1 //===- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a CFL-base, summary-based alias analysis algorithm. It
10 // does not depend on types. The algorithm is a mixture of the one described in
11 // "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
12 // algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
13 // Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
14 // graph of the uses of a variable, where each node is a memory location, and
15 // each edge is an action that happened on that memory location.  The "actions"
16 // can be one of Dereference, Reference, or Assign. The precision of this
17 // analysis is roughly the same as that of an one level context-sensitive
18 // Steensgaard's algorithm.
19 //
20 // Two variables are considered as aliasing iff you can reach one value's node
21 // from the other value's node and the language formed by concatenating all of
22 // the edge labels (actions) conforms to a context-free grammar.
23 //
24 // Because this algorithm requires a graph search on each query, we execute the
25 // algorithm outlined in "Fast algorithms..." (mentioned above)
26 // in order to transform the graph into sets of variables that may alias in
27 // ~nlogn time (n = number of variables), which makes queries take constant
28 // time.
29 //===----------------------------------------------------------------------===//
30 
31 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
32 // CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
33 // FunctionPasses are only allowed to inspect the Function that they're being
34 // run on. Realistically, this likely isn't a problem until we allow
35 // FunctionPasses to run concurrently.
36 
37 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
38 #include "AliasAnalysisSummary.h"
39 #include "CFLGraph.h"
40 #include "StratifiedSets.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 using namespace llvm::cflaa;
60 
61 #define DEBUG_TYPE "cfl-steens-aa"
62 
CFLSteensAAResult(const TargetLibraryInfo & TLI)63 CFLSteensAAResult::CFLSteensAAResult(const TargetLibraryInfo &TLI)
64     : AAResultBase(), TLI(TLI) {}
CFLSteensAAResult(CFLSteensAAResult && Arg)65 CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
66     : AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
67 CFLSteensAAResult::~CFLSteensAAResult() = default;
68 
69 /// Information we have about a function and would like to keep around.
70 class CFLSteensAAResult::FunctionInfo {
71   StratifiedSets<InstantiatedValue> Sets;
72   AliasSummary Summary;
73 
74 public:
75   FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
76                StratifiedSets<InstantiatedValue> S);
77 
getStratifiedSets() const78   const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
79     return Sets;
80   }
81 
getAliasSummary() const82   const AliasSummary &getAliasSummary() const { return Summary; }
83 };
84 
85 const StratifiedIndex StratifiedLink::SetSentinel =
86     std::numeric_limits<StratifiedIndex>::max();
87 
88 //===----------------------------------------------------------------------===//
89 // Function declarations that require types defined in the namespace above
90 //===----------------------------------------------------------------------===//
91 
92 /// Determines whether it would be pointless to add the given Value to our sets.
canSkipAddingToSets(Value * Val)93 static bool canSkipAddingToSets(Value *Val) {
94   // Constants can share instances, which may falsely unify multiple
95   // sets, e.g. in
96   // store i32* null, i32** %ptr1
97   // store i32* null, i32** %ptr2
98   // clearly ptr1 and ptr2 should not be unified into the same set, so
99   // we should filter out the (potentially shared) instance to
100   // i32* null.
101   if (isa<Constant>(Val)) {
102     // TODO: Because all of these things are constant, we can determine whether
103     // the data is *actually* mutable at graph building time. This will probably
104     // come for free/cheap with offset awareness.
105     bool CanStoreMutableData = isa<GlobalValue>(Val) ||
106                                isa<ConstantExpr>(Val) ||
107                                isa<ConstantAggregate>(Val);
108     return !CanStoreMutableData;
109   }
110 
111   return false;
112 }
113 
FunctionInfo(Function & Fn,const SmallVectorImpl<Value * > & RetVals,StratifiedSets<InstantiatedValue> S)114 CFLSteensAAResult::FunctionInfo::FunctionInfo(
115     Function &Fn, const SmallVectorImpl<Value *> &RetVals,
116     StratifiedSets<InstantiatedValue> S)
117     : Sets(std::move(S)) {
118   // Historically, an arbitrary upper-bound of 50 args was selected. We may want
119   // to remove this if it doesn't really matter in practice.
120   if (Fn.arg_size() > MaxSupportedArgsInSummary)
121     return;
122 
123   DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
124 
125   // Our intention here is to record all InterfaceValues that share the same
126   // StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
127   // have its StratifiedIndex scanned here and check if the index is presented
128   // in InterfaceMap: if it is not, we add the correspondence to the map;
129   // otherwise, an aliasing relation is found and we add it to
130   // RetParamRelations.
131 
132   auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
133                                     StratifiedIndex SetIndex) {
134     unsigned Level = 0;
135     while (true) {
136       InterfaceValue CurrValue{InterfaceIndex, Level};
137 
138       auto Itr = InterfaceMap.find(SetIndex);
139       if (Itr != InterfaceMap.end()) {
140         if (CurrValue != Itr->second)
141           Summary.RetParamRelations.push_back(
142               ExternalRelation{CurrValue, Itr->second, UnknownOffset});
143         break;
144       }
145 
146       auto &Link = Sets.getLink(SetIndex);
147       InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
148       auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
149       if (ExternalAttrs.any())
150         Summary.RetParamAttributes.push_back(
151             ExternalAttribute{CurrValue, ExternalAttrs});
152 
153       if (!Link.hasBelow())
154         break;
155 
156       ++Level;
157       SetIndex = Link.Below;
158     }
159   };
160 
161   // Populate RetParamRelations for return values
162   for (auto *RetVal : RetVals) {
163     assert(RetVal != nullptr);
164     assert(RetVal->getType()->isPointerTy());
165     auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
166     if (RetInfo.hasValue())
167       AddToRetParamRelations(0, RetInfo->Index);
168   }
169 
170   // Populate RetParamRelations for parameters
171   unsigned I = 0;
172   for (auto &Param : Fn.args()) {
173     if (Param.getType()->isPointerTy()) {
174       auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
175       if (ParamInfo.hasValue())
176         AddToRetParamRelations(I + 1, ParamInfo->Index);
177     }
178     ++I;
179   }
180 }
181 
182 // Builds the graph + StratifiedSets for a function.
buildSetsFrom(Function * Fn)183 CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
184   CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, TLI, *Fn);
185   StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
186 
187   // Add all CFLGraph nodes and all Dereference edges to StratifiedSets
188   auto &Graph = GraphBuilder.getCFLGraph();
189   for (const auto &Mapping : Graph.value_mappings()) {
190     auto Val = Mapping.first;
191     if (canSkipAddingToSets(Val))
192       continue;
193     auto &ValueInfo = Mapping.second;
194 
195     assert(ValueInfo.getNumLevels() > 0);
196     SetBuilder.add(InstantiatedValue{Val, 0});
197     SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
198                               ValueInfo.getNodeInfoAtLevel(0).Attr);
199     for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
200       SetBuilder.add(InstantiatedValue{Val, I + 1});
201       SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
202                                 ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
203       SetBuilder.addBelow(InstantiatedValue{Val, I},
204                           InstantiatedValue{Val, I + 1});
205     }
206   }
207 
208   // Add all assign edges to StratifiedSets
209   for (const auto &Mapping : Graph.value_mappings()) {
210     auto Val = Mapping.first;
211     if (canSkipAddingToSets(Val))
212       continue;
213     auto &ValueInfo = Mapping.second;
214 
215     for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
216       auto Src = InstantiatedValue{Val, I};
217       for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
218         SetBuilder.addWith(Src, Edge.Other);
219     }
220   }
221 
222   return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
223 }
224 
scan(Function * Fn)225 void CFLSteensAAResult::scan(Function *Fn) {
226   auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
227   (void)InsertPair;
228   assert(InsertPair.second &&
229          "Trying to scan a function that has already been cached");
230 
231   // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
232   // may get evaluated after operator[], potentially triggering a DenseMap
233   // resize and invalidating the reference returned by operator[]
234   auto FunInfo = buildSetsFrom(Fn);
235   Cache[Fn] = std::move(FunInfo);
236 
237   Handles.emplace_front(Fn, this);
238 }
239 
evict(Function * Fn)240 void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
241 
242 /// Ensures that the given function is available in the cache, and returns the
243 /// entry.
244 const Optional<CFLSteensAAResult::FunctionInfo> &
ensureCached(Function * Fn)245 CFLSteensAAResult::ensureCached(Function *Fn) {
246   auto Iter = Cache.find(Fn);
247   if (Iter == Cache.end()) {
248     scan(Fn);
249     Iter = Cache.find(Fn);
250     assert(Iter != Cache.end());
251     assert(Iter->second.hasValue());
252   }
253   return Iter->second;
254 }
255 
getAliasSummary(Function & Fn)256 const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
257   auto &FunInfo = ensureCached(&Fn);
258   if (FunInfo.hasValue())
259     return &FunInfo->getAliasSummary();
260   else
261     return nullptr;
262 }
263 
query(const MemoryLocation & LocA,const MemoryLocation & LocB)264 AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
265                                      const MemoryLocation &LocB) {
266   auto *ValA = const_cast<Value *>(LocA.Ptr);
267   auto *ValB = const_cast<Value *>(LocB.Ptr);
268 
269   if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
270     return NoAlias;
271 
272   Function *Fn = nullptr;
273   Function *MaybeFnA = const_cast<Function *>(parentFunctionOfValue(ValA));
274   Function *MaybeFnB = const_cast<Function *>(parentFunctionOfValue(ValB));
275   if (!MaybeFnA && !MaybeFnB) {
276     // The only times this is known to happen are when globals + InlineAsm are
277     // involved
278     LLVM_DEBUG(
279         dbgs()
280         << "CFLSteensAA: could not extract parent function information.\n");
281     return MayAlias;
282   }
283 
284   if (MaybeFnA) {
285     Fn = MaybeFnA;
286     assert((!MaybeFnB || MaybeFnB == MaybeFnA) &&
287            "Interprocedural queries not supported");
288   } else {
289     Fn = MaybeFnB;
290   }
291 
292   assert(Fn != nullptr);
293   auto &MaybeInfo = ensureCached(Fn);
294   assert(MaybeInfo.hasValue());
295 
296   auto &Sets = MaybeInfo->getStratifiedSets();
297   auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
298   if (!MaybeA.hasValue())
299     return MayAlias;
300 
301   auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
302   if (!MaybeB.hasValue())
303     return MayAlias;
304 
305   auto SetA = *MaybeA;
306   auto SetB = *MaybeB;
307   auto AttrsA = Sets.getLink(SetA.Index).Attrs;
308   auto AttrsB = Sets.getLink(SetB.Index).Attrs;
309 
310   // If both values are local (meaning the corresponding set has attribute
311   // AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
312   // they may-alias each other if and only if they are in the same set.
313   // If at least one value is non-local (meaning it either is global/argument or
314   // it comes from unknown sources like integer cast), the situation becomes a
315   // bit more interesting. We follow three general rules described below:
316   // - Non-local values may alias each other
317   // - AttrNone values do not alias any non-local values
318   // - AttrEscaped do not alias globals/arguments, but they may alias
319   // AttrUnknown values
320   if (SetA.Index == SetB.Index)
321     return MayAlias;
322   if (AttrsA.none() || AttrsB.none())
323     return NoAlias;
324   if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
325     return MayAlias;
326   if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
327     return MayAlias;
328   return NoAlias;
329 }
330 
331 AnalysisKey CFLSteensAA::Key;
332 
run(Function & F,FunctionAnalysisManager & AM)333 CFLSteensAAResult CFLSteensAA::run(Function &F, FunctionAnalysisManager &AM) {
334   return CFLSteensAAResult(AM.getResult<TargetLibraryAnalysis>(F));
335 }
336 
337 char CFLSteensAAWrapperPass::ID = 0;
338 INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
339                 "Unification-Based CFL Alias Analysis", false, true)
340 
createCFLSteensAAWrapperPass()341 ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
342   return new CFLSteensAAWrapperPass();
343 }
344 
CFLSteensAAWrapperPass()345 CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
346   initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
347 }
348 
initializePass()349 void CFLSteensAAWrapperPass::initializePass() {
350   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
351   Result.reset(new CFLSteensAAResult(TLIWP.getTLI()));
352 }
353 
getAnalysisUsage(AnalysisUsage & AU) const354 void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
355   AU.setPreservesAll();
356   AU.addRequired<TargetLibraryInfoWrapperPass>();
357 }
358