1 //===- CXXInheritance.h - C++ Inheritance -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides routines that help analyzing C++ inheritance hierarchies.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
14 #define LLVM_CLANG_AST_CXXINHERITANCE_H
15 
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclarationName.h"
19 #include "clang/AST/Type.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Specifiers.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include <list>
29 #include <memory>
30 #include <utility>
31 
32 namespace clang {
33 
34 class ASTContext;
35 class NamedDecl;
36 
37 /// Represents an element in a path from a derived class to a
38 /// base class.
39 ///
40 /// Each step in the path references the link from a
41 /// derived class to one of its direct base classes, along with a
42 /// base "number" that identifies which base subobject of the
43 /// original derived class we are referencing.
44 struct CXXBasePathElement {
45   /// The base specifier that states the link from a derived
46   /// class to a base class, which will be followed by this base
47   /// path element.
48   const CXXBaseSpecifier *Base;
49 
50   /// The record decl of the class that the base is a base of.
51   const CXXRecordDecl *Class;
52 
53   /// Identifies which base class subobject (of type
54   /// \c Base->getType()) this base path element refers to.
55   ///
56   /// This value is only valid if \c !Base->isVirtual(), because there
57   /// is no base numbering for the zero or one virtual bases of a
58   /// given type.
59   int SubobjectNumber;
60 };
61 
62 /// Represents a path from a specific derived class
63 /// (which is not represented as part of the path) to a particular
64 /// (direct or indirect) base class subobject.
65 ///
66 /// Individual elements in the path are described by the \c CXXBasePathElement
67 /// structure, which captures both the link from a derived class to one of its
68 /// direct bases and identification describing which base class
69 /// subobject is being used.
70 class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
71 public:
72   /// The access along this inheritance path.  This is only
73   /// calculated when recording paths.  AS_none is a special value
74   /// used to indicate a path which permits no legal access.
75   AccessSpecifier Access = AS_public;
76 
77   CXXBasePath() = default;
78 
79   /// The set of declarations found inside this base class
80   /// subobject.
81   DeclContext::lookup_result Decls;
82 
clear()83   void clear() {
84     SmallVectorImpl<CXXBasePathElement>::clear();
85     Access = AS_public;
86   }
87 };
88 
89 /// BasePaths - Represents the set of paths from a derived class to
90 /// one of its (direct or indirect) bases. For example, given the
91 /// following class hierarchy:
92 ///
93 /// @code
94 /// class A { };
95 /// class B : public A { };
96 /// class C : public A { };
97 /// class D : public B, public C{ };
98 /// @endcode
99 ///
100 /// There are two potential BasePaths to represent paths from D to a
101 /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
102 /// and another is (D,0)->(C,0)->(A,1). These two paths actually
103 /// refer to two different base class subobjects of the same type,
104 /// so the BasePaths object refers to an ambiguous path. On the
105 /// other hand, consider the following class hierarchy:
106 ///
107 /// @code
108 /// class A { };
109 /// class B : public virtual A { };
110 /// class C : public virtual A { };
111 /// class D : public B, public C{ };
112 /// @endcode
113 ///
114 /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
115 /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
116 /// refer to the same base class subobject of type A (the virtual
117 /// one), there is no ambiguity.
118 class CXXBasePaths {
119   friend class CXXRecordDecl;
120 
121   /// The type from which this search originated.
122   CXXRecordDecl *Origin = nullptr;
123 
124   /// Paths - The actual set of paths that can be taken from the
125   /// derived class to the same base class.
126   std::list<CXXBasePath> Paths;
127 
128   /// ClassSubobjects - Records the class subobjects for each class
129   /// type that we've seen. The first element IsVirtBase says
130   /// whether we found a path to a virtual base for that class type,
131   /// while NumberOfNonVirtBases contains the number of non-virtual base
132   /// class subobjects for that class type. The key of the map is
133   /// the cv-unqualified canonical type of the base class subobject.
134   struct IsVirtBaseAndNumberNonVirtBases {
135     unsigned IsVirtBase : 1;
136     unsigned NumberOfNonVirtBases : 31;
137   };
138   llvm::SmallDenseMap<QualType, IsVirtBaseAndNumberNonVirtBases, 8>
139       ClassSubobjects;
140 
141   /// VisitedDependentRecords - Records the dependent records that have been
142   /// already visited.
143   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedDependentRecords;
144 
145   /// DetectedVirtual - The base class that is virtual.
146   const RecordType *DetectedVirtual = nullptr;
147 
148   /// ScratchPath - A BasePath that is used by Sema::lookupInBases
149   /// to help build the set of paths.
150   CXXBasePath ScratchPath;
151 
152   /// Array of the declarations that have been found. This
153   /// array is constructed only if needed, e.g., to iterate over the
154   /// results within LookupResult.
155   std::unique_ptr<NamedDecl *[]> DeclsFound;
156   unsigned NumDeclsFound = 0;
157 
158   /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
159   /// ambiguous paths while it is looking for a path from a derived
160   /// type to a base type.
161   bool FindAmbiguities;
162 
163   /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
164   /// while it is determining whether there are paths from a derived
165   /// type to a base type.
166   bool RecordPaths;
167 
168   /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
169   /// if it finds a path that goes across a virtual base. The virtual class
170   /// is also recorded.
171   bool DetectVirtual;
172 
173   void ComputeDeclsFound();
174 
175   bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record,
176                      CXXRecordDecl::BaseMatchesCallback BaseMatches,
177                      bool LookupInDependent = false);
178 
179 public:
180   using paths_iterator = std::list<CXXBasePath>::iterator;
181   using const_paths_iterator = std::list<CXXBasePath>::const_iterator;
182   using decl_iterator = NamedDecl **;
183 
184   /// BasePaths - Construct a new BasePaths structure to record the
185   /// paths for a derived-to-base search.
186   explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true,
187                         bool DetectVirtual = true)
FindAmbiguities(FindAmbiguities)188       : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
189         DetectVirtual(DetectVirtual) {}
190 
begin()191   paths_iterator begin() { return Paths.begin(); }
end()192   paths_iterator end()   { return Paths.end(); }
begin()193   const_paths_iterator begin() const { return Paths.begin(); }
end()194   const_paths_iterator end()   const { return Paths.end(); }
195 
front()196   CXXBasePath&       front()       { return Paths.front(); }
front()197   const CXXBasePath& front() const { return Paths.front(); }
198 
199   using decl_range = llvm::iterator_range<decl_iterator>;
200 
201   decl_range found_decls();
202 
203   /// Determine whether the path from the most-derived type to the
204   /// given base type is ambiguous (i.e., it refers to multiple subobjects of
205   /// the same base type).
206   bool isAmbiguous(CanQualType BaseType);
207 
208   /// Whether we are finding multiple paths to detect ambiguities.
isFindingAmbiguities()209   bool isFindingAmbiguities() const { return FindAmbiguities; }
210 
211   /// Whether we are recording paths.
isRecordingPaths()212   bool isRecordingPaths() const { return RecordPaths; }
213 
214   /// Specify whether we should be recording paths or not.
setRecordingPaths(bool RP)215   void setRecordingPaths(bool RP) { RecordPaths = RP; }
216 
217   /// Whether we are detecting virtual bases.
isDetectingVirtual()218   bool isDetectingVirtual() const { return DetectVirtual; }
219 
220   /// The virtual base discovered on the path (if we are merely
221   /// detecting virtuals).
getDetectedVirtual()222   const RecordType* getDetectedVirtual() const {
223     return DetectedVirtual;
224   }
225 
226   /// Retrieve the type from which this base-paths search
227   /// began
getOrigin()228   CXXRecordDecl *getOrigin() const { return Origin; }
setOrigin(CXXRecordDecl * Rec)229   void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; }
230 
231   /// Clear the base-paths results.
232   void clear();
233 
234   /// Swap this data structure's contents with another CXXBasePaths
235   /// object.
236   void swap(CXXBasePaths &Other);
237 };
238 
239 /// Uniquely identifies a virtual method within a class
240 /// hierarchy by the method itself and a class subobject number.
241 struct UniqueVirtualMethod {
242   /// The overriding virtual method.
243   CXXMethodDecl *Method = nullptr;
244 
245   /// The subobject in which the overriding virtual method
246   /// resides.
247   unsigned Subobject = 0;
248 
249   /// The virtual base class subobject of which this overridden
250   /// virtual method is a part. Note that this records the closest
251   /// derived virtual base class subobject.
252   const CXXRecordDecl *InVirtualSubobject = nullptr;
253 
254   UniqueVirtualMethod() = default;
255 
UniqueVirtualMethodUniqueVirtualMethod256   UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
257                       const CXXRecordDecl *InVirtualSubobject)
258       : Method(Method), Subobject(Subobject),
259         InVirtualSubobject(InVirtualSubobject) {}
260 
261   friend bool operator==(const UniqueVirtualMethod &X,
262                          const UniqueVirtualMethod &Y) {
263     return X.Method == Y.Method && X.Subobject == Y.Subobject &&
264       X.InVirtualSubobject == Y.InVirtualSubobject;
265   }
266 
267   friend bool operator!=(const UniqueVirtualMethod &X,
268                          const UniqueVirtualMethod &Y) {
269     return !(X == Y);
270   }
271 };
272 
273 /// The set of methods that override a given virtual method in
274 /// each subobject where it occurs.
275 ///
276 /// The first part of the pair is the subobject in which the
277 /// overridden virtual function occurs, while the second part of the
278 /// pair is the virtual method that overrides it (including the
279 /// subobject in which that virtual function occurs).
280 class OverridingMethods {
281   using ValuesT = SmallVector<UniqueVirtualMethod, 4>;
282   using MapType = llvm::MapVector<unsigned, ValuesT>;
283 
284   MapType Overrides;
285 
286 public:
287   // Iterate over the set of subobjects that have overriding methods.
288   using iterator = MapType::iterator;
289   using const_iterator = MapType::const_iterator;
290 
begin()291   iterator begin() { return Overrides.begin(); }
begin()292   const_iterator begin() const { return Overrides.begin(); }
end()293   iterator end() { return Overrides.end(); }
end()294   const_iterator end() const { return Overrides.end(); }
size()295   unsigned size() const { return Overrides.size(); }
296 
297   // Iterate over the set of overriding virtual methods in a given
298   // subobject.
299   using overriding_iterator =
300       SmallVectorImpl<UniqueVirtualMethod>::iterator;
301   using overriding_const_iterator =
302       SmallVectorImpl<UniqueVirtualMethod>::const_iterator;
303 
304   // Add a new overriding method for a particular subobject.
305   void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
306 
307   // Add all of the overriding methods from "other" into overrides for
308   // this method. Used when merging the overrides from multiple base
309   // class subobjects.
310   void add(const OverridingMethods &Other);
311 
312   // Replace all overriding virtual methods in all subobjects with the
313   // given virtual method.
314   void replaceAll(UniqueVirtualMethod Overriding);
315 };
316 
317 /// A mapping from each virtual member function to its set of
318 /// final overriders.
319 ///
320 /// Within a class hierarchy for a given derived class, each virtual
321 /// member function in that hierarchy has one or more "final
322 /// overriders" (C++ [class.virtual]p2). A final overrider for a
323 /// virtual function "f" is the virtual function that will actually be
324 /// invoked when dispatching a call to "f" through the
325 /// vtable. Well-formed classes have a single final overrider for each
326 /// virtual function; in abstract classes, the final overrider for at
327 /// least one virtual function is a pure virtual function. Due to
328 /// multiple, virtual inheritance, it is possible for a class to have
329 /// more than one final overrider. Athough this is an error (per C++
330 /// [class.virtual]p2), it is not considered an error here: the final
331 /// overrider map can represent multiple final overriders for a
332 /// method, and it is up to the client to determine whether they are
333 /// problem. For example, the following class \c D has two final
334 /// overriders for the virtual function \c A::f(), one in \c C and one
335 /// in \c D:
336 ///
337 /// \code
338 ///   struct A { virtual void f(); };
339 ///   struct B : virtual A { virtual void f(); };
340 ///   struct C : virtual A { virtual void f(); };
341 ///   struct D : B, C { };
342 /// \endcode
343 ///
344 /// This data structure contains a mapping from every virtual
345 /// function *that does not override an existing virtual function* and
346 /// in every subobject where that virtual function occurs to the set
347 /// of virtual functions that override it. Thus, the same virtual
348 /// function \c A::f can actually occur in multiple subobjects of type
349 /// \c A due to multiple inheritance, and may be overridden by
350 /// different virtual functions in each, as in the following example:
351 ///
352 /// \code
353 ///   struct A { virtual void f(); };
354 ///   struct B : A { virtual void f(); };
355 ///   struct C : A { virtual void f(); };
356 ///   struct D : B, C { };
357 /// \endcode
358 ///
359 /// Unlike in the previous example, where the virtual functions \c
360 /// B::f and \c C::f both overrode \c A::f in the same subobject of
361 /// type \c A, in this example the two virtual functions both override
362 /// \c A::f but in *different* subobjects of type A. This is
363 /// represented by numbering the subobjects in which the overridden
364 /// and the overriding virtual member functions are located. Subobject
365 /// 0 represents the virtual base class subobject of that type, while
366 /// subobject numbers greater than 0 refer to non-virtual base class
367 /// subobjects of that type.
368 class CXXFinalOverriderMap
369   : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> {};
370 
371 /// A set of all the primary bases for a class.
372 class CXXIndirectPrimaryBaseSet
373   : public llvm::SmallSet<const CXXRecordDecl*, 32> {};
374 
375 } // namespace clang
376 
377 #endif // LLVM_CLANG_AST_CXXINHERITANCE_H
378