1 //===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "Clustering.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include <string>
14
15 namespace llvm {
16 namespace exegesis {
17
18 // The clustering problem has the following characteristics:
19 // (A) - Low dimension (dimensions are typically proc resource units,
20 // typically < 10).
21 // (B) - Number of points : ~thousands (points are measurements of an MCInst)
22 // (C) - Number of clusters: ~tens.
23 // (D) - The number of clusters is not known /a priory/.
24 // (E) - The amount of noise is relatively small.
25 // The problem is rather small. In terms of algorithms, (D) disqualifies
26 // k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
27 //
28 // We've used DBSCAN here because it's simple to implement. This is a pretty
29 // straightforward and inefficient implementation of the pseudocode in [2].
30 //
31 // [1] https://en.wikipedia.org/wiki/DBSCAN
32 // [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
33
34 // Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
35 // including Q).
rangeQuery(const size_t Q,std::vector<size_t> & Neighbors) const36 void InstructionBenchmarkClustering::rangeQuery(
37 const size_t Q, std::vector<size_t> &Neighbors) const {
38 Neighbors.clear();
39 Neighbors.reserve(Points_.size() - 1); // The Q itself isn't a neighbor.
40 const auto &QMeasurements = Points_[Q].Measurements;
41 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
42 if (P == Q)
43 continue;
44 const auto &PMeasurements = Points_[P].Measurements;
45 if (PMeasurements.empty()) // Error point.
46 continue;
47 if (isNeighbour(PMeasurements, QMeasurements)) {
48 Neighbors.push_back(P);
49 }
50 }
51 }
52
InstructionBenchmarkClustering(const std::vector<InstructionBenchmark> & Points,const double EpsilonSquared)53 InstructionBenchmarkClustering::InstructionBenchmarkClustering(
54 const std::vector<InstructionBenchmark> &Points,
55 const double EpsilonSquared)
56 : Points_(Points), EpsilonSquared_(EpsilonSquared),
57 NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
58
validateAndSetup()59 llvm::Error InstructionBenchmarkClustering::validateAndSetup() {
60 ClusterIdForPoint_.resize(Points_.size());
61 // Mark erroneous measurements out.
62 // All points must have the same number of dimensions, in the same order.
63 const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
64 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
65 const auto &Point = Points_[P];
66 if (!Point.Error.empty()) {
67 ClusterIdForPoint_[P] = ClusterId::error();
68 ErrorCluster_.PointIndices.push_back(P);
69 continue;
70 }
71 const auto *CurMeasurement = &Point.Measurements;
72 if (LastMeasurement) {
73 if (LastMeasurement->size() != CurMeasurement->size()) {
74 return llvm::make_error<llvm::StringError>(
75 "inconsistent measurement dimensions",
76 llvm::inconvertibleErrorCode());
77 }
78 for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
79 if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
80 return llvm::make_error<llvm::StringError>(
81 "inconsistent measurement dimensions keys",
82 llvm::inconvertibleErrorCode());
83 }
84 }
85 }
86 LastMeasurement = CurMeasurement;
87 }
88 if (LastMeasurement) {
89 NumDimensions_ = LastMeasurement->size();
90 }
91 return llvm::Error::success();
92 }
93
dbScan(const size_t MinPts)94 void InstructionBenchmarkClustering::dbScan(const size_t MinPts) {
95 std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs.
96 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
97 if (!ClusterIdForPoint_[P].isUndef())
98 continue; // Previously processed in inner loop.
99 rangeQuery(P, Neighbors);
100 if (Neighbors.size() + 1 < MinPts) { // Density check.
101 // The region around P is not dense enough to create a new cluster, mark
102 // as noise for now.
103 ClusterIdForPoint_[P] = ClusterId::noise();
104 continue;
105 }
106
107 // Create a new cluster, add P.
108 Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
109 Cluster &CurrentCluster = Clusters_.back();
110 ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
111 CurrentCluster.PointIndices.push_back(P);
112
113 // Process P's neighbors.
114 llvm::SetVector<size_t, std::deque<size_t>> ToProcess;
115 ToProcess.insert(Neighbors.begin(), Neighbors.end());
116 while (!ToProcess.empty()) {
117 // Retrieve a point from the set.
118 const size_t Q = *ToProcess.begin();
119 ToProcess.erase(ToProcess.begin());
120
121 if (ClusterIdForPoint_[Q].isNoise()) {
122 // Change noise point to border point.
123 ClusterIdForPoint_[Q] = CurrentCluster.Id;
124 CurrentCluster.PointIndices.push_back(Q);
125 continue;
126 }
127 if (!ClusterIdForPoint_[Q].isUndef()) {
128 continue; // Previously processed.
129 }
130 // Add Q to the current custer.
131 ClusterIdForPoint_[Q] = CurrentCluster.Id;
132 CurrentCluster.PointIndices.push_back(Q);
133 // And extend to the neighbors of Q if the region is dense enough.
134 rangeQuery(Q, Neighbors);
135 if (Neighbors.size() + 1 >= MinPts) {
136 ToProcess.insert(Neighbors.begin(), Neighbors.end());
137 }
138 }
139 }
140 // assert(Neighbors.capacity() == (Points_.size() - 1));
141 // ^ True, but it is not quaranteed to be true in all the cases.
142
143 // Add noisy points to noise cluster.
144 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
145 if (ClusterIdForPoint_[P].isNoise()) {
146 NoiseCluster_.PointIndices.push_back(P);
147 }
148 }
149 }
150
151 llvm::Expected<InstructionBenchmarkClustering>
create(const std::vector<InstructionBenchmark> & Points,const size_t MinPts,const double Epsilon)152 InstructionBenchmarkClustering::create(
153 const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
154 const double Epsilon) {
155 InstructionBenchmarkClustering Clustering(Points, Epsilon * Epsilon);
156 if (auto Error = Clustering.validateAndSetup()) {
157 return std::move(Error);
158 }
159 if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
160 return Clustering; // Nothing to cluster.
161 }
162
163 Clustering.dbScan(MinPts);
164 return Clustering;
165 }
166
167 } // namespace exegesis
168 } // namespace llvm
169