1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
58 
59 namespace llvm {
60 
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
83 
84 class SDVTListNode : public FoldingSetNode {
85   friend struct FoldingSetTrait<SDVTListNode>;
86 
87   /// A reference to an Interned FoldingSetNodeID for this node.
88   /// The Allocator in SelectionDAG holds the data.
89   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90   /// The size of this list is not expected to be big so it won't introduce
91   /// a memory penalty.
92   FoldingSetNodeIDRef FastID;
93   const EVT *VTs;
94   unsigned int NumVTs;
95   /// The hash value for SDVTList is fixed, so cache it to avoid
96   /// hash calculation.
97   unsigned HashValue;
98 
99 public:
100   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101       FastID(ID), VTs(VT), NumVTs(Num) {
102     HashValue = ID.ComputeHash();
103   }
104 
105   SDVTList getSDVTList() {
106     SDVTList result = {VTs, NumVTs};
107     return result;
108   }
109 };
110 
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115     ID = X.FastID;
116   }
117 
118   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119                      unsigned IDHash, FoldingSetNodeID &TempID) {
120     if (X.HashValue != IDHash)
121       return false;
122     return ID == X.FastID;
123   }
124 
125   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126     return X.HashValue;
127   }
128 };
129 
130 template <> struct ilist_alloc_traits<SDNode> {
131   static void deleteNode(SDNode *) {
132     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
133   }
134 };
135 
136 /// Keeps track of dbg_value information through SDISel.  We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism.  There is good reason for handling all
143 /// parameters separately:  they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused.  Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148   BumpPtrAllocator Alloc;
149   SmallVector<SDDbgValue*, 32> DbgValues;
150   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151   SmallVector<SDDbgLabel*, 4> DbgLabels;
152   using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
153   DbgValMapType DbgValMap;
154 
155 public:
156   SDDbgInfo() = default;
157   SDDbgInfo(const SDDbgInfo &) = delete;
158   SDDbgInfo &operator=(const SDDbgInfo &) = delete;
159 
160   void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161     if (isParameter) {
162       ByvalParmDbgValues.push_back(V);
163     } else     DbgValues.push_back(V);
164     if (Node)
165       DbgValMap[Node].push_back(V);
166   }
167 
168   void add(SDDbgLabel *L) {
169     DbgLabels.push_back(L);
170   }
171 
172   /// Invalidate all DbgValues attached to the node and remove
173   /// it from the Node-to-DbgValues map.
174   void erase(const SDNode *Node);
175 
176   void clear() {
177     DbgValMap.clear();
178     DbgValues.clear();
179     ByvalParmDbgValues.clear();
180     DbgLabels.clear();
181     Alloc.Reset();
182   }
183 
184   BumpPtrAllocator &getAlloc() { return Alloc; }
185 
186   bool empty() const {
187     return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
188   }
189 
190   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
191     auto I = DbgValMap.find(Node);
192     if (I != DbgValMap.end())
193       return I->second;
194     return ArrayRef<SDDbgValue*>();
195   }
196 
197   using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
198   using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
199 
200   DbgIterator DbgBegin() { return DbgValues.begin(); }
201   DbgIterator DbgEnd()   { return DbgValues.end(); }
202   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
204   DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205   DbgLabelIterator DbgLabelEnd()   { return DbgLabels.end(); }
206 };
207 
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
209 
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
215 ///
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
220 ///
221 class SelectionDAG {
222   const TargetMachine &TM;
223   const SelectionDAGTargetInfo *TSI = nullptr;
224   const TargetLowering *TLI = nullptr;
225   const TargetLibraryInfo *LibInfo = nullptr;
226   MachineFunction *MF;
227   Pass *SDAGISelPass = nullptr;
228   LLVMContext *Context;
229   CodeGenOpt::Level OptLevel;
230 
231   LegacyDivergenceAnalysis * DA = nullptr;
232   FunctionLoweringInfo * FLI = nullptr;
233 
234   /// The function-level optimization remark emitter.  Used to emit remarks
235   /// whenever manipulating the DAG.
236   OptimizationRemarkEmitter *ORE;
237 
238   /// The starting token.
239   SDNode EntryNode;
240 
241   /// The root of the entire DAG.
242   SDValue Root;
243 
244   /// A linked list of nodes in the current DAG.
245   ilist<SDNode> AllNodes;
246 
247   /// The AllocatorType for allocating SDNodes. We use
248   /// pool allocation with recycling.
249   using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
250                                                sizeof(LargestSDNode),
251                                                alignof(MostAlignedSDNode)>;
252 
253   /// Pool allocation for nodes.
254   NodeAllocatorType NodeAllocator;
255 
256   /// This structure is used to memoize nodes, automatically performing
257   /// CSE with existing nodes when a duplicate is requested.
258   FoldingSet<SDNode> CSEMap;
259 
260   /// Pool allocation for machine-opcode SDNode operands.
261   BumpPtrAllocator OperandAllocator;
262   ArrayRecycler<SDUse> OperandRecycler;
263 
264   /// Pool allocation for misc. objects that are created once per SelectionDAG.
265   BumpPtrAllocator Allocator;
266 
267   /// Tracks dbg_value and dbg_label information through SDISel.
268   SDDbgInfo *DbgInfo;
269 
270   using CallSiteInfo = MachineFunction::CallSiteInfo;
271   using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
272 
273   struct CallSiteDbgInfo {
274     CallSiteInfo CSInfo;
275     MDNode *HeapAllocSite = nullptr;
276   };
277 
278   DenseMap<const SDNode *, CallSiteDbgInfo> SDCallSiteDbgInfo;
279 
280   uint16_t NextPersistentId = 0;
281 
282 public:
283   /// Clients of various APIs that cause global effects on
284   /// the DAG can optionally implement this interface.  This allows the clients
285   /// to handle the various sorts of updates that happen.
286   ///
287   /// A DAGUpdateListener automatically registers itself with DAG when it is
288   /// constructed, and removes itself when destroyed in RAII fashion.
289   struct DAGUpdateListener {
290     DAGUpdateListener *const Next;
291     SelectionDAG &DAG;
292 
293     explicit DAGUpdateListener(SelectionDAG &D)
294       : Next(D.UpdateListeners), DAG(D) {
295       DAG.UpdateListeners = this;
296     }
297 
298     virtual ~DAGUpdateListener() {
299       assert(DAG.UpdateListeners == this &&
300              "DAGUpdateListeners must be destroyed in LIFO order");
301       DAG.UpdateListeners = Next;
302     }
303 
304     /// The node N that was deleted and, if E is not null, an
305     /// equivalent node E that replaced it.
306     virtual void NodeDeleted(SDNode *N, SDNode *E);
307 
308     /// The node N that was updated.
309     virtual void NodeUpdated(SDNode *N);
310 
311     /// The node N that was inserted.
312     virtual void NodeInserted(SDNode *N);
313   };
314 
315   struct DAGNodeDeletedListener : public DAGUpdateListener {
316     std::function<void(SDNode *, SDNode *)> Callback;
317 
318     DAGNodeDeletedListener(SelectionDAG &DAG,
319                            std::function<void(SDNode *, SDNode *)> Callback)
320         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
321 
322     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
323 
324    private:
325     virtual void anchor();
326   };
327 
328   /// When true, additional steps are taken to
329   /// ensure that getConstant() and similar functions return DAG nodes that
330   /// have legal types. This is important after type legalization since
331   /// any illegally typed nodes generated after this point will not experience
332   /// type legalization.
333   bool NewNodesMustHaveLegalTypes = false;
334 
335 private:
336   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
337   friend struct DAGUpdateListener;
338 
339   /// Linked list of registered DAGUpdateListener instances.
340   /// This stack is maintained by DAGUpdateListener RAII.
341   DAGUpdateListener *UpdateListeners = nullptr;
342 
343   /// Implementation of setSubgraphColor.
344   /// Return whether we had to truncate the search.
345   bool setSubgraphColorHelper(SDNode *N, const char *Color,
346                               DenseSet<SDNode *> &visited,
347                               int level, bool &printed);
348 
349   template <typename SDNodeT, typename... ArgTypes>
350   SDNodeT *newSDNode(ArgTypes &&... Args) {
351     return new (NodeAllocator.template Allocate<SDNodeT>())
352         SDNodeT(std::forward<ArgTypes>(Args)...);
353   }
354 
355   /// Build a synthetic SDNodeT with the given args and extract its subclass
356   /// data as an integer (e.g. for use in a folding set).
357   ///
358   /// The args to this function are the same as the args to SDNodeT's
359   /// constructor, except the second arg (assumed to be a const DebugLoc&) is
360   /// omitted.
361   template <typename SDNodeT, typename... ArgTypes>
362   static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
363                                                ArgTypes &&... Args) {
364     // The compiler can reduce this expression to a constant iff we pass an
365     // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
366     // on the subclass data.
367     return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
368         .getRawSubclassData();
369   }
370 
371   template <typename SDNodeTy>
372   static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
373                                                 SDVTList VTs, EVT MemoryVT,
374                                                 MachineMemOperand *MMO) {
375     return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
376          .getRawSubclassData();
377   }
378 
379   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
380 
381   void removeOperands(SDNode *Node) {
382     if (!Node->OperandList)
383       return;
384     OperandRecycler.deallocate(
385         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
386         Node->OperandList);
387     Node->NumOperands = 0;
388     Node->OperandList = nullptr;
389   }
390   void CreateTopologicalOrder(std::vector<SDNode*>& Order);
391 public:
392   explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
393   SelectionDAG(const SelectionDAG &) = delete;
394   SelectionDAG &operator=(const SelectionDAG &) = delete;
395   ~SelectionDAG();
396 
397   /// Prepare this SelectionDAG to process code in the given MachineFunction.
398   void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
399             Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
400             LegacyDivergenceAnalysis * Divergence);
401 
402   void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
403     FLI = FuncInfo;
404   }
405 
406   /// Clear state and free memory necessary to make this
407   /// SelectionDAG ready to process a new block.
408   void clear();
409 
410   MachineFunction &getMachineFunction() const { return *MF; }
411   const Pass *getPass() const { return SDAGISelPass; }
412 
413   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
414   const TargetMachine &getTarget() const { return TM; }
415   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
416   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
417   const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
418   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
419   const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
420   LLVMContext *getContext() const {return Context; }
421   OptimizationRemarkEmitter &getORE() const { return *ORE; }
422 
423   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
424   void viewGraph(const std::string &Title);
425   void viewGraph();
426 
427 #ifndef NDEBUG
428   std::map<const SDNode *, std::string> NodeGraphAttrs;
429 #endif
430 
431   /// Clear all previously defined node graph attributes.
432   /// Intended to be used from a debugging tool (eg. gdb).
433   void clearGraphAttrs();
434 
435   /// Set graph attributes for a node. (eg. "color=red".)
436   void setGraphAttrs(const SDNode *N, const char *Attrs);
437 
438   /// Get graph attributes for a node. (eg. "color=red".)
439   /// Used from getNodeAttributes.
440   const std::string getGraphAttrs(const SDNode *N) const;
441 
442   /// Convenience for setting node color attribute.
443   void setGraphColor(const SDNode *N, const char *Color);
444 
445   /// Convenience for setting subgraph color attribute.
446   void setSubgraphColor(SDNode *N, const char *Color);
447 
448   using allnodes_const_iterator = ilist<SDNode>::const_iterator;
449 
450   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
451   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
452 
453   using allnodes_iterator = ilist<SDNode>::iterator;
454 
455   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
456   allnodes_iterator allnodes_end() { return AllNodes.end(); }
457 
458   ilist<SDNode>::size_type allnodes_size() const {
459     return AllNodes.size();
460   }
461 
462   iterator_range<allnodes_iterator> allnodes() {
463     return make_range(allnodes_begin(), allnodes_end());
464   }
465   iterator_range<allnodes_const_iterator> allnodes() const {
466     return make_range(allnodes_begin(), allnodes_end());
467   }
468 
469   /// Return the root tag of the SelectionDAG.
470   const SDValue &getRoot() const { return Root; }
471 
472   /// Return the token chain corresponding to the entry of the function.
473   SDValue getEntryNode() const {
474     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
475   }
476 
477   /// Set the current root tag of the SelectionDAG.
478   ///
479   const SDValue &setRoot(SDValue N) {
480     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
481            "DAG root value is not a chain!");
482     if (N.getNode())
483       checkForCycles(N.getNode(), this);
484     Root = N;
485     if (N.getNode())
486       checkForCycles(this);
487     return Root;
488   }
489 
490 #ifndef NDEBUG
491   void VerifyDAGDiverence();
492 #endif
493 
494   /// This iterates over the nodes in the SelectionDAG, folding
495   /// certain types of nodes together, or eliminating superfluous nodes.  The
496   /// Level argument controls whether Combine is allowed to produce nodes and
497   /// types that are illegal on the target.
498   void Combine(CombineLevel Level, AliasAnalysis *AA,
499                CodeGenOpt::Level OptLevel);
500 
501   /// This transforms the SelectionDAG into a SelectionDAG that
502   /// only uses types natively supported by the target.
503   /// Returns "true" if it made any changes.
504   ///
505   /// Note that this is an involved process that may invalidate pointers into
506   /// the graph.
507   bool LegalizeTypes();
508 
509   /// This transforms the SelectionDAG into a SelectionDAG that is
510   /// compatible with the target instruction selector, as indicated by the
511   /// TargetLowering object.
512   ///
513   /// Note that this is an involved process that may invalidate pointers into
514   /// the graph.
515   void Legalize();
516 
517   /// Transforms a SelectionDAG node and any operands to it into a node
518   /// that is compatible with the target instruction selector, as indicated by
519   /// the TargetLowering object.
520   ///
521   /// \returns true if \c N is a valid, legal node after calling this.
522   ///
523   /// This essentially runs a single recursive walk of the \c Legalize process
524   /// over the given node (and its operands). This can be used to incrementally
525   /// legalize the DAG. All of the nodes which are directly replaced,
526   /// potentially including N, are added to the output parameter \c
527   /// UpdatedNodes so that the delta to the DAG can be understood by the
528   /// caller.
529   ///
530   /// When this returns false, N has been legalized in a way that make the
531   /// pointer passed in no longer valid. It may have even been deleted from the
532   /// DAG, and so it shouldn't be used further. When this returns true, the
533   /// N passed in is a legal node, and can be immediately processed as such.
534   /// This may still have done some work on the DAG, and will still populate
535   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
536   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
537 
538   /// This transforms the SelectionDAG into a SelectionDAG
539   /// that only uses vector math operations supported by the target.  This is
540   /// necessary as a separate step from Legalize because unrolling a vector
541   /// operation can introduce illegal types, which requires running
542   /// LegalizeTypes again.
543   ///
544   /// This returns true if it made any changes; in that case, LegalizeTypes
545   /// is called again before Legalize.
546   ///
547   /// Note that this is an involved process that may invalidate pointers into
548   /// the graph.
549   bool LegalizeVectors();
550 
551   /// This method deletes all unreachable nodes in the SelectionDAG.
552   void RemoveDeadNodes();
553 
554   /// Remove the specified node from the system.  This node must
555   /// have no referrers.
556   void DeleteNode(SDNode *N);
557 
558   /// Return an SDVTList that represents the list of values specified.
559   SDVTList getVTList(EVT VT);
560   SDVTList getVTList(EVT VT1, EVT VT2);
561   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
562   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
563   SDVTList getVTList(ArrayRef<EVT> VTs);
564 
565   //===--------------------------------------------------------------------===//
566   // Node creation methods.
567 
568   /// Create a ConstantSDNode wrapping a constant value.
569   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
570   ///
571   /// If only legal types can be produced, this does the necessary
572   /// transformations (e.g., if the vector element type is illegal).
573   /// @{
574   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
575                       bool isTarget = false, bool isOpaque = false);
576   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
577                       bool isTarget = false, bool isOpaque = false);
578 
579   SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
580                              bool IsOpaque = false) {
581     return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
582                        VT, IsTarget, IsOpaque);
583   }
584 
585   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
586                       bool isTarget = false, bool isOpaque = false);
587   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
588                             bool isTarget = false);
589   SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
590                                  bool LegalTypes = true);
591 
592   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
593                             bool isOpaque = false) {
594     return getConstant(Val, DL, VT, true, isOpaque);
595   }
596   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
597                             bool isOpaque = false) {
598     return getConstant(Val, DL, VT, true, isOpaque);
599   }
600   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
601                             bool isOpaque = false) {
602     return getConstant(Val, DL, VT, true, isOpaque);
603   }
604 
605   /// Create a true or false constant of type \p VT using the target's
606   /// BooleanContent for type \p OpVT.
607   SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
608   /// @}
609 
610   /// Create a ConstantFPSDNode wrapping a constant value.
611   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
612   ///
613   /// If only legal types can be produced, this does the necessary
614   /// transformations (e.g., if the vector element type is illegal).
615   /// The forms that take a double should only be used for simple constants
616   /// that can be exactly represented in VT.  No checks are made.
617   /// @{
618   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
619                         bool isTarget = false);
620   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
621                         bool isTarget = false);
622   SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
623                         bool isTarget = false);
624   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
625     return getConstantFP(Val, DL, VT, true);
626   }
627   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
628     return getConstantFP(Val, DL, VT, true);
629   }
630   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
631     return getConstantFP(Val, DL, VT, true);
632   }
633   /// @}
634 
635   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
636                            int64_t offset = 0, bool isTargetGA = false,
637                            unsigned char TargetFlags = 0);
638   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
639                                  int64_t offset = 0,
640                                  unsigned char TargetFlags = 0) {
641     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
642   }
643   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
644   SDValue getTargetFrameIndex(int FI, EVT VT) {
645     return getFrameIndex(FI, VT, true);
646   }
647   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
648                        unsigned char TargetFlags = 0);
649   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
650     return getJumpTable(JTI, VT, true, TargetFlags);
651   }
652   SDValue getConstantPool(const Constant *C, EVT VT,
653                           unsigned Align = 0, int Offs = 0, bool isT=false,
654                           unsigned char TargetFlags = 0);
655   SDValue getTargetConstantPool(const Constant *C, EVT VT,
656                                 unsigned Align = 0, int Offset = 0,
657                                 unsigned char TargetFlags = 0) {
658     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
659   }
660   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
661                           unsigned Align = 0, int Offs = 0, bool isT=false,
662                           unsigned char TargetFlags = 0);
663   SDValue getTargetConstantPool(MachineConstantPoolValue *C,
664                                   EVT VT, unsigned Align = 0,
665                                   int Offset = 0, unsigned char TargetFlags=0) {
666     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
667   }
668   SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
669                          unsigned char TargetFlags = 0);
670   // When generating a branch to a BB, we don't in general know enough
671   // to provide debug info for the BB at that time, so keep this one around.
672   SDValue getBasicBlock(MachineBasicBlock *MBB);
673   SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
674   SDValue getExternalSymbol(const char *Sym, EVT VT);
675   SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
676   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
677                                   unsigned char TargetFlags = 0);
678   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
679 
680   SDValue getValueType(EVT);
681   SDValue getRegister(unsigned Reg, EVT VT);
682   SDValue getRegisterMask(const uint32_t *RegMask);
683   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
684   SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
685                        MCSymbol *Label);
686   SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
687                           int64_t Offset = 0, bool isTarget = false,
688                           unsigned char TargetFlags = 0);
689   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
690                                 int64_t Offset = 0,
691                                 unsigned char TargetFlags = 0) {
692     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
693   }
694 
695   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
696                        SDValue N) {
697     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
698                    getRegister(Reg, N.getValueType()), N);
699   }
700 
701   // This version of the getCopyToReg method takes an extra operand, which
702   // indicates that there is potentially an incoming glue value (if Glue is not
703   // null) and that there should be a glue result.
704   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
705                        SDValue Glue) {
706     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
707     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
708     return getNode(ISD::CopyToReg, dl, VTs,
709                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
710   }
711 
712   // Similar to last getCopyToReg() except parameter Reg is a SDValue
713   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
714                        SDValue Glue) {
715     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
716     SDValue Ops[] = { Chain, Reg, N, Glue };
717     return getNode(ISD::CopyToReg, dl, VTs,
718                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
719   }
720 
721   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
722     SDVTList VTs = getVTList(VT, MVT::Other);
723     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
724     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
725   }
726 
727   // This version of the getCopyFromReg method takes an extra operand, which
728   // indicates that there is potentially an incoming glue value (if Glue is not
729   // null) and that there should be a glue result.
730   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
731                          SDValue Glue) {
732     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
733     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
734     return getNode(ISD::CopyFromReg, dl, VTs,
735                    makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
736   }
737 
738   SDValue getCondCode(ISD::CondCode Cond);
739 
740   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
741   /// which must be a vector type, must match the number of mask elements
742   /// NumElts. An integer mask element equal to -1 is treated as undefined.
743   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
744                            ArrayRef<int> Mask);
745 
746   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
747   /// which must be a vector type, must match the number of operands in Ops.
748   /// The operands must have the same type as (or, for integers, a type wider
749   /// than) VT's element type.
750   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
751     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
752     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
753   }
754 
755   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
756   /// which must be a vector type, must match the number of operands in Ops.
757   /// The operands must have the same type as (or, for integers, a type wider
758   /// than) VT's element type.
759   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
760     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
761     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
762   }
763 
764   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
765   /// elements. VT must be a vector type. Op's type must be the same as (or,
766   /// for integers, a type wider than) VT's element type.
767   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
768     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
769     if (Op.getOpcode() == ISD::UNDEF) {
770       assert((VT.getVectorElementType() == Op.getValueType() ||
771               (VT.isInteger() &&
772                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
773              "A splatted value must have a width equal or (for integers) "
774              "greater than the vector element type!");
775       return getNode(ISD::UNDEF, SDLoc(), VT);
776     }
777 
778     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
779     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
780   }
781 
782   /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
783   /// the shuffle node in input but with swapped operands.
784   ///
785   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
786   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
787 
788   /// Convert Op, which must be of float type, to the
789   /// float type VT, by either extending or rounding (by truncation).
790   SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
791 
792   /// Convert Op, which must be of integer type, to the
793   /// integer type VT, by either any-extending or truncating it.
794   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
795 
796   /// Convert Op, which must be of integer type, to the
797   /// integer type VT, by either sign-extending or truncating it.
798   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
799 
800   /// Convert Op, which must be of integer type, to the
801   /// integer type VT, by either zero-extending or truncating it.
802   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
803 
804   /// Return the expression required to zero extend the Op
805   /// value assuming it was the smaller SrcTy value.
806   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
807 
808   /// Convert Op, which must be of integer type, to the integer type VT, by
809   /// either truncating it or performing either zero or sign extension as
810   /// appropriate extension for the pointer's semantics.
811   SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
812 
813   /// Return the expression required to extend the Op as a pointer value
814   /// assuming it was the smaller SrcTy value. This may be either a zero extend
815   /// or a sign extend.
816   SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
817 
818   /// Convert Op, which must be of integer type, to the integer type VT,
819   /// by using an extension appropriate for the target's
820   /// BooleanContent for type OpVT or truncating it.
821   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
822 
823   /// Create a bitwise NOT operation as (XOR Val, -1).
824   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
825 
826   /// Create a logical NOT operation as (XOR Val, BooleanOne).
827   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
828 
829   /// Create an add instruction with appropriate flags when used for
830   /// addressing some offset of an object. i.e. if a load is split into multiple
831   /// components, create an add nuw from the base pointer to the offset.
832   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
833     EVT VT = Op.getValueType();
834     return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
835   }
836 
837   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
838     EVT VT = Op.getValueType();
839 
840     // The object itself can't wrap around the address space, so it shouldn't be
841     // possible for the adds of the offsets to the split parts to overflow.
842     SDNodeFlags Flags;
843     Flags.setNoUnsignedWrap(true);
844     return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
845   }
846 
847   /// Return a new CALLSEQ_START node, that starts new call frame, in which
848   /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
849   /// OutSize specifies part of the frame set up prior to the sequence.
850   SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
851                            const SDLoc &DL) {
852     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
853     SDValue Ops[] = { Chain,
854                       getIntPtrConstant(InSize, DL, true),
855                       getIntPtrConstant(OutSize, DL, true) };
856     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
857   }
858 
859   /// Return a new CALLSEQ_END node, which always must have a
860   /// glue result (to ensure it's not CSE'd).
861   /// CALLSEQ_END does not have a useful SDLoc.
862   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
863                          SDValue InGlue, const SDLoc &DL) {
864     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
865     SmallVector<SDValue, 4> Ops;
866     Ops.push_back(Chain);
867     Ops.push_back(Op1);
868     Ops.push_back(Op2);
869     if (InGlue.getNode())
870       Ops.push_back(InGlue);
871     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
872   }
873 
874   /// Return true if the result of this operation is always undefined.
875   bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
876 
877   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
878   SDValue getUNDEF(EVT VT) {
879     return getNode(ISD::UNDEF, SDLoc(), VT);
880   }
881 
882   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
883   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
884     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
885   }
886 
887   /// Gets or creates the specified node.
888   ///
889   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
890                   ArrayRef<SDUse> Ops);
891   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
892                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
893   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
894                   ArrayRef<SDValue> Ops);
895   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
896                   ArrayRef<SDValue> Ops);
897 
898   // Specialize based on number of operands.
899   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
900   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
901                   const SDNodeFlags Flags = SDNodeFlags());
902   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
903                   SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
904   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
905                   SDValue N2, SDValue N3,
906                   const SDNodeFlags Flags = SDNodeFlags());
907   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
908                   SDValue N2, SDValue N3, SDValue N4);
909   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
910                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
911 
912   // Specialize again based on number of operands for nodes with a VTList
913   // rather than a single VT.
914   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
915   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
916   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
917                   SDValue N2);
918   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
919                   SDValue N2, SDValue N3);
920   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
921                   SDValue N2, SDValue N3, SDValue N4);
922   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
923                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
924 
925   /// Compute a TokenFactor to force all the incoming stack arguments to be
926   /// loaded from the stack. This is used in tail call lowering to protect
927   /// stack arguments from being clobbered.
928   SDValue getStackArgumentTokenFactor(SDValue Chain);
929 
930   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
931                     SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
932                     bool isTailCall, MachinePointerInfo DstPtrInfo,
933                     MachinePointerInfo SrcPtrInfo);
934 
935   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
936                      SDValue Size, unsigned Align, bool isVol, bool isTailCall,
937                      MachinePointerInfo DstPtrInfo,
938                      MachinePointerInfo SrcPtrInfo);
939 
940   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
941                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
942                     MachinePointerInfo DstPtrInfo);
943 
944   SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
945                           unsigned DstAlign, SDValue Src, unsigned SrcAlign,
946                           SDValue Size, Type *SizeTy, unsigned ElemSz,
947                           bool isTailCall, MachinePointerInfo DstPtrInfo,
948                           MachinePointerInfo SrcPtrInfo);
949 
950   SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
951                            unsigned DstAlign, SDValue Src, unsigned SrcAlign,
952                            SDValue Size, Type *SizeTy, unsigned ElemSz,
953                            bool isTailCall, MachinePointerInfo DstPtrInfo,
954                            MachinePointerInfo SrcPtrInfo);
955 
956   SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
957                           unsigned DstAlign, SDValue Value, SDValue Size,
958                           Type *SizeTy, unsigned ElemSz, bool isTailCall,
959                           MachinePointerInfo DstPtrInfo);
960 
961   /// Helper function to make it easier to build SetCC's if you just have an
962   /// ISD::CondCode instead of an SDValue.
963   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
964                    ISD::CondCode Cond) {
965     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
966            "Cannot compare scalars to vectors");
967     assert(LHS.getValueType().isVector() == VT.isVector() &&
968            "Cannot compare scalars to vectors");
969     assert(Cond != ISD::SETCC_INVALID &&
970            "Cannot create a setCC of an invalid node.");
971     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
972   }
973 
974   /// Helper function to make it easier to build Select's if you just have
975   /// operands and don't want to check for vector.
976   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
977                     SDValue RHS) {
978     assert(LHS.getValueType() == RHS.getValueType() &&
979            "Cannot use select on differing types");
980     assert(VT.isVector() == LHS.getValueType().isVector() &&
981            "Cannot mix vectors and scalars");
982     auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
983     return getNode(Opcode, DL, VT, Cond, LHS, RHS);
984   }
985 
986   /// Helper function to make it easier to build SelectCC's if you just have an
987   /// ISD::CondCode instead of an SDValue.
988   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
989                       SDValue False, ISD::CondCode Cond) {
990     return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
991                    False, getCondCode(Cond));
992   }
993 
994   /// Try to simplify a select/vselect into 1 of its operands or a constant.
995   SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
996 
997   /// Try to simplify a shift into 1 of its operands or a constant.
998   SDValue simplifyShift(SDValue X, SDValue Y);
999 
1000   /// Try to simplify a floating-point binary operation into 1 of its operands
1001   /// or a constant.
1002   SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y);
1003 
1004   /// VAArg produces a result and token chain, and takes a pointer
1005   /// and a source value as input.
1006   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1007                    SDValue SV, unsigned Align);
1008 
1009   /// Gets a node for an atomic cmpxchg op. There are two
1010   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1011   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1012   /// a success flag (initially i1), and a chain.
1013   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1014                            SDVTList VTs, SDValue Chain, SDValue Ptr,
1015                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1016 
1017   /// Gets a node for an atomic op, produces result (if relevant)
1018   /// and chain and takes 2 operands.
1019   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1020                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1021 
1022   /// Gets a node for an atomic op, produces result and chain and
1023   /// takes 1 operand.
1024   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1025                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1026 
1027   /// Gets a node for an atomic op, produces result and chain and takes N
1028   /// operands.
1029   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1030                     SDVTList VTList, ArrayRef<SDValue> Ops,
1031                     MachineMemOperand *MMO);
1032 
1033   /// Creates a MemIntrinsicNode that may produce a
1034   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1035   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1036   /// less than FIRST_TARGET_MEMORY_OPCODE.
1037   SDValue getMemIntrinsicNode(
1038     unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1039     ArrayRef<SDValue> Ops, EVT MemVT,
1040     MachinePointerInfo PtrInfo,
1041     unsigned Align = 0,
1042     MachineMemOperand::Flags Flags
1043     = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1044     unsigned Size = 0,
1045     const AAMDNodes &AAInfo = AAMDNodes());
1046 
1047   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1048                               ArrayRef<SDValue> Ops, EVT MemVT,
1049                               MachineMemOperand *MMO);
1050 
1051   /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1052   /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1053   /// offsets `Offset` and `Offset + Size`.
1054   SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1055                           int FrameIndex, int64_t Size, int64_t Offset = -1);
1056 
1057   /// Create a MERGE_VALUES node from the given operands.
1058   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1059 
1060   /// Loads are not normal binary operators: their result type is not
1061   /// determined by their operands, and they produce a value AND a token chain.
1062   ///
1063   /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1064   /// you want.  The MOStore flag must not be set.
1065   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1066                   MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1067                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1068                   const AAMDNodes &AAInfo = AAMDNodes(),
1069                   const MDNode *Ranges = nullptr);
1070   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1071                   MachineMemOperand *MMO);
1072   SDValue
1073   getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1074              SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1075              unsigned Alignment = 0,
1076              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1077              const AAMDNodes &AAInfo = AAMDNodes());
1078   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1079                      SDValue Chain, SDValue Ptr, EVT MemVT,
1080                      MachineMemOperand *MMO);
1081   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1082                          SDValue Offset, ISD::MemIndexedMode AM);
1083   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1084                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1085                   MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1086                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1087                   const AAMDNodes &AAInfo = AAMDNodes(),
1088                   const MDNode *Ranges = nullptr);
1089   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1090                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1091                   EVT MemVT, MachineMemOperand *MMO);
1092 
1093   /// Helper function to build ISD::STORE nodes.
1094   ///
1095   /// This function will set the MOStore flag on MMOFlags, but you can set it if
1096   /// you want.  The MOLoad and MOInvariant flags must not be set.
1097   SDValue
1098   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1099            MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1100            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1101            const AAMDNodes &AAInfo = AAMDNodes());
1102   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1103                    MachineMemOperand *MMO);
1104   SDValue
1105   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1106                 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1107                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1108                 const AAMDNodes &AAInfo = AAMDNodes());
1109   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1110                         SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1111   SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1112                           SDValue Offset, ISD::MemIndexedMode AM);
1113 
1114   /// Returns sum of the base pointer and offset.
1115   SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1116 
1117   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1118                         SDValue Mask, SDValue Src0, EVT MemVT,
1119                         MachineMemOperand *MMO, ISD::LoadExtType,
1120                         bool IsExpanding = false);
1121   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1122                          SDValue Ptr, SDValue Mask, EVT MemVT,
1123                          MachineMemOperand *MMO, bool IsTruncating = false,
1124                          bool IsCompressing = false);
1125   SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1126                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1127   SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1128                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1129 
1130   /// Return (create a new or find existing) a target-specific node.
1131   /// TargetMemSDNode should be derived class from MemSDNode.
1132   template <class TargetMemSDNode>
1133   SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1134                              const SDLoc &dl, EVT MemVT,
1135                              MachineMemOperand *MMO);
1136 
1137   /// Construct a node to track a Value* through the backend.
1138   SDValue getSrcValue(const Value *v);
1139 
1140   /// Return an MDNodeSDNode which holds an MDNode.
1141   SDValue getMDNode(const MDNode *MD);
1142 
1143   /// Return a bitcast using the SDLoc of the value operand, and casting to the
1144   /// provided type. Use getNode to set a custom SDLoc.
1145   SDValue getBitcast(EVT VT, SDValue V);
1146 
1147   /// Return an AddrSpaceCastSDNode.
1148   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1149                            unsigned DestAS);
1150 
1151   /// Return the specified value casted to
1152   /// the target's desired shift amount type.
1153   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1154 
1155   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1156   SDValue expandVAArg(SDNode *Node);
1157 
1158   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1159   SDValue expandVACopy(SDNode *Node);
1160 
1161   /// Returs an GlobalAddress of the function from the current module with
1162   /// name matching the given ExternalSymbol. Additionally can provide the
1163   /// matched function.
1164   /// Panics the function doesn't exists.
1165   SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1166                                          Function **TargetFunction = nullptr);
1167 
1168   /// *Mutate* the specified node in-place to have the
1169   /// specified operands.  If the resultant node already exists in the DAG,
1170   /// this does not modify the specified node, instead it returns the node that
1171   /// already exists.  If the resultant node does not exist in the DAG, the
1172   /// input node is returned.  As a degenerate case, if you specify the same
1173   /// input operands as the node already has, the input node is returned.
1174   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1175   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1176   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1177                                SDValue Op3);
1178   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1179                                SDValue Op3, SDValue Op4);
1180   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1181                                SDValue Op3, SDValue Op4, SDValue Op5);
1182   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1183 
1184   /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1185   /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1186   /// the final TokenFactor has less than 64k operands.
1187   SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1188 
1189   /// *Mutate* the specified machine node's memory references to the provided
1190   /// list.
1191   void setNodeMemRefs(MachineSDNode *N,
1192                       ArrayRef<MachineMemOperand *> NewMemRefs);
1193 
1194   // Propagates the change in divergence to users
1195   void updateDivergence(SDNode * N);
1196 
1197   /// These are used for target selectors to *mutate* the
1198   /// specified node to have the specified return type, Target opcode, and
1199   /// operands.  Note that target opcodes are stored as
1200   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
1201   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1202   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1203   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1204                        SDValue Op1, SDValue Op2);
1205   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1206                        SDValue Op1, SDValue Op2, SDValue Op3);
1207   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1208                        ArrayRef<SDValue> Ops);
1209   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1210   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1211                        EVT VT2, ArrayRef<SDValue> Ops);
1212   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1213                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1214   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1215                        EVT VT2, SDValue Op1);
1216   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1217                        EVT VT2, SDValue Op1, SDValue Op2);
1218   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1219                        ArrayRef<SDValue> Ops);
1220 
1221   /// This *mutates* the specified node to have the specified
1222   /// return type, opcode, and operands.
1223   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1224                       ArrayRef<SDValue> Ops);
1225 
1226   /// Mutate the specified strict FP node to its non-strict equivalent,
1227   /// unlinking the node from its chain and dropping the metadata arguments.
1228   /// The node must be a strict FP node.
1229   SDNode *mutateStrictFPToFP(SDNode *Node);
1230 
1231   /// These are used for target selectors to create a new node
1232   /// with specified return type(s), MachineInstr opcode, and operands.
1233   ///
1234   /// Note that getMachineNode returns the resultant node.  If there is already
1235   /// a node of the specified opcode and operands, it returns that node instead
1236   /// of the current one.
1237   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1238   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1239                                 SDValue Op1);
1240   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1241                                 SDValue Op1, SDValue Op2);
1242   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1243                                 SDValue Op1, SDValue Op2, SDValue Op3);
1244   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1245                                 ArrayRef<SDValue> Ops);
1246   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1247                                 EVT VT2, SDValue Op1, SDValue Op2);
1248   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1249                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1250   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1251                                 EVT VT2, ArrayRef<SDValue> Ops);
1252   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1253                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1254   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1255                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1256                                 SDValue Op3);
1257   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1258                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1259   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1260                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1261   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1262                                 ArrayRef<SDValue> Ops);
1263 
1264   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1265   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1266                                  SDValue Operand);
1267 
1268   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1269   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1270                                 SDValue Operand, SDValue Subreg);
1271 
1272   /// Get the specified node if it's already available, or else return NULL.
1273   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1274                           const SDNodeFlags Flags = SDNodeFlags());
1275 
1276   /// Creates a SDDbgValue node.
1277   SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1278                           unsigned R, bool IsIndirect, const DebugLoc &DL,
1279                           unsigned O);
1280 
1281   /// Creates a constant SDDbgValue node.
1282   SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1283                                   const Value *C, const DebugLoc &DL,
1284                                   unsigned O);
1285 
1286   /// Creates a FrameIndex SDDbgValue node.
1287   SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1288                                     unsigned FI, bool IsIndirect,
1289                                     const DebugLoc &DL, unsigned O);
1290 
1291   /// Creates a VReg SDDbgValue node.
1292   SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1293                               unsigned VReg, bool IsIndirect,
1294                               const DebugLoc &DL, unsigned O);
1295 
1296   /// Creates a SDDbgLabel node.
1297   SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1298 
1299   /// Transfer debug values from one node to another, while optionally
1300   /// generating fragment expressions for split-up values. If \p InvalidateDbg
1301   /// is set, debug values are invalidated after they are transferred.
1302   void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1303                          unsigned SizeInBits = 0, bool InvalidateDbg = true);
1304 
1305   /// Remove the specified node from the system. If any of its
1306   /// operands then becomes dead, remove them as well. Inform UpdateListener
1307   /// for each node deleted.
1308   void RemoveDeadNode(SDNode *N);
1309 
1310   /// This method deletes the unreachable nodes in the
1311   /// given list, and any nodes that become unreachable as a result.
1312   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1313 
1314   /// Modify anything using 'From' to use 'To' instead.
1315   /// This can cause recursive merging of nodes in the DAG.  Use the first
1316   /// version if 'From' is known to have a single result, use the second
1317   /// if you have two nodes with identical results (or if 'To' has a superset
1318   /// of the results of 'From'), use the third otherwise.
1319   ///
1320   /// These methods all take an optional UpdateListener, which (if not null) is
1321   /// informed about nodes that are deleted and modified due to recursive
1322   /// changes in the dag.
1323   ///
1324   /// These functions only replace all existing uses. It's possible that as
1325   /// these replacements are being performed, CSE may cause the From node
1326   /// to be given new uses. These new uses of From are left in place, and
1327   /// not automatically transferred to To.
1328   ///
1329   void ReplaceAllUsesWith(SDValue From, SDValue To);
1330   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1331   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1332 
1333   /// Replace any uses of From with To, leaving
1334   /// uses of other values produced by From.getNode() alone.
1335   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1336 
1337   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1338   /// This correctly handles the case where
1339   /// there is an overlap between the From values and the To values.
1340   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1341                                   unsigned Num);
1342 
1343   /// If an existing load has uses of its chain, create a token factor node with
1344   /// that chain and the new memory node's chain and update users of the old
1345   /// chain to the token factor. This ensures that the new memory node will have
1346   /// the same relative memory dependency position as the old load. Returns the
1347   /// new merged load chain.
1348   SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1349 
1350   /// Topological-sort the AllNodes list and a
1351   /// assign a unique node id for each node in the DAG based on their
1352   /// topological order. Returns the number of nodes.
1353   unsigned AssignTopologicalOrder();
1354 
1355   /// Move node N in the AllNodes list to be immediately
1356   /// before the given iterator Position. This may be used to update the
1357   /// topological ordering when the list of nodes is modified.
1358   void RepositionNode(allnodes_iterator Position, SDNode *N) {
1359     AllNodes.insert(Position, AllNodes.remove(N));
1360   }
1361 
1362   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1363   /// a vector type, the element semantics are returned.
1364   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1365     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1366     default: llvm_unreachable("Unknown FP format");
1367     case MVT::f16:     return APFloat::IEEEhalf();
1368     case MVT::f32:     return APFloat::IEEEsingle();
1369     case MVT::f64:     return APFloat::IEEEdouble();
1370     case MVT::f80:     return APFloat::x87DoubleExtended();
1371     case MVT::f128:    return APFloat::IEEEquad();
1372     case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1373     }
1374   }
1375 
1376   /// Add a dbg_value SDNode. If SD is non-null that means the
1377   /// value is produced by SD.
1378   void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1379 
1380   /// Add a dbg_label SDNode.
1381   void AddDbgLabel(SDDbgLabel *DB);
1382 
1383   /// Get the debug values which reference the given SDNode.
1384   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1385     return DbgInfo->getSDDbgValues(SD);
1386   }
1387 
1388 public:
1389   /// Return true if there are any SDDbgValue nodes associated
1390   /// with this SelectionDAG.
1391   bool hasDebugValues() const { return !DbgInfo->empty(); }
1392 
1393   SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1394   SDDbgInfo::DbgIterator DbgEnd() const  { return DbgInfo->DbgEnd(); }
1395 
1396   SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1397     return DbgInfo->ByvalParmDbgBegin();
1398   }
1399   SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1400     return DbgInfo->ByvalParmDbgEnd();
1401   }
1402 
1403   SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1404     return DbgInfo->DbgLabelBegin();
1405   }
1406   SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1407     return DbgInfo->DbgLabelEnd();
1408   }
1409 
1410   /// To be invoked on an SDNode that is slated to be erased. This
1411   /// function mirrors \c llvm::salvageDebugInfo.
1412   void salvageDebugInfo(SDNode &N);
1413 
1414   void dump() const;
1415 
1416   /// Create a stack temporary, suitable for holding the specified value type.
1417   /// If minAlign is specified, the slot size will have at least that alignment.
1418   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1419 
1420   /// Create a stack temporary suitable for holding either of the specified
1421   /// value types.
1422   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1423 
1424   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1425                            const GlobalAddressSDNode *GA,
1426                            const SDNode *N2);
1427 
1428   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1429                                  SDNode *N1, SDNode *N2);
1430 
1431   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1432                                  const ConstantSDNode *C1,
1433                                  const ConstantSDNode *C2);
1434 
1435   SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1436                                        ArrayRef<SDValue> Ops,
1437                                        const SDNodeFlags Flags = SDNodeFlags());
1438 
1439   /// Fold floating-point operations with 2 operands when both operands are
1440   /// constants and/or undefined.
1441   SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1442                              SDValue N1, SDValue N2);
1443 
1444   /// Constant fold a setcc to true or false.
1445   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1446                     const SDLoc &dl);
1447 
1448   /// See if the specified operand can be simplified with the knowledge that
1449   /// only the bits specified by DemandedBits are used.  If so, return the
1450   /// simpler operand, otherwise return a null SDValue.
1451   ///
1452   /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1453   /// simplify nodes with multiple uses more aggressively.)
1454   SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
1455 
1456   /// See if the specified operand can be simplified with the knowledge that
1457   /// only the bits specified by DemandedBits are used in the elements specified
1458   /// by DemandedElts.  If so, return the simpler operand, otherwise return a
1459   /// null SDValue.
1460   ///
1461   /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1462   /// simplify nodes with multiple uses more aggressively.)
1463   SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
1464                           const APInt &DemandedElts);
1465 
1466   /// Return true if the sign bit of Op is known to be zero.
1467   /// We use this predicate to simplify operations downstream.
1468   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1469 
1470   /// Return true if 'Op & Mask' is known to be zero.  We
1471   /// use this predicate to simplify operations downstream.  Op and Mask are
1472   /// known to be the same type.
1473   bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1474                          unsigned Depth = 0) const;
1475 
1476   /// Return true if 'Op & Mask' is known to be zero in DemandedElts.  We
1477   /// use this predicate to simplify operations downstream.  Op and Mask are
1478   /// known to be the same type.
1479   bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1480                          const APInt &DemandedElts, unsigned Depth = 0) const;
1481 
1482   /// Return true if '(Op & Mask) == Mask'.
1483   /// Op and Mask are known to be the same type.
1484   bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1485                             unsigned Depth = 0) const;
1486 
1487   /// Determine which bits of Op are known to be either zero or one and return
1488   /// them in Known. For vectors, the known bits are those that are shared by
1489   /// every vector element.
1490   /// Targets can implement the computeKnownBitsForTargetNode method in the
1491   /// TargetLowering class to allow target nodes to be understood.
1492   KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1493 
1494   /// Determine which bits of Op are known to be either zero or one and return
1495   /// them in Known. The DemandedElts argument allows us to only collect the
1496   /// known bits that are shared by the requested vector elements.
1497   /// Targets can implement the computeKnownBitsForTargetNode method in the
1498   /// TargetLowering class to allow target nodes to be understood.
1499   KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1500                              unsigned Depth = 0) const;
1501 
1502   /// Used to represent the possible overflow behavior of an operation.
1503   /// Never: the operation cannot overflow.
1504   /// Always: the operation will always overflow.
1505   /// Sometime: the operation may or may not overflow.
1506   enum OverflowKind {
1507     OFK_Never,
1508     OFK_Sometime,
1509     OFK_Always,
1510   };
1511 
1512   /// Determine if the result of the addition of 2 node can overflow.
1513   OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1514 
1515   /// Test if the given value is known to have exactly one bit set. This differs
1516   /// from computeKnownBits in that it doesn't necessarily determine which bit
1517   /// is set.
1518   bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1519 
1520   /// Return the number of times the sign bit of the register is replicated into
1521   /// the other bits. We know that at least 1 bit is always equal to the sign
1522   /// bit (itself), but other cases can give us information. For example,
1523   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1524   /// to each other, so we return 3. Targets can implement the
1525   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1526   /// target nodes to be understood.
1527   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1528 
1529   /// Return the number of times the sign bit of the register is replicated into
1530   /// the other bits. We know that at least 1 bit is always equal to the sign
1531   /// bit (itself), but other cases can give us information. For example,
1532   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1533   /// to each other, so we return 3. The DemandedElts argument allows
1534   /// us to only collect the minimum sign bits of the requested vector elements.
1535   /// Targets can implement the ComputeNumSignBitsForTarget method in the
1536   /// TargetLowering class to allow target nodes to be understood.
1537   unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1538                               unsigned Depth = 0) const;
1539 
1540   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1541   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1542   /// is guaranteed to have the same semantics as an ADD. This handles the
1543   /// equivalence:
1544   ///     X|Cst == X+Cst iff X&Cst = 0.
1545   bool isBaseWithConstantOffset(SDValue Op) const;
1546 
1547   /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1548   /// true, returns if \p Op is known to never be a signaling NaN (it may still
1549   /// be a qNaN).
1550   bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1551 
1552   /// \returns true if \p Op is known to never be a signaling NaN.
1553   bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1554     return isKnownNeverNaN(Op, true, Depth);
1555   }
1556 
1557   /// Test whether the given floating point SDValue is known to never be
1558   /// positive or negative zero.
1559   bool isKnownNeverZeroFloat(SDValue Op) const;
1560 
1561   /// Test whether the given SDValue is known to contain non-zero value(s).
1562   bool isKnownNeverZero(SDValue Op) const;
1563 
1564   /// Test whether two SDValues are known to compare equal. This
1565   /// is true if they are the same value, or if one is negative zero and the
1566   /// other positive zero.
1567   bool isEqualTo(SDValue A, SDValue B) const;
1568 
1569   /// Return true if A and B have no common bits set. As an example, this can
1570   /// allow an 'add' to be transformed into an 'or'.
1571   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1572 
1573   /// Test whether \p V has a splatted value for all the demanded elements.
1574   ///
1575   /// On success \p UndefElts will indicate the elements that have UNDEF
1576   /// values instead of the splat value, this is only guaranteed to be correct
1577   /// for \p DemandedElts.
1578   ///
1579   /// NOTE: The function will return true for a demanded splat of UNDEF values.
1580   bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1581 
1582   /// Test whether \p V has a splatted value.
1583   bool isSplatValue(SDValue V, bool AllowUndefs = false);
1584 
1585   /// If V is a splatted value, return the source vector and its splat index.
1586   SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
1587 
1588   /// If V is a splat vector, return its scalar source operand by extracting
1589   /// that element from the source vector.
1590   SDValue getSplatValue(SDValue V);
1591 
1592   /// Match a binop + shuffle pyramid that represents a horizontal reduction
1593   /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1594   /// Extract. The reduction must use one of the opcodes listed in /p
1595   /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1596   /// Returns the vector that is being reduced on, or SDValue() if a reduction
1597   /// was not matched.
1598   SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1599                               ArrayRef<ISD::NodeType> CandidateBinOps);
1600 
1601   /// Utility function used by legalize and lowering to
1602   /// "unroll" a vector operation by splitting out the scalars and operating
1603   /// on each element individually.  If the ResNE is 0, fully unroll the vector
1604   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1605   /// If the  ResNE is greater than the width of the vector op, unroll the
1606   /// vector op and fill the end of the resulting vector with UNDEFS.
1607   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1608 
1609   /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1610   /// This is a separate function because those opcodes have two results.
1611   std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
1612                                                      unsigned ResNE = 0);
1613 
1614   /// Return true if loads are next to each other and can be
1615   /// merged. Check that both are nonvolatile and if LD is loading
1616   /// 'Bytes' bytes from a location that is 'Dist' units away from the
1617   /// location that the 'Base' load is loading from.
1618   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1619                                       unsigned Bytes, int Dist) const;
1620 
1621   /// Infer alignment of a load / store address. Return 0 if
1622   /// it cannot be inferred.
1623   unsigned InferPtrAlignment(SDValue Ptr) const;
1624 
1625   /// Compute the VTs needed for the low/hi parts of a type
1626   /// which is split (or expanded) into two not necessarily identical pieces.
1627   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1628 
1629   /// Split the vector with EXTRACT_SUBVECTOR using the provides
1630   /// VTs and return the low/high part.
1631   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1632                                           const EVT &LoVT, const EVT &HiVT);
1633 
1634   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1635   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1636     EVT LoVT, HiVT;
1637     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1638     return SplitVector(N, DL, LoVT, HiVT);
1639   }
1640 
1641   /// Split the node's operand with EXTRACT_SUBVECTOR and
1642   /// return the low/high part.
1643   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1644   {
1645     return SplitVector(N->getOperand(OpNo), SDLoc(N));
1646   }
1647 
1648   /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1649   SDValue WidenVector(const SDValue &N, const SDLoc &DL);
1650 
1651   /// Append the extracted elements from Start to Count out of the vector Op
1652   /// in Args. If Count is 0, all of the elements will be extracted.
1653   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1654                              unsigned Start = 0, unsigned Count = 0);
1655 
1656   /// Compute the default alignment value for the given type.
1657   unsigned getEVTAlignment(EVT MemoryVT) const;
1658 
1659   /// Test whether the given value is a constant int or similar node.
1660   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1661 
1662   /// Test whether the given value is a constant FP or similar node.
1663   SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1664 
1665   /// \returns true if \p N is any kind of constant or build_vector of
1666   /// constants, int or float. If a vector, it may not necessarily be a splat.
1667   inline bool isConstantValueOfAnyType(SDValue N) {
1668     return isConstantIntBuildVectorOrConstantInt(N) ||
1669            isConstantFPBuildVectorOrConstantFP(N);
1670   }
1671 
1672   void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
1673     SDCallSiteDbgInfo[CallNode].CSInfo = std::move(CallInfo);
1674   }
1675 
1676   CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
1677     auto I = SDCallSiteDbgInfo.find(CallNode);
1678     if (I != SDCallSiteDbgInfo.end())
1679       return std::move(I->second).CSInfo;
1680     return CallSiteInfo();
1681   }
1682 
1683   void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
1684     SDCallSiteDbgInfo[Node].HeapAllocSite = MD;
1685   }
1686 
1687   /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1688   MDNode *getHeapAllocSite(const SDNode *Node) {
1689     auto It = SDCallSiteDbgInfo.find(Node);
1690     if (It == SDCallSiteDbgInfo.end())
1691       return nullptr;
1692     return It->second.HeapAllocSite;
1693   }
1694 
1695 private:
1696   void InsertNode(SDNode *N);
1697   bool RemoveNodeFromCSEMaps(SDNode *N);
1698   void AddModifiedNodeToCSEMaps(SDNode *N);
1699   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1700   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1701                                void *&InsertPos);
1702   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1703                                void *&InsertPos);
1704   SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1705 
1706   void DeleteNodeNotInCSEMaps(SDNode *N);
1707   void DeallocateNode(SDNode *N);
1708 
1709   void allnodes_clear();
1710 
1711   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1712   /// not, return the insertion token that will make insertion faster.  This
1713   /// overload is for nodes other than Constant or ConstantFP, use the other one
1714   /// for those.
1715   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1716 
1717   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1718   /// not, return the insertion token that will make insertion faster.  Performs
1719   /// additional processing for constant nodes.
1720   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1721                               void *&InsertPos);
1722 
1723   /// List of non-single value types.
1724   FoldingSet<SDVTListNode> VTListMap;
1725 
1726   /// Maps to auto-CSE operations.
1727   std::vector<CondCodeSDNode*> CondCodeNodes;
1728 
1729   std::vector<SDNode*> ValueTypeNodes;
1730   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1731   StringMap<SDNode*> ExternalSymbols;
1732 
1733   std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1734   DenseMap<MCSymbol *, SDNode *> MCSymbols;
1735 };
1736 
1737 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1738   using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1739 
1740   static nodes_iterator nodes_begin(SelectionDAG *G) {
1741     return nodes_iterator(G->allnodes_begin());
1742   }
1743 
1744   static nodes_iterator nodes_end(SelectionDAG *G) {
1745     return nodes_iterator(G->allnodes_end());
1746   }
1747 };
1748 
1749 template <class TargetMemSDNode>
1750 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1751                                          ArrayRef<SDValue> Ops,
1752                                          const SDLoc &dl, EVT MemVT,
1753                                          MachineMemOperand *MMO) {
1754   /// Compose node ID and try to find an existing node.
1755   FoldingSetNodeID ID;
1756   unsigned Opcode =
1757     TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1758   ID.AddInteger(Opcode);
1759   ID.AddPointer(VTs.VTs);
1760   for (auto& Op : Ops) {
1761     ID.AddPointer(Op.getNode());
1762     ID.AddInteger(Op.getResNo());
1763   }
1764   ID.AddInteger(MemVT.getRawBits());
1765   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1766   ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1767     dl.getIROrder(), VTs, MemVT, MMO));
1768 
1769   void *IP = nullptr;
1770   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1771     cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1772     return SDValue(E, 0);
1773   }
1774 
1775   /// Existing node was not found. Create a new one.
1776   auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1777                                        MemVT, MMO);
1778   createOperands(N, Ops);
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 } // end namespace llvm
1785 
1786 #endif // LLVM_CODEGEN_SELECTIONDAG_H
1787