = CatDecl->getMethod(Sel,
1284                                              CompileTimeMD->isInstanceMethod());
1285                     if (*Val)
1286                       break;
1287                   }
1288                 }
1289                 if (!*Val)
1290                   Val = IDecl->lookupInstanceMethod(Sel);
1291               }
1292         }
1293 
1294         const ObjCMethodDecl *MD = Val.getValue();
1295         if (CanBeSubClassed)
1296           return RuntimeDefinition(MD, Receiver);
1297         else
1298           return RuntimeDefinition(MD, nullptr);
1299       }
1300   } else {
1301     // This is a class method.
1302     // If we have type info for the receiver class, we are calling via
1303     // class name.
1304     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1305       // Find/Return the method implementation.
1306       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1307     }
1308   }
1309 
1310   return {};
1311 }
1312 
argumentsMayEscape() const1313 bool ObjCMethodCall::argumentsMayEscape() const {
1314   if (isInSystemHeader() && !isInstanceMessage()) {
1315     Selector Sel = getSelector();
1316     if (Sel.getNumArgs() == 1 &&
1317         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1318       return true;
1319   }
1320 
1321   return CallEvent::argumentsMayEscape();
1322 }
1323 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const1324 void ObjCMethodCall::getInitialStackFrameContents(
1325                                              const StackFrameContext *CalleeCtx,
1326                                              BindingsTy &Bindings) const {
1327   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1328   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1329   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1330                                D->parameters());
1331 
1332   SVal SelfVal = getReceiverSVal();
1333   if (!SelfVal.isUnknown()) {
1334     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1335     MemRegionManager &MRMgr = SVB.getRegionManager();
1336     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1337     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1338   }
1339 }
1340 
1341 CallEventRef<>
getSimpleCall(const CallExpr * CE,ProgramStateRef State,const LocationContext * LCtx)1342 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1343                                 const LocationContext *LCtx) {
1344   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1345     return create<CXXMemberCall>(MCE, State, LCtx);
1346 
1347   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1348     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1349     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1350       if (MD->isInstance())
1351         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1352 
1353   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1354     return create<BlockCall>(CE, State, LCtx);
1355   }
1356 
1357   // Otherwise, it's a normal function call, static member function call, or
1358   // something we can't reason about.
1359   return create<SimpleFunctionCall>(CE, State, LCtx);
1360 }
1361 
1362 CallEventRef<>
getCaller(const StackFrameContext * CalleeCtx,ProgramStateRef State)1363 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1364                             ProgramStateRef State) {
1365   const LocationContext *ParentCtx = CalleeCtx->getParent();
1366   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1367   assert(CallerCtx && "This should not be used for top-level stack frames");
1368 
1369   const Stmt *CallSite = CalleeCtx->getCallSite();
1370 
1371   if (CallSite) {
1372     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1373       return Out;
1374 
1375     // All other cases are handled by getCall.
1376     assert(isa<CXXConstructExpr>(CallSite) &&
1377            "This is not an inlineable statement");
1378 
1379     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1380     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1381     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1382     SVal ThisVal = State->getSVal(ThisPtr);
1383 
1384     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1385                                  ThisVal.getAsRegion(), State, CallerCtx);
1386   }
1387 
1388   // Fall back to the CFG. The only thing we haven't handled yet is
1389   // destructors, though this could change in the future.
1390   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1391   CFGElement E = (*B)[CalleeCtx->getIndex()];
1392   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1393          "All other CFG elements should have exprs");
1394 
1395   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1396   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1397   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1398   SVal ThisVal = State->getSVal(ThisPtr);
1399 
1400   const Stmt *Trigger;
1401   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1402     Trigger = AutoDtor->getTriggerStmt();
1403   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1404     Trigger = DeleteDtor->getDeleteExpr();
1405   else
1406     Trigger = Dtor->getBody();
1407 
1408   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1409                               E.getAs<CFGBaseDtor>().hasValue(), State,
1410                               CallerCtx);
1411 }
1412 
getCall(const Stmt * S,ProgramStateRef State,const LocationContext * LC)1413 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1414                                          const LocationContext *LC) {
1415   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1416     return getSimpleCall(CE, State, LC);
1417   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1418     return getCXXAllocatorCall(NE, State, LC);
1419   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1420     return getObjCMethodCall(ME, State, LC);
1421   } else {
1422     return nullptr;
1423   }
1424 }
1425