1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "codegen"
41
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43 : BB(B), Number(-1), xParent(&MF) {
44 Insts.Parent = this;
45 if (B)
46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48
~MachineBasicBlock()49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51
52 /// Return the MCSymbol for this basic block.
getSymbol() const53 MCSymbol *MachineBasicBlock::getSymbol() const {
54 if (!CachedMCSymbol) {
55 const MachineFunction *MF = getParent();
56 MCContext &Ctx = MF->getContext();
57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60 Twine(MF->getFunctionNumber()) +
61 "_" + Twine(getNumber()));
62 }
63
64 return CachedMCSymbol;
65 }
66
67
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69 MBB.print(OS);
70 return OS;
71 }
72
printMBBReference(const MachineBasicBlock & MBB)73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85 MachineBasicBlock *N) {
86 MachineFunction &MF = *N->getParent();
87 N->Number = MF.addToMBBNumbering(N);
88
89 // Make sure the instructions have their operands in the reginfo lists.
90 MachineRegisterInfo &RegInfo = MF.getRegInfo();
91 for (MachineBasicBlock::instr_iterator
92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93 I->AddRegOperandsToUseLists(RegInfo);
94 }
95
removeNodeFromList(MachineBasicBlock * N)96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97 MachineBasicBlock *N) {
98 N->getParent()->removeFromMBBNumbering(N->Number);
99 N->Number = -1;
100 }
101
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105 assert(!N->getParent() && "machine instruction already in a basic block");
106 N->setParent(Parent);
107
108 // Add the instruction's register operands to their corresponding
109 // use/def lists.
110 MachineFunction *MF = Parent->getParent();
111 N->AddRegOperandsToUseLists(MF->getRegInfo());
112 MF->handleInsertion(*N);
113 }
114
115 /// When we remove an instruction from a basic block list, we update its parent
116 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118 assert(N->getParent() && "machine instruction not in a basic block");
119
120 // Remove from the use/def lists.
121 if (MachineFunction *MF = N->getMF()) {
122 MF->handleRemoval(*N);
123 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
124 }
125
126 N->setParent(nullptr);
127 }
128
129 /// When moving a range of instructions from one MBB list to another, we need to
130 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)131 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
132 instr_iterator First,
133 instr_iterator Last) {
134 assert(Parent->getParent() == FromList.Parent->getParent() &&
135 "cannot transfer MachineInstrs between MachineFunctions");
136
137 // If it's within the same BB, there's nothing to do.
138 if (this == &FromList)
139 return;
140
141 assert(Parent != FromList.Parent && "Two lists have the same parent?");
142
143 // If splicing between two blocks within the same function, just update the
144 // parent pointers.
145 for (; First != Last; ++First)
146 First->setParent(Parent);
147 }
148
deleteNode(MachineInstr * MI)149 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
150 assert(!MI->getParent() && "MI is still in a block!");
151 Parent->getParent()->DeleteMachineInstr(MI);
152 }
153
getFirstNonPHI()154 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
155 instr_iterator I = instr_begin(), E = instr_end();
156 while (I != E && I->isPHI())
157 ++I;
158 assert((I == E || !I->isInsideBundle()) &&
159 "First non-phi MI cannot be inside a bundle!");
160 return I;
161 }
162
163 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)164 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
165 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
166
167 iterator E = end();
168 while (I != E && (I->isPHI() || I->isPosition() ||
169 TII->isBasicBlockPrologue(*I)))
170 ++I;
171 // FIXME: This needs to change if we wish to bundle labels
172 // inside the bundle.
173 assert((I == E || !I->isInsideBundle()) &&
174 "First non-phi / non-label instruction is inside a bundle!");
175 return I;
176 }
177
178 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)179 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
180 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
181
182 iterator E = end();
183 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
184 TII->isBasicBlockPrologue(*I)))
185 ++I;
186 // FIXME: This needs to change if we wish to bundle labels / dbg_values
187 // inside the bundle.
188 assert((I == E || !I->isInsideBundle()) &&
189 "First non-phi / non-label / non-debug "
190 "instruction is inside a bundle!");
191 return I;
192 }
193
getFirstTerminator()194 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
195 iterator B = begin(), E = end(), I = E;
196 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
197 ; /*noop */
198 while (I != E && !I->isTerminator())
199 ++I;
200 return I;
201 }
202
getFirstInstrTerminator()203 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
204 instr_iterator B = instr_begin(), E = instr_end(), I = E;
205 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
206 ; /*noop */
207 while (I != E && !I->isTerminator())
208 ++I;
209 return I;
210 }
211
getFirstNonDebugInstr()212 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
213 // Skip over begin-of-block dbg_value instructions.
214 return skipDebugInstructionsForward(begin(), end());
215 }
216
getLastNonDebugInstr()217 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
218 // Skip over end-of-block dbg_value instructions.
219 instr_iterator B = instr_begin(), I = instr_end();
220 while (I != B) {
221 --I;
222 // Return instruction that starts a bundle.
223 if (I->isDebugInstr() || I->isInsideBundle())
224 continue;
225 return I;
226 }
227 // The block is all debug values.
228 return end();
229 }
230
hasEHPadSuccessor() const231 bool MachineBasicBlock::hasEHPadSuccessor() const {
232 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
233 if ((*I)->isEHPad())
234 return true;
235 return false;
236 }
237
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const239 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
240 print(dbgs());
241 }
242 #endif
243
isLegalToHoistInto() const244 bool MachineBasicBlock::isLegalToHoistInto() const {
245 if (isReturnBlock() || hasEHPadSuccessor())
246 return false;
247 return true;
248 }
249
getName() const250 StringRef MachineBasicBlock::getName() const {
251 if (const BasicBlock *LBB = getBasicBlock())
252 return LBB->getName();
253 else
254 return StringRef("", 0);
255 }
256
257 /// Return a hopefully unique identifier for this block.
getFullName() const258 std::string MachineBasicBlock::getFullName() const {
259 std::string Name;
260 if (getParent())
261 Name = (getParent()->getName() + ":").str();
262 if (getBasicBlock())
263 Name += getBasicBlock()->getName();
264 else
265 Name += ("BB" + Twine(getNumber())).str();
266 return Name;
267 }
268
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const269 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
270 bool IsStandalone) const {
271 const MachineFunction *MF = getParent();
272 if (!MF) {
273 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
274 << " is null\n";
275 return;
276 }
277 const Function &F = MF->getFunction();
278 const Module *M = F.getParent();
279 ModuleSlotTracker MST(M);
280 MST.incorporateFunction(F);
281 print(OS, MST, Indexes, IsStandalone);
282 }
283
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const284 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
285 const SlotIndexes *Indexes,
286 bool IsStandalone) const {
287 const MachineFunction *MF = getParent();
288 if (!MF) {
289 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
290 << " is null\n";
291 return;
292 }
293
294 if (Indexes)
295 OS << Indexes->getMBBStartIdx(this) << '\t';
296
297 OS << "bb." << getNumber();
298 bool HasAttributes = false;
299 if (const auto *BB = getBasicBlock()) {
300 if (BB->hasName()) {
301 OS << "." << BB->getName();
302 } else {
303 HasAttributes = true;
304 OS << " (";
305 int Slot = MST.getLocalSlot(BB);
306 if (Slot == -1)
307 OS << "<ir-block badref>";
308 else
309 OS << (Twine("%ir-block.") + Twine(Slot)).str();
310 }
311 }
312
313 if (hasAddressTaken()) {
314 OS << (HasAttributes ? ", " : " (");
315 OS << "address-taken";
316 HasAttributes = true;
317 }
318 if (isEHPad()) {
319 OS << (HasAttributes ? ", " : " (");
320 OS << "landing-pad";
321 HasAttributes = true;
322 }
323 if (getAlignment()) {
324 OS << (HasAttributes ? ", " : " (");
325 OS << "align " << getAlignment();
326 HasAttributes = true;
327 }
328 if (HasAttributes)
329 OS << ")";
330 OS << ":\n";
331
332 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
333 const MachineRegisterInfo &MRI = MF->getRegInfo();
334 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
335 bool HasLineAttributes = false;
336
337 // Print the preds of this block according to the CFG.
338 if (!pred_empty() && IsStandalone) {
339 if (Indexes) OS << '\t';
340 // Don't indent(2), align with previous line attributes.
341 OS << "; predecessors: ";
342 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
343 if (I != pred_begin())
344 OS << ", ";
345 OS << printMBBReference(**I);
346 }
347 OS << '\n';
348 HasLineAttributes = true;
349 }
350
351 if (!succ_empty()) {
352 if (Indexes) OS << '\t';
353 // Print the successors
354 OS.indent(2) << "successors: ";
355 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
356 if (I != succ_begin())
357 OS << ", ";
358 OS << printMBBReference(**I);
359 if (!Probs.empty())
360 OS << '('
361 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
362 << ')';
363 }
364 if (!Probs.empty() && IsStandalone) {
365 // Print human readable probabilities as comments.
366 OS << "; ";
367 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
368 const BranchProbability &BP = getSuccProbability(I);
369 if (I != succ_begin())
370 OS << ", ";
371 OS << printMBBReference(**I) << '('
372 << format("%.2f%%",
373 rint(((double)BP.getNumerator() / BP.getDenominator()) *
374 100.0 * 100.0) /
375 100.0)
376 << ')';
377 }
378 }
379
380 OS << '\n';
381 HasLineAttributes = true;
382 }
383
384 if (!livein_empty() && MRI.tracksLiveness()) {
385 if (Indexes) OS << '\t';
386 OS.indent(2) << "liveins: ";
387
388 bool First = true;
389 for (const auto &LI : liveins()) {
390 if (!First)
391 OS << ", ";
392 First = false;
393 OS << printReg(LI.PhysReg, TRI);
394 if (!LI.LaneMask.all())
395 OS << ":0x" << PrintLaneMask(LI.LaneMask);
396 }
397 HasLineAttributes = true;
398 }
399
400 if (HasLineAttributes)
401 OS << '\n';
402
403 bool IsInBundle = false;
404 for (const MachineInstr &MI : instrs()) {
405 if (Indexes) {
406 if (Indexes->hasIndex(MI))
407 OS << Indexes->getInstructionIndex(MI);
408 OS << '\t';
409 }
410
411 if (IsInBundle && !MI.isInsideBundle()) {
412 OS.indent(2) << "}\n";
413 IsInBundle = false;
414 }
415
416 OS.indent(IsInBundle ? 4 : 2);
417 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
418 /*AddNewLine=*/false, &TII);
419
420 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
421 OS << " {";
422 IsInBundle = true;
423 }
424 OS << '\n';
425 }
426
427 if (IsInBundle)
428 OS.indent(2) << "}\n";
429
430 if (IrrLoopHeaderWeight && IsStandalone) {
431 if (Indexes) OS << '\t';
432 OS.indent(2) << "; Irreducible loop header weight: "
433 << IrrLoopHeaderWeight.getValue() << '\n';
434 }
435 }
436
printAsOperand(raw_ostream & OS,bool) const437 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
438 bool /*PrintType*/) const {
439 OS << "%bb." << getNumber();
440 }
441
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)442 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
443 LiveInVector::iterator I = find_if(
444 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
445 if (I == LiveIns.end())
446 return;
447
448 I->LaneMask &= ~LaneMask;
449 if (I->LaneMask.none())
450 LiveIns.erase(I);
451 }
452
453 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)454 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
455 // Get non-const version of iterator.
456 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
457 return LiveIns.erase(LI);
458 }
459
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const460 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
461 livein_iterator I = find_if(
462 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
463 return I != livein_end() && (I->LaneMask & LaneMask).any();
464 }
465
sortUniqueLiveIns()466 void MachineBasicBlock::sortUniqueLiveIns() {
467 llvm::sort(LiveIns,
468 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
469 return LI0.PhysReg < LI1.PhysReg;
470 });
471 // Liveins are sorted by physreg now we can merge their lanemasks.
472 LiveInVector::const_iterator I = LiveIns.begin();
473 LiveInVector::const_iterator J;
474 LiveInVector::iterator Out = LiveIns.begin();
475 for (; I != LiveIns.end(); ++Out, I = J) {
476 unsigned PhysReg = I->PhysReg;
477 LaneBitmask LaneMask = I->LaneMask;
478 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
479 LaneMask |= J->LaneMask;
480 Out->PhysReg = PhysReg;
481 Out->LaneMask = LaneMask;
482 }
483 LiveIns.erase(Out, LiveIns.end());
484 }
485
486 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)487 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
488 assert(getParent() && "MBB must be inserted in function");
489 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
490 assert(RC && "Register class is required");
491 assert((isEHPad() || this == &getParent()->front()) &&
492 "Only the entry block and landing pads can have physreg live ins");
493
494 bool LiveIn = isLiveIn(PhysReg);
495 iterator I = SkipPHIsAndLabels(begin()), E = end();
496 MachineRegisterInfo &MRI = getParent()->getRegInfo();
497 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
498
499 // Look for an existing copy.
500 if (LiveIn)
501 for (;I != E && I->isCopy(); ++I)
502 if (I->getOperand(1).getReg() == PhysReg) {
503 unsigned VirtReg = I->getOperand(0).getReg();
504 if (!MRI.constrainRegClass(VirtReg, RC))
505 llvm_unreachable("Incompatible live-in register class.");
506 return VirtReg;
507 }
508
509 // No luck, create a virtual register.
510 unsigned VirtReg = MRI.createVirtualRegister(RC);
511 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
512 .addReg(PhysReg, RegState::Kill);
513 if (!LiveIn)
514 addLiveIn(PhysReg);
515 return VirtReg;
516 }
517
moveBefore(MachineBasicBlock * NewAfter)518 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
519 getParent()->splice(NewAfter->getIterator(), getIterator());
520 }
521
moveAfter(MachineBasicBlock * NewBefore)522 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
523 getParent()->splice(++NewBefore->getIterator(), getIterator());
524 }
525
updateTerminator()526 void MachineBasicBlock::updateTerminator() {
527 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
528 // A block with no successors has no concerns with fall-through edges.
529 if (this->succ_empty())
530 return;
531
532 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
533 SmallVector<MachineOperand, 4> Cond;
534 DebugLoc DL = findBranchDebugLoc();
535 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
536 (void) B;
537 assert(!B && "UpdateTerminators requires analyzable predecessors!");
538 if (Cond.empty()) {
539 if (TBB) {
540 // The block has an unconditional branch. If its successor is now its
541 // layout successor, delete the branch.
542 if (isLayoutSuccessor(TBB))
543 TII->removeBranch(*this);
544 } else {
545 // The block has an unconditional fallthrough. If its successor is not its
546 // layout successor, insert a branch. First we have to locate the only
547 // non-landing-pad successor, as that is the fallthrough block.
548 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
549 if ((*SI)->isEHPad())
550 continue;
551 assert(!TBB && "Found more than one non-landing-pad successor!");
552 TBB = *SI;
553 }
554
555 // If there is no non-landing-pad successor, the block has no fall-through
556 // edges to be concerned with.
557 if (!TBB)
558 return;
559
560 // Finally update the unconditional successor to be reached via a branch
561 // if it would not be reached by fallthrough.
562 if (!isLayoutSuccessor(TBB))
563 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
564 }
565 return;
566 }
567
568 if (FBB) {
569 // The block has a non-fallthrough conditional branch. If one of its
570 // successors is its layout successor, rewrite it to a fallthrough
571 // conditional branch.
572 if (isLayoutSuccessor(TBB)) {
573 if (TII->reverseBranchCondition(Cond))
574 return;
575 TII->removeBranch(*this);
576 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
577 } else if (isLayoutSuccessor(FBB)) {
578 TII->removeBranch(*this);
579 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
580 }
581 return;
582 }
583
584 // Walk through the successors and find the successor which is not a landing
585 // pad and is not the conditional branch destination (in TBB) as the
586 // fallthrough successor.
587 MachineBasicBlock *FallthroughBB = nullptr;
588 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
589 if ((*SI)->isEHPad() || *SI == TBB)
590 continue;
591 assert(!FallthroughBB && "Found more than one fallthrough successor.");
592 FallthroughBB = *SI;
593 }
594
595 if (!FallthroughBB) {
596 if (canFallThrough()) {
597 // We fallthrough to the same basic block as the conditional jump targets.
598 // Remove the conditional jump, leaving unconditional fallthrough.
599 // FIXME: This does not seem like a reasonable pattern to support, but it
600 // has been seen in the wild coming out of degenerate ARM test cases.
601 TII->removeBranch(*this);
602
603 // Finally update the unconditional successor to be reached via a branch if
604 // it would not be reached by fallthrough.
605 if (!isLayoutSuccessor(TBB))
606 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
607 return;
608 }
609
610 // We enter here iff exactly one successor is TBB which cannot fallthrough
611 // and the rest successors if any are EHPads. In this case, we need to
612 // change the conditional branch into unconditional branch.
613 TII->removeBranch(*this);
614 Cond.clear();
615 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
616 return;
617 }
618
619 // The block has a fallthrough conditional branch.
620 if (isLayoutSuccessor(TBB)) {
621 if (TII->reverseBranchCondition(Cond)) {
622 // We can't reverse the condition, add an unconditional branch.
623 Cond.clear();
624 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
625 return;
626 }
627 TII->removeBranch(*this);
628 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
629 } else if (!isLayoutSuccessor(FallthroughBB)) {
630 TII->removeBranch(*this);
631 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
632 }
633 }
634
validateSuccProbs() const635 void MachineBasicBlock::validateSuccProbs() const {
636 #ifndef NDEBUG
637 int64_t Sum = 0;
638 for (auto Prob : Probs)
639 Sum += Prob.getNumerator();
640 // Due to precision issue, we assume that the sum of probabilities is one if
641 // the difference between the sum of their numerators and the denominator is
642 // no greater than the number of successors.
643 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
644 Probs.size() &&
645 "The sum of successors's probabilities exceeds one.");
646 #endif // NDEBUG
647 }
648
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)649 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
650 BranchProbability Prob) {
651 // Probability list is either empty (if successor list isn't empty, this means
652 // disabled optimization) or has the same size as successor list.
653 if (!(Probs.empty() && !Successors.empty()))
654 Probs.push_back(Prob);
655 Successors.push_back(Succ);
656 Succ->addPredecessor(this);
657 }
658
addSuccessorWithoutProb(MachineBasicBlock * Succ)659 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
660 // We need to make sure probability list is either empty or has the same size
661 // of successor list. When this function is called, we can safely delete all
662 // probability in the list.
663 Probs.clear();
664 Successors.push_back(Succ);
665 Succ->addPredecessor(this);
666 }
667
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)668 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
669 MachineBasicBlock *New,
670 bool NormalizeSuccProbs) {
671 succ_iterator OldI = llvm::find(successors(), Old);
672 assert(OldI != succ_end() && "Old is not a successor of this block!");
673 assert(llvm::find(successors(), New) == succ_end() &&
674 "New is already a successor of this block!");
675
676 // Add a new successor with equal probability as the original one. Note
677 // that we directly copy the probability using the iterator rather than
678 // getting a potentially synthetic probability computed when unknown. This
679 // preserves the probabilities as-is and then we can renormalize them and
680 // query them effectively afterward.
681 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
682 : *getProbabilityIterator(OldI));
683 if (NormalizeSuccProbs)
684 normalizeSuccProbs();
685 }
686
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)687 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
688 bool NormalizeSuccProbs) {
689 succ_iterator I = find(Successors, Succ);
690 removeSuccessor(I, NormalizeSuccProbs);
691 }
692
693 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)694 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
695 assert(I != Successors.end() && "Not a current successor!");
696
697 // If probability list is empty it means we don't use it (disabled
698 // optimization).
699 if (!Probs.empty()) {
700 probability_iterator WI = getProbabilityIterator(I);
701 Probs.erase(WI);
702 if (NormalizeSuccProbs)
703 normalizeSuccProbs();
704 }
705
706 (*I)->removePredecessor(this);
707 return Successors.erase(I);
708 }
709
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)710 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
711 MachineBasicBlock *New) {
712 if (Old == New)
713 return;
714
715 succ_iterator E = succ_end();
716 succ_iterator NewI = E;
717 succ_iterator OldI = E;
718 for (succ_iterator I = succ_begin(); I != E; ++I) {
719 if (*I == Old) {
720 OldI = I;
721 if (NewI != E)
722 break;
723 }
724 if (*I == New) {
725 NewI = I;
726 if (OldI != E)
727 break;
728 }
729 }
730 assert(OldI != E && "Old is not a successor of this block");
731
732 // If New isn't already a successor, let it take Old's place.
733 if (NewI == E) {
734 Old->removePredecessor(this);
735 New->addPredecessor(this);
736 *OldI = New;
737 return;
738 }
739
740 // New is already a successor.
741 // Update its probability instead of adding a duplicate edge.
742 if (!Probs.empty()) {
743 auto ProbIter = getProbabilityIterator(NewI);
744 if (!ProbIter->isUnknown())
745 *ProbIter += *getProbabilityIterator(OldI);
746 }
747 removeSuccessor(OldI);
748 }
749
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)750 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
751 succ_iterator I) {
752 if (Orig->Probs.empty())
753 addSuccessor(*I, Orig->getSuccProbability(I));
754 else
755 addSuccessorWithoutProb(*I);
756 }
757
addPredecessor(MachineBasicBlock * Pred)758 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
759 Predecessors.push_back(Pred);
760 }
761
removePredecessor(MachineBasicBlock * Pred)762 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
763 pred_iterator I = find(Predecessors, Pred);
764 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
765 Predecessors.erase(I);
766 }
767
transferSuccessors(MachineBasicBlock * FromMBB)768 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
769 if (this == FromMBB)
770 return;
771
772 while (!FromMBB->succ_empty()) {
773 MachineBasicBlock *Succ = *FromMBB->succ_begin();
774
775 // If probability list is empty it means we don't use it (disabled optimization).
776 if (!FromMBB->Probs.empty()) {
777 auto Prob = *FromMBB->Probs.begin();
778 addSuccessor(Succ, Prob);
779 } else
780 addSuccessorWithoutProb(Succ);
781
782 FromMBB->removeSuccessor(Succ);
783 }
784 }
785
786 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)787 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
788 if (this == FromMBB)
789 return;
790
791 while (!FromMBB->succ_empty()) {
792 MachineBasicBlock *Succ = *FromMBB->succ_begin();
793 if (!FromMBB->Probs.empty()) {
794 auto Prob = *FromMBB->Probs.begin();
795 addSuccessor(Succ, Prob);
796 } else
797 addSuccessorWithoutProb(Succ);
798 FromMBB->removeSuccessor(Succ);
799
800 // Fix up any PHI nodes in the successor.
801 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
802 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
803 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
804 MachineOperand &MO = MI->getOperand(i);
805 if (MO.getMBB() == FromMBB)
806 MO.setMBB(this);
807 }
808 }
809 normalizeSuccProbs();
810 }
811
isPredecessor(const MachineBasicBlock * MBB) const812 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
813 return is_contained(predecessors(), MBB);
814 }
815
isSuccessor(const MachineBasicBlock * MBB) const816 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
817 return is_contained(successors(), MBB);
818 }
819
isLayoutSuccessor(const MachineBasicBlock * MBB) const820 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
821 MachineFunction::const_iterator I(this);
822 return std::next(I) == MachineFunction::const_iterator(MBB);
823 }
824
getFallThrough()825 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
826 MachineFunction::iterator Fallthrough = getIterator();
827 ++Fallthrough;
828 // If FallthroughBlock is off the end of the function, it can't fall through.
829 if (Fallthrough == getParent()->end())
830 return nullptr;
831
832 // If FallthroughBlock isn't a successor, no fallthrough is possible.
833 if (!isSuccessor(&*Fallthrough))
834 return nullptr;
835
836 // Analyze the branches, if any, at the end of the block.
837 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
838 SmallVector<MachineOperand, 4> Cond;
839 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
840 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
841 // If we couldn't analyze the branch, examine the last instruction.
842 // If the block doesn't end in a known control barrier, assume fallthrough
843 // is possible. The isPredicated check is needed because this code can be
844 // called during IfConversion, where an instruction which is normally a
845 // Barrier is predicated and thus no longer an actual control barrier.
846 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
847 ? &*Fallthrough
848 : nullptr;
849 }
850
851 // If there is no branch, control always falls through.
852 if (!TBB) return &*Fallthrough;
853
854 // If there is some explicit branch to the fallthrough block, it can obviously
855 // reach, even though the branch should get folded to fall through implicitly.
856 if (MachineFunction::iterator(TBB) == Fallthrough ||
857 MachineFunction::iterator(FBB) == Fallthrough)
858 return &*Fallthrough;
859
860 // If it's an unconditional branch to some block not the fall through, it
861 // doesn't fall through.
862 if (Cond.empty()) return nullptr;
863
864 // Otherwise, if it is conditional and has no explicit false block, it falls
865 // through.
866 return (FBB == nullptr) ? &*Fallthrough : nullptr;
867 }
868
canFallThrough()869 bool MachineBasicBlock::canFallThrough() {
870 return getFallThrough() != nullptr;
871 }
872
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P)873 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
874 Pass &P) {
875 if (!canSplitCriticalEdge(Succ))
876 return nullptr;
877
878 MachineFunction *MF = getParent();
879 DebugLoc DL; // FIXME: this is nowhere
880
881 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
882 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
883 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
884 << " -- " << printMBBReference(*NMBB) << " -- "
885 << printMBBReference(*Succ) << '\n');
886
887 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
888 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
889 if (LIS)
890 LIS->insertMBBInMaps(NMBB);
891 else if (Indexes)
892 Indexes->insertMBBInMaps(NMBB);
893
894 // On some targets like Mips, branches may kill virtual registers. Make sure
895 // that LiveVariables is properly updated after updateTerminator replaces the
896 // terminators.
897 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
898
899 // Collect a list of virtual registers killed by the terminators.
900 SmallVector<unsigned, 4> KilledRegs;
901 if (LV)
902 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
903 I != E; ++I) {
904 MachineInstr *MI = &*I;
905 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
906 OE = MI->operands_end(); OI != OE; ++OI) {
907 if (!OI->isReg() || OI->getReg() == 0 ||
908 !OI->isUse() || !OI->isKill() || OI->isUndef())
909 continue;
910 unsigned Reg = OI->getReg();
911 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
912 LV->getVarInfo(Reg).removeKill(*MI)) {
913 KilledRegs.push_back(Reg);
914 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
915 OI->setIsKill(false);
916 }
917 }
918 }
919
920 SmallVector<unsigned, 4> UsedRegs;
921 if (LIS) {
922 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
923 I != E; ++I) {
924 MachineInstr *MI = &*I;
925
926 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
927 OE = MI->operands_end(); OI != OE; ++OI) {
928 if (!OI->isReg() || OI->getReg() == 0)
929 continue;
930
931 unsigned Reg = OI->getReg();
932 if (!is_contained(UsedRegs, Reg))
933 UsedRegs.push_back(Reg);
934 }
935 }
936 }
937
938 ReplaceUsesOfBlockWith(Succ, NMBB);
939
940 // If updateTerminator() removes instructions, we need to remove them from
941 // SlotIndexes.
942 SmallVector<MachineInstr*, 4> Terminators;
943 if (Indexes) {
944 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
945 I != E; ++I)
946 Terminators.push_back(&*I);
947 }
948
949 updateTerminator();
950
951 if (Indexes) {
952 SmallVector<MachineInstr*, 4> NewTerminators;
953 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
954 I != E; ++I)
955 NewTerminators.push_back(&*I);
956
957 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
958 E = Terminators.end(); I != E; ++I) {
959 if (!is_contained(NewTerminators, *I))
960 Indexes->removeMachineInstrFromMaps(**I);
961 }
962 }
963
964 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
965 NMBB->addSuccessor(Succ);
966 if (!NMBB->isLayoutSuccessor(Succ)) {
967 SmallVector<MachineOperand, 4> Cond;
968 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
969 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
970
971 if (Indexes) {
972 for (MachineInstr &MI : NMBB->instrs()) {
973 // Some instructions may have been moved to NMBB by updateTerminator(),
974 // so we first remove any instruction that already has an index.
975 if (Indexes->hasIndex(MI))
976 Indexes->removeMachineInstrFromMaps(MI);
977 Indexes->insertMachineInstrInMaps(MI);
978 }
979 }
980 }
981
982 // Fix PHI nodes in Succ so they refer to NMBB instead of this
983 for (MachineBasicBlock::instr_iterator
984 i = Succ->instr_begin(),e = Succ->instr_end();
985 i != e && i->isPHI(); ++i)
986 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
987 if (i->getOperand(ni+1).getMBB() == this)
988 i->getOperand(ni+1).setMBB(NMBB);
989
990 // Inherit live-ins from the successor
991 for (const auto &LI : Succ->liveins())
992 NMBB->addLiveIn(LI);
993
994 // Update LiveVariables.
995 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
996 if (LV) {
997 // Restore kills of virtual registers that were killed by the terminators.
998 while (!KilledRegs.empty()) {
999 unsigned Reg = KilledRegs.pop_back_val();
1000 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1001 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1002 continue;
1003 if (TargetRegisterInfo::isVirtualRegister(Reg))
1004 LV->getVarInfo(Reg).Kills.push_back(&*I);
1005 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1006 break;
1007 }
1008 }
1009 // Update relevant live-through information.
1010 LV->addNewBlock(NMBB, this, Succ);
1011 }
1012
1013 if (LIS) {
1014 // After splitting the edge and updating SlotIndexes, live intervals may be
1015 // in one of two situations, depending on whether this block was the last in
1016 // the function. If the original block was the last in the function, all
1017 // live intervals will end prior to the beginning of the new split block. If
1018 // the original block was not at the end of the function, all live intervals
1019 // will extend to the end of the new split block.
1020
1021 bool isLastMBB =
1022 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1023
1024 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1025 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1026 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1027
1028 // Find the registers used from NMBB in PHIs in Succ.
1029 SmallSet<unsigned, 8> PHISrcRegs;
1030 for (MachineBasicBlock::instr_iterator
1031 I = Succ->instr_begin(), E = Succ->instr_end();
1032 I != E && I->isPHI(); ++I) {
1033 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1034 if (I->getOperand(ni+1).getMBB() == NMBB) {
1035 MachineOperand &MO = I->getOperand(ni);
1036 unsigned Reg = MO.getReg();
1037 PHISrcRegs.insert(Reg);
1038 if (MO.isUndef())
1039 continue;
1040
1041 LiveInterval &LI = LIS->getInterval(Reg);
1042 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1043 assert(VNI &&
1044 "PHI sources should be live out of their predecessors.");
1045 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1046 }
1047 }
1048 }
1049
1050 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1051 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1052 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1053 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1054 continue;
1055
1056 LiveInterval &LI = LIS->getInterval(Reg);
1057 if (!LI.liveAt(PrevIndex))
1058 continue;
1059
1060 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1061 if (isLiveOut && isLastMBB) {
1062 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1063 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1064 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1065 } else if (!isLiveOut && !isLastMBB) {
1066 LI.removeSegment(StartIndex, EndIndex);
1067 }
1068 }
1069
1070 // Update all intervals for registers whose uses may have been modified by
1071 // updateTerminator().
1072 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1073 }
1074
1075 if (MachineDominatorTree *MDT =
1076 P.getAnalysisIfAvailable<MachineDominatorTree>())
1077 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1078
1079 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1080 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1081 // If one or the other blocks were not in a loop, the new block is not
1082 // either, and thus LI doesn't need to be updated.
1083 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1084 if (TIL == DestLoop) {
1085 // Both in the same loop, the NMBB joins loop.
1086 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1087 } else if (TIL->contains(DestLoop)) {
1088 // Edge from an outer loop to an inner loop. Add to the outer loop.
1089 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1090 } else if (DestLoop->contains(TIL)) {
1091 // Edge from an inner loop to an outer loop. Add to the outer loop.
1092 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1093 } else {
1094 // Edge from two loops with no containment relation. Because these
1095 // are natural loops, we know that the destination block must be the
1096 // header of its loop (adding a branch into a loop elsewhere would
1097 // create an irreducible loop).
1098 assert(DestLoop->getHeader() == Succ &&
1099 "Should not create irreducible loops!");
1100 if (MachineLoop *P = DestLoop->getParentLoop())
1101 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1102 }
1103 }
1104 }
1105
1106 return NMBB;
1107 }
1108
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1109 bool MachineBasicBlock::canSplitCriticalEdge(
1110 const MachineBasicBlock *Succ) const {
1111 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1112 // it in this generic function.
1113 if (Succ->isEHPad())
1114 return false;
1115
1116 const MachineFunction *MF = getParent();
1117
1118 // Performance might be harmed on HW that implements branching using exec mask
1119 // where both sides of the branches are always executed.
1120 if (MF->getTarget().requiresStructuredCFG())
1121 return false;
1122
1123 // We may need to update this's terminator, but we can't do that if
1124 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1125 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1126 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1127 SmallVector<MachineOperand, 4> Cond;
1128 // AnalyzeBanch should modify this, since we did not allow modification.
1129 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1130 /*AllowModify*/ false))
1131 return false;
1132
1133 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1134 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1135 // case that we can't handle. Since this never happens in properly optimized
1136 // code, just skip those edges.
1137 if (TBB && TBB == FBB) {
1138 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1139 << printMBBReference(*this) << '\n');
1140 return false;
1141 }
1142 return true;
1143 }
1144
1145 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1146 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1147 static void unbundleSingleMI(MachineInstr *MI) {
1148 // Removing the first instruction in a bundle.
1149 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1150 MI->unbundleFromSucc();
1151 // Removing the last instruction in a bundle.
1152 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1153 MI->unbundleFromPred();
1154 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1155 // are already fine.
1156 }
1157
1158 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1159 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1160 unbundleSingleMI(&*I);
1161 return Insts.erase(I);
1162 }
1163
remove_instr(MachineInstr * MI)1164 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1165 unbundleSingleMI(MI);
1166 MI->clearFlag(MachineInstr::BundledPred);
1167 MI->clearFlag(MachineInstr::BundledSucc);
1168 return Insts.remove(MI);
1169 }
1170
1171 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1172 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1173 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1174 "Cannot insert instruction with bundle flags");
1175 // Set the bundle flags when inserting inside a bundle.
1176 if (I != instr_end() && I->isBundledWithPred()) {
1177 MI->setFlag(MachineInstr::BundledPred);
1178 MI->setFlag(MachineInstr::BundledSucc);
1179 }
1180 return Insts.insert(I, MI);
1181 }
1182
1183 /// This method unlinks 'this' from the containing function, and returns it, but
1184 /// does not delete it.
removeFromParent()1185 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1186 assert(getParent() && "Not embedded in a function!");
1187 getParent()->remove(this);
1188 return this;
1189 }
1190
1191 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1192 void MachineBasicBlock::eraseFromParent() {
1193 assert(getParent() && "Not embedded in a function!");
1194 getParent()->erase(this);
1195 }
1196
1197 /// Given a machine basic block that branched to 'Old', change the code and CFG
1198 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1199 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1200 MachineBasicBlock *New) {
1201 assert(Old != New && "Cannot replace self with self!");
1202
1203 MachineBasicBlock::instr_iterator I = instr_end();
1204 while (I != instr_begin()) {
1205 --I;
1206 if (!I->isTerminator()) break;
1207
1208 // Scan the operands of this machine instruction, replacing any uses of Old
1209 // with New.
1210 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1211 if (I->getOperand(i).isMBB() &&
1212 I->getOperand(i).getMBB() == Old)
1213 I->getOperand(i).setMBB(New);
1214 }
1215
1216 // Update the successor information.
1217 replaceSuccessor(Old, New);
1218 }
1219
1220 /// Various pieces of code can cause excess edges in the CFG to be inserted. If
1221 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1222 /// MBB successors from the CFG. DestA and DestB can be null.
1223 ///
1224 /// Besides DestA and DestB, retain other edges leading to LandingPads
1225 /// (currently there can be only one; we don't check or require that here).
1226 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1227 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1228 MachineBasicBlock *DestB,
1229 bool IsCond) {
1230 // The values of DestA and DestB frequently come from a call to the
1231 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1232 // values from there.
1233 //
1234 // 1. If both DestA and DestB are null, then the block ends with no branches
1235 // (it falls through to its successor).
1236 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1237 // with only an unconditional branch.
1238 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1239 // with a conditional branch that falls through to a successor (DestB).
1240 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1241 // conditional branch followed by an unconditional branch. DestA is the
1242 // 'true' destination and DestB is the 'false' destination.
1243
1244 bool Changed = false;
1245
1246 MachineBasicBlock *FallThru = getNextNode();
1247
1248 if (!DestA && !DestB) {
1249 // Block falls through to successor.
1250 DestA = FallThru;
1251 DestB = FallThru;
1252 } else if (DestA && !DestB) {
1253 if (IsCond)
1254 // Block ends in conditional jump that falls through to successor.
1255 DestB = FallThru;
1256 } else {
1257 assert(DestA && DestB && IsCond &&
1258 "CFG in a bad state. Cannot correct CFG edges");
1259 }
1260
1261 // Remove superfluous edges. I.e., those which aren't destinations of this
1262 // basic block, duplicate edges, or landing pads.
1263 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1264 MachineBasicBlock::succ_iterator SI = succ_begin();
1265 while (SI != succ_end()) {
1266 const MachineBasicBlock *MBB = *SI;
1267 if (!SeenMBBs.insert(MBB).second ||
1268 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1269 // This is a superfluous edge, remove it.
1270 SI = removeSuccessor(SI);
1271 Changed = true;
1272 } else {
1273 ++SI;
1274 }
1275 }
1276
1277 if (Changed)
1278 normalizeSuccProbs();
1279 return Changed;
1280 }
1281
1282 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1283 /// instructions. Return UnknownLoc if there is none.
1284 DebugLoc
findDebugLoc(instr_iterator MBBI)1285 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1286 // Skip debug declarations, we don't want a DebugLoc from them.
1287 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1288 if (MBBI != instr_end())
1289 return MBBI->getDebugLoc();
1290 return {};
1291 }
1292
1293 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1294 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1295 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1296 if (MBBI == instr_begin()) return {};
1297 // Skip debug declarations, we don't want a DebugLoc from them.
1298 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1299 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1300 return {};
1301 }
1302
1303 /// Find and return the merged DebugLoc of the branch instructions of the block.
1304 /// Return UnknownLoc if there is none.
1305 DebugLoc
findBranchDebugLoc()1306 MachineBasicBlock::findBranchDebugLoc() {
1307 DebugLoc DL;
1308 auto TI = getFirstTerminator();
1309 while (TI != end() && !TI->isBranch())
1310 ++TI;
1311
1312 if (TI != end()) {
1313 DL = TI->getDebugLoc();
1314 for (++TI ; TI != end() ; ++TI)
1315 if (TI->isBranch())
1316 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1317 }
1318 return DL;
1319 }
1320
1321 /// Return probability of the edge from this block to MBB.
1322 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1323 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1324 if (Probs.empty())
1325 return BranchProbability(1, succ_size());
1326
1327 const auto &Prob = *getProbabilityIterator(Succ);
1328 if (Prob.isUnknown()) {
1329 // For unknown probabilities, collect the sum of all known ones, and evenly
1330 // ditribute the complemental of the sum to each unknown probability.
1331 unsigned KnownProbNum = 0;
1332 auto Sum = BranchProbability::getZero();
1333 for (auto &P : Probs) {
1334 if (!P.isUnknown()) {
1335 Sum += P;
1336 KnownProbNum++;
1337 }
1338 }
1339 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1340 } else
1341 return Prob;
1342 }
1343
1344 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1345 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1346 BranchProbability Prob) {
1347 assert(!Prob.isUnknown());
1348 if (Probs.empty())
1349 return;
1350 *getProbabilityIterator(I) = Prob;
1351 }
1352
1353 /// Return probability iterator corresonding to the I successor iterator
1354 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1355 MachineBasicBlock::getProbabilityIterator(
1356 MachineBasicBlock::const_succ_iterator I) const {
1357 assert(Probs.size() == Successors.size() && "Async probability list!");
1358 const size_t index = std::distance(Successors.begin(), I);
1359 assert(index < Probs.size() && "Not a current successor!");
1360 return Probs.begin() + index;
1361 }
1362
1363 /// Return probability iterator corresonding to the I successor iterator.
1364 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1365 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1366 assert(Probs.size() == Successors.size() && "Async probability list!");
1367 const size_t index = std::distance(Successors.begin(), I);
1368 assert(index < Probs.size() && "Not a current successor!");
1369 return Probs.begin() + index;
1370 }
1371
1372 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1373 /// as of just before "MI".
1374 ///
1375 /// Search is localised to a neighborhood of
1376 /// Neighborhood instructions before (searching for defs or kills) and N
1377 /// instructions after (searching just for defs) MI.
1378 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1379 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1380 unsigned Reg, const_iterator Before,
1381 unsigned Neighborhood) const {
1382 unsigned N = Neighborhood;
1383
1384 // Try searching forwards from Before, looking for reads or defs.
1385 const_iterator I(Before);
1386 for (; I != end() && N > 0; ++I) {
1387 if (I->isDebugInstr())
1388 continue;
1389
1390 --N;
1391
1392 MachineOperandIteratorBase::PhysRegInfo Info =
1393 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1394
1395 // Register is live when we read it here.
1396 if (Info.Read)
1397 return LQR_Live;
1398 // Register is dead if we can fully overwrite or clobber it here.
1399 if (Info.FullyDefined || Info.Clobbered)
1400 return LQR_Dead;
1401 }
1402
1403 // If we reached the end, it is safe to clobber Reg at the end of a block of
1404 // no successor has it live in.
1405 if (I == end()) {
1406 for (MachineBasicBlock *S : successors()) {
1407 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1408 if (TRI->regsOverlap(LI.PhysReg, Reg))
1409 return LQR_Live;
1410 }
1411 }
1412
1413 return LQR_Dead;
1414 }
1415
1416
1417 N = Neighborhood;
1418
1419 // Start by searching backwards from Before, looking for kills, reads or defs.
1420 I = const_iterator(Before);
1421 // If this is the first insn in the block, don't search backwards.
1422 if (I != begin()) {
1423 do {
1424 --I;
1425
1426 if (I->isDebugInstr())
1427 continue;
1428
1429 --N;
1430
1431 MachineOperandIteratorBase::PhysRegInfo Info =
1432 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1433
1434 // Defs happen after uses so they take precedence if both are present.
1435
1436 // Register is dead after a dead def of the full register.
1437 if (Info.DeadDef)
1438 return LQR_Dead;
1439 // Register is (at least partially) live after a def.
1440 if (Info.Defined) {
1441 if (!Info.PartialDeadDef)
1442 return LQR_Live;
1443 // As soon as we saw a partial definition (dead or not),
1444 // we cannot tell if the value is partial live without
1445 // tracking the lanemasks. We are not going to do this,
1446 // so fall back on the remaining of the analysis.
1447 break;
1448 }
1449 // Register is dead after a full kill or clobber and no def.
1450 if (Info.Killed || Info.Clobbered)
1451 return LQR_Dead;
1452 // Register must be live if we read it.
1453 if (Info.Read)
1454 return LQR_Live;
1455
1456 } while (I != begin() && N > 0);
1457 }
1458
1459 // Did we get to the start of the block?
1460 if (I == begin()) {
1461 // If so, the register's state is definitely defined by the live-in state.
1462 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1463 if (TRI->regsOverlap(LI.PhysReg, Reg))
1464 return LQR_Live;
1465
1466 return LQR_Dead;
1467 }
1468
1469 // At this point we have no idea of the liveness of the register.
1470 return LQR_Unknown;
1471 }
1472
1473 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1474 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1475 // EH funclet entry does not preserve any registers.
1476 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1477 }
1478
1479 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1480 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1481 // If we see a return block with successors, this must be a funclet return,
1482 // which does not preserve any registers. If there are no successors, we don't
1483 // care what kind of return it is, putting a mask after it is a no-op.
1484 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1485 }
1486
clearLiveIns()1487 void MachineBasicBlock::clearLiveIns() {
1488 LiveIns.clear();
1489 }
1490
livein_begin() const1491 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1492 assert(getParent()->getProperties().hasProperty(
1493 MachineFunctionProperties::Property::TracksLiveness) &&
1494 "Liveness information is accurate");
1495 return LiveIns.begin();
1496 }
1497