1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for safe point where the prologue and epilogue can be
10 // inserted.
11 // The safe point for the prologue (resp. epilogue) is called Save
12 // (resp. Restore).
13 // A point is safe for prologue (resp. epilogue) if and only if
14 // it 1) dominates (resp. post-dominates) all the frame related operations and
15 // between 2) two executions of the Save (resp. Restore) point there is an
16 // execution of the Restore (resp. Save) point.
17 //
18 // For instance, the following points are safe:
19 // for (int i = 0; i < 10; ++i) {
20 //   Save
21 //   ...
22 //   Restore
23 // }
24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25 // And the following points are not:
26 // for (int i = 0; i < 10; ++i) {
27 //   Save
28 //   ...
29 // }
30 // for (int i = 0; i < 10; ++i) {
31 //   ...
32 //   Restore
33 // }
34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
35 //
36 // This pass also ensures that the safe points are 3) cheaper than the regular
37 // entry and exits blocks.
38 //
39 // Property #1 is ensured via the use of MachineDominatorTree and
40 // MachinePostDominatorTree.
41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42 // points must be in the same loop.
43 // Property #3 is ensured via the MachineBlockFrequencyInfo.
44 //
45 // If this pass found points matching all these properties, then
46 // MachineFrameInfo is updated with this information.
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/ADT/BitVector.h"
51 #include "llvm/ADT/PostOrderIterator.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
58 #include "llvm/CodeGen/MachineDominators.h"
59 #include "llvm/CodeGen/MachineFrameInfo.h"
60 #include "llvm/CodeGen/MachineFunction.h"
61 #include "llvm/CodeGen/MachineFunctionPass.h"
62 #include "llvm/CodeGen/MachineInstr.h"
63 #include "llvm/CodeGen/MachineLoopInfo.h"
64 #include "llvm/CodeGen/MachineOperand.h"
65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
66 #include "llvm/CodeGen/MachinePostDominators.h"
67 #include "llvm/CodeGen/RegisterClassInfo.h"
68 #include "llvm/CodeGen/RegisterScavenging.h"
69 #include "llvm/CodeGen/TargetFrameLowering.h"
70 #include "llvm/CodeGen/TargetInstrInfo.h"
71 #include "llvm/CodeGen/TargetLowering.h"
72 #include "llvm/CodeGen/TargetRegisterInfo.h"
73 #include "llvm/CodeGen/TargetSubtargetInfo.h"
74 #include "llvm/IR/Attributes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/MC/MCAsmInfo.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <memory>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "shrink-wrap"
90 
91 STATISTIC(NumFunc, "Number of functions");
92 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
93 STATISTIC(NumCandidatesDropped,
94           "Number of shrink-wrapping candidates dropped because of frequency");
95 
96 static cl::opt<cl::boolOrDefault>
97 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
98                     cl::desc("enable the shrink-wrapping pass"));
99 
100 namespace {
101 
102 /// Class to determine where the safe point to insert the
103 /// prologue and epilogue are.
104 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
105 /// shrink-wrapping term for prologue/epilogue placement, this pass
106 /// does not rely on expensive data-flow analysis. Instead we use the
107 /// dominance properties and loop information to decide which point
108 /// are safe for such insertion.
109 class ShrinkWrap : public MachineFunctionPass {
110   /// Hold callee-saved information.
111   RegisterClassInfo RCI;
112   MachineDominatorTree *MDT;
113   MachinePostDominatorTree *MPDT;
114 
115   /// Current safe point found for the prologue.
116   /// The prologue will be inserted before the first instruction
117   /// in this basic block.
118   MachineBasicBlock *Save;
119 
120   /// Current safe point found for the epilogue.
121   /// The epilogue will be inserted before the first terminator instruction
122   /// in this basic block.
123   MachineBasicBlock *Restore;
124 
125   /// Hold the information of the basic block frequency.
126   /// Use to check the profitability of the new points.
127   MachineBlockFrequencyInfo *MBFI;
128 
129   /// Hold the loop information. Used to determine if Save and Restore
130   /// are in the same loop.
131   MachineLoopInfo *MLI;
132 
133   // Emit remarks.
134   MachineOptimizationRemarkEmitter *ORE = nullptr;
135 
136   /// Frequency of the Entry block.
137   uint64_t EntryFreq;
138 
139   /// Current opcode for frame setup.
140   unsigned FrameSetupOpcode;
141 
142   /// Current opcode for frame destroy.
143   unsigned FrameDestroyOpcode;
144 
145   /// Stack pointer register, used by llvm.{savestack,restorestack}
146   unsigned SP;
147 
148   /// Entry block.
149   const MachineBasicBlock *Entry;
150 
151   using SetOfRegs = SmallSetVector<unsigned, 16>;
152 
153   /// Registers that need to be saved for the current function.
154   mutable SetOfRegs CurrentCSRs;
155 
156   /// Current MachineFunction.
157   MachineFunction *MachineFunc;
158 
159   /// Check if \p MI uses or defines a callee-saved register or
160   /// a frame index. If this is the case, this means \p MI must happen
161   /// after Save and before Restore.
162   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
163 
getCurrentCSRs(RegScavenger * RS) const164   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
165     if (CurrentCSRs.empty()) {
166       BitVector SavedRegs;
167       const TargetFrameLowering *TFI =
168           MachineFunc->getSubtarget().getFrameLowering();
169 
170       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
171 
172       for (int Reg = SavedRegs.find_first(); Reg != -1;
173            Reg = SavedRegs.find_next(Reg))
174         CurrentCSRs.insert((unsigned)Reg);
175     }
176     return CurrentCSRs;
177   }
178 
179   /// Update the Save and Restore points such that \p MBB is in
180   /// the region that is dominated by Save and post-dominated by Restore
181   /// and Save and Restore still match the safe point definition.
182   /// Such point may not exist and Save and/or Restore may be null after
183   /// this call.
184   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
185 
186   /// Initialize the pass for \p MF.
init(MachineFunction & MF)187   void init(MachineFunction &MF) {
188     RCI.runOnMachineFunction(MF);
189     MDT = &getAnalysis<MachineDominatorTree>();
190     MPDT = &getAnalysis<MachinePostDominatorTree>();
191     Save = nullptr;
192     Restore = nullptr;
193     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
194     MLI = &getAnalysis<MachineLoopInfo>();
195     ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
196     EntryFreq = MBFI->getEntryFreq();
197     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
198     const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
199     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
200     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
201     SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
202     Entry = &MF.front();
203     CurrentCSRs.clear();
204     MachineFunc = &MF;
205 
206     ++NumFunc;
207   }
208 
209   /// Check whether or not Save and Restore points are still interesting for
210   /// shrink-wrapping.
ArePointsInteresting() const211   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
212 
213   /// Check if shrink wrapping is enabled for this target and function.
214   static bool isShrinkWrapEnabled(const MachineFunction &MF);
215 
216 public:
217   static char ID;
218 
ShrinkWrap()219   ShrinkWrap() : MachineFunctionPass(ID) {
220     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
221   }
222 
getAnalysisUsage(AnalysisUsage & AU) const223   void getAnalysisUsage(AnalysisUsage &AU) const override {
224     AU.setPreservesAll();
225     AU.addRequired<MachineBlockFrequencyInfo>();
226     AU.addRequired<MachineDominatorTree>();
227     AU.addRequired<MachinePostDominatorTree>();
228     AU.addRequired<MachineLoopInfo>();
229     AU.addRequired<MachineOptimizationRemarkEmitterPass>();
230     MachineFunctionPass::getAnalysisUsage(AU);
231   }
232 
getRequiredProperties() const233   MachineFunctionProperties getRequiredProperties() const override {
234     return MachineFunctionProperties().set(
235       MachineFunctionProperties::Property::NoVRegs);
236   }
237 
getPassName() const238   StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
239 
240   /// Perform the shrink-wrapping analysis and update
241   /// the MachineFrameInfo attached to \p MF with the results.
242   bool runOnMachineFunction(MachineFunction &MF) override;
243 };
244 
245 } // end anonymous namespace
246 
247 char ShrinkWrap::ID = 0;
248 
249 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
250 
251 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)252 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
255 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
256 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
257 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
258 
259 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
260                                  RegScavenger *RS) const {
261   // This prevents premature stack popping when occurs a indirect stack
262   // access. It is overly aggressive for the moment.
263   // TODO: - Obvious non-stack loads and store, such as global values,
264   //         are known to not access the stack.
265   //       - Further, data dependency and alias analysis can validate
266   //         that load and stores never derive from the stack pointer.
267   if (MI.mayLoadOrStore())
268     return true;
269 
270   if (MI.getOpcode() == FrameSetupOpcode ||
271       MI.getOpcode() == FrameDestroyOpcode) {
272     LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
273     return true;
274   }
275   for (const MachineOperand &MO : MI.operands()) {
276     bool UseOrDefCSR = false;
277     if (MO.isReg()) {
278       // Ignore instructions like DBG_VALUE which don't read/def the register.
279       if (!MO.isDef() && !MO.readsReg())
280         continue;
281       unsigned PhysReg = MO.getReg();
282       if (!PhysReg)
283         continue;
284       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
285              "Unallocated register?!");
286       // The stack pointer is not normally described as a callee-saved register
287       // in calling convention definitions, so we need to watch for it
288       // separately. An SP mentioned by a call instruction, we can ignore,
289       // though, as it's harmless and we do not want to effectively disable tail
290       // calls by forcing the restore point to post-dominate them.
291       UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
292                     RCI.getLastCalleeSavedAlias(PhysReg);
293     } else if (MO.isRegMask()) {
294       // Check if this regmask clobbers any of the CSRs.
295       for (unsigned Reg : getCurrentCSRs(RS)) {
296         if (MO.clobbersPhysReg(Reg)) {
297           UseOrDefCSR = true;
298           break;
299         }
300       }
301     }
302     // Skip FrameIndex operands in DBG_VALUE instructions.
303     if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
304       LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
305                         << MO.isFI() << "): " << MI << '\n');
306       return true;
307     }
308   }
309   return false;
310 }
311 
312 /// Helper function to find the immediate (post) dominator.
313 template <typename ListOfBBs, typename DominanceAnalysis>
FindIDom(MachineBasicBlock & Block,ListOfBBs BBs,DominanceAnalysis & Dom)314 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
315                                    DominanceAnalysis &Dom) {
316   MachineBasicBlock *IDom = &Block;
317   for (MachineBasicBlock *BB : BBs) {
318     IDom = Dom.findNearestCommonDominator(IDom, BB);
319     if (!IDom)
320       break;
321   }
322   if (IDom == &Block)
323     return nullptr;
324   return IDom;
325 }
326 
updateSaveRestorePoints(MachineBasicBlock & MBB,RegScavenger * RS)327 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
328                                          RegScavenger *RS) {
329   // Get rid of the easy cases first.
330   if (!Save)
331     Save = &MBB;
332   else
333     Save = MDT->findNearestCommonDominator(Save, &MBB);
334 
335   if (!Save) {
336     LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
337     return;
338   }
339 
340   if (!Restore)
341     Restore = &MBB;
342   else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
343                                 // means the block never returns. If that's the
344                                 // case, we don't want to call
345                                 // `findNearestCommonDominator`, which will
346                                 // return `Restore`.
347     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
348   else
349     Restore = nullptr; // Abort, we can't find a restore point in this case.
350 
351   // Make sure we would be able to insert the restore code before the
352   // terminator.
353   if (Restore == &MBB) {
354     for (const MachineInstr &Terminator : MBB.terminators()) {
355       if (!useOrDefCSROrFI(Terminator, RS))
356         continue;
357       // One of the terminator needs to happen before the restore point.
358       if (MBB.succ_empty()) {
359         Restore = nullptr; // Abort, we can't find a restore point in this case.
360         break;
361       }
362       // Look for a restore point that post-dominates all the successors.
363       // The immediate post-dominator is what we are looking for.
364       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
365       break;
366     }
367   }
368 
369   if (!Restore) {
370     LLVM_DEBUG(
371         dbgs() << "Restore point needs to be spanned on several blocks\n");
372     return;
373   }
374 
375   // Make sure Save and Restore are suitable for shrink-wrapping:
376   // 1. all path from Save needs to lead to Restore before exiting.
377   // 2. all path to Restore needs to go through Save from Entry.
378   // We achieve that by making sure that:
379   // A. Save dominates Restore.
380   // B. Restore post-dominates Save.
381   // C. Save and Restore are in the same loop.
382   bool SaveDominatesRestore = false;
383   bool RestorePostDominatesSave = false;
384   while (Save && Restore &&
385          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
386           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
387           // Post-dominance is not enough in loops to ensure that all uses/defs
388           // are after the prologue and before the epilogue at runtime.
389           // E.g.,
390           // while(1) {
391           //  Save
392           //  Restore
393           //   if (...)
394           //     break;
395           //  use/def CSRs
396           // }
397           // All the uses/defs of CSRs are dominated by Save and post-dominated
398           // by Restore. However, the CSRs uses are still reachable after
399           // Restore and before Save are executed.
400           //
401           // For now, just push the restore/save points outside of loops.
402           // FIXME: Refine the criteria to still find interesting cases
403           // for loops.
404           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
405     // Fix (A).
406     if (!SaveDominatesRestore) {
407       Save = MDT->findNearestCommonDominator(Save, Restore);
408       continue;
409     }
410     // Fix (B).
411     if (!RestorePostDominatesSave)
412       Restore = MPDT->findNearestCommonDominator(Restore, Save);
413 
414     // Fix (C).
415     if (Save && Restore &&
416         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
417       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
418         // Push Save outside of this loop if immediate dominator is different
419         // from save block. If immediate dominator is not different, bail out.
420         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
421         if (!Save)
422           break;
423       } else {
424         // If the loop does not exit, there is no point in looking
425         // for a post-dominator outside the loop.
426         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
427         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
428         // Push Restore outside of this loop.
429         // Look for the immediate post-dominator of the loop exits.
430         MachineBasicBlock *IPdom = Restore;
431         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
432           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
433           if (!IPdom)
434             break;
435         }
436         // If the immediate post-dominator is not in a less nested loop,
437         // then we are stuck in a program with an infinite loop.
438         // In that case, we will not find a safe point, hence, bail out.
439         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
440           Restore = IPdom;
441         else {
442           Restore = nullptr;
443           break;
444         }
445       }
446     }
447   }
448 }
449 
giveUpWithRemarks(MachineOptimizationRemarkEmitter * ORE,StringRef RemarkName,StringRef RemarkMessage,const DiagnosticLocation & Loc,const MachineBasicBlock * MBB)450 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
451                               StringRef RemarkName, StringRef RemarkMessage,
452                               const DiagnosticLocation &Loc,
453                               const MachineBasicBlock *MBB) {
454   ORE->emit([&]() {
455     return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
456            << RemarkMessage;
457   });
458 
459   LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
460   return false;
461 }
462 
runOnMachineFunction(MachineFunction & MF)463 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
464   if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
465     return false;
466 
467   LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
468 
469   init(MF);
470 
471   ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
472   if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
473     // If MF is irreducible, a block may be in a loop without
474     // MachineLoopInfo reporting it. I.e., we may use the
475     // post-dominance property in loops, which lead to incorrect
476     // results. Moreover, we may miss that the prologue and
477     // epilogue are not in the same loop, leading to unbalanced
478     // construction/deconstruction of the stack frame.
479     return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
480                              "Irreducible CFGs are not supported yet.",
481                              MF.getFunction().getSubprogram(), &MF.front());
482   }
483 
484   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
485   std::unique_ptr<RegScavenger> RS(
486       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
487 
488   for (MachineBasicBlock &MBB : MF) {
489     LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
490                       << MBB.getName() << '\n');
491 
492     if (MBB.isEHFuncletEntry())
493       return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
494                                "EH Funclets are not supported yet.",
495                                MBB.front().getDebugLoc(), &MBB);
496 
497     if (MBB.isEHPad()) {
498       // Push the prologue and epilogue outside of
499       // the region that may throw by making sure
500       // that all the landing pads are at least at the
501       // boundary of the save and restore points.
502       // The problem with exceptions is that the throw
503       // is not properly modeled and in particular, a
504       // basic block can jump out from the middle.
505       updateSaveRestorePoints(MBB, RS.get());
506       if (!ArePointsInteresting()) {
507         LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
508         return false;
509       }
510       continue;
511     }
512 
513     for (const MachineInstr &MI : MBB) {
514       if (!useOrDefCSROrFI(MI, RS.get()))
515         continue;
516       // Save (resp. restore) point must dominate (resp. post dominate)
517       // MI. Look for the proper basic block for those.
518       updateSaveRestorePoints(MBB, RS.get());
519       // If we are at a point where we cannot improve the placement of
520       // save/restore instructions, just give up.
521       if (!ArePointsInteresting()) {
522         LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
523         return false;
524       }
525       // No need to look for other instructions, this basic block
526       // will already be part of the handled region.
527       break;
528     }
529   }
530   if (!ArePointsInteresting()) {
531     // If the points are not interesting at this point, then they must be null
532     // because it means we did not encounter any frame/CSR related code.
533     // Otherwise, we would have returned from the previous loop.
534     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
535     LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
536     return false;
537   }
538 
539   LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
540                     << '\n');
541 
542   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
543   do {
544     LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
545                       << Save->getNumber() << ' ' << Save->getName() << ' '
546                       << MBFI->getBlockFreq(Save).getFrequency()
547                       << "\nRestore: " << Restore->getNumber() << ' '
548                       << Restore->getName() << ' '
549                       << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
550 
551     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
552     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
553          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
554         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
555          TFI->canUseAsEpilogue(*Restore)))
556       break;
557     LLVM_DEBUG(
558         dbgs() << "New points are too expensive or invalid for the target\n");
559     MachineBasicBlock *NewBB;
560     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
561       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
562       if (!Save)
563         break;
564       NewBB = Save;
565     } else {
566       // Restore is expensive.
567       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
568       if (!Restore)
569         break;
570       NewBB = Restore;
571     }
572     updateSaveRestorePoints(*NewBB, RS.get());
573   } while (Save && Restore);
574 
575   if (!ArePointsInteresting()) {
576     ++NumCandidatesDropped;
577     return false;
578   }
579 
580   LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
581                     << Save->getNumber() << ' ' << Save->getName()
582                     << "\nRestore: " << Restore->getNumber() << ' '
583                     << Restore->getName() << '\n');
584 
585   MachineFrameInfo &MFI = MF.getFrameInfo();
586   MFI.setSavePoint(Save);
587   MFI.setRestorePoint(Restore);
588   ++NumCandidates;
589   return false;
590 }
591 
isShrinkWrapEnabled(const MachineFunction & MF)592 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
593   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
594 
595   switch (EnableShrinkWrapOpt) {
596   case cl::BOU_UNSET:
597     return TFI->enableShrinkWrapping(MF) &&
598            // Windows with CFI has some limitations that make it impossible
599            // to use shrink-wrapping.
600            !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
601            // Sanitizers look at the value of the stack at the location
602            // of the crash. Since a crash can happen anywhere, the
603            // frame must be lowered before anything else happen for the
604            // sanitizers to be able to get a correct stack frame.
605            !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
606              MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
607              MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
608              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
609   // If EnableShrinkWrap is set, it takes precedence on whatever the
610   // target sets. The rational is that we assume we want to test
611   // something related to shrink-wrapping.
612   case cl::BOU_TRUE:
613     return true;
614   case cl::BOU_FALSE:
615     return false;
616   }
617   llvm_unreachable("Invalid shrink-wrapping state");
618 }
619