1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/LoopAccessAnalysis.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/NoFolder.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/LoopUtils.h"
28 #include "llvm/Pass.h"
29 #include "llvm/PassRegistry.h"
30 #include "llvm/PassSupport.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "ARM.h"
35 #include "ARMSubtarget.h"
36
37 using namespace llvm;
38 using namespace PatternMatch;
39
40 #define DEBUG_TYPE "arm-parallel-dsp"
41
42 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
43
44 static cl::opt<bool>
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
46 cl::desc("Disable the ARM Parallel DSP pass"));
47
48 namespace {
49 struct OpChain;
50 struct BinOpChain;
51 class Reduction;
52
53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
54 using ReductionList = SmallVector<Reduction, 8>;
55 using ValueList = SmallVector<Value*, 8>;
56 using MemInstList = SmallVector<LoadInst*, 8>;
57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
58 using PMACPairList = SmallVector<PMACPair, 8>;
59 using Instructions = SmallVector<Instruction*,16>;
60 using MemLocList = SmallVector<MemoryLocation, 4>;
61
62 struct OpChain {
63 Instruction *Root;
64 ValueList AllValues;
65 MemInstList VecLd; // List of all load instructions.
66 MemInstList Loads;
67 bool ReadOnly = true;
68
OpChain__anon8ef3ff6f0111::OpChain69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
70 virtual ~OpChain() = default;
71
PopulateLoads__anon8ef3ff6f0111::OpChain72 void PopulateLoads() {
73 for (auto *V : AllValues) {
74 if (auto *Ld = dyn_cast<LoadInst>(V))
75 Loads.push_back(Ld);
76 }
77 }
78
size__anon8ef3ff6f0111::OpChain79 unsigned size() const { return AllValues.size(); }
80 };
81
82 // 'BinOpChain' holds the multiplication instructions that are candidates
83 // for parallel execution.
84 struct BinOpChain : public OpChain {
85 ValueList LHS; // List of all (narrow) left hand operands.
86 ValueList RHS; // List of all (narrow) right hand operands.
87 bool Exchange = false;
88
BinOpChain__anon8ef3ff6f0111::BinOpChain89 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
90 OpChain(I, lhs), LHS(lhs), RHS(rhs) {
91 for (auto *V : RHS)
92 AllValues.push_back(V);
93 }
94
95 bool AreSymmetrical(BinOpChain *Other);
96 };
97
98 /// Represent a sequence of multiply-accumulate operations with the aim to
99 /// perform the multiplications in parallel.
100 class Reduction {
101 Instruction *Root = nullptr;
102 Value *Acc = nullptr;
103 OpChainList Muls;
104 PMACPairList MulPairs;
105 SmallPtrSet<Instruction*, 4> Adds;
106
107 public:
108 Reduction() = delete;
109
Reduction(Instruction * Add)110 Reduction (Instruction *Add) : Root(Add) { }
111
112 /// Record an Add instruction that is a part of the this reduction.
InsertAdd(Instruction * I)113 void InsertAdd(Instruction *I) { Adds.insert(I); }
114
115 /// Record a BinOpChain, rooted at a Mul instruction, that is a part of
116 /// this reduction.
InsertMul(Instruction * I,ValueList & LHS,ValueList & RHS)117 void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) {
118 Muls.push_back(make_unique<BinOpChain>(I, LHS, RHS));
119 }
120
121 /// Add the incoming accumulator value, returns true if a value had not
122 /// already been added. Returning false signals to the user that this
123 /// reduction already has a value to initialise the accumulator.
InsertAcc(Value * V)124 bool InsertAcc(Value *V) {
125 if (Acc)
126 return false;
127 Acc = V;
128 return true;
129 }
130
131 /// Set two BinOpChains, rooted at muls, that can be executed as a single
132 /// parallel operation.
AddMulPair(BinOpChain * Mul0,BinOpChain * Mul1)133 void AddMulPair(BinOpChain *Mul0, BinOpChain *Mul1) {
134 MulPairs.push_back(std::make_pair(Mul0, Mul1));
135 }
136
137 /// Return true if enough mul operations are found that can be executed in
138 /// parallel.
139 bool CreateParallelPairs();
140
141 /// Return the add instruction which is the root of the reduction.
getRoot()142 Instruction *getRoot() { return Root; }
143
144 /// Return the incoming value to be accumulated. This maybe null.
getAccumulator()145 Value *getAccumulator() { return Acc; }
146
147 /// Return the set of adds that comprise the reduction.
getAdds()148 SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; }
149
150 /// Return the BinOpChain, rooted at mul instruction, that comprise the
151 /// the reduction.
getMuls()152 OpChainList &getMuls() { return Muls; }
153
154 /// Return the BinOpChain, rooted at mul instructions, that have been
155 /// paired for parallel execution.
getMulPairs()156 PMACPairList &getMulPairs() { return MulPairs; }
157
158 /// To finalise, replace the uses of the root with the intrinsic call.
UpdateRoot(Instruction * SMLAD)159 void UpdateRoot(Instruction *SMLAD) {
160 Root->replaceAllUsesWith(SMLAD);
161 }
162 };
163
164 class WidenedLoad {
165 LoadInst *NewLd = nullptr;
166 SmallVector<LoadInst*, 4> Loads;
167
168 public:
WidenedLoad(SmallVectorImpl<LoadInst * > & Lds,LoadInst * Wide)169 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
170 : NewLd(Wide) {
171 for (auto *I : Lds)
172 Loads.push_back(I);
173 }
getLoad()174 LoadInst *getLoad() {
175 return NewLd;
176 }
177 };
178
179 class ARMParallelDSP : public LoopPass {
180 ScalarEvolution *SE;
181 AliasAnalysis *AA;
182 TargetLibraryInfo *TLI;
183 DominatorTree *DT;
184 LoopInfo *LI;
185 Loop *L;
186 const DataLayout *DL;
187 Module *M;
188 std::map<LoadInst*, LoadInst*> LoadPairs;
189 SmallPtrSet<LoadInst*, 4> OffsetLoads;
190 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
191
192 template<unsigned>
193 bool IsNarrowSequence(Value *V, ValueList &VL);
194
195 bool RecordMemoryOps(BasicBlock *BB);
196 void InsertParallelMACs(Reduction &Reduction);
197 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
198 LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
199 IntegerType *LoadTy);
200 bool CreateParallelPairs(Reduction &R);
201
202 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
203 /// Dual performs two signed 16x16-bit multiplications. It adds the
204 /// products to a 32-bit accumulate operand. Optionally, the instruction can
205 /// exchange the halfwords of the second operand before performing the
206 /// arithmetic.
207 bool MatchSMLAD(Loop *L);
208
209 public:
210 static char ID;
211
ARMParallelDSP()212 ARMParallelDSP() : LoopPass(ID) { }
213
doInitialization(Loop * L,LPPassManager & LPM)214 bool doInitialization(Loop *L, LPPassManager &LPM) override {
215 LoadPairs.clear();
216 WideLoads.clear();
217 return true;
218 }
219
getAnalysisUsage(AnalysisUsage & AU) const220 void getAnalysisUsage(AnalysisUsage &AU) const override {
221 LoopPass::getAnalysisUsage(AU);
222 AU.addRequired<AssumptionCacheTracker>();
223 AU.addRequired<ScalarEvolutionWrapperPass>();
224 AU.addRequired<AAResultsWrapperPass>();
225 AU.addRequired<TargetLibraryInfoWrapperPass>();
226 AU.addRequired<LoopInfoWrapperPass>();
227 AU.addRequired<DominatorTreeWrapperPass>();
228 AU.addRequired<TargetPassConfig>();
229 AU.addPreserved<LoopInfoWrapperPass>();
230 AU.setPreservesCFG();
231 }
232
runOnLoop(Loop * TheLoop,LPPassManager &)233 bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
234 if (DisableParallelDSP)
235 return false;
236 L = TheLoop;
237 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
238 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
239 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
240 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
241 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
242 auto &TPC = getAnalysis<TargetPassConfig>();
243
244 BasicBlock *Header = TheLoop->getHeader();
245 if (!Header)
246 return false;
247
248 // TODO: We assume the loop header and latch to be the same block.
249 // This is not a fundamental restriction, but lifting this would just
250 // require more work to do the transformation and then patch up the CFG.
251 if (Header != TheLoop->getLoopLatch()) {
252 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
253 "running pass ARMParallelDSP\n");
254 return false;
255 }
256
257 if (!TheLoop->getLoopPreheader())
258 InsertPreheaderForLoop(L, DT, LI, nullptr, true);
259
260 Function &F = *Header->getParent();
261 M = F.getParent();
262 DL = &M->getDataLayout();
263
264 auto &TM = TPC.getTM<TargetMachine>();
265 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
266
267 if (!ST->allowsUnalignedMem()) {
268 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
269 "running pass ARMParallelDSP\n");
270 return false;
271 }
272
273 if (!ST->hasDSP()) {
274 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
275 "ARMParallelDSP\n");
276 return false;
277 }
278
279 if (!ST->isLittle()) {
280 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
281 << "ARMParallelDSP\n");
282 return false;
283 }
284
285 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
286
287 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
288 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
289
290 if (!RecordMemoryOps(Header)) {
291 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
292 return false;
293 }
294
295 bool Changes = MatchSMLAD(L);
296 return Changes;
297 }
298 };
299 }
300
301 template<typename MemInst>
AreSequentialAccesses(MemInst * MemOp0,MemInst * MemOp1,const DataLayout & DL,ScalarEvolution & SE)302 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
303 const DataLayout &DL, ScalarEvolution &SE) {
304 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
305 return true;
306 return false;
307 }
308
AreSequentialLoads(LoadInst * Ld0,LoadInst * Ld1,MemInstList & VecMem)309 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
310 MemInstList &VecMem) {
311 if (!Ld0 || !Ld1)
312 return false;
313
314 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
315 return false;
316
317 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
318 dbgs() << "Ld0:"; Ld0->dump();
319 dbgs() << "Ld1:"; Ld1->dump();
320 );
321
322 VecMem.clear();
323 VecMem.push_back(Ld0);
324 VecMem.push_back(Ld1);
325 return true;
326 }
327
328 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
329 // instructions, which is set to 16. So here we should collect all i8 and i16
330 // narrow operations.
331 // TODO: we currently only collect i16, and will support i8 later, so that's
332 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
333 template<unsigned MaxBitWidth>
IsNarrowSequence(Value * V,ValueList & VL)334 bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) {
335 ConstantInt *CInt;
336
337 if (match(V, m_ConstantInt(CInt))) {
338 // TODO: if a constant is used, it needs to fit within the bit width.
339 return false;
340 }
341
342 auto *I = dyn_cast<Instruction>(V);
343 if (!I)
344 return false;
345
346 Value *Val, *LHS, *RHS;
347 if (match(V, m_Trunc(m_Value(Val)))) {
348 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
349 return IsNarrowSequence<MaxBitWidth>(Val, VL);
350 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
351 // TODO: we need to implement sadd16/sadd8 for this, which enables to
352 // also do the rewrite for smlad8.ll, but it is unsupported for now.
353 return false;
354 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
355 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
356 return false;
357
358 if (match(Val, m_Load(m_Value()))) {
359 auto *Ld = cast<LoadInst>(Val);
360
361 // Check that these load could be paired.
362 if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld))
363 return false;
364
365 VL.push_back(Val);
366 VL.push_back(I);
367 return true;
368 }
369 }
370 return false;
371 }
372
373 /// Iterate through the block and record base, offset pairs of loads which can
374 /// be widened into a single load.
RecordMemoryOps(BasicBlock * BB)375 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
376 SmallVector<LoadInst*, 8> Loads;
377 SmallVector<Instruction*, 8> Writes;
378
379 // Collect loads and instruction that may write to memory. For now we only
380 // record loads which are simple, sign-extended and have a single user.
381 // TODO: Allow zero-extended loads.
382 for (auto &I : *BB) {
383 if (I.mayWriteToMemory())
384 Writes.push_back(&I);
385 auto *Ld = dyn_cast<LoadInst>(&I);
386 if (!Ld || !Ld->isSimple() ||
387 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
388 continue;
389 Loads.push_back(Ld);
390 }
391
392 using InstSet = std::set<Instruction*>;
393 using DepMap = std::map<Instruction*, InstSet>;
394 DepMap RAWDeps;
395
396 // Record any writes that may alias a load.
397 const auto Size = LocationSize::unknown();
398 for (auto Read : Loads) {
399 for (auto Write : Writes) {
400 MemoryLocation ReadLoc =
401 MemoryLocation(Read->getPointerOperand(), Size);
402
403 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
404 ModRefInfo::ModRef)))
405 continue;
406 if (DT->dominates(Write, Read))
407 RAWDeps[Read].insert(Write);
408 }
409 }
410
411 // Check whether there's not a write between the two loads which would
412 // prevent them from being safely merged.
413 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
414 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset;
415 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base;
416
417 if (RAWDeps.count(Dominated)) {
418 InstSet &WritesBefore = RAWDeps[Dominated];
419
420 for (auto Before : WritesBefore) {
421
422 // We can't move the second load backward, past a write, to merge
423 // with the first load.
424 if (DT->dominates(Dominator, Before))
425 return false;
426 }
427 }
428 return true;
429 };
430
431 // Record base, offset load pairs.
432 for (auto *Base : Loads) {
433 for (auto *Offset : Loads) {
434 if (Base == Offset)
435 continue;
436
437 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
438 SafeToPair(Base, Offset)) {
439 LoadPairs[Base] = Offset;
440 OffsetLoads.insert(Offset);
441 break;
442 }
443 }
444 }
445
446 LLVM_DEBUG(if (!LoadPairs.empty()) {
447 dbgs() << "Consecutive load pairs:\n";
448 for (auto &MapIt : LoadPairs) {
449 LLVM_DEBUG(dbgs() << *MapIt.first << ", "
450 << *MapIt.second << "\n");
451 }
452 });
453 return LoadPairs.size() > 1;
454 }
455
456 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
457 // multiplications.
458 // To use SMLAD:
459 // 1) we first need to find integer add then look for this pattern:
460 //
461 // acc0 = ...
462 // ld0 = load i16
463 // sext0 = sext i16 %ld0 to i32
464 // ld1 = load i16
465 // sext1 = sext i16 %ld1 to i32
466 // mul0 = mul %sext0, %sext1
467 // ld2 = load i16
468 // sext2 = sext i16 %ld2 to i32
469 // ld3 = load i16
470 // sext3 = sext i16 %ld3 to i32
471 // mul1 = mul i32 %sext2, %sext3
472 // add0 = add i32 %mul0, %acc0
473 // acc1 = add i32 %add0, %mul1
474 //
475 // Which can be selected to:
476 //
477 // ldr r0
478 // ldr r1
479 // smlad r2, r0, r1, r2
480 //
481 // If constants are used instead of loads, these will need to be hoisted
482 // out and into a register.
483 //
484 // If loop invariants are used instead of loads, these need to be packed
485 // before the loop begins.
486 //
MatchSMLAD(Loop * L)487 bool ARMParallelDSP::MatchSMLAD(Loop *L) {
488 // Search recursively back through the operands to find a tree of values that
489 // form a multiply-accumulate chain. The search records the Add and Mul
490 // instructions that form the reduction and allows us to find a single value
491 // to be used as the initial input to the accumlator.
492 std::function<bool(Value*, Reduction&)> Search = [&]
493 (Value *V, Reduction &R) -> bool {
494
495 // If we find a non-instruction, try to use it as the initial accumulator
496 // value. This may have already been found during the search in which case
497 // this function will return false, signaling a search fail.
498 auto *I = dyn_cast<Instruction>(V);
499 if (!I)
500 return R.InsertAcc(V);
501
502 switch (I->getOpcode()) {
503 default:
504 break;
505 case Instruction::PHI:
506 // Could be the accumulator value.
507 return R.InsertAcc(V);
508 case Instruction::Add: {
509 // Adds should be adding together two muls, or another add and a mul to
510 // be within the mac chain. One of the operands may also be the
511 // accumulator value at which point we should stop searching.
512 bool ValidLHS = Search(I->getOperand(0), R);
513 bool ValidRHS = Search(I->getOperand(1), R);
514 if (!ValidLHS && !ValidLHS)
515 return false;
516 else if (ValidLHS && ValidRHS) {
517 R.InsertAdd(I);
518 return true;
519 } else {
520 R.InsertAdd(I);
521 return R.InsertAcc(I);
522 }
523 }
524 case Instruction::Mul: {
525 Value *MulOp0 = I->getOperand(0);
526 Value *MulOp1 = I->getOperand(1);
527 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) {
528 ValueList LHS;
529 ValueList RHS;
530 if (IsNarrowSequence<16>(MulOp0, LHS) &&
531 IsNarrowSequence<16>(MulOp1, RHS)) {
532 R.InsertMul(I, LHS, RHS);
533 return true;
534 }
535 }
536 return false;
537 }
538 case Instruction::SExt:
539 return Search(I->getOperand(0), R);
540 }
541 return false;
542 };
543
544 bool Changed = false;
545 SmallPtrSet<Instruction*, 4> AllAdds;
546 BasicBlock *Latch = L->getLoopLatch();
547
548 for (Instruction &I : reverse(*Latch)) {
549 if (I.getOpcode() != Instruction::Add)
550 continue;
551
552 if (AllAdds.count(&I))
553 continue;
554
555 const auto *Ty = I.getType();
556 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
557 continue;
558
559 Reduction R(&I);
560 if (!Search(&I, R))
561 continue;
562
563 if (!CreateParallelPairs(R))
564 continue;
565
566 InsertParallelMACs(R);
567 Changed = true;
568 AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
569 }
570
571 return Changed;
572 }
573
CreateParallelPairs(Reduction & R)574 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
575
576 // Not enough mul operations to make a pair.
577 if (R.getMuls().size() < 2)
578 return false;
579
580 // Check that the muls operate directly upon sign extended loads.
581 for (auto &MulChain : R.getMuls()) {
582 // A mul has 2 operands, and a narrow op consist of sext and a load; thus
583 // we expect at least 4 items in this operand value list.
584 if (MulChain->size() < 4) {
585 LLVM_DEBUG(dbgs() << "Operand list too short.\n");
586 return false;
587 }
588 MulChain->PopulateLoads();
589 ValueList &LHS = static_cast<BinOpChain*>(MulChain.get())->LHS;
590 ValueList &RHS = static_cast<BinOpChain*>(MulChain.get())->RHS;
591
592 // Use +=2 to skip over the expected extend instructions.
593 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
594 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
595 return false;
596 }
597 }
598
599 auto CanPair = [&](Reduction &R, BinOpChain *PMul0, BinOpChain *PMul1) {
600 if (!PMul0->AreSymmetrical(PMul1))
601 return false;
602
603 // The first elements of each vector should be loads with sexts. If we
604 // find that its two pairs of consecutive loads, then these can be
605 // transformed into two wider loads and the users can be replaced with
606 // DSP intrinsics.
607 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) {
608 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]);
609 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]);
610 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]);
611 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]);
612
613 if (!Ld0 || !Ld1 || !Ld2 || !Ld3)
614 return false;
615
616 LLVM_DEBUG(dbgs() << "Loads:\n"
617 << " - " << *Ld0 << "\n"
618 << " - " << *Ld1 << "\n"
619 << " - " << *Ld2 << "\n"
620 << " - " << *Ld3 << "\n");
621
622 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
623 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
624 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
625 R.AddMulPair(PMul0, PMul1);
626 return true;
627 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
628 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
629 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
630 PMul1->Exchange = true;
631 R.AddMulPair(PMul0, PMul1);
632 return true;
633 }
634 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
635 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
636 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
637 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
638 LLVM_DEBUG(dbgs() << " and swapping muls\n");
639 PMul0->Exchange = true;
640 // Only the second operand can be exchanged, so swap the muls.
641 R.AddMulPair(PMul1, PMul0);
642 return true;
643 }
644 }
645 return false;
646 };
647
648 OpChainList &Muls = R.getMuls();
649 const unsigned Elems = Muls.size();
650 SmallPtrSet<const Instruction*, 4> Paired;
651 for (unsigned i = 0; i < Elems; ++i) {
652 BinOpChain *PMul0 = static_cast<BinOpChain*>(Muls[i].get());
653 if (Paired.count(PMul0->Root))
654 continue;
655
656 for (unsigned j = 0; j < Elems; ++j) {
657 if (i == j)
658 continue;
659
660 BinOpChain *PMul1 = static_cast<BinOpChain*>(Muls[j].get());
661 if (Paired.count(PMul1->Root))
662 continue;
663
664 const Instruction *Mul0 = PMul0->Root;
665 const Instruction *Mul1 = PMul1->Root;
666 if (Mul0 == Mul1)
667 continue;
668
669 assert(PMul0 != PMul1 && "expected different chains");
670
671 if (CanPair(R, PMul0, PMul1)) {
672 Paired.insert(Mul0);
673 Paired.insert(Mul1);
674 break;
675 }
676 }
677 }
678 return !R.getMulPairs().empty();
679 }
680
681
InsertParallelMACs(Reduction & R)682 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
683
684 auto CreateSMLADCall = [&](SmallVectorImpl<LoadInst*> &VecLd0,
685 SmallVectorImpl<LoadInst*> &VecLd1,
686 Value *Acc, bool Exchange,
687 Instruction *InsertAfter) {
688 // Replace the reduction chain with an intrinsic call
689 IntegerType *Ty = IntegerType::get(M->getContext(), 32);
690 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ?
691 WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty);
692 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ?
693 WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty);
694
695 Value* Args[] = { WideLd0, WideLd1, Acc };
696 Function *SMLAD = nullptr;
697 if (Exchange)
698 SMLAD = Acc->getType()->isIntegerTy(32) ?
699 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
700 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
701 else
702 SMLAD = Acc->getType()->isIntegerTy(32) ?
703 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
704 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
705
706 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
707 ++BasicBlock::iterator(InsertAfter));
708 Instruction *Call = Builder.CreateCall(SMLAD, Args);
709 NumSMLAD++;
710 return Call;
711 };
712
713 Instruction *InsertAfter = R.getRoot();
714 Value *Acc = R.getAccumulator();
715 if (!Acc)
716 Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
717
718 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n"
719 << "Acc: " << *Acc << "\n");
720 for (auto &Pair : R.getMulPairs()) {
721 BinOpChain *PMul0 = Pair.first;
722 BinOpChain *PMul1 = Pair.second;
723 LLVM_DEBUG(dbgs() << "Muls:\n"
724 << "- " << *PMul0->Root << "\n"
725 << "- " << *PMul1->Root << "\n");
726
727 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange,
728 InsertAfter);
729 InsertAfter = cast<Instruction>(Acc);
730 }
731 R.UpdateRoot(cast<Instruction>(Acc));
732 }
733
CreateWideLoad(SmallVectorImpl<LoadInst * > & Loads,IntegerType * LoadTy)734 LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
735 IntegerType *LoadTy) {
736 assert(Loads.size() == 2 && "currently only support widening two loads");
737
738 LoadInst *Base = Loads[0];
739 LoadInst *Offset = Loads[1];
740
741 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
742 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
743
744 assert((BaseSExt && OffsetSExt)
745 && "Loads should have a single, extending, user");
746
747 std::function<void(Value*, Value*)> MoveBefore =
748 [&](Value *A, Value *B) -> void {
749 if (!isa<Instruction>(A) || !isa<Instruction>(B))
750 return;
751
752 auto *Source = cast<Instruction>(A);
753 auto *Sink = cast<Instruction>(B);
754
755 if (DT->dominates(Source, Sink) ||
756 Source->getParent() != Sink->getParent() ||
757 isa<PHINode>(Source) || isa<PHINode>(Sink))
758 return;
759
760 Source->moveBefore(Sink);
761 for (auto &U : Source->uses())
762 MoveBefore(Source, U.getUser());
763 };
764
765 // Insert the load at the point of the original dominating load.
766 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
767 IRBuilder<NoFolder> IRB(DomLoad->getParent(),
768 ++BasicBlock::iterator(DomLoad));
769
770 // Bitcast the pointer to a wider type and create the wide load, while making
771 // sure to maintain the original alignment as this prevents ldrd from being
772 // generated when it could be illegal due to memory alignment.
773 const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
774 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
775 LoadTy->getPointerTo(AddrSpace));
776 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr,
777 Base->getAlignment());
778
779 // Make sure everything is in the correct order in the basic block.
780 MoveBefore(Base->getPointerOperand(), VecPtr);
781 MoveBefore(VecPtr, WideLoad);
782
783 // From the wide load, create two values that equal the original two loads.
784 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
785 // TODO: Support big-endian as well.
786 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
787 BaseSExt->setOperand(0, Bottom);
788
789 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
790 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
791 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
792 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
793 OffsetSExt->setOperand(0, Trunc);
794
795 WideLoads.emplace(std::make_pair(Base,
796 make_unique<WidenedLoad>(Loads, WideLoad)));
797 return WideLoad;
798 }
799
800 // Compare the value lists in Other to this chain.
AreSymmetrical(BinOpChain * Other)801 bool BinOpChain::AreSymmetrical(BinOpChain *Other) {
802 // Element-by-element comparison of Value lists returning true if they are
803 // instructions with the same opcode or constants with the same value.
804 auto CompareValueList = [](const ValueList &VL0,
805 const ValueList &VL1) {
806 if (VL0.size() != VL1.size()) {
807 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
808 << VL0.size() << " != " << VL1.size() << "\n");
809 return false;
810 }
811
812 const unsigned Pairs = VL0.size();
813
814 for (unsigned i = 0; i < Pairs; ++i) {
815 const Value *V0 = VL0[i];
816 const Value *V1 = VL1[i];
817 const auto *Inst0 = dyn_cast<Instruction>(V0);
818 const auto *Inst1 = dyn_cast<Instruction>(V1);
819
820 if (!Inst0 || !Inst1)
821 return false;
822
823 if (Inst0->isSameOperationAs(Inst1))
824 continue;
825
826 const APInt *C0, *C1;
827 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
828 return false;
829 }
830
831 return true;
832 };
833
834 return CompareValueList(LHS, Other->LHS) &&
835 CompareValueList(RHS, Other->RHS);
836 }
837
createARMParallelDSPPass()838 Pass *llvm::createARMParallelDSPPass() {
839 return new ARMParallelDSP();
840 }
841
842 char ARMParallelDSP::ID = 0;
843
844 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
845 "Transform loops to use DSP intrinsics", false, false)
846 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
847 "Transform loops to use DSP intrinsics", false, false)
848