1 //===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Clustering.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include <string>
14 
15 namespace llvm {
16 namespace exegesis {
17 
18 // The clustering problem has the following characteristics:
19 //  (A) - Low dimension (dimensions are typically proc resource units,
20 //    typically < 10).
21 //  (B) - Number of points : ~thousands (points are measurements of an MCInst)
22 //  (C) - Number of clusters: ~tens.
23 //  (D) - The number of clusters is not known /a priory/.
24 //  (E) - The amount of noise is relatively small.
25 // The problem is rather small. In terms of algorithms, (D) disqualifies
26 // k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
27 //
28 // We've used DBSCAN here because it's simple to implement. This is a pretty
29 // straightforward and inefficient implementation of the pseudocode in [2].
30 //
31 // [1] https://en.wikipedia.org/wiki/DBSCAN
32 // [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
33 
34 // Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
35 // including Q).
rangeQuery(const size_t Q,std::vector<size_t> & Neighbors) const36 void InstructionBenchmarkClustering::rangeQuery(
37     const size_t Q, std::vector<size_t> &Neighbors) const {
38   Neighbors.clear();
39   Neighbors.reserve(Points_.size() - 1); // The Q itself isn't a neighbor.
40   const auto &QMeasurements = Points_[Q].Measurements;
41   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
42     if (P == Q)
43       continue;
44     const auto &PMeasurements = Points_[P].Measurements;
45     if (PMeasurements.empty()) // Error point.
46       continue;
47     if (isNeighbour(PMeasurements, QMeasurements)) {
48       Neighbors.push_back(P);
49     }
50   }
51 }
52 
InstructionBenchmarkClustering(const std::vector<InstructionBenchmark> & Points,const double EpsilonSquared)53 InstructionBenchmarkClustering::InstructionBenchmarkClustering(
54     const std::vector<InstructionBenchmark> &Points,
55     const double EpsilonSquared)
56     : Points_(Points), EpsilonSquared_(EpsilonSquared),
57       NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
58 
validateAndSetup()59 llvm::Error InstructionBenchmarkClustering::validateAndSetup() {
60   ClusterIdForPoint_.resize(Points_.size());
61   // Mark erroneous measurements out.
62   // All points must have the same number of dimensions, in the same order.
63   const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
64   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
65     const auto &Point = Points_[P];
66     if (!Point.Error.empty()) {
67       ClusterIdForPoint_[P] = ClusterId::error();
68       ErrorCluster_.PointIndices.push_back(P);
69       continue;
70     }
71     const auto *CurMeasurement = &Point.Measurements;
72     if (LastMeasurement) {
73       if (LastMeasurement->size() != CurMeasurement->size()) {
74         return llvm::make_error<llvm::StringError>(
75             "inconsistent measurement dimensions",
76             llvm::inconvertibleErrorCode());
77       }
78       for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
79         if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
80           return llvm::make_error<llvm::StringError>(
81               "inconsistent measurement dimensions keys",
82               llvm::inconvertibleErrorCode());
83         }
84       }
85     }
86     LastMeasurement = CurMeasurement;
87   }
88   if (LastMeasurement) {
89     NumDimensions_ = LastMeasurement->size();
90   }
91   return llvm::Error::success();
92 }
93 
dbScan(const size_t MinPts)94 void InstructionBenchmarkClustering::dbScan(const size_t MinPts) {
95   std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs.
96   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
97     if (!ClusterIdForPoint_[P].isUndef())
98       continue; // Previously processed in inner loop.
99     rangeQuery(P, Neighbors);
100     if (Neighbors.size() + 1 < MinPts) { // Density check.
101       // The region around P is not dense enough to create a new cluster, mark
102       // as noise for now.
103       ClusterIdForPoint_[P] = ClusterId::noise();
104       continue;
105     }
106 
107     // Create a new cluster, add P.
108     Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
109     Cluster &CurrentCluster = Clusters_.back();
110     ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
111     CurrentCluster.PointIndices.push_back(P);
112 
113     // Process P's neighbors.
114     llvm::SetVector<size_t, std::deque<size_t>> ToProcess;
115     ToProcess.insert(Neighbors.begin(), Neighbors.end());
116     while (!ToProcess.empty()) {
117       // Retrieve a point from the set.
118       const size_t Q = *ToProcess.begin();
119       ToProcess.erase(ToProcess.begin());
120 
121       if (ClusterIdForPoint_[Q].isNoise()) {
122         // Change noise point to border point.
123         ClusterIdForPoint_[Q] = CurrentCluster.Id;
124         CurrentCluster.PointIndices.push_back(Q);
125         continue;
126       }
127       if (!ClusterIdForPoint_[Q].isUndef()) {
128         continue; // Previously processed.
129       }
130       // Add Q to the current custer.
131       ClusterIdForPoint_[Q] = CurrentCluster.Id;
132       CurrentCluster.PointIndices.push_back(Q);
133       // And extend to the neighbors of Q if the region is dense enough.
134       rangeQuery(Q, Neighbors);
135       if (Neighbors.size() + 1 >= MinPts) {
136         ToProcess.insert(Neighbors.begin(), Neighbors.end());
137       }
138     }
139   }
140   // assert(Neighbors.capacity() == (Points_.size() - 1));
141   // ^ True, but it is not quaranteed to be true in all the cases.
142 
143   // Add noisy points to noise cluster.
144   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
145     if (ClusterIdForPoint_[P].isNoise()) {
146       NoiseCluster_.PointIndices.push_back(P);
147     }
148   }
149 }
150 
151 llvm::Expected<InstructionBenchmarkClustering>
create(const std::vector<InstructionBenchmark> & Points,const size_t MinPts,const double Epsilon)152 InstructionBenchmarkClustering::create(
153     const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
154     const double Epsilon) {
155   InstructionBenchmarkClustering Clustering(Points, Epsilon * Epsilon);
156   if (auto Error = Clustering.validateAndSetup()) {
157     return std::move(Error);
158   }
159   if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
160     return Clustering; // Nothing to cluster.
161   }
162 
163   Clustering.dbScan(MinPts);
164   return Clustering;
165 }
166 
167 } // namespace exegesis
168 } // namespace llvm
169