1 //===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file supports working with JSON data.
11 ///
12 /// It comprises:
13 ///
14 /// - classes which hold dynamically-typed parsed JSON structures
15 ///   These are value types that can be composed, inspected, and modified.
16 ///   See json::Value, and the related types json::Object and json::Array.
17 ///
18 /// - functions to parse JSON text into Values, and to serialize Values to text.
19 ///   See parse(), operator<<, and format_provider.
20 ///
21 /// - a convention and helpers for mapping between json::Value and user-defined
22 ///   types. See fromJSON(), ObjectMapper, and the class comment on Value.
23 ///
24 /// - an output API json::OStream which can emit JSON without materializing
25 ///   all structures as json::Value.
26 ///
27 /// Typically, JSON data would be read from an external source, parsed into
28 /// a Value, and then converted into some native data structure before doing
29 /// real work on it. (And vice versa when writing).
30 ///
31 /// Other serialization mechanisms you may consider:
32 ///
33 /// - YAML is also text-based, and more human-readable than JSON. It's a more
34 ///   complex format and data model, and YAML parsers aren't ubiquitous.
35 ///   YAMLParser.h is a streaming parser suitable for parsing large documents
36 ///   (including JSON, as YAML is a superset). It can be awkward to use
37 ///   directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
38 ///   declarative than the toJSON/fromJSON conventions here.
39 ///
40 /// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
41 ///   encodes LLVM IR ("bitcode"), but it can be a container for other data.
42 ///   Low-level reader/writer libraries are in Bitstream/Bitstream*.h
43 ///
44 //===---------------------------------------------------------------------===//
45 
46 #ifndef LLVM_SUPPORT_JSON_H
47 #define LLVM_SUPPORT_JSON_H
48 
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/Support/Error.h"
53 #include "llvm/Support/FormatVariadic.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <map>
56 
57 namespace llvm {
58 namespace json {
59 
60 // === String encodings ===
61 //
62 // JSON strings are character sequences (not byte sequences like std::string).
63 // We need to know the encoding, and for simplicity only support UTF-8.
64 //
65 //   - When parsing, invalid UTF-8 is a syntax error like any other
66 //
67 //   - When creating Values from strings, callers must ensure they are UTF-8.
68 //        with asserts on, invalid UTF-8 will crash the program
69 //        with asserts off, we'll substitute the replacement character (U+FFFD)
70 //     Callers can use json::isUTF8() and json::fixUTF8() for validation.
71 //
72 //   - When retrieving strings from Values (e.g. asString()), the result will
73 //     always be valid UTF-8.
74 
75 /// Returns true if \p S is valid UTF-8, which is required for use as JSON.
76 /// If it returns false, \p Offset is set to a byte offset near the first error.
77 bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
78 /// Replaces invalid UTF-8 sequences in \p S with the replacement character
79 /// (U+FFFD). The returned string is valid UTF-8.
80 /// This is much slower than isUTF8, so test that first.
81 std::string fixUTF8(llvm::StringRef S);
82 
83 class Array;
84 class ObjectKey;
85 class Value;
86 template <typename T> Value toJSON(const llvm::Optional<T> &Opt);
87 
88 /// An Object is a JSON object, which maps strings to heterogenous JSON values.
89 /// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
90 class Object {
91   using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
92   Storage M;
93 
94 public:
95   using key_type = ObjectKey;
96   using mapped_type = Value;
97   using value_type = Storage::value_type;
98   using iterator = Storage::iterator;
99   using const_iterator = Storage::const_iterator;
100 
101   Object() = default;
102   // KV is a trivial key-value struct for list-initialization.
103   // (using std::pair forces extra copies).
104   struct KV;
105   explicit Object(std::initializer_list<KV> Properties);
106 
begin()107   iterator begin() { return M.begin(); }
begin()108   const_iterator begin() const { return M.begin(); }
end()109   iterator end() { return M.end(); }
end()110   const_iterator end() const { return M.end(); }
111 
empty()112   bool empty() const { return M.empty(); }
size()113   size_t size() const { return M.size(); }
114 
clear()115   void clear() { M.clear(); }
116   std::pair<iterator, bool> insert(KV E);
117   template <typename... Ts>
try_emplace(const ObjectKey & K,Ts &&...Args)118   std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
119     return M.try_emplace(K, std::forward<Ts>(Args)...);
120   }
121   template <typename... Ts>
try_emplace(ObjectKey && K,Ts &&...Args)122   std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
123     return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
124   }
125 
find(StringRef K)126   iterator find(StringRef K) { return M.find_as(K); }
find(StringRef K)127   const_iterator find(StringRef K) const { return M.find_as(K); }
128   // operator[] acts as if Value was default-constructible as null.
129   Value &operator[](const ObjectKey &K);
130   Value &operator[](ObjectKey &&K);
131   // Look up a property, returning nullptr if it doesn't exist.
132   Value *get(StringRef K);
133   const Value *get(StringRef K) const;
134   // Typed accessors return None/nullptr if
135   //   - the property doesn't exist
136   //   - or it has the wrong type
137   llvm::Optional<std::nullptr_t> getNull(StringRef K) const;
138   llvm::Optional<bool> getBoolean(StringRef K) const;
139   llvm::Optional<double> getNumber(StringRef K) const;
140   llvm::Optional<int64_t> getInteger(StringRef K) const;
141   llvm::Optional<llvm::StringRef> getString(StringRef K) const;
142   const json::Object *getObject(StringRef K) const;
143   json::Object *getObject(StringRef K);
144   const json::Array *getArray(StringRef K) const;
145   json::Array *getArray(StringRef K);
146 };
147 bool operator==(const Object &LHS, const Object &RHS);
148 inline bool operator!=(const Object &LHS, const Object &RHS) {
149   return !(LHS == RHS);
150 }
151 
152 /// An Array is a JSON array, which contains heterogeneous JSON values.
153 /// It simulates std::vector<Value>.
154 class Array {
155   std::vector<Value> V;
156 
157 public:
158   using value_type = Value;
159   using iterator = std::vector<Value>::iterator;
160   using const_iterator = std::vector<Value>::const_iterator;
161 
162   Array() = default;
163   explicit Array(std::initializer_list<Value> Elements);
Array(const Collection & C)164   template <typename Collection> explicit Array(const Collection &C) {
165     for (const auto &V : C)
166       emplace_back(V);
167   }
168 
169   Value &operator[](size_t I) { return V[I]; }
170   const Value &operator[](size_t I) const { return V[I]; }
front()171   Value &front() { return V.front(); }
front()172   const Value &front() const { return V.front(); }
back()173   Value &back() { return V.back(); }
back()174   const Value &back() const { return V.back(); }
data()175   Value *data() { return V.data(); }
data()176   const Value *data() const { return V.data(); }
177 
begin()178   iterator begin() { return V.begin(); }
begin()179   const_iterator begin() const { return V.begin(); }
end()180   iterator end() { return V.end(); }
end()181   const_iterator end() const { return V.end(); }
182 
empty()183   bool empty() const { return V.empty(); }
size()184   size_t size() const { return V.size(); }
reserve(size_t S)185   void reserve(size_t S) { V.reserve(S); }
186 
clear()187   void clear() { V.clear(); }
push_back(const Value & E)188   void push_back(const Value &E) { V.push_back(E); }
push_back(Value && E)189   void push_back(Value &&E) { V.push_back(std::move(E)); }
emplace_back(Args &&...A)190   template <typename... Args> void emplace_back(Args &&... A) {
191     V.emplace_back(std::forward<Args>(A)...);
192   }
pop_back()193   void pop_back() { V.pop_back(); }
194   // FIXME: insert() takes const_iterator since C++11, old libstdc++ disagrees.
insert(iterator P,const Value & E)195   iterator insert(iterator P, const Value &E) { return V.insert(P, E); }
insert(iterator P,Value && E)196   iterator insert(iterator P, Value &&E) {
197     return V.insert(P, std::move(E));
198   }
insert(iterator P,It A,It Z)199   template <typename It> iterator insert(iterator P, It A, It Z) {
200     return V.insert(P, A, Z);
201   }
emplace(const_iterator P,Args &&...A)202   template <typename... Args> iterator emplace(const_iterator P, Args &&... A) {
203     return V.emplace(P, std::forward<Args>(A)...);
204   }
205 
206   friend bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
207 };
208 inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
209 
210 /// A Value is an JSON value of unknown type.
211 /// They can be copied, but should generally be moved.
212 ///
213 /// === Composing values ===
214 ///
215 /// You can implicitly construct Values from:
216 ///   - strings: std::string, SmallString, formatv, StringRef, char*
217 ///              (char*, and StringRef are references, not copies!)
218 ///   - numbers
219 ///   - booleans
220 ///   - null: nullptr
221 ///   - arrays: {"foo", 42.0, false}
222 ///   - serializable things: types with toJSON(const T&)->Value, found by ADL
223 ///
224 /// They can also be constructed from object/array helpers:
225 ///   - json::Object is a type like map<ObjectKey, Value>
226 ///   - json::Array is a type like vector<Value>
227 /// These can be list-initialized, or used to build up collections in a loop.
228 /// json::ary(Collection) converts all items in a collection to Values.
229 ///
230 /// === Inspecting values ===
231 ///
232 /// Each Value is one of the JSON kinds:
233 ///   null    (nullptr_t)
234 ///   boolean (bool)
235 ///   number  (double or int64)
236 ///   string  (StringRef)
237 ///   array   (json::Array)
238 ///   object  (json::Object)
239 ///
240 /// The kind can be queried directly, or implicitly via the typed accessors:
241 ///   if (Optional<StringRef> S = E.getAsString()
242 ///     assert(E.kind() == Value::String);
243 ///
244 /// Array and Object also have typed indexing accessors for easy traversal:
245 ///   Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
246 ///   if (Object* O = E->getAsObject())
247 ///     if (Object* Opts = O->getObject("options"))
248 ///       if (Optional<StringRef> Font = Opts->getString("font"))
249 ///         assert(Opts->at("font").kind() == Value::String);
250 ///
251 /// === Converting JSON values to C++ types ===
252 ///
253 /// The convention is to have a deserializer function findable via ADL:
254 ///     fromJSON(const json::Value&, T&)->bool
255 /// Deserializers are provided for:
256 ///   - bool
257 ///   - int and int64_t
258 ///   - double
259 ///   - std::string
260 ///   - vector<T>, where T is deserializable
261 ///   - map<string, T>, where T is deserializable
262 ///   - Optional<T>, where T is deserializable
263 /// ObjectMapper can help writing fromJSON() functions for object types.
264 ///
265 /// For conversion in the other direction, the serializer function is:
266 ///    toJSON(const T&) -> json::Value
267 /// If this exists, then it also allows constructing Value from T, and can
268 /// be used to serialize vector<T>, map<string, T>, and Optional<T>.
269 ///
270 /// === Serialization ===
271 ///
272 /// Values can be serialized to JSON:
273 ///   1) raw_ostream << Value                    // Basic formatting.
274 ///   2) raw_ostream << formatv("{0}", Value)    // Basic formatting.
275 ///   3) raw_ostream << formatv("{0:2}", Value)  // Pretty-print with indent 2.
276 ///
277 /// And parsed:
278 ///   Expected<Value> E = json::parse("[1, 2, null]");
279 ///   assert(E && E->kind() == Value::Array);
280 class Value {
281 public:
282   enum Kind {
283     Null,
284     Boolean,
285     /// Number values can store both int64s and doubles at full precision,
286     /// depending on what they were constructed/parsed from.
287     Number,
288     String,
289     Array,
290     Object,
291   };
292 
293   // It would be nice to have Value() be null. But that would make {} null too.
Value(const Value & M)294   Value(const Value &M) { copyFrom(M); }
Value(Value && M)295   Value(Value &&M) { moveFrom(std::move(M)); }
296   Value(std::initializer_list<Value> Elements);
Value(json::Array && Elements)297   Value(json::Array &&Elements) : Type(T_Array) {
298     create<json::Array>(std::move(Elements));
299   }
300   template <typename Elt>
Value(const std::vector<Elt> & C)301   Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
Value(json::Object && Properties)302   Value(json::Object &&Properties) : Type(T_Object) {
303     create<json::Object>(std::move(Properties));
304   }
305   template <typename Elt>
Value(const std::map<std::string,Elt> & C)306   Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
307   // Strings: types with value semantics. Must be valid UTF-8.
Value(std::string V)308   Value(std::string V) : Type(T_String) {
309     if (LLVM_UNLIKELY(!isUTF8(V))) {
310       assert(false && "Invalid UTF-8 in value used as JSON");
311       V = fixUTF8(std::move(V));
312     }
313     create<std::string>(std::move(V));
314   }
Value(const llvm::SmallVectorImpl<char> & V)315   Value(const llvm::SmallVectorImpl<char> &V)
316       : Value(std::string(V.begin(), V.end())) {}
Value(const llvm::formatv_object_base & V)317   Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
318   // Strings: types with reference semantics. Must be valid UTF-8.
Value(StringRef V)319   Value(StringRef V) : Type(T_StringRef) {
320     create<llvm::StringRef>(V);
321     if (LLVM_UNLIKELY(!isUTF8(V))) {
322       assert(false && "Invalid UTF-8 in value used as JSON");
323       *this = Value(fixUTF8(V));
324     }
325   }
Value(const char * V)326   Value(const char *V) : Value(StringRef(V)) {}
Value(std::nullptr_t)327   Value(std::nullptr_t) : Type(T_Null) {}
328   // Boolean (disallow implicit conversions).
329   // (The last template parameter is a dummy to keep templates distinct.)
330   template <
331       typename T,
332       typename = typename std::enable_if<std::is_same<T, bool>::value>::type,
333       bool = false>
Value(T B)334   Value(T B) : Type(T_Boolean) {
335     create<bool>(B);
336   }
337   // Integers (except boolean). Must be non-narrowing convertible to int64_t.
338   template <
339       typename T,
340       typename = typename std::enable_if<std::is_integral<T>::value>::type,
341       typename = typename std::enable_if<!std::is_same<T, bool>::value>::type>
Value(T I)342   Value(T I) : Type(T_Integer) {
343     create<int64_t>(int64_t{I});
344   }
345   // Floating point. Must be non-narrowing convertible to double.
346   template <typename T,
347             typename =
348                 typename std::enable_if<std::is_floating_point<T>::value>::type,
349             double * = nullptr>
Value(T D)350   Value(T D) : Type(T_Double) {
351     create<double>(double{D});
352   }
353   // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
354   template <typename T,
355             typename = typename std::enable_if<std::is_same<
356                 Value, decltype(toJSON(*(const T *)nullptr))>::value>,
357             Value * = nullptr>
Value(const T & V)358   Value(const T &V) : Value(toJSON(V)) {}
359 
360   Value &operator=(const Value &M) {
361     destroy();
362     copyFrom(M);
363     return *this;
364   }
365   Value &operator=(Value &&M) {
366     destroy();
367     moveFrom(std::move(M));
368     return *this;
369   }
~Value()370   ~Value() { destroy(); }
371 
kind()372   Kind kind() const {
373     switch (Type) {
374     case T_Null:
375       return Null;
376     case T_Boolean:
377       return Boolean;
378     case T_Double:
379     case T_Integer:
380       return Number;
381     case T_String:
382     case T_StringRef:
383       return String;
384     case T_Object:
385       return Object;
386     case T_Array:
387       return Array;
388     }
389     llvm_unreachable("Unknown kind");
390   }
391 
392   // Typed accessors return None/nullptr if the Value is not of this type.
getAsNull()393   llvm::Optional<std::nullptr_t> getAsNull() const {
394     if (LLVM_LIKELY(Type == T_Null))
395       return nullptr;
396     return llvm::None;
397   }
getAsBoolean()398   llvm::Optional<bool> getAsBoolean() const {
399     if (LLVM_LIKELY(Type == T_Boolean))
400       return as<bool>();
401     return llvm::None;
402   }
getAsNumber()403   llvm::Optional<double> getAsNumber() const {
404     if (LLVM_LIKELY(Type == T_Double))
405       return as<double>();
406     if (LLVM_LIKELY(Type == T_Integer))
407       return as<int64_t>();
408     return llvm::None;
409   }
410   // Succeeds if the Value is a Number, and exactly representable as int64_t.
getAsInteger()411   llvm::Optional<int64_t> getAsInteger() const {
412     if (LLVM_LIKELY(Type == T_Integer))
413       return as<int64_t>();
414     if (LLVM_LIKELY(Type == T_Double)) {
415       double D = as<double>();
416       if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
417                       D >= double(std::numeric_limits<int64_t>::min()) &&
418                       D <= double(std::numeric_limits<int64_t>::max())))
419         return D;
420     }
421     return llvm::None;
422   }
getAsString()423   llvm::Optional<llvm::StringRef> getAsString() const {
424     if (Type == T_String)
425       return llvm::StringRef(as<std::string>());
426     if (LLVM_LIKELY(Type == T_StringRef))
427       return as<llvm::StringRef>();
428     return llvm::None;
429   }
getAsObject()430   const json::Object *getAsObject() const {
431     return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
432   }
getAsObject()433   json::Object *getAsObject() {
434     return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
435   }
getAsArray()436   const json::Array *getAsArray() const {
437     return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
438   }
getAsArray()439   json::Array *getAsArray() {
440     return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
441   }
442 
443 private:
444   void destroy();
445   void copyFrom(const Value &M);
446   // We allow moving from *const* Values, by marking all members as mutable!
447   // This hack is needed to support initializer-list syntax efficiently.
448   // (std::initializer_list<T> is a container of const T).
449   void moveFrom(const Value &&M);
450   friend class Array;
451   friend class Object;
452 
create(U &&...V)453   template <typename T, typename... U> void create(U &&... V) {
454     new (reinterpret_cast<T *>(Union.buffer)) T(std::forward<U>(V)...);
455   }
as()456   template <typename T> T &as() const {
457     // Using this two-step static_cast via void * instead of reinterpret_cast
458     // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
459     void *Storage = static_cast<void *>(Union.buffer);
460     return *static_cast<T *>(Storage);
461   }
462 
463   friend class OStream;
464 
465   enum ValueType : char {
466     T_Null,
467     T_Boolean,
468     T_Double,
469     T_Integer,
470     T_StringRef,
471     T_String,
472     T_Object,
473     T_Array,
474   };
475   // All members mutable, see moveFrom().
476   mutable ValueType Type;
477   mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, llvm::StringRef,
478                                       std::string, json::Array, json::Object>
479       Union;
480   friend bool operator==(const Value &, const Value &);
481 };
482 
483 bool operator==(const Value &, const Value &);
484 inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
485 
486 /// ObjectKey is a used to capture keys in Object. Like Value but:
487 ///   - only strings are allowed
488 ///   - it's optimized for the string literal case (Owned == nullptr)
489 /// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
490 class ObjectKey {
491 public:
ObjectKey(const char * S)492   ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
ObjectKey(std::string S)493   ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
494     if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
495       assert(false && "Invalid UTF-8 in value used as JSON");
496       *Owned = fixUTF8(std::move(*Owned));
497     }
498     Data = *Owned;
499   }
ObjectKey(llvm::StringRef S)500   ObjectKey(llvm::StringRef S) : Data(S) {
501     if (LLVM_UNLIKELY(!isUTF8(Data))) {
502       assert(false && "Invalid UTF-8 in value used as JSON");
503       *this = ObjectKey(fixUTF8(S));
504     }
505   }
ObjectKey(const llvm::SmallVectorImpl<char> & V)506   ObjectKey(const llvm::SmallVectorImpl<char> &V)
507       : ObjectKey(std::string(V.begin(), V.end())) {}
ObjectKey(const llvm::formatv_object_base & V)508   ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
509 
ObjectKey(const ObjectKey & C)510   ObjectKey(const ObjectKey &C) { *this = C; }
ObjectKey(ObjectKey && C)511   ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
512   ObjectKey &operator=(const ObjectKey &C) {
513     if (C.Owned) {
514       Owned.reset(new std::string(*C.Owned));
515       Data = *Owned;
516     } else {
517       Data = C.Data;
518     }
519     return *this;
520   }
521   ObjectKey &operator=(ObjectKey &&) = default;
522 
StringRef()523   operator llvm::StringRef() const { return Data; }
str()524   std::string str() const { return Data.str(); }
525 
526 private:
527   // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
528   // could be 2 pointers at most.
529   std::unique_ptr<std::string> Owned;
530   llvm::StringRef Data;
531 };
532 
533 inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
534   return llvm::StringRef(L) == llvm::StringRef(R);
535 }
536 inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
537   return !(L == R);
538 }
539 inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
540   return StringRef(L) < StringRef(R);
541 }
542 
543 struct Object::KV {
544   ObjectKey K;
545   Value V;
546 };
547 
Object(std::initializer_list<KV> Properties)548 inline Object::Object(std::initializer_list<KV> Properties) {
549   for (const auto &P : Properties) {
550     auto R = try_emplace(P.K, nullptr);
551     if (R.second)
552       R.first->getSecond().moveFrom(std::move(P.V));
553   }
554 }
insert(KV E)555 inline std::pair<Object::iterator, bool> Object::insert(KV E) {
556   return try_emplace(std::move(E.K), std::move(E.V));
557 }
558 
559 // Standard deserializers are provided for primitive types.
560 // See comments on Value.
fromJSON(const Value & E,std::string & Out)561 inline bool fromJSON(const Value &E, std::string &Out) {
562   if (auto S = E.getAsString()) {
563     Out = *S;
564     return true;
565   }
566   return false;
567 }
fromJSON(const Value & E,int & Out)568 inline bool fromJSON(const Value &E, int &Out) {
569   if (auto S = E.getAsInteger()) {
570     Out = *S;
571     return true;
572   }
573   return false;
574 }
fromJSON(const Value & E,int64_t & Out)575 inline bool fromJSON(const Value &E, int64_t &Out) {
576   if (auto S = E.getAsInteger()) {
577     Out = *S;
578     return true;
579   }
580   return false;
581 }
fromJSON(const Value & E,double & Out)582 inline bool fromJSON(const Value &E, double &Out) {
583   if (auto S = E.getAsNumber()) {
584     Out = *S;
585     return true;
586   }
587   return false;
588 }
fromJSON(const Value & E,bool & Out)589 inline bool fromJSON(const Value &E, bool &Out) {
590   if (auto S = E.getAsBoolean()) {
591     Out = *S;
592     return true;
593   }
594   return false;
595 }
fromJSON(const Value & E,llvm::Optional<T> & Out)596 template <typename T> bool fromJSON(const Value &E, llvm::Optional<T> &Out) {
597   if (E.getAsNull()) {
598     Out = llvm::None;
599     return true;
600   }
601   T Result;
602   if (!fromJSON(E, Result))
603     return false;
604   Out = std::move(Result);
605   return true;
606 }
fromJSON(const Value & E,std::vector<T> & Out)607 template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out) {
608   if (auto *A = E.getAsArray()) {
609     Out.clear();
610     Out.resize(A->size());
611     for (size_t I = 0; I < A->size(); ++I)
612       if (!fromJSON((*A)[I], Out[I]))
613         return false;
614     return true;
615   }
616   return false;
617 }
618 template <typename T>
fromJSON(const Value & E,std::map<std::string,T> & Out)619 bool fromJSON(const Value &E, std::map<std::string, T> &Out) {
620   if (auto *O = E.getAsObject()) {
621     Out.clear();
622     for (const auto &KV : *O)
623       if (!fromJSON(KV.second, Out[llvm::StringRef(KV.first)]))
624         return false;
625     return true;
626   }
627   return false;
628 }
629 
630 // Allow serialization of Optional<T> for supported T.
toJSON(const llvm::Optional<T> & Opt)631 template <typename T> Value toJSON(const llvm::Optional<T> &Opt) {
632   return Opt ? Value(*Opt) : Value(nullptr);
633 }
634 
635 /// Helper for mapping JSON objects onto protocol structs.
636 ///
637 /// Example:
638 /// \code
639 ///   bool fromJSON(const Value &E, MyStruct &R) {
640 ///     ObjectMapper O(E);
641 ///     if (!O || !O.map("mandatory_field", R.MandatoryField))
642 ///       return false;
643 ///     O.map("optional_field", R.OptionalField);
644 ///     return true;
645 ///   }
646 /// \endcode
647 class ObjectMapper {
648 public:
ObjectMapper(const Value & E)649   ObjectMapper(const Value &E) : O(E.getAsObject()) {}
650 
651   /// True if the expression is an object.
652   /// Must be checked before calling map().
653   operator bool() { return O; }
654 
655   /// Maps a property to a field, if it exists.
map(StringRef Prop,T & Out)656   template <typename T> bool map(StringRef Prop, T &Out) {
657     assert(*this && "Must check this is an object before calling map()");
658     if (const Value *E = O->get(Prop))
659       return fromJSON(*E, Out);
660     return false;
661   }
662 
663   /// Maps a property to a field, if it exists.
664   /// (Optional requires special handling, because missing keys are OK).
map(StringRef Prop,llvm::Optional<T> & Out)665   template <typename T> bool map(StringRef Prop, llvm::Optional<T> &Out) {
666     assert(*this && "Must check this is an object before calling map()");
667     if (const Value *E = O->get(Prop))
668       return fromJSON(*E, Out);
669     Out = llvm::None;
670     return true;
671   }
672 
673 private:
674   const Object *O;
675 };
676 
677 /// Parses the provided JSON source, or returns a ParseError.
678 /// The returned Value is self-contained and owns its strings (they do not refer
679 /// to the original source).
680 llvm::Expected<Value> parse(llvm::StringRef JSON);
681 
682 class ParseError : public llvm::ErrorInfo<ParseError> {
683   const char *Msg;
684   unsigned Line, Column, Offset;
685 
686 public:
687   static char ID;
ParseError(const char * Msg,unsigned Line,unsigned Column,unsigned Offset)688   ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
689       : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
log(llvm::raw_ostream & OS)690   void log(llvm::raw_ostream &OS) const override {
691     OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
692   }
convertToErrorCode()693   std::error_code convertToErrorCode() const override {
694     return llvm::inconvertibleErrorCode();
695   }
696 };
697 
698 /// json::OStream allows writing well-formed JSON without materializing
699 /// all structures as json::Value ahead of time.
700 /// It's faster, lower-level, and less safe than OS << json::Value.
701 ///
702 /// Only one "top-level" object can be written to a stream.
703 /// Simplest usage involves passing lambdas (Blocks) to fill in containers:
704 ///
705 ///   json::OStream J(OS);
706 ///   J.array([&]{
707 ///     for (const Event &E : Events)
708 ///       J.object([&] {
709 ///         J.attribute("timestamp", int64_t(E.Time));
710 ///         J.attributeArray("participants", [&] {
711 ///           for (const Participant &P : E.Participants)
712 ///             J.string(P.toString());
713 ///         });
714 ///       });
715 ///   });
716 ///
717 /// This would produce JSON like:
718 ///
719 ///   [
720 ///     {
721 ///       "timestamp": 19287398741,
722 ///       "participants": [
723 ///         "King Kong",
724 ///         "Miley Cyrus",
725 ///         "Cleopatra"
726 ///       ]
727 ///     },
728 ///     ...
729 ///   ]
730 ///
731 /// The lower level begin/end methods (arrayBegin()) are more flexible but
732 /// care must be taken to pair them correctly:
733 ///
734 ///   json::OStream J(OS);
735 //    J.arrayBegin();
736 ///   for (const Event &E : Events) {
737 ///     J.objectBegin();
738 ///     J.attribute("timestamp", int64_t(E.Time));
739 ///     J.attributeBegin("participants");
740 ///     for (const Participant &P : E.Participants)
741 ///       J.value(P.toString());
742 ///     J.attributeEnd();
743 ///     J.objectEnd();
744 ///   }
745 ///   J.arrayEnd();
746 ///
747 /// If the call sequence isn't valid JSON, asserts will fire in debug mode.
748 /// This can be mismatched begin()/end() pairs, trying to emit attributes inside
749 /// an array, and so on.
750 /// With asserts disabled, this is undefined behavior.
751 class OStream {
752  public:
753   using Block = llvm::function_ref<void()>;
754   // If IndentSize is nonzero, output is pretty-printed.
755   explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
OS(OS)756       : OS(OS), IndentSize(IndentSize) {
757     Stack.emplace_back();
758   }
~OStream()759   ~OStream() {
760     assert(Stack.size() == 1 && "Unmatched begin()/end()");
761     assert(Stack.back().Ctx == Singleton);
762     assert(Stack.back().HasValue && "Did not write top-level value");
763   }
764 
765   /// Flushes the underlying ostream. OStream does not buffer internally.
flush()766   void flush() { OS.flush(); }
767 
768   // High level functions to output a value.
769   // Valid at top-level (exactly once), in an attribute value (exactly once),
770   // or in an array (any number of times).
771 
772   /// Emit a self-contained value (number, string, vector<string> etc).
773   void value(const Value &V);
774   /// Emit an array whose elements are emitted in the provided Block.
array(Block Contents)775   void array(Block Contents) {
776     arrayBegin();
777     Contents();
778     arrayEnd();
779   }
780   /// Emit an object whose elements are emitted in the provided Block.
object(Block Contents)781   void object(Block Contents) {
782     objectBegin();
783     Contents();
784     objectEnd();
785   }
786 
787   // High level functions to output object attributes.
788   // Valid only within an object (any number of times).
789 
790   /// Emit an attribute whose value is self-contained (number, vector<int> etc).
attribute(llvm::StringRef Key,const Value & Contents)791   void attribute(llvm::StringRef Key, const Value& Contents) {
792     attributeImpl(Key, [&] { value(Contents); });
793   }
794   /// Emit an attribute whose value is an array with elements from the Block.
attributeArray(llvm::StringRef Key,Block Contents)795   void attributeArray(llvm::StringRef Key, Block Contents) {
796     attributeImpl(Key, [&] { array(Contents); });
797   }
798   /// Emit an attribute whose value is an object with attributes from the Block.
attributeObject(llvm::StringRef Key,Block Contents)799   void attributeObject(llvm::StringRef Key, Block Contents) {
800     attributeImpl(Key, [&] { object(Contents); });
801   }
802 
803   // Low-level begin/end functions to output arrays, objects, and attributes.
804   // Must be correctly paired. Allowed contexts are as above.
805 
806   void arrayBegin();
807   void arrayEnd();
808   void objectBegin();
809   void objectEnd();
810   void attributeBegin(llvm::StringRef Key);
811   void attributeEnd();
812 
813  private:
attributeImpl(llvm::StringRef Key,Block Contents)814   void attributeImpl(llvm::StringRef Key, Block Contents) {
815     attributeBegin(Key);
816     Contents();
817     attributeEnd();
818   }
819 
820   void valueBegin();
821   void newline();
822 
823   enum Context {
824     Singleton, // Top level, or object attribute.
825     Array,
826     Object,
827   };
828   struct State {
829     Context Ctx = Singleton;
830     bool HasValue = false;
831   };
832   llvm::SmallVector<State, 16> Stack; // Never empty.
833   llvm::raw_ostream &OS;
834   unsigned IndentSize;
835   unsigned Indent = 0;
836 };
837 
838 /// Serializes this Value to JSON, writing it to the provided stream.
839 /// The formatting is compact (no extra whitespace) and deterministic.
840 /// For pretty-printing, use the formatv() format_provider below.
841 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
842   OStream(OS).value(V);
843   return OS;
844 }
845 } // namespace json
846 
847 /// Allow printing json::Value with formatv().
848 /// The default style is basic/compact formatting, like operator<<.
849 /// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
850 template <> struct format_provider<llvm::json::Value> {
851   static void format(const llvm::json::Value &, raw_ostream &, StringRef);
852 };
853 } // namespace llvm
854 
855 #endif
856