1 //===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the CFG and CFGBuilder classes for representing and
10 //  building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_ANALYSIS_CFG_H
15 #define LLVM_CLANG_ANALYSIS_CFG_H
16 
17 #include "clang/Analysis/Support/BumpVector.h"
18 #include "clang/Analysis/ConstructionContext.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/Basic/LLVM.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/GraphTraits.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PointerIntPair.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Support/Allocator.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <bitset>
31 #include <cassert>
32 #include <cstddef>
33 #include <iterator>
34 #include <memory>
35 #include <vector>
36 
37 namespace clang {
38 
39 class ASTContext;
40 class BinaryOperator;
41 class CFG;
42 class CXXBaseSpecifier;
43 class CXXBindTemporaryExpr;
44 class CXXCtorInitializer;
45 class CXXDeleteExpr;
46 class CXXDestructorDecl;
47 class CXXNewExpr;
48 class CXXRecordDecl;
49 class Decl;
50 class FieldDecl;
51 class LangOptions;
52 class VarDecl;
53 
54 /// Represents a top-level expression in a basic block.
55 class CFGElement {
56 public:
57   enum Kind {
58     // main kind
59     Initializer,
60     ScopeBegin,
61     ScopeEnd,
62     NewAllocator,
63     LifetimeEnds,
64     LoopExit,
65     // stmt kind
66     Statement,
67     Constructor,
68     CXXRecordTypedCall,
69     STMT_BEGIN = Statement,
70     STMT_END = CXXRecordTypedCall,
71     // dtor kind
72     AutomaticObjectDtor,
73     DeleteDtor,
74     BaseDtor,
75     MemberDtor,
76     TemporaryDtor,
77     DTOR_BEGIN = AutomaticObjectDtor,
78     DTOR_END = TemporaryDtor
79   };
80 
81 protected:
82   // The int bits are used to mark the kind.
83   llvm::PointerIntPair<void *, 2> Data1;
84   llvm::PointerIntPair<void *, 2> Data2;
85 
86   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
87       : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
88         Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
89     assert(getKind() == kind);
90   }
91 
92   CFGElement() = default;
93 
94 public:
95   /// Convert to the specified CFGElement type, asserting that this
96   /// CFGElement is of the desired type.
97   template<typename T>
castAs()98   T castAs() const {
99     assert(T::isKind(*this));
100     T t;
101     CFGElement& e = t;
102     e = *this;
103     return t;
104   }
105 
106   /// Convert to the specified CFGElement type, returning None if this
107   /// CFGElement is not of the desired type.
108   template<typename T>
getAs()109   Optional<T> getAs() const {
110     if (!T::isKind(*this))
111       return None;
112     T t;
113     CFGElement& e = t;
114     e = *this;
115     return t;
116   }
117 
getKind()118   Kind getKind() const {
119     unsigned x = Data2.getInt();
120     x <<= 2;
121     x |= Data1.getInt();
122     return (Kind) x;
123   }
124 };
125 
126 class CFGStmt : public CFGElement {
127 public:
CFGElement(K,S)128   explicit CFGStmt(Stmt *S, Kind K = Statement) : CFGElement(K, S) {
129     assert(isKind(*this));
130   }
131 
getStmt()132   const Stmt *getStmt() const {
133     return static_cast<const Stmt *>(Data1.getPointer());
134   }
135 
136 private:
137   friend class CFGElement;
138 
isKind(const CFGElement & E)139   static bool isKind(const CFGElement &E) {
140     return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END;
141   }
142 
143 protected:
144   CFGStmt() = default;
145 };
146 
147 /// Represents C++ constructor call. Maintains information necessary to figure
148 /// out what memory is being initialized by the constructor expression. For now
149 /// this is only used by the analyzer's CFG.
150 class CFGConstructor : public CFGStmt {
151 public:
CFGConstructor(CXXConstructExpr * CE,const ConstructionContext * C)152   explicit CFGConstructor(CXXConstructExpr *CE, const ConstructionContext *C)
153       : CFGStmt(CE, Constructor) {
154     assert(C);
155     Data2.setPointer(const_cast<ConstructionContext *>(C));
156   }
157 
getConstructionContext()158   const ConstructionContext *getConstructionContext() const {
159     return static_cast<ConstructionContext *>(Data2.getPointer());
160   }
161 
162 private:
163   friend class CFGElement;
164 
165   CFGConstructor() = default;
166 
isKind(const CFGElement & E)167   static bool isKind(const CFGElement &E) {
168     return E.getKind() == Constructor;
169   }
170 };
171 
172 /// Represents a function call that returns a C++ object by value. This, like
173 /// constructor, requires a construction context in order to understand the
174 /// storage of the returned object . In C such tracking is not necessary because
175 /// no additional effort is required for destroying the object or modeling copy
176 /// elision. Like CFGConstructor, this element is for now only used by the
177 /// analyzer's CFG.
178 class CFGCXXRecordTypedCall : public CFGStmt {
179 public:
180   /// Returns true when call expression \p CE needs to be represented
181   /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt.
isCXXRecordTypedCall(Expr * E)182   static bool isCXXRecordTypedCall(Expr *E) {
183     assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E));
184     // There is no such thing as reference-type expression. If the function
185     // returns a reference, it'll return the respective lvalue or xvalue
186     // instead, and we're only interested in objects.
187     return !E->isGLValue() &&
188            E->getType().getCanonicalType()->getAsCXXRecordDecl();
189   }
190 
CFGCXXRecordTypedCall(Expr * E,const ConstructionContext * C)191   explicit CFGCXXRecordTypedCall(Expr *E, const ConstructionContext *C)
192       : CFGStmt(E, CXXRecordTypedCall) {
193     assert(isCXXRecordTypedCall(E));
194     assert(C && (isa<TemporaryObjectConstructionContext>(C) ||
195                  // These are possible in C++17 due to mandatory copy elision.
196                  isa<ReturnedValueConstructionContext>(C) ||
197                  isa<VariableConstructionContext>(C) ||
198                  isa<ConstructorInitializerConstructionContext>(C) ||
199                  isa<ArgumentConstructionContext>(C)));
200     Data2.setPointer(const_cast<ConstructionContext *>(C));
201   }
202 
getConstructionContext()203   const ConstructionContext *getConstructionContext() const {
204     return static_cast<ConstructionContext *>(Data2.getPointer());
205   }
206 
207 private:
208   friend class CFGElement;
209 
210   CFGCXXRecordTypedCall() = default;
211 
isKind(const CFGElement & E)212   static bool isKind(const CFGElement &E) {
213     return E.getKind() == CXXRecordTypedCall;
214   }
215 };
216 
217 /// Represents C++ base or member initializer from constructor's initialization
218 /// list.
219 class CFGInitializer : public CFGElement {
220 public:
CFGInitializer(CXXCtorInitializer * initializer)221   explicit CFGInitializer(CXXCtorInitializer *initializer)
222       : CFGElement(Initializer, initializer) {}
223 
getInitializer()224   CXXCtorInitializer* getInitializer() const {
225     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
226   }
227 
228 private:
229   friend class CFGElement;
230 
231   CFGInitializer() = default;
232 
isKind(const CFGElement & E)233   static bool isKind(const CFGElement &E) {
234     return E.getKind() == Initializer;
235   }
236 };
237 
238 /// Represents C++ allocator call.
239 class CFGNewAllocator : public CFGElement {
240 public:
CFGNewAllocator(const CXXNewExpr * S)241   explicit CFGNewAllocator(const CXXNewExpr *S)
242     : CFGElement(NewAllocator, S) {}
243 
244   // Get the new expression.
getAllocatorExpr()245   const CXXNewExpr *getAllocatorExpr() const {
246     return static_cast<CXXNewExpr *>(Data1.getPointer());
247   }
248 
249 private:
250   friend class CFGElement;
251 
252   CFGNewAllocator() = default;
253 
isKind(const CFGElement & elem)254   static bool isKind(const CFGElement &elem) {
255     return elem.getKind() == NewAllocator;
256   }
257 };
258 
259 /// Represents the point where a loop ends.
260 /// This element is is only produced when building the CFG for the static
261 /// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag.
262 ///
263 /// Note: a loop exit element can be reached even when the loop body was never
264 /// entered.
265 class CFGLoopExit : public CFGElement {
266 public:
CFGLoopExit(const Stmt * stmt)267   explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {}
268 
getLoopStmt()269   const Stmt *getLoopStmt() const {
270     return static_cast<Stmt *>(Data1.getPointer());
271   }
272 
273 private:
274   friend class CFGElement;
275 
276   CFGLoopExit() = default;
277 
isKind(const CFGElement & elem)278   static bool isKind(const CFGElement &elem) {
279     return elem.getKind() == LoopExit;
280   }
281 };
282 
283 /// Represents the point where the lifetime of an automatic object ends
284 class CFGLifetimeEnds : public CFGElement {
285 public:
CFGLifetimeEnds(const VarDecl * var,const Stmt * stmt)286   explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt)
287       : CFGElement(LifetimeEnds, var, stmt) {}
288 
getVarDecl()289   const VarDecl *getVarDecl() const {
290     return static_cast<VarDecl *>(Data1.getPointer());
291   }
292 
getTriggerStmt()293   const Stmt *getTriggerStmt() const {
294     return static_cast<Stmt *>(Data2.getPointer());
295   }
296 
297 private:
298   friend class CFGElement;
299 
300   CFGLifetimeEnds() = default;
301 
isKind(const CFGElement & elem)302   static bool isKind(const CFGElement &elem) {
303     return elem.getKind() == LifetimeEnds;
304   }
305 };
306 
307 /// Represents beginning of a scope implicitly generated
308 /// by the compiler on encountering a CompoundStmt
309 class CFGScopeBegin : public CFGElement {
310 public:
CFGScopeBegin()311   CFGScopeBegin() {}
CFGScopeBegin(const VarDecl * VD,const Stmt * S)312   CFGScopeBegin(const VarDecl *VD, const Stmt *S)
313       : CFGElement(ScopeBegin, VD, S) {}
314 
315   // Get statement that triggered a new scope.
getTriggerStmt()316   const Stmt *getTriggerStmt() const {
317     return static_cast<Stmt*>(Data2.getPointer());
318   }
319 
320   // Get VD that triggered a new scope.
getVarDecl()321   const VarDecl *getVarDecl() const {
322     return static_cast<VarDecl *>(Data1.getPointer());
323   }
324 
325 private:
326   friend class CFGElement;
isKind(const CFGElement & E)327   static bool isKind(const CFGElement &E) {
328     Kind kind = E.getKind();
329     return kind == ScopeBegin;
330   }
331 };
332 
333 /// Represents end of a scope implicitly generated by
334 /// the compiler after the last Stmt in a CompoundStmt's body
335 class CFGScopeEnd : public CFGElement {
336 public:
CFGScopeEnd()337   CFGScopeEnd() {}
CFGScopeEnd(const VarDecl * VD,const Stmt * S)338   CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {}
339 
getVarDecl()340   const VarDecl *getVarDecl() const {
341     return static_cast<VarDecl *>(Data1.getPointer());
342   }
343 
getTriggerStmt()344   const Stmt *getTriggerStmt() const {
345     return static_cast<Stmt *>(Data2.getPointer());
346   }
347 
348 private:
349   friend class CFGElement;
isKind(const CFGElement & E)350   static bool isKind(const CFGElement &E) {
351     Kind kind = E.getKind();
352     return kind == ScopeEnd;
353   }
354 };
355 
356 /// Represents C++ object destructor implicitly generated by compiler on various
357 /// occasions.
358 class CFGImplicitDtor : public CFGElement {
359 protected:
360   CFGImplicitDtor() = default;
361 
362   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
CFGElement(kind,data1,data2)363     : CFGElement(kind, data1, data2) {
364     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
365   }
366 
367 public:
368   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
369   bool isNoReturn(ASTContext &astContext) const;
370 
371 private:
372   friend class CFGElement;
373 
isKind(const CFGElement & E)374   static bool isKind(const CFGElement &E) {
375     Kind kind = E.getKind();
376     return kind >= DTOR_BEGIN && kind <= DTOR_END;
377   }
378 };
379 
380 /// Represents C++ object destructor implicitly generated for automatic object
381 /// or temporary bound to const reference at the point of leaving its local
382 /// scope.
383 class CFGAutomaticObjDtor: public CFGImplicitDtor {
384 public:
CFGAutomaticObjDtor(const VarDecl * var,const Stmt * stmt)385   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
386       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
387 
getVarDecl()388   const VarDecl *getVarDecl() const {
389     return static_cast<VarDecl*>(Data1.getPointer());
390   }
391 
392   // Get statement end of which triggered the destructor call.
getTriggerStmt()393   const Stmt *getTriggerStmt() const {
394     return static_cast<Stmt*>(Data2.getPointer());
395   }
396 
397 private:
398   friend class CFGElement;
399 
400   CFGAutomaticObjDtor() = default;
401 
isKind(const CFGElement & elem)402   static bool isKind(const CFGElement &elem) {
403     return elem.getKind() == AutomaticObjectDtor;
404   }
405 };
406 
407 /// Represents C++ object destructor generated from a call to delete.
408 class CFGDeleteDtor : public CFGImplicitDtor {
409 public:
CFGDeleteDtor(const CXXRecordDecl * RD,const CXXDeleteExpr * DE)410   CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
411       : CFGImplicitDtor(DeleteDtor, RD, DE) {}
412 
getCXXRecordDecl()413   const CXXRecordDecl *getCXXRecordDecl() const {
414     return static_cast<CXXRecordDecl*>(Data1.getPointer());
415   }
416 
417   // Get Delete expression which triggered the destructor call.
getDeleteExpr()418   const CXXDeleteExpr *getDeleteExpr() const {
419     return static_cast<CXXDeleteExpr *>(Data2.getPointer());
420   }
421 
422 private:
423   friend class CFGElement;
424 
425   CFGDeleteDtor() = default;
426 
isKind(const CFGElement & elem)427   static bool isKind(const CFGElement &elem) {
428     return elem.getKind() == DeleteDtor;
429   }
430 };
431 
432 /// Represents C++ object destructor implicitly generated for base object in
433 /// destructor.
434 class CFGBaseDtor : public CFGImplicitDtor {
435 public:
CFGBaseDtor(const CXXBaseSpecifier * base)436   CFGBaseDtor(const CXXBaseSpecifier *base)
437       : CFGImplicitDtor(BaseDtor, base) {}
438 
getBaseSpecifier()439   const CXXBaseSpecifier *getBaseSpecifier() const {
440     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
441   }
442 
443 private:
444   friend class CFGElement;
445 
446   CFGBaseDtor() = default;
447 
isKind(const CFGElement & E)448   static bool isKind(const CFGElement &E) {
449     return E.getKind() == BaseDtor;
450   }
451 };
452 
453 /// Represents C++ object destructor implicitly generated for member object in
454 /// destructor.
455 class CFGMemberDtor : public CFGImplicitDtor {
456 public:
CFGMemberDtor(const FieldDecl * field)457   CFGMemberDtor(const FieldDecl *field)
458       : CFGImplicitDtor(MemberDtor, field, nullptr) {}
459 
getFieldDecl()460   const FieldDecl *getFieldDecl() const {
461     return static_cast<const FieldDecl*>(Data1.getPointer());
462   }
463 
464 private:
465   friend class CFGElement;
466 
467   CFGMemberDtor() = default;
468 
isKind(const CFGElement & E)469   static bool isKind(const CFGElement &E) {
470     return E.getKind() == MemberDtor;
471   }
472 };
473 
474 /// Represents C++ object destructor implicitly generated at the end of full
475 /// expression for temporary object.
476 class CFGTemporaryDtor : public CFGImplicitDtor {
477 public:
CFGTemporaryDtor(CXXBindTemporaryExpr * expr)478   CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
479       : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
480 
getBindTemporaryExpr()481   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
482     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
483   }
484 
485 private:
486   friend class CFGElement;
487 
488   CFGTemporaryDtor() = default;
489 
isKind(const CFGElement & E)490   static bool isKind(const CFGElement &E) {
491     return E.getKind() == TemporaryDtor;
492   }
493 };
494 
495 /// Represents CFGBlock terminator statement.
496 ///
497 class CFGTerminator {
498 public:
499   enum Kind {
500     /// A branch that corresponds to a statement in the code,
501     /// such as an if-statement.
502     StmtBranch,
503     /// A branch in control flow of destructors of temporaries. In this case
504     /// terminator statement is the same statement that branches control flow
505     /// in evaluation of matching full expression.
506     TemporaryDtorsBranch,
507     /// A shortcut around virtual base initializers. It gets taken when
508     /// virtual base classes have already been initialized by the constructor
509     /// of the most derived class while we're in the base class.
510     VirtualBaseBranch,
511 
512     /// Number of different kinds, for sanity checks. We subtract 1 so that
513     /// to keep receiving compiler warnings when we don't cover all enum values
514     /// in a switch.
515     NumKindsMinusOne = VirtualBaseBranch
516   };
517 
518 private:
519   static constexpr int KindBits = 2;
520   static_assert((1 << KindBits) > NumKindsMinusOne,
521                 "Not enough room for kind!");
522   llvm::PointerIntPair<Stmt *, KindBits> Data;
523 
524 public:
CFGTerminator()525   CFGTerminator() { assert(!isValid()); }
Data(S,K)526   CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {}
527 
isValid()528   bool isValid() const { return Data.getOpaqueValue() != nullptr; }
getStmt()529   Stmt *getStmt() { return Data.getPointer(); }
getStmt()530   const Stmt *getStmt() const { return Data.getPointer(); }
getKind()531   Kind getKind() const { return static_cast<Kind>(Data.getInt()); }
532 
isStmtBranch()533   bool isStmtBranch() const {
534     return getKind() == StmtBranch;
535   }
isTemporaryDtorsBranch()536   bool isTemporaryDtorsBranch() const {
537     return getKind() == TemporaryDtorsBranch;
538   }
isVirtualBaseBranch()539   bool isVirtualBaseBranch() const {
540     return getKind() == VirtualBaseBranch;
541   }
542 };
543 
544 /// Represents a single basic block in a source-level CFG.
545 ///  It consists of:
546 ///
547 ///  (1) A set of statements/expressions (which may contain subexpressions).
548 ///  (2) A "terminator" statement (not in the set of statements).
549 ///  (3) A list of successors and predecessors.
550 ///
551 /// Terminator: The terminator represents the type of control-flow that occurs
552 /// at the end of the basic block.  The terminator is a Stmt* referring to an
553 /// AST node that has control-flow: if-statements, breaks, loops, etc.
554 /// If the control-flow is conditional, the condition expression will appear
555 /// within the set of statements in the block (usually the last statement).
556 ///
557 /// Predecessors: the order in the set of predecessors is arbitrary.
558 ///
559 /// Successors: the order in the set of successors is NOT arbitrary.  We
560 ///  currently have the following orderings based on the terminator:
561 ///
562 ///     Terminator     |   Successor Ordering
563 ///  ------------------|------------------------------------
564 ///       if           |  Then Block;  Else Block
565 ///     ? operator     |  LHS expression;  RHS expression
566 ///     logical and/or |  expression that consumes the op, RHS
567 ///     vbase inits    |  already handled by the most derived class; not yet
568 ///
569 /// But note that any of that may be NULL in case of optimized-out edges.
570 class CFGBlock {
571   class ElementList {
572     using ImplTy = BumpVector<CFGElement>;
573 
574     ImplTy Impl;
575 
576   public:
ElementList(BumpVectorContext & C)577     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
578 
579     using iterator = std::reverse_iterator<ImplTy::iterator>;
580     using const_iterator = std::reverse_iterator<ImplTy::const_iterator>;
581     using reverse_iterator = ImplTy::iterator;
582     using const_reverse_iterator = ImplTy::const_iterator;
583     using const_reference = ImplTy::const_reference;
584 
push_back(CFGElement e,BumpVectorContext & C)585     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
586 
insert(reverse_iterator I,size_t Cnt,CFGElement E,BumpVectorContext & C)587     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
588         BumpVectorContext &C) {
589       return Impl.insert(I, Cnt, E, C);
590     }
591 
front()592     const_reference front() const { return Impl.back(); }
back()593     const_reference back() const { return Impl.front(); }
594 
begin()595     iterator begin() { return Impl.rbegin(); }
end()596     iterator end() { return Impl.rend(); }
begin()597     const_iterator begin() const { return Impl.rbegin(); }
end()598     const_iterator end() const { return Impl.rend(); }
rbegin()599     reverse_iterator rbegin() { return Impl.begin(); }
rend()600     reverse_iterator rend() { return Impl.end(); }
rbegin()601     const_reverse_iterator rbegin() const { return Impl.begin(); }
rend()602     const_reverse_iterator rend() const { return Impl.end(); }
603 
604     CFGElement operator[](size_t i) const  {
605       assert(i < Impl.size());
606       return Impl[Impl.size() - 1 - i];
607     }
608 
size()609     size_t size() const { return Impl.size(); }
empty()610     bool empty() const { return Impl.empty(); }
611   };
612 
613   /// The set of statements in the basic block.
614   ElementList Elements;
615 
616   /// An (optional) label that prefixes the executable statements in the block.
617   /// When this variable is non-NULL, it is either an instance of LabelStmt,
618   /// SwitchCase or CXXCatchStmt.
619   Stmt *Label = nullptr;
620 
621   /// The terminator for a basic block that indicates the type of control-flow
622   /// that occurs between a block and its successors.
623   CFGTerminator Terminator;
624 
625   /// Some blocks are used to represent the "loop edge" to the start of a loop
626   /// from within the loop body. This Stmt* will be refer to the loop statement
627   /// for such blocks (and be null otherwise).
628   const Stmt *LoopTarget = nullptr;
629 
630   /// A numerical ID assigned to a CFGBlock during construction of the CFG.
631   unsigned BlockID;
632 
633 public:
634   /// This class represents a potential adjacent block in the CFG.  It encodes
635   /// whether or not the block is actually reachable, or can be proved to be
636   /// trivially unreachable.  For some cases it allows one to encode scenarios
637   /// where a block was substituted because the original (now alternate) block
638   /// is unreachable.
639   class AdjacentBlock {
640     enum Kind {
641       AB_Normal,
642       AB_Unreachable,
643       AB_Alternate
644     };
645 
646     CFGBlock *ReachableBlock;
647     llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock;
648 
649   public:
650     /// Construct an AdjacentBlock with a possibly unreachable block.
651     AdjacentBlock(CFGBlock *B, bool IsReachable);
652 
653     /// Construct an AdjacentBlock with a reachable block and an alternate
654     /// unreachable block.
655     AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
656 
657     /// Get the reachable block, if one exists.
getReachableBlock()658     CFGBlock *getReachableBlock() const {
659       return ReachableBlock;
660     }
661 
662     /// Get the potentially unreachable block.
getPossiblyUnreachableBlock()663     CFGBlock *getPossiblyUnreachableBlock() const {
664       return UnreachableBlock.getPointer();
665     }
666 
667     /// Provide an implicit conversion to CFGBlock* so that
668     /// AdjacentBlock can be substituted for CFGBlock*.
669     operator CFGBlock*() const {
670       return getReachableBlock();
671     }
672 
673     CFGBlock& operator *() const {
674       return *getReachableBlock();
675     }
676 
677     CFGBlock* operator ->() const {
678       return getReachableBlock();
679     }
680 
isReachable()681     bool isReachable() const {
682       Kind K = (Kind) UnreachableBlock.getInt();
683       return K == AB_Normal || K == AB_Alternate;
684     }
685   };
686 
687 private:
688   /// Keep track of the predecessor / successor CFG blocks.
689   using AdjacentBlocks = BumpVector<AdjacentBlock>;
690   AdjacentBlocks Preds;
691   AdjacentBlocks Succs;
692 
693   /// This bit is set when the basic block contains a function call
694   /// or implicit destructor that is attributed as 'noreturn'. In that case,
695   /// control cannot technically ever proceed past this block. All such blocks
696   /// will have a single immediate successor: the exit block. This allows them
697   /// to be easily reached from the exit block and using this bit quickly
698   /// recognized without scanning the contents of the block.
699   ///
700   /// Optimization Note: This bit could be profitably folded with Terminator's
701   /// storage if the memory usage of CFGBlock becomes an issue.
702   unsigned HasNoReturnElement : 1;
703 
704   /// The parent CFG that owns this CFGBlock.
705   CFG *Parent;
706 
707 public:
CFGBlock(unsigned blockid,BumpVectorContext & C,CFG * parent)708   explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
709       : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1),
710         Succs(C, 1), HasNoReturnElement(false), Parent(parent) {}
711 
712   // Statement iterators
713   using iterator = ElementList::iterator;
714   using const_iterator = ElementList::const_iterator;
715   using reverse_iterator = ElementList::reverse_iterator;
716   using const_reverse_iterator = ElementList::const_reverse_iterator;
717 
front()718   CFGElement                 front()       const { return Elements.front();   }
back()719   CFGElement                 back()        const { return Elements.back();    }
720 
begin()721   iterator                   begin()             { return Elements.begin();   }
end()722   iterator                   end()               { return Elements.end();     }
begin()723   const_iterator             begin()       const { return Elements.begin();   }
end()724   const_iterator             end()         const { return Elements.end();     }
725 
rbegin()726   reverse_iterator           rbegin()            { return Elements.rbegin();  }
rend()727   reverse_iterator           rend()              { return Elements.rend();    }
rbegin()728   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
rend()729   const_reverse_iterator     rend()        const { return Elements.rend();    }
730 
size()731   unsigned                   size()        const { return Elements.size();    }
empty()732   bool                       empty()       const { return Elements.empty();   }
733 
734   CFGElement operator[](size_t i) const  { return Elements[i]; }
735 
736   // CFG iterators
737   using pred_iterator = AdjacentBlocks::iterator;
738   using const_pred_iterator = AdjacentBlocks::const_iterator;
739   using pred_reverse_iterator = AdjacentBlocks::reverse_iterator;
740   using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
741   using pred_range = llvm::iterator_range<pred_iterator>;
742   using pred_const_range = llvm::iterator_range<const_pred_iterator>;
743 
744   using succ_iterator = AdjacentBlocks::iterator;
745   using const_succ_iterator = AdjacentBlocks::const_iterator;
746   using succ_reverse_iterator = AdjacentBlocks::reverse_iterator;
747   using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
748   using succ_range = llvm::iterator_range<succ_iterator>;
749   using succ_const_range = llvm::iterator_range<const_succ_iterator>;
750 
pred_begin()751   pred_iterator                pred_begin()        { return Preds.begin();   }
pred_end()752   pred_iterator                pred_end()          { return Preds.end();     }
pred_begin()753   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
pred_end()754   const_pred_iterator          pred_end()    const { return Preds.end();     }
755 
pred_rbegin()756   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
pred_rend()757   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
pred_rbegin()758   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
pred_rend()759   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
760 
preds()761   pred_range preds() {
762     return pred_range(pred_begin(), pred_end());
763   }
764 
preds()765   pred_const_range preds() const {
766     return pred_const_range(pred_begin(), pred_end());
767   }
768 
succ_begin()769   succ_iterator                succ_begin()        { return Succs.begin();   }
succ_end()770   succ_iterator                succ_end()          { return Succs.end();     }
succ_begin()771   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
succ_end()772   const_succ_iterator          succ_end()    const { return Succs.end();     }
773 
succ_rbegin()774   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
succ_rend()775   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
succ_rbegin()776   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
succ_rend()777   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
778 
succs()779   succ_range succs() {
780     return succ_range(succ_begin(), succ_end());
781   }
782 
succs()783   succ_const_range succs() const {
784     return succ_const_range(succ_begin(), succ_end());
785   }
786 
succ_size()787   unsigned                     succ_size()   const { return Succs.size();    }
succ_empty()788   bool                         succ_empty()  const { return Succs.empty();   }
789 
pred_size()790   unsigned                     pred_size()   const { return Preds.size();    }
pred_empty()791   bool                         pred_empty()  const { return Preds.empty();   }
792 
793 
794   class FilterOptions {
795   public:
796     unsigned IgnoreNullPredecessors : 1;
797     unsigned IgnoreDefaultsWithCoveredEnums : 1;
798 
FilterOptions()799     FilterOptions()
800         : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {}
801   };
802 
803   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
804        const CFGBlock *Dst);
805 
806   template <typename IMPL, bool IsPred>
807   class FilteredCFGBlockIterator {
808   private:
809     IMPL I, E;
810     const FilterOptions F;
811     const CFGBlock *From;
812 
813   public:
FilteredCFGBlockIterator(const IMPL & i,const IMPL & e,const CFGBlock * from,const FilterOptions & f)814     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
815                                       const CFGBlock *from,
816                                       const FilterOptions &f)
817         : I(i), E(e), F(f), From(from) {
818       while (hasMore() && Filter(*I))
819         ++I;
820     }
821 
hasMore()822     bool hasMore() const { return I != E; }
823 
824     FilteredCFGBlockIterator &operator++() {
825       do { ++I; } while (hasMore() && Filter(*I));
826       return *this;
827     }
828 
829     const CFGBlock *operator*() const { return *I; }
830 
831   private:
Filter(const CFGBlock * To)832     bool Filter(const CFGBlock *To) {
833       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
834     }
835   };
836 
837   using filtered_pred_iterator =
838       FilteredCFGBlockIterator<const_pred_iterator, true>;
839 
840   using filtered_succ_iterator =
841       FilteredCFGBlockIterator<const_succ_iterator, false>;
842 
filtered_pred_start_end(const FilterOptions & f)843   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
844     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
845   }
846 
filtered_succ_start_end(const FilterOptions & f)847   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
848     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
849   }
850 
851   // Manipulation of block contents
852 
setTerminator(CFGTerminator Term)853   void setTerminator(CFGTerminator Term) { Terminator = Term; }
setLabel(Stmt * Statement)854   void setLabel(Stmt *Statement) { Label = Statement; }
setLoopTarget(const Stmt * loopTarget)855   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
setHasNoReturnElement()856   void setHasNoReturnElement() { HasNoReturnElement = true; }
857 
getTerminator()858   CFGTerminator getTerminator() const { return Terminator; }
859 
getTerminatorStmt()860   Stmt *getTerminatorStmt() { return Terminator.getStmt(); }
getTerminatorStmt()861   const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); }
862 
863   /// \returns the last (\c rbegin()) condition, e.g. observe the following code
864   /// snippet:
865   ///   if (A && B && C)
866   /// A block would be created for \c A, \c B, and \c C. For the latter,
867   /// \c getTerminatorStmt() would retrieve the entire condition, rather than
868   /// C itself, while this method would only return C.
869   const Expr *getLastCondition() const;
870 
871   Stmt *getTerminatorCondition(bool StripParens = true);
872 
873   const Stmt *getTerminatorCondition(bool StripParens = true) const {
874     return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
875   }
876 
getLoopTarget()877   const Stmt *getLoopTarget() const { return LoopTarget; }
878 
getLabel()879   Stmt *getLabel() { return Label; }
getLabel()880   const Stmt *getLabel() const { return Label; }
881 
hasNoReturnElement()882   bool hasNoReturnElement() const { return HasNoReturnElement; }
883 
getBlockID()884   unsigned getBlockID() const { return BlockID; }
885 
getParent()886   CFG *getParent() const { return Parent; }
887 
888   void dump() const;
889 
890   void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
891   void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
892              bool ShowColors) const;
893 
894   void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
895   void printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
896                            bool AddQuotes) const;
897 
printAsOperand(raw_ostream & OS,bool)898   void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
899     OS << "BB#" << getBlockID();
900   }
901 
902   /// Adds a (potentially unreachable) successor block to the current block.
903   void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
904 
appendStmt(Stmt * statement,BumpVectorContext & C)905   void appendStmt(Stmt *statement, BumpVectorContext &C) {
906     Elements.push_back(CFGStmt(statement), C);
907   }
908 
appendConstructor(CXXConstructExpr * CE,const ConstructionContext * CC,BumpVectorContext & C)909   void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC,
910                          BumpVectorContext &C) {
911     Elements.push_back(CFGConstructor(CE, CC), C);
912   }
913 
appendCXXRecordTypedCall(Expr * E,const ConstructionContext * CC,BumpVectorContext & C)914   void appendCXXRecordTypedCall(Expr *E,
915                                 const ConstructionContext *CC,
916                                 BumpVectorContext &C) {
917     Elements.push_back(CFGCXXRecordTypedCall(E, CC), C);
918   }
919 
appendInitializer(CXXCtorInitializer * initializer,BumpVectorContext & C)920   void appendInitializer(CXXCtorInitializer *initializer,
921                         BumpVectorContext &C) {
922     Elements.push_back(CFGInitializer(initializer), C);
923   }
924 
appendNewAllocator(CXXNewExpr * NE,BumpVectorContext & C)925   void appendNewAllocator(CXXNewExpr *NE,
926                           BumpVectorContext &C) {
927     Elements.push_back(CFGNewAllocator(NE), C);
928   }
929 
appendScopeBegin(const VarDecl * VD,const Stmt * S,BumpVectorContext & C)930   void appendScopeBegin(const VarDecl *VD, const Stmt *S,
931                         BumpVectorContext &C) {
932     Elements.push_back(CFGScopeBegin(VD, S), C);
933   }
934 
prependScopeBegin(const VarDecl * VD,const Stmt * S,BumpVectorContext & C)935   void prependScopeBegin(const VarDecl *VD, const Stmt *S,
936                          BumpVectorContext &C) {
937     Elements.insert(Elements.rbegin(), 1, CFGScopeBegin(VD, S), C);
938   }
939 
appendScopeEnd(const VarDecl * VD,const Stmt * S,BumpVectorContext & C)940   void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
941     Elements.push_back(CFGScopeEnd(VD, S), C);
942   }
943 
prependScopeEnd(const VarDecl * VD,const Stmt * S,BumpVectorContext & C)944   void prependScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
945     Elements.insert(Elements.rbegin(), 1, CFGScopeEnd(VD, S), C);
946   }
947 
appendBaseDtor(const CXXBaseSpecifier * BS,BumpVectorContext & C)948   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
949     Elements.push_back(CFGBaseDtor(BS), C);
950   }
951 
appendMemberDtor(FieldDecl * FD,BumpVectorContext & C)952   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
953     Elements.push_back(CFGMemberDtor(FD), C);
954   }
955 
appendTemporaryDtor(CXXBindTemporaryExpr * E,BumpVectorContext & C)956   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
957     Elements.push_back(CFGTemporaryDtor(E), C);
958   }
959 
appendAutomaticObjDtor(VarDecl * VD,Stmt * S,BumpVectorContext & C)960   void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
961     Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
962   }
963 
appendLifetimeEnds(VarDecl * VD,Stmt * S,BumpVectorContext & C)964   void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
965     Elements.push_back(CFGLifetimeEnds(VD, S), C);
966   }
967 
appendLoopExit(const Stmt * LoopStmt,BumpVectorContext & C)968   void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) {
969     Elements.push_back(CFGLoopExit(LoopStmt), C);
970   }
971 
appendDeleteDtor(CXXRecordDecl * RD,CXXDeleteExpr * DE,BumpVectorContext & C)972   void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
973     Elements.push_back(CFGDeleteDtor(RD, DE), C);
974   }
975 
976   // Destructors must be inserted in reversed order. So insertion is in two
977   // steps. First we prepare space for some number of elements, then we insert
978   // the elements beginning at the last position in prepared space.
beginAutomaticObjDtorsInsert(iterator I,size_t Cnt,BumpVectorContext & C)979   iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
980       BumpVectorContext &C) {
981     return iterator(Elements.insert(I.base(), Cnt,
982                                     CFGAutomaticObjDtor(nullptr, nullptr), C));
983   }
insertAutomaticObjDtor(iterator I,VarDecl * VD,Stmt * S)984   iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
985     *I = CFGAutomaticObjDtor(VD, S);
986     return ++I;
987   }
988 
989   // Scope leaving must be performed in reversed order. So insertion is in two
990   // steps. First we prepare space for some number of elements, then we insert
991   // the elements beginning at the last position in prepared space.
beginLifetimeEndsInsert(iterator I,size_t Cnt,BumpVectorContext & C)992   iterator beginLifetimeEndsInsert(iterator I, size_t Cnt,
993                                    BumpVectorContext &C) {
994     return iterator(
995         Elements.insert(I.base(), Cnt, CFGLifetimeEnds(nullptr, nullptr), C));
996   }
insertLifetimeEnds(iterator I,VarDecl * VD,Stmt * S)997   iterator insertLifetimeEnds(iterator I, VarDecl *VD, Stmt *S) {
998     *I = CFGLifetimeEnds(VD, S);
999     return ++I;
1000   }
1001 
1002   // Scope leaving must be performed in reversed order. So insertion is in two
1003   // steps. First we prepare space for some number of elements, then we insert
1004   // the elements beginning at the last position in prepared space.
beginScopeEndInsert(iterator I,size_t Cnt,BumpVectorContext & C)1005   iterator beginScopeEndInsert(iterator I, size_t Cnt, BumpVectorContext &C) {
1006     return iterator(
1007         Elements.insert(I.base(), Cnt, CFGScopeEnd(nullptr, nullptr), C));
1008   }
insertScopeEnd(iterator I,VarDecl * VD,Stmt * S)1009   iterator insertScopeEnd(iterator I, VarDecl *VD, Stmt *S) {
1010     *I = CFGScopeEnd(VD, S);
1011     return ++I;
1012   }
1013 
1014 };
1015 
1016 /// CFGCallback defines methods that should be called when a logical
1017 /// operator error is found when building the CFG.
1018 class CFGCallback {
1019 public:
1020   CFGCallback() = default;
1021   virtual ~CFGCallback() = default;
1022 
compareAlwaysTrue(const BinaryOperator * B,bool isAlwaysTrue)1023   virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
compareBitwiseEquality(const BinaryOperator * B,bool isAlwaysTrue)1024   virtual void compareBitwiseEquality(const BinaryOperator *B,
1025                                       bool isAlwaysTrue) {}
1026 };
1027 
1028 /// Represents a source-level, intra-procedural CFG that represents the
1029 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
1030 ///  or a single expression.  A CFG will always contain one empty block that
1031 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
1032 ///  Entry block.  The CFG solely represents control-flow; it consists of
1033 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
1034 ///  was constructed from.
1035 class CFG {
1036 public:
1037   //===--------------------------------------------------------------------===//
1038   // CFG Construction & Manipulation.
1039   //===--------------------------------------------------------------------===//
1040 
1041   class BuildOptions {
1042     std::bitset<Stmt::lastStmtConstant> alwaysAddMask;
1043 
1044   public:
1045     using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>;
1046 
1047     ForcedBlkExprs **forcedBlkExprs = nullptr;
1048     CFGCallback *Observer = nullptr;
1049     bool PruneTriviallyFalseEdges = true;
1050     bool AddEHEdges = false;
1051     bool AddInitializers = false;
1052     bool AddImplicitDtors = false;
1053     bool AddLifetime = false;
1054     bool AddLoopExit = false;
1055     bool AddTemporaryDtors = false;
1056     bool AddScopes = false;
1057     bool AddStaticInitBranches = false;
1058     bool AddCXXNewAllocator = false;
1059     bool AddCXXDefaultInitExprInCtors = false;
1060     bool AddRichCXXConstructors = false;
1061     bool MarkElidedCXXConstructors = false;
1062     bool AddVirtualBaseBranches = false;
1063 
1064     BuildOptions() = default;
1065 
alwaysAdd(const Stmt * stmt)1066     bool alwaysAdd(const Stmt *stmt) const {
1067       return alwaysAddMask[stmt->getStmtClass()];
1068     }
1069 
1070     BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
1071       alwaysAddMask[stmtClass] = val;
1072       return *this;
1073     }
1074 
setAllAlwaysAdd()1075     BuildOptions &setAllAlwaysAdd() {
1076       alwaysAddMask.set();
1077       return *this;
1078     }
1079   };
1080 
1081   /// Builds a CFG from an AST.
1082   static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
1083                                        const BuildOptions &BO);
1084 
1085   /// Create a new block in the CFG. The CFG owns the block; the caller should
1086   /// not directly free it.
1087   CFGBlock *createBlock();
1088 
1089   /// Set the entry block of the CFG. This is typically used only during CFG
1090   /// construction. Most CFG clients expect that the entry block has no
1091   /// predecessors and contains no statements.
setEntry(CFGBlock * B)1092   void setEntry(CFGBlock *B) { Entry = B; }
1093 
1094   /// Set the block used for indirect goto jumps. This is typically used only
1095   /// during CFG construction.
setIndirectGotoBlock(CFGBlock * B)1096   void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
1097 
1098   //===--------------------------------------------------------------------===//
1099   // Block Iterators
1100   //===--------------------------------------------------------------------===//
1101 
1102   using CFGBlockListTy = BumpVector<CFGBlock *>;
1103   using iterator = CFGBlockListTy::iterator;
1104   using const_iterator = CFGBlockListTy::const_iterator;
1105   using reverse_iterator = std::reverse_iterator<iterator>;
1106   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1107 
front()1108   CFGBlock &                front()                { return *Blocks.front(); }
back()1109   CFGBlock &                back()                 { return *Blocks.back(); }
1110 
begin()1111   iterator                  begin()                { return Blocks.begin(); }
end()1112   iterator                  end()                  { return Blocks.end(); }
begin()1113   const_iterator            begin()       const    { return Blocks.begin(); }
end()1114   const_iterator            end()         const    { return Blocks.end(); }
1115 
nodes_begin()1116   iterator nodes_begin() { return iterator(Blocks.begin()); }
nodes_end()1117   iterator nodes_end() { return iterator(Blocks.end()); }
nodes_begin()1118   const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); }
nodes_end()1119   const_iterator nodes_end() const { return const_iterator(Blocks.end()); }
1120 
rbegin()1121   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
rend()1122   reverse_iterator          rend()                 { return Blocks.rend(); }
rbegin()1123   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
rend()1124   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
1125 
getEntry()1126   CFGBlock &                getEntry()             { return *Entry; }
getEntry()1127   const CFGBlock &          getEntry()    const    { return *Entry; }
getExit()1128   CFGBlock &                getExit()              { return *Exit; }
getExit()1129   const CFGBlock &          getExit()     const    { return *Exit; }
1130 
getIndirectGotoBlock()1131   CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
getIndirectGotoBlock()1132   const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
1133 
1134   using try_block_iterator = std::vector<const CFGBlock *>::const_iterator;
1135 
try_blocks_begin()1136   try_block_iterator try_blocks_begin() const {
1137     return TryDispatchBlocks.begin();
1138   }
1139 
try_blocks_end()1140   try_block_iterator try_blocks_end() const {
1141     return TryDispatchBlocks.end();
1142   }
1143 
addTryDispatchBlock(const CFGBlock * block)1144   void addTryDispatchBlock(const CFGBlock *block) {
1145     TryDispatchBlocks.push_back(block);
1146   }
1147 
1148   /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
1149   ///
1150   /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
1151   /// multiple decls.
addSyntheticDeclStmt(const DeclStmt * Synthetic,const DeclStmt * Source)1152   void addSyntheticDeclStmt(const DeclStmt *Synthetic,
1153                             const DeclStmt *Source) {
1154     assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
1155     assert(Synthetic != Source && "Don't include original DeclStmts in map");
1156     assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
1157     SyntheticDeclStmts[Synthetic] = Source;
1158   }
1159 
1160   using synthetic_stmt_iterator =
1161       llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator;
1162   using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>;
1163 
1164   /// Iterates over synthetic DeclStmts in the CFG.
1165   ///
1166   /// Each element is a (synthetic statement, source statement) pair.
1167   ///
1168   /// \sa addSyntheticDeclStmt
synthetic_stmt_begin()1169   synthetic_stmt_iterator synthetic_stmt_begin() const {
1170     return SyntheticDeclStmts.begin();
1171   }
1172 
1173   /// \sa synthetic_stmt_begin
synthetic_stmt_end()1174   synthetic_stmt_iterator synthetic_stmt_end() const {
1175     return SyntheticDeclStmts.end();
1176   }
1177 
1178   /// \sa synthetic_stmt_begin
synthetic_stmts()1179   synthetic_stmt_range synthetic_stmts() const {
1180     return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end());
1181   }
1182 
1183   //===--------------------------------------------------------------------===//
1184   // Member templates useful for various batch operations over CFGs.
1185   //===--------------------------------------------------------------------===//
1186 
1187   template <typename CALLBACK>
VisitBlockStmts(CALLBACK & O)1188   void VisitBlockStmts(CALLBACK& O) const {
1189     for (const_iterator I = begin(), E = end(); I != E; ++I)
1190       for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end();
1191            BI != BE; ++BI) {
1192         if (Optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
1193           O(const_cast<Stmt*>(stmt->getStmt()));
1194       }
1195   }
1196 
1197   //===--------------------------------------------------------------------===//
1198   // CFG Introspection.
1199   //===--------------------------------------------------------------------===//
1200 
1201   /// Returns the total number of BlockIDs allocated (which start at 0).
getNumBlockIDs()1202   unsigned getNumBlockIDs() const { return NumBlockIDs; }
1203 
1204   /// Return the total number of CFGBlocks within the CFG This is simply a
1205   /// renaming of the getNumBlockIDs(). This is necessary because the dominator
1206   /// implementation needs such an interface.
size()1207   unsigned size() const { return NumBlockIDs; }
1208 
1209   /// Returns true if the CFG has no branches. Usually it boils down to the CFG
1210   /// having exactly three blocks (entry, the actual code, exit), but sometimes
1211   /// more blocks appear due to having control flow that can be fully
1212   /// resolved in compile time.
1213   bool isLinear() const;
1214 
1215   //===--------------------------------------------------------------------===//
1216   // CFG Debugging: Pretty-Printing and Visualization.
1217   //===--------------------------------------------------------------------===//
1218 
1219   void viewCFG(const LangOptions &LO) const;
1220   void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
1221   void dump(const LangOptions &LO, bool ShowColors) const;
1222 
1223   //===--------------------------------------------------------------------===//
1224   // Internal: constructors and data.
1225   //===--------------------------------------------------------------------===//
1226 
CFG()1227   CFG() : Blocks(BlkBVC, 10) {}
1228 
getAllocator()1229   llvm::BumpPtrAllocator& getAllocator() {
1230     return BlkBVC.getAllocator();
1231   }
1232 
getBumpVectorContext()1233   BumpVectorContext &getBumpVectorContext() {
1234     return BlkBVC;
1235   }
1236 
1237 private:
1238   CFGBlock *Entry = nullptr;
1239   CFGBlock *Exit = nullptr;
1240 
1241   // Special block to contain collective dispatch for indirect gotos
1242   CFGBlock* IndirectGotoBlock = nullptr;
1243 
1244   unsigned  NumBlockIDs = 0;
1245 
1246   BumpVectorContext BlkBVC;
1247 
1248   CFGBlockListTy Blocks;
1249 
1250   /// C++ 'try' statements are modeled with an indirect dispatch block.
1251   /// This is the collection of such blocks present in the CFG.
1252   std::vector<const CFGBlock *> TryDispatchBlocks;
1253 
1254   /// Collects DeclStmts synthesized for this CFG and maps each one back to its
1255   /// source DeclStmt.
1256   llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
1257 };
1258 
1259 } // namespace clang
1260 
1261 //===----------------------------------------------------------------------===//
1262 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
1263 //===----------------------------------------------------------------------===//
1264 
1265 namespace llvm {
1266 
1267 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
1268 /// CFGTerminator to a specific Stmt class.
1269 template <> struct simplify_type< ::clang::CFGTerminator> {
1270   using SimpleType = ::clang::Stmt *;
1271 
1272   static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
1273     return Val.getStmt();
1274   }
1275 };
1276 
1277 // Traits for: CFGBlock
1278 
1279 template <> struct GraphTraits< ::clang::CFGBlock *> {
1280   using NodeRef = ::clang::CFGBlock *;
1281   using ChildIteratorType = ::clang::CFGBlock::succ_iterator;
1282 
1283   static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; }
1284   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1285   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1286 };
1287 
1288 template <> struct GraphTraits<clang::CFGBlock>
1289     : GraphTraits<clang::CFGBlock *> {};
1290 
1291 template <> struct GraphTraits< const ::clang::CFGBlock *> {
1292   using NodeRef = const ::clang::CFGBlock *;
1293   using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator;
1294 
1295   static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; }
1296   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1297   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1298 };
1299 
1300 template <> struct GraphTraits<const clang::CFGBlock>
1301     : GraphTraits<clang::CFGBlock *> {};
1302 
1303 template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> {
1304   using NodeRef = ::clang::CFGBlock *;
1305   using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1306 
1307   static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) {
1308     return G.Graph;
1309   }
1310 
1311   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1312   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1313 };
1314 
1315 template <> struct GraphTraits<Inverse<clang::CFGBlock>>
1316     : GraphTraits<clang::CFGBlock *> {};
1317 
1318 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1319   using NodeRef = const ::clang::CFGBlock *;
1320   using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1321 
1322   static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) {
1323     return G.Graph;
1324   }
1325 
1326   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1327   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1328 };
1329 
1330 template <> struct GraphTraits<const Inverse<clang::CFGBlock>>
1331     : GraphTraits<clang::CFGBlock *> {};
1332 
1333 // Traits for: CFG
1334 
1335 template <> struct GraphTraits< ::clang::CFG* >
1336     : public GraphTraits< ::clang::CFGBlock *>  {
1337   using nodes_iterator = ::clang::CFG::iterator;
1338 
1339   static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); }
1340   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
1341   static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
1342   static unsigned              size(::clang::CFG* F) { return F->size(); }
1343 };
1344 
1345 template <> struct GraphTraits<const ::clang::CFG* >
1346     : public GraphTraits<const ::clang::CFGBlock *>  {
1347   using nodes_iterator = ::clang::CFG::const_iterator;
1348 
1349   static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); }
1350 
1351   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
1352     return F->nodes_begin();
1353   }
1354 
1355   static nodes_iterator nodes_end( const ::clang::CFG* F) {
1356     return F->nodes_end();
1357   }
1358 
1359   static unsigned size(const ::clang::CFG* F) {
1360     return F->size();
1361   }
1362 };
1363 
1364 template <> struct GraphTraits<Inverse< ::clang::CFG *>>
1365   : public GraphTraits<Inverse< ::clang::CFGBlock *>> {
1366   using nodes_iterator = ::clang::CFG::iterator;
1367 
1368   static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); }
1369   static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
1370   static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
1371 };
1372 
1373 template <> struct GraphTraits<Inverse<const ::clang::CFG *>>
1374   : public GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1375   using nodes_iterator = ::clang::CFG::const_iterator;
1376 
1377   static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); }
1378 
1379   static nodes_iterator nodes_begin(const ::clang::CFG* F) {
1380     return F->nodes_begin();
1381   }
1382 
1383   static nodes_iterator nodes_end(const ::clang::CFG* F) {
1384     return F->nodes_end();
1385   }
1386 };
1387 
1388 } // namespace llvm
1389 
1390 #endif // LLVM_CLANG_ANALYSIS_CFG_H
1391