1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AVR.h"
13 #include "ToolChains/Ananas.h"
14 #include "ToolChains/BareMetal.h"
15 #include "ToolChains/Clang.h"
16 #include "ToolChains/CloudABI.h"
17 #include "ToolChains/Contiki.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIP.h"
26 #include "ToolChains/Haiku.h"
27 #include "ToolChains/Hexagon.h"
28 #include "ToolChains/Hurd.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSP430.h"
32 #include "ToolChains/MSVC.h"
33 #include "ToolChains/MinGW.h"
34 #include "ToolChains/Minix.h"
35 #include "ToolChains/MipsLinux.h"
36 #include "ToolChains/Myriad.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OpenBSD.h"
40 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/RISCVToolchain.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
50 #include "clang/Driver/Compilation.h"
51 #include "clang/Driver/DriverDiagnostic.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
54 #include "clang/Driver/SanitizerArgs.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92
93 // static
GetResourcesPath(StringRef BinaryPath,StringRef CustomResourceDir)94 std::string Driver::GetResourcesPath(StringRef BinaryPath,
95 StringRef CustomResourceDir) {
96 // Since the resource directory is embedded in the module hash, it's important
97 // that all places that need it call this function, so that they get the
98 // exact same string ("a/../b/" and "b/" get different hashes, for example).
99
100 // Dir is bin/ or lib/, depending on where BinaryPath is.
101 std::string Dir = llvm::sys::path::parent_path(BinaryPath);
102
103 SmallString<128> P(Dir);
104 if (CustomResourceDir != "") {
105 llvm::sys::path::append(P, CustomResourceDir);
106 } else {
107 // On Windows, libclang.dll is in bin/.
108 // On non-Windows, libclang.so/.dylib is in lib/.
109 // With a static-library build of libclang, LibClangPath will contain the
110 // path of the embedding binary, which for LLVM binaries will be in bin/.
111 // ../lib gets us to lib/ in both cases.
112 P = llvm::sys::path::parent_path(Dir);
113 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
114 CLANG_VERSION_STRING);
115 }
116
117 return P.str();
118 }
119
Driver(StringRef ClangExecutable,StringRef TargetTriple,DiagnosticsEngine & Diags,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
121 DiagnosticsEngine &Diags,
122 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
123 : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
124 Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
125 LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
126 SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
127 CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
128 CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
129 CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
130 CCGenDiagnostics(false), TargetTriple(TargetTriple),
131 CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
132 GenReproducer(false), SuppressMissingInputWarning(false) {
133
134 // Provide a sane fallback if no VFS is specified.
135 if (!this->VFS)
136 this->VFS = llvm::vfs::getRealFileSystem();
137
138 Name = llvm::sys::path::filename(ClangExecutable);
139 Dir = llvm::sys::path::parent_path(ClangExecutable);
140 InstalledDir = Dir; // Provide a sensible default installed dir.
141
142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
143 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
144 #endif
145 #if defined(CLANG_CONFIG_FILE_USER_DIR)
146 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
147 #endif
148
149 // Compute the path to the resource directory.
150 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
151 }
152
ParseDriverMode(StringRef ProgramName,ArrayRef<const char * > Args)153 void Driver::ParseDriverMode(StringRef ProgramName,
154 ArrayRef<const char *> Args) {
155 if (ClangNameParts.isEmpty())
156 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
157 setDriverModeFromOption(ClangNameParts.DriverMode);
158
159 for (const char *ArgPtr : Args) {
160 // Ignore nullptrs, they are the response file's EOL markers.
161 if (ArgPtr == nullptr)
162 continue;
163 const StringRef Arg = ArgPtr;
164 setDriverModeFromOption(Arg);
165 }
166 }
167
setDriverModeFromOption(StringRef Opt)168 void Driver::setDriverModeFromOption(StringRef Opt) {
169 const std::string OptName =
170 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
171 if (!Opt.startswith(OptName))
172 return;
173 StringRef Value = Opt.drop_front(OptName.size());
174
175 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176 .Case("gcc", GCCMode)
177 .Case("g++", GXXMode)
178 .Case("cpp", CPPMode)
179 .Case("cl", CLMode)
180 .Default(None))
181 Mode = *M;
182 else
183 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
184 }
185
ParseArgStrings(ArrayRef<const char * > ArgStrings,bool IsClCompatMode,bool & ContainsError)186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
187 bool IsClCompatMode,
188 bool &ContainsError) {
189 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
190 ContainsError = false;
191
192 unsigned IncludedFlagsBitmask;
193 unsigned ExcludedFlagsBitmask;
194 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
195 getIncludeExcludeOptionFlagMasks(IsClCompatMode);
196
197 unsigned MissingArgIndex, MissingArgCount;
198 InputArgList Args =
199 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
200 IncludedFlagsBitmask, ExcludedFlagsBitmask);
201
202 // Check for missing argument error.
203 if (MissingArgCount) {
204 Diag(diag::err_drv_missing_argument)
205 << Args.getArgString(MissingArgIndex) << MissingArgCount;
206 ContainsError |=
207 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
208 SourceLocation()) > DiagnosticsEngine::Warning;
209 }
210
211 // Check for unsupported options.
212 for (const Arg *A : Args) {
213 if (A->getOption().hasFlag(options::Unsupported)) {
214 unsigned DiagID;
215 auto ArgString = A->getAsString(Args);
216 std::string Nearest;
217 if (getOpts().findNearest(
218 ArgString, Nearest, IncludedFlagsBitmask,
219 ExcludedFlagsBitmask | options::Unsupported) > 1) {
220 DiagID = diag::err_drv_unsupported_opt;
221 Diag(DiagID) << ArgString;
222 } else {
223 DiagID = diag::err_drv_unsupported_opt_with_suggestion;
224 Diag(DiagID) << ArgString << Nearest;
225 }
226 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
227 DiagnosticsEngine::Warning;
228 continue;
229 }
230
231 // Warn about -mcpu= without an argument.
232 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
233 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
234 ContainsError |= Diags.getDiagnosticLevel(
235 diag::warn_drv_empty_joined_argument,
236 SourceLocation()) > DiagnosticsEngine::Warning;
237 }
238 }
239
240 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
241 unsigned DiagID;
242 auto ArgString = A->getAsString(Args);
243 std::string Nearest;
244 if (getOpts().findNearest(
245 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
246 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
247 : diag::err_drv_unknown_argument;
248 Diags.Report(DiagID) << ArgString;
249 } else {
250 DiagID = IsCLMode()
251 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
252 : diag::err_drv_unknown_argument_with_suggestion;
253 Diags.Report(DiagID) << ArgString << Nearest;
254 }
255 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
256 DiagnosticsEngine::Warning;
257 }
258
259 return Args;
260 }
261
262 // Determine which compilation mode we are in. We look for options which
263 // affect the phase, starting with the earliest phases, and record which
264 // option we used to determine the final phase.
getFinalPhase(const DerivedArgList & DAL,Arg ** FinalPhaseArg) const265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
266 Arg **FinalPhaseArg) const {
267 Arg *PhaseArg = nullptr;
268 phases::ID FinalPhase;
269
270 // -{E,EP,P,M,MM} only run the preprocessor.
271 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
272 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
273 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
274 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
275 FinalPhase = phases::Preprocess;
276
277 // --precompile only runs up to precompilation.
278 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
279 FinalPhase = phases::Precompile;
280
281 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
282 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
283 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
284 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
285 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
286 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
287 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
288 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
289 (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) ||
290 (PhaseArg = DAL.getLastArg(options::OPT__analyze,
291 options::OPT__analyze_auto)) ||
292 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293 FinalPhase = phases::Compile;
294
295 // -S only runs up to the backend.
296 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297 FinalPhase = phases::Backend;
298
299 // -c compilation only runs up to the assembler.
300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301 FinalPhase = phases::Assemble;
302
303 // Otherwise do everything.
304 } else
305 FinalPhase = phases::Link;
306
307 if (FinalPhaseArg)
308 *FinalPhaseArg = PhaseArg;
309
310 return FinalPhase;
311 }
312
MakeInputArg(DerivedArgList & Args,OptTable & Opts,StringRef Value,bool Claim=true)313 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
314 StringRef Value, bool Claim = true) {
315 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316 Args.getBaseArgs().MakeIndex(Value), Value.data());
317 Args.AddSynthesizedArg(A);
318 if (Claim)
319 A->claim();
320 return A;
321 }
322
TranslateInputArgs(const InputArgList & Args) const323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324 DerivedArgList *DAL = new DerivedArgList(Args);
325
326 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
327 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
328 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
329 for (Arg *A : Args) {
330 // Unfortunately, we have to parse some forwarding options (-Xassembler,
331 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
332 // (assembler and preprocessor), or bypass a previous driver ('collect2').
333
334 // Rewrite linker options, to replace --no-demangle with a custom internal
335 // option.
336 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
337 A->getOption().matches(options::OPT_Xlinker)) &&
338 A->containsValue("--no-demangle")) {
339 // Add the rewritten no-demangle argument.
340 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
341
342 // Add the remaining values as Xlinker arguments.
343 for (StringRef Val : A->getValues())
344 if (Val != "--no-demangle")
345 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
346
347 continue;
348 }
349
350 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
351 // some build systems. We don't try to be complete here because we don't
352 // care to encourage this usage model.
353 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
354 (A->getValue(0) == StringRef("-MD") ||
355 A->getValue(0) == StringRef("-MMD"))) {
356 // Rewrite to -MD/-MMD along with -MF.
357 if (A->getValue(0) == StringRef("-MD"))
358 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
359 else
360 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
361 if (A->getNumValues() == 2)
362 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
363 A->getValue(1));
364 continue;
365 }
366
367 // Rewrite reserved library names.
368 if (A->getOption().matches(options::OPT_l)) {
369 StringRef Value = A->getValue();
370
371 // Rewrite unless -nostdlib is present.
372 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373 Value == "stdc++") {
374 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
375 continue;
376 }
377
378 // Rewrite unconditionally.
379 if (Value == "cc_kext") {
380 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
381 continue;
382 }
383 }
384
385 // Pick up inputs via the -- option.
386 if (A->getOption().matches(options::OPT__DASH_DASH)) {
387 A->claim();
388 for (StringRef Val : A->getValues())
389 DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
390 continue;
391 }
392
393 DAL->append(A);
394 }
395
396 // Enforce -static if -miamcu is present.
397 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398 DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
399
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404 strlen(HOST_LINK_VERSION) > 0) {
405 DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
406 HOST_LINK_VERSION);
407 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408 }
409 #endif
410
411 return DAL;
412 }
413
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
computeTargetTriple(const Driver & D,StringRef TargetTriple,const ArgList & Args,StringRef DarwinArchName="")418 static llvm::Triple computeTargetTriple(const Driver &D,
419 StringRef TargetTriple,
420 const ArgList &Args,
421 StringRef DarwinArchName = "") {
422 // FIXME: Already done in Compilation *Driver::BuildCompilation
423 if (const Arg *A = Args.getLastArg(options::OPT_target))
424 TargetTriple = A->getValue();
425
426 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427
428 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429 // -gnu* only, and we can not change this, so we have to detect that case as
430 // being the Hurd OS.
431 if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432 TargetTriple.find("-pc-gnu") != StringRef::npos)
433 Target.setOSName("hurd");
434
435 // Handle Apple-specific options available here.
436 if (Target.isOSBinFormatMachO()) {
437 // If an explicit Darwin arch name is given, that trumps all.
438 if (!DarwinArchName.empty()) {
439 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440 return Target;
441 }
442
443 // Handle the Darwin '-arch' flag.
444 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445 StringRef ArchName = A->getValue();
446 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
447 }
448 }
449
450 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451 // '-mbig-endian'/'-EB'.
452 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453 options::OPT_mbig_endian)) {
454 if (A->getOption().matches(options::OPT_mlittle_endian)) {
455 llvm::Triple LE = Target.getLittleEndianArchVariant();
456 if (LE.getArch() != llvm::Triple::UnknownArch)
457 Target = std::move(LE);
458 } else {
459 llvm::Triple BE = Target.getBigEndianArchVariant();
460 if (BE.getArch() != llvm::Triple::UnknownArch)
461 Target = std::move(BE);
462 }
463 }
464
465 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466 if (Target.getArch() == llvm::Triple::tce ||
467 Target.getOS() == llvm::Triple::Minix)
468 return Target;
469
470 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472 options::OPT_m32, options::OPT_m16);
473 if (A) {
474 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475
476 if (A->getOption().matches(options::OPT_m64)) {
477 AT = Target.get64BitArchVariant().getArch();
478 if (Target.getEnvironment() == llvm::Triple::GNUX32)
479 Target.setEnvironment(llvm::Triple::GNU);
480 } else if (A->getOption().matches(options::OPT_mx32) &&
481 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482 AT = llvm::Triple::x86_64;
483 Target.setEnvironment(llvm::Triple::GNUX32);
484 } else if (A->getOption().matches(options::OPT_m32)) {
485 AT = Target.get32BitArchVariant().getArch();
486 if (Target.getEnvironment() == llvm::Triple::GNUX32)
487 Target.setEnvironment(llvm::Triple::GNU);
488 } else if (A->getOption().matches(options::OPT_m16) &&
489 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490 AT = llvm::Triple::x86;
491 Target.setEnvironment(llvm::Triple::CODE16);
492 }
493
494 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495 Target.setArch(AT);
496 }
497
498 // Handle -miamcu flag.
499 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502 << Target.str();
503
504 if (A && !A->getOption().matches(options::OPT_m32))
505 D.Diag(diag::err_drv_argument_not_allowed_with)
506 << "-miamcu" << A->getBaseArg().getAsString(Args);
507
508 Target.setArch(llvm::Triple::x86);
509 Target.setArchName("i586");
510 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511 Target.setEnvironmentName("");
512 Target.setOS(llvm::Triple::ELFIAMCU);
513 Target.setVendor(llvm::Triple::UnknownVendor);
514 Target.setVendorName("intel");
515 }
516
517 // If target is MIPS adjust the target triple
518 // accordingly to provided ABI name.
519 A = Args.getLastArg(options::OPT_mabi_EQ);
520 if (A && Target.isMIPS()) {
521 StringRef ABIName = A->getValue();
522 if (ABIName == "32") {
523 Target = Target.get32BitArchVariant();
524 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525 Target.getEnvironment() == llvm::Triple::GNUABIN32)
526 Target.setEnvironment(llvm::Triple::GNU);
527 } else if (ABIName == "n32") {
528 Target = Target.get64BitArchVariant();
529 if (Target.getEnvironment() == llvm::Triple::GNU ||
530 Target.getEnvironment() == llvm::Triple::GNUABI64)
531 Target.setEnvironment(llvm::Triple::GNUABIN32);
532 } else if (ABIName == "64") {
533 Target = Target.get64BitArchVariant();
534 if (Target.getEnvironment() == llvm::Triple::GNU ||
535 Target.getEnvironment() == llvm::Triple::GNUABIN32)
536 Target.setEnvironment(llvm::Triple::GNUABI64);
537 }
538 }
539
540 return Target;
541 }
542
543 // Parse the LTO options and record the type of LTO compilation
544 // based on which -f(no-)?lto(=.*)? option occurs last.
setLTOMode(const llvm::opt::ArgList & Args)545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
546 LTOMode = LTOK_None;
547 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
548 options::OPT_fno_lto, false))
549 return;
550
551 StringRef LTOName("full");
552
553 const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
554 if (A)
555 LTOName = A->getValue();
556
557 LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
558 .Case("full", LTOK_Full)
559 .Case("thin", LTOK_Thin)
560 .Default(LTOK_Unknown);
561
562 if (LTOMode == LTOK_Unknown) {
563 assert(A);
564 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
565 << A->getValue();
566 }
567 }
568
569 /// Compute the desired OpenMP runtime from the flags provided.
getOpenMPRuntime(const ArgList & Args) const570 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
571 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
572
573 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
574 if (A)
575 RuntimeName = A->getValue();
576
577 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
578 .Case("libomp", OMPRT_OMP)
579 .Case("libgomp", OMPRT_GOMP)
580 .Case("libiomp5", OMPRT_IOMP5)
581 .Default(OMPRT_Unknown);
582
583 if (RT == OMPRT_Unknown) {
584 if (A)
585 Diag(diag::err_drv_unsupported_option_argument)
586 << A->getOption().getName() << A->getValue();
587 else
588 // FIXME: We could use a nicer diagnostic here.
589 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
590 }
591
592 return RT;
593 }
594
CreateOffloadingDeviceToolChains(Compilation & C,InputList & Inputs)595 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
596 InputList &Inputs) {
597
598 //
599 // CUDA/HIP
600 //
601 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
602 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
603 bool IsCuda =
604 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
605 return types::isCuda(I.first);
606 });
607 bool IsHIP =
608 llvm::any_of(Inputs,
609 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
610 return types::isHIP(I.first);
611 }) ||
612 C.getInputArgs().hasArg(options::OPT_hip_link);
613 if (IsCuda && IsHIP) {
614 Diag(clang::diag::err_drv_mix_cuda_hip);
615 return;
616 }
617 if (IsCuda) {
618 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
619 const llvm::Triple &HostTriple = HostTC->getTriple();
620 StringRef DeviceTripleStr;
621 auto OFK = Action::OFK_Cuda;
622 DeviceTripleStr =
623 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
624 llvm::Triple CudaTriple(DeviceTripleStr);
625 // Use the CUDA and host triples as the key into the ToolChains map,
626 // because the device toolchain we create depends on both.
627 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
628 if (!CudaTC) {
629 CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
630 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
631 }
632 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
633 } else if (IsHIP) {
634 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
635 const llvm::Triple &HostTriple = HostTC->getTriple();
636 StringRef DeviceTripleStr;
637 auto OFK = Action::OFK_HIP;
638 DeviceTripleStr = "amdgcn-amd-amdhsa";
639 llvm::Triple HIPTriple(DeviceTripleStr);
640 // Use the HIP and host triples as the key into the ToolChains map,
641 // because the device toolchain we create depends on both.
642 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
643 if (!HIPTC) {
644 HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
645 *this, HIPTriple, *HostTC, C.getInputArgs());
646 }
647 C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
648 }
649
650 //
651 // OpenMP
652 //
653 // We need to generate an OpenMP toolchain if the user specified targets with
654 // the -fopenmp-targets option.
655 if (Arg *OpenMPTargets =
656 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
657 if (OpenMPTargets->getNumValues()) {
658 // We expect that -fopenmp-targets is always used in conjunction with the
659 // option -fopenmp specifying a valid runtime with offloading support,
660 // i.e. libomp or libiomp.
661 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
662 options::OPT_fopenmp, options::OPT_fopenmp_EQ,
663 options::OPT_fno_openmp, false);
664 if (HasValidOpenMPRuntime) {
665 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
666 HasValidOpenMPRuntime =
667 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
668 }
669
670 if (HasValidOpenMPRuntime) {
671 llvm::StringMap<const char *> FoundNormalizedTriples;
672 for (const char *Val : OpenMPTargets->getValues()) {
673 llvm::Triple TT(Val);
674 std::string NormalizedName = TT.normalize();
675
676 // Make sure we don't have a duplicate triple.
677 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
678 if (Duplicate != FoundNormalizedTriples.end()) {
679 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
680 << Val << Duplicate->second;
681 continue;
682 }
683
684 // Store the current triple so that we can check for duplicates in the
685 // following iterations.
686 FoundNormalizedTriples[NormalizedName] = Val;
687
688 // If the specified target is invalid, emit a diagnostic.
689 if (TT.getArch() == llvm::Triple::UnknownArch)
690 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
691 else {
692 const ToolChain *TC;
693 // CUDA toolchains have to be selected differently. They pair host
694 // and device in their implementation.
695 if (TT.isNVPTX()) {
696 const ToolChain *HostTC =
697 C.getSingleOffloadToolChain<Action::OFK_Host>();
698 assert(HostTC && "Host toolchain should be always defined.");
699 auto &CudaTC =
700 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
701 if (!CudaTC)
702 CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
703 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
704 TC = CudaTC.get();
705 } else
706 TC = &getToolChain(C.getInputArgs(), TT);
707 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
708 }
709 }
710 } else
711 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
712 } else
713 Diag(clang::diag::warn_drv_empty_joined_argument)
714 << OpenMPTargets->getAsString(C.getInputArgs());
715 }
716
717 //
718 // TODO: Add support for other offloading programming models here.
719 //
720 }
721
722 /// Looks the given directories for the specified file.
723 ///
724 /// \param[out] FilePath File path, if the file was found.
725 /// \param[in] Dirs Directories used for the search.
726 /// \param[in] FileName Name of the file to search for.
727 /// \return True if file was found.
728 ///
729 /// Looks for file specified by FileName sequentially in directories specified
730 /// by Dirs.
731 ///
searchForFile(SmallVectorImpl<char> & FilePath,ArrayRef<std::string> Dirs,StringRef FileName)732 static bool searchForFile(SmallVectorImpl<char> &FilePath,
733 ArrayRef<std::string> Dirs,
734 StringRef FileName) {
735 SmallString<128> WPath;
736 for (const StringRef &Dir : Dirs) {
737 if (Dir.empty())
738 continue;
739 WPath.clear();
740 llvm::sys::path::append(WPath, Dir, FileName);
741 llvm::sys::path::native(WPath);
742 if (llvm::sys::fs::is_regular_file(WPath)) {
743 FilePath = std::move(WPath);
744 return true;
745 }
746 }
747 return false;
748 }
749
readConfigFile(StringRef FileName)750 bool Driver::readConfigFile(StringRef FileName) {
751 // Try reading the given file.
752 SmallVector<const char *, 32> NewCfgArgs;
753 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
754 Diag(diag::err_drv_cannot_read_config_file) << FileName;
755 return true;
756 }
757
758 // Read options from config file.
759 llvm::SmallString<128> CfgFileName(FileName);
760 llvm::sys::path::native(CfgFileName);
761 ConfigFile = CfgFileName.str();
762 bool ContainErrors;
763 CfgOptions = llvm::make_unique<InputArgList>(
764 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
765 if (ContainErrors) {
766 CfgOptions.reset();
767 return true;
768 }
769
770 if (CfgOptions->hasArg(options::OPT_config)) {
771 CfgOptions.reset();
772 Diag(diag::err_drv_nested_config_file);
773 return true;
774 }
775
776 // Claim all arguments that come from a configuration file so that the driver
777 // does not warn on any that is unused.
778 for (Arg *A : *CfgOptions)
779 A->claim();
780 return false;
781 }
782
loadConfigFile()783 bool Driver::loadConfigFile() {
784 std::string CfgFileName;
785 bool FileSpecifiedExplicitly = false;
786
787 // Process options that change search path for config files.
788 if (CLOptions) {
789 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
790 SmallString<128> CfgDir;
791 CfgDir.append(
792 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
793 if (!CfgDir.empty()) {
794 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
795 SystemConfigDir.clear();
796 else
797 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
798 }
799 }
800 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
801 SmallString<128> CfgDir;
802 CfgDir.append(
803 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
804 if (!CfgDir.empty()) {
805 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806 UserConfigDir.clear();
807 else
808 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809 }
810 }
811 }
812
813 // First try to find config file specified in command line.
814 if (CLOptions) {
815 std::vector<std::string> ConfigFiles =
816 CLOptions->getAllArgValues(options::OPT_config);
817 if (ConfigFiles.size() > 1) {
818 Diag(diag::err_drv_duplicate_config);
819 return true;
820 }
821
822 if (!ConfigFiles.empty()) {
823 CfgFileName = ConfigFiles.front();
824 assert(!CfgFileName.empty());
825
826 // If argument contains directory separator, treat it as a path to
827 // configuration file.
828 if (llvm::sys::path::has_parent_path(CfgFileName)) {
829 SmallString<128> CfgFilePath;
830 if (llvm::sys::path::is_relative(CfgFileName))
831 llvm::sys::fs::current_path(CfgFilePath);
832 llvm::sys::path::append(CfgFilePath, CfgFileName);
833 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
834 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
835 return true;
836 }
837 return readConfigFile(CfgFilePath);
838 }
839
840 FileSpecifiedExplicitly = true;
841 }
842 }
843
844 // If config file is not specified explicitly, try to deduce configuration
845 // from executable name. For instance, an executable 'armv7l-clang' will
846 // search for config file 'armv7l-clang.cfg'.
847 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
848 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
849
850 if (CfgFileName.empty())
851 return false;
852
853 // Determine architecture part of the file name, if it is present.
854 StringRef CfgFileArch = CfgFileName;
855 size_t ArchPrefixLen = CfgFileArch.find('-');
856 if (ArchPrefixLen == StringRef::npos)
857 ArchPrefixLen = CfgFileArch.size();
858 llvm::Triple CfgTriple;
859 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
860 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
861 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
862 ArchPrefixLen = 0;
863
864 if (!StringRef(CfgFileName).endswith(".cfg"))
865 CfgFileName += ".cfg";
866
867 // If config file starts with architecture name and command line options
868 // redefine architecture (with options like -m32 -LE etc), try finding new
869 // config file with that architecture.
870 SmallString<128> FixedConfigFile;
871 size_t FixedArchPrefixLen = 0;
872 if (ArchPrefixLen) {
873 // Get architecture name from config file name like 'i386.cfg' or
874 // 'armv7l-clang.cfg'.
875 // Check if command line options changes effective triple.
876 llvm::Triple EffectiveTriple = computeTargetTriple(*this,
877 CfgTriple.getTriple(), *CLOptions);
878 if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
879 FixedConfigFile = EffectiveTriple.getArchName();
880 FixedArchPrefixLen = FixedConfigFile.size();
881 // Append the rest of original file name so that file name transforms
882 // like: i386-clang.cfg -> x86_64-clang.cfg.
883 if (ArchPrefixLen < CfgFileName.size())
884 FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
885 }
886 }
887
888 // Prepare list of directories where config file is searched for.
889 SmallVector<std::string, 3> CfgFileSearchDirs;
890 CfgFileSearchDirs.push_back(UserConfigDir);
891 CfgFileSearchDirs.push_back(SystemConfigDir);
892 CfgFileSearchDirs.push_back(Dir);
893
894 // Try to find config file. First try file with corrected architecture.
895 llvm::SmallString<128> CfgFilePath;
896 if (!FixedConfigFile.empty()) {
897 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
898 return readConfigFile(CfgFilePath);
899 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
900 FixedConfigFile.resize(FixedArchPrefixLen);
901 FixedConfigFile.append(".cfg");
902 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
903 return readConfigFile(CfgFilePath);
904 }
905
906 // Then try original file name.
907 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
908 return readConfigFile(CfgFilePath);
909
910 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
911 if (!ClangNameParts.ModeSuffix.empty() &&
912 !ClangNameParts.TargetPrefix.empty()) {
913 CfgFileName.assign(ClangNameParts.TargetPrefix);
914 CfgFileName.append(".cfg");
915 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
916 return readConfigFile(CfgFilePath);
917 }
918
919 // Report error but only if config file was specified explicitly, by option
920 // --config. If it was deduced from executable name, it is not an error.
921 if (FileSpecifiedExplicitly) {
922 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
923 for (const std::string &SearchDir : CfgFileSearchDirs)
924 if (!SearchDir.empty())
925 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
926 return true;
927 }
928
929 return false;
930 }
931
BuildCompilation(ArrayRef<const char * > ArgList)932 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
933 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
934
935 // FIXME: Handle environment options which affect driver behavior, somewhere
936 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
937
938 if (Optional<std::string> CompilerPathValue =
939 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
940 StringRef CompilerPath = *CompilerPathValue;
941 while (!CompilerPath.empty()) {
942 std::pair<StringRef, StringRef> Split =
943 CompilerPath.split(llvm::sys::EnvPathSeparator);
944 PrefixDirs.push_back(Split.first);
945 CompilerPath = Split.second;
946 }
947 }
948
949 // We look for the driver mode option early, because the mode can affect
950 // how other options are parsed.
951 ParseDriverMode(ClangExecutable, ArgList.slice(1));
952
953 // FIXME: What are we going to do with -V and -b?
954
955 // Arguments specified in command line.
956 bool ContainsError;
957 CLOptions = llvm::make_unique<InputArgList>(
958 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
959
960 // Try parsing configuration file.
961 if (!ContainsError)
962 ContainsError = loadConfigFile();
963 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
964
965 // All arguments, from both config file and command line.
966 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
967 : std::move(*CLOptions));
968
969 // The args for config files or /clang: flags belong to different InputArgList
970 // objects than Args. This copies an Arg from one of those other InputArgLists
971 // to the ownership of Args.
972 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
973 unsigned Index = Args.MakeIndex(Opt->getSpelling());
974 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
975 Index, BaseArg);
976 Copy->getValues() = Opt->getValues();
977 if (Opt->isClaimed())
978 Copy->claim();
979 Args.append(Copy);
980 };
981
982 if (HasConfigFile)
983 for (auto *Opt : *CLOptions) {
984 if (Opt->getOption().matches(options::OPT_config))
985 continue;
986 const Arg *BaseArg = &Opt->getBaseArg();
987 if (BaseArg == Opt)
988 BaseArg = nullptr;
989 appendOneArg(Opt, BaseArg);
990 }
991
992 // In CL mode, look for any pass-through arguments
993 if (IsCLMode() && !ContainsError) {
994 SmallVector<const char *, 16> CLModePassThroughArgList;
995 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
996 A->claim();
997 CLModePassThroughArgList.push_back(A->getValue());
998 }
999
1000 if (!CLModePassThroughArgList.empty()) {
1001 // Parse any pass through args using default clang processing rather
1002 // than clang-cl processing.
1003 auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
1004 ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1005
1006 if (!ContainsError)
1007 for (auto *Opt : *CLModePassThroughOptions) {
1008 appendOneArg(Opt, nullptr);
1009 }
1010 }
1011 }
1012
1013 // FIXME: This stuff needs to go into the Compilation, not the driver.
1014 bool CCCPrintPhases;
1015
1016 // Silence driver warnings if requested
1017 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1018
1019 // -no-canonical-prefixes is used very early in main.
1020 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1021
1022 // Ignore -pipe.
1023 Args.ClaimAllArgs(options::OPT_pipe);
1024
1025 // Extract -ccc args.
1026 //
1027 // FIXME: We need to figure out where this behavior should live. Most of it
1028 // should be outside in the client; the parts that aren't should have proper
1029 // options, either by introducing new ones or by overloading gcc ones like -V
1030 // or -b.
1031 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1032 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1033 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1034 CCCGenericGCCName = A->getValue();
1035 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1036 options::OPT_fno_crash_diagnostics,
1037 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1038 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1039 // and getToolChain is const.
1040 if (IsCLMode()) {
1041 // clang-cl targets MSVC-style Win32.
1042 llvm::Triple T(TargetTriple);
1043 T.setOS(llvm::Triple::Win32);
1044 T.setVendor(llvm::Triple::PC);
1045 T.setEnvironment(llvm::Triple::MSVC);
1046 T.setObjectFormat(llvm::Triple::COFF);
1047 TargetTriple = T.str();
1048 }
1049 if (const Arg *A = Args.getLastArg(options::OPT_target))
1050 TargetTriple = A->getValue();
1051 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1052 Dir = InstalledDir = A->getValue();
1053 for (const Arg *A : Args.filtered(options::OPT_B)) {
1054 A->claim();
1055 PrefixDirs.push_back(A->getValue(0));
1056 }
1057 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1058 SysRoot = A->getValue();
1059 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1060 DyldPrefix = A->getValue();
1061
1062 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1063 ResourceDir = A->getValue();
1064
1065 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1066 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1067 .Case("cwd", SaveTempsCwd)
1068 .Case("obj", SaveTempsObj)
1069 .Default(SaveTempsCwd);
1070 }
1071
1072 setLTOMode(Args);
1073
1074 // Process -fembed-bitcode= flags.
1075 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1076 StringRef Name = A->getValue();
1077 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1078 .Case("off", EmbedNone)
1079 .Case("all", EmbedBitcode)
1080 .Case("bitcode", EmbedBitcode)
1081 .Case("marker", EmbedMarker)
1082 .Default(~0U);
1083 if (Model == ~0U) {
1084 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1085 << Name;
1086 } else
1087 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1088 }
1089
1090 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1091 llvm::make_unique<InputArgList>(std::move(Args));
1092
1093 // Perform the default argument translations.
1094 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1095
1096 // Owned by the host.
1097 const ToolChain &TC = getToolChain(
1098 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1099
1100 // The compilation takes ownership of Args.
1101 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1102 ContainsError);
1103
1104 if (!HandleImmediateArgs(*C))
1105 return C;
1106
1107 // Construct the list of inputs.
1108 InputList Inputs;
1109 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1110
1111 // Populate the tool chains for the offloading devices, if any.
1112 CreateOffloadingDeviceToolChains(*C, Inputs);
1113
1114 // Construct the list of abstract actions to perform for this compilation. On
1115 // MachO targets this uses the driver-driver and universal actions.
1116 if (TC.getTriple().isOSBinFormatMachO())
1117 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1118 else
1119 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1120
1121 if (CCCPrintPhases) {
1122 PrintActions(*C);
1123 return C;
1124 }
1125
1126 BuildJobs(*C);
1127
1128 return C;
1129 }
1130
printArgList(raw_ostream & OS,const llvm::opt::ArgList & Args)1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1132 llvm::opt::ArgStringList ASL;
1133 for (const auto *A : Args)
1134 A->render(Args, ASL);
1135
1136 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1137 if (I != ASL.begin())
1138 OS << ' ';
1139 Command::printArg(OS, *I, true);
1140 }
1141 OS << '\n';
1142 }
1143
getCrashDiagnosticFile(StringRef ReproCrashFilename,SmallString<128> & CrashDiagDir)1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1145 SmallString<128> &CrashDiagDir) {
1146 using namespace llvm::sys;
1147 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1148 "Only knows about .crash files on Darwin");
1149
1150 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1151 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1152 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1153 path::home_directory(CrashDiagDir);
1154 if (CrashDiagDir.startswith("/var/root"))
1155 CrashDiagDir = "/";
1156 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1157 int PID =
1158 #if LLVM_ON_UNIX
1159 getpid();
1160 #else
1161 0;
1162 #endif
1163 std::error_code EC;
1164 fs::file_status FileStatus;
1165 TimePoint<> LastAccessTime;
1166 SmallString<128> CrashFilePath;
1167 // Lookup the .crash files and get the one generated by a subprocess spawned
1168 // by this driver invocation.
1169 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1170 File != FileEnd && !EC; File.increment(EC)) {
1171 StringRef FileName = path::filename(File->path());
1172 if (!FileName.startswith(Name))
1173 continue;
1174 if (fs::status(File->path(), FileStatus))
1175 continue;
1176 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1177 llvm::MemoryBuffer::getFile(File->path());
1178 if (!CrashFile)
1179 continue;
1180 // The first line should start with "Process:", otherwise this isn't a real
1181 // .crash file.
1182 StringRef Data = CrashFile.get()->getBuffer();
1183 if (!Data.startswith("Process:"))
1184 continue;
1185 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1186 size_t ParentProcPos = Data.find("Parent Process:");
1187 if (ParentProcPos == StringRef::npos)
1188 continue;
1189 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1190 if (LineEnd == StringRef::npos)
1191 continue;
1192 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1193 int OpenBracket = -1, CloseBracket = -1;
1194 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1195 if (ParentProcess[i] == '[')
1196 OpenBracket = i;
1197 if (ParentProcess[i] == ']')
1198 CloseBracket = i;
1199 }
1200 // Extract the parent process PID from the .crash file and check whether
1201 // it matches this driver invocation pid.
1202 int CrashPID;
1203 if (OpenBracket < 0 || CloseBracket < 0 ||
1204 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1205 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1206 continue;
1207 }
1208
1209 // Found a .crash file matching the driver pid. To avoid getting an older
1210 // and misleading crash file, continue looking for the most recent.
1211 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1212 // multiple crashes poiting to the same parent process. Since the driver
1213 // does not collect pid information for the dispatched invocation there's
1214 // currently no way to distinguish among them.
1215 const auto FileAccessTime = FileStatus.getLastModificationTime();
1216 if (FileAccessTime > LastAccessTime) {
1217 CrashFilePath.assign(File->path());
1218 LastAccessTime = FileAccessTime;
1219 }
1220 }
1221
1222 // If found, copy it over to the location of other reproducer files.
1223 if (!CrashFilePath.empty()) {
1224 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1225 if (EC)
1226 return false;
1227 return true;
1228 }
1229
1230 return false;
1231 }
1232
1233 // When clang crashes, produce diagnostic information including the fully
1234 // preprocessed source file(s). Request that the developer attach the
1235 // diagnostic information to a bug report.
generateCompilationDiagnostics(Compilation & C,const Command & FailingCommand,StringRef AdditionalInformation,CompilationDiagnosticReport * Report)1236 void Driver::generateCompilationDiagnostics(
1237 Compilation &C, const Command &FailingCommand,
1238 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1239 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1240 return;
1241
1242 // Don't try to generate diagnostics for link or dsymutil jobs.
1243 if (FailingCommand.getCreator().isLinkJob() ||
1244 FailingCommand.getCreator().isDsymutilJob())
1245 return;
1246
1247 // Print the version of the compiler.
1248 PrintVersion(C, llvm::errs());
1249
1250 Diag(clang::diag::note_drv_command_failed_diag_msg)
1251 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1252 "crash backtrace, preprocessed source, and associated run script.";
1253
1254 // Suppress driver output and emit preprocessor output to temp file.
1255 Mode = CPPMode;
1256 CCGenDiagnostics = true;
1257
1258 // Save the original job command(s).
1259 Command Cmd = FailingCommand;
1260
1261 // Keep track of whether we produce any errors while trying to produce
1262 // preprocessed sources.
1263 DiagnosticErrorTrap Trap(Diags);
1264
1265 // Suppress tool output.
1266 C.initCompilationForDiagnostics();
1267
1268 // Construct the list of inputs.
1269 InputList Inputs;
1270 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1271
1272 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1273 bool IgnoreInput = false;
1274
1275 // Ignore input from stdin or any inputs that cannot be preprocessed.
1276 // Check type first as not all linker inputs have a value.
1277 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1278 IgnoreInput = true;
1279 } else if (!strcmp(it->second->getValue(), "-")) {
1280 Diag(clang::diag::note_drv_command_failed_diag_msg)
1281 << "Error generating preprocessed source(s) - "
1282 "ignoring input from stdin.";
1283 IgnoreInput = true;
1284 }
1285
1286 if (IgnoreInput) {
1287 it = Inputs.erase(it);
1288 ie = Inputs.end();
1289 } else {
1290 ++it;
1291 }
1292 }
1293
1294 if (Inputs.empty()) {
1295 Diag(clang::diag::note_drv_command_failed_diag_msg)
1296 << "Error generating preprocessed source(s) - "
1297 "no preprocessable inputs.";
1298 return;
1299 }
1300
1301 // Don't attempt to generate preprocessed files if multiple -arch options are
1302 // used, unless they're all duplicates.
1303 llvm::StringSet<> ArchNames;
1304 for (const Arg *A : C.getArgs()) {
1305 if (A->getOption().matches(options::OPT_arch)) {
1306 StringRef ArchName = A->getValue();
1307 ArchNames.insert(ArchName);
1308 }
1309 }
1310 if (ArchNames.size() > 1) {
1311 Diag(clang::diag::note_drv_command_failed_diag_msg)
1312 << "Error generating preprocessed source(s) - cannot generate "
1313 "preprocessed source with multiple -arch options.";
1314 return;
1315 }
1316
1317 // Construct the list of abstract actions to perform for this compilation. On
1318 // Darwin OSes this uses the driver-driver and builds universal actions.
1319 const ToolChain &TC = C.getDefaultToolChain();
1320 if (TC.getTriple().isOSBinFormatMachO())
1321 BuildUniversalActions(C, TC, Inputs);
1322 else
1323 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1324
1325 BuildJobs(C);
1326
1327 // If there were errors building the compilation, quit now.
1328 if (Trap.hasErrorOccurred()) {
1329 Diag(clang::diag::note_drv_command_failed_diag_msg)
1330 << "Error generating preprocessed source(s).";
1331 return;
1332 }
1333
1334 // Generate preprocessed output.
1335 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1336 C.ExecuteJobs(C.getJobs(), FailingCommands);
1337
1338 // If any of the preprocessing commands failed, clean up and exit.
1339 if (!FailingCommands.empty()) {
1340 Diag(clang::diag::note_drv_command_failed_diag_msg)
1341 << "Error generating preprocessed source(s).";
1342 return;
1343 }
1344
1345 const ArgStringList &TempFiles = C.getTempFiles();
1346 if (TempFiles.empty()) {
1347 Diag(clang::diag::note_drv_command_failed_diag_msg)
1348 << "Error generating preprocessed source(s).";
1349 return;
1350 }
1351
1352 Diag(clang::diag::note_drv_command_failed_diag_msg)
1353 << "\n********************\n\n"
1354 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1355 "Preprocessed source(s) and associated run script(s) are located at:";
1356
1357 SmallString<128> VFS;
1358 SmallString<128> ReproCrashFilename;
1359 for (const char *TempFile : TempFiles) {
1360 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1361 if (Report)
1362 Report->TemporaryFiles.push_back(TempFile);
1363 if (ReproCrashFilename.empty()) {
1364 ReproCrashFilename = TempFile;
1365 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1366 }
1367 if (StringRef(TempFile).endswith(".cache")) {
1368 // In some cases (modules) we'll dump extra data to help with reproducing
1369 // the crash into a directory next to the output.
1370 VFS = llvm::sys::path::filename(TempFile);
1371 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1372 }
1373 }
1374
1375 // Assume associated files are based off of the first temporary file.
1376 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1377
1378 llvm::SmallString<128> Script(CrashInfo.Filename);
1379 llvm::sys::path::replace_extension(Script, "sh");
1380 std::error_code EC;
1381 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1382 if (EC) {
1383 Diag(clang::diag::note_drv_command_failed_diag_msg)
1384 << "Error generating run script: " << Script << " " << EC.message();
1385 } else {
1386 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1387 << "# Driver args: ";
1388 printArgList(ScriptOS, C.getInputArgs());
1389 ScriptOS << "# Original command: ";
1390 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1391 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1392 if (!AdditionalInformation.empty())
1393 ScriptOS << "\n# Additional information: " << AdditionalInformation
1394 << "\n";
1395 if (Report)
1396 Report->TemporaryFiles.push_back(Script.str());
1397 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1398 }
1399
1400 // On darwin, provide information about the .crash diagnostic report.
1401 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1402 SmallString<128> CrashDiagDir;
1403 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1404 Diag(clang::diag::note_drv_command_failed_diag_msg)
1405 << ReproCrashFilename.str();
1406 } else { // Suggest a directory for the user to look for .crash files.
1407 llvm::sys::path::append(CrashDiagDir, Name);
1408 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1409 Diag(clang::diag::note_drv_command_failed_diag_msg)
1410 << "Crash backtrace is located in";
1411 Diag(clang::diag::note_drv_command_failed_diag_msg)
1412 << CrashDiagDir.str();
1413 Diag(clang::diag::note_drv_command_failed_diag_msg)
1414 << "(choose the .crash file that corresponds to your crash)";
1415 }
1416 }
1417
1418 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1419 options::OPT_frewrite_map_file_EQ))
1420 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1421
1422 Diag(clang::diag::note_drv_command_failed_diag_msg)
1423 << "\n\n********************";
1424 }
1425
setUpResponseFiles(Compilation & C,Command & Cmd)1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1427 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1428 // capacity if the tool does not support response files, there is a chance/
1429 // that things will just work without a response file, so we silently just
1430 // skip it.
1431 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
1432 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1433 Cmd.getArguments()))
1434 return;
1435
1436 std::string TmpName = GetTemporaryPath("response", "txt");
1437 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1438 }
1439
ExecuteCompilation(Compilation & C,SmallVectorImpl<std::pair<int,const Command * >> & FailingCommands)1440 int Driver::ExecuteCompilation(
1441 Compilation &C,
1442 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1443 // Just print if -### was present.
1444 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1445 C.getJobs().Print(llvm::errs(), "\n", true);
1446 return 0;
1447 }
1448
1449 // If there were errors building the compilation, quit now.
1450 if (Diags.hasErrorOccurred())
1451 return 1;
1452
1453 // Set up response file names for each command, if necessary
1454 for (auto &Job : C.getJobs())
1455 setUpResponseFiles(C, Job);
1456
1457 C.ExecuteJobs(C.getJobs(), FailingCommands);
1458
1459 // If the command succeeded, we are done.
1460 if (FailingCommands.empty())
1461 return 0;
1462
1463 // Otherwise, remove result files and print extra information about abnormal
1464 // failures.
1465 int Res = 0;
1466 for (const auto &CmdPair : FailingCommands) {
1467 int CommandRes = CmdPair.first;
1468 const Command *FailingCommand = CmdPair.second;
1469
1470 // Remove result files if we're not saving temps.
1471 if (!isSaveTempsEnabled()) {
1472 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1473 C.CleanupFileMap(C.getResultFiles(), JA, true);
1474
1475 // Failure result files are valid unless we crashed.
1476 if (CommandRes < 0)
1477 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1478 }
1479
1480 #if LLVM_ON_UNIX
1481 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1482 // for SIGPIPE. Do not print diagnostics for this case.
1483 if (CommandRes == EX_IOERR) {
1484 Res = CommandRes;
1485 continue;
1486 }
1487 #endif
1488
1489 // Print extra information about abnormal failures, if possible.
1490 //
1491 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1492 // status was 1, assume the command failed normally. In particular, if it
1493 // was the compiler then assume it gave a reasonable error code. Failures
1494 // in other tools are less common, and they generally have worse
1495 // diagnostics, so always print the diagnostic there.
1496 const Tool &FailingTool = FailingCommand->getCreator();
1497
1498 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1499 // FIXME: See FIXME above regarding result code interpretation.
1500 if (CommandRes < 0)
1501 Diag(clang::diag::err_drv_command_signalled)
1502 << FailingTool.getShortName();
1503 else
1504 Diag(clang::diag::err_drv_command_failed)
1505 << FailingTool.getShortName() << CommandRes;
1506 }
1507 }
1508 return Res;
1509 }
1510
PrintHelp(bool ShowHidden) const1511 void Driver::PrintHelp(bool ShowHidden) const {
1512 unsigned IncludedFlagsBitmask;
1513 unsigned ExcludedFlagsBitmask;
1514 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1515 getIncludeExcludeOptionFlagMasks(IsCLMode());
1516
1517 ExcludedFlagsBitmask |= options::NoDriverOption;
1518 if (!ShowHidden)
1519 ExcludedFlagsBitmask |= HelpHidden;
1520
1521 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1522 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1523 IncludedFlagsBitmask, ExcludedFlagsBitmask,
1524 /*ShowAllAliases=*/false);
1525 }
1526
PrintVersion(const Compilation & C,raw_ostream & OS) const1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1528 // FIXME: The following handlers should use a callback mechanism, we don't
1529 // know what the client would like to do.
1530 OS << getClangFullVersion() << '\n';
1531 const ToolChain &TC = C.getDefaultToolChain();
1532 OS << "Target: " << TC.getTripleString() << '\n';
1533
1534 // Print the threading model.
1535 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1536 // Don't print if the ToolChain would have barfed on it already
1537 if (TC.isThreadModelSupported(A->getValue()))
1538 OS << "Thread model: " << A->getValue();
1539 } else
1540 OS << "Thread model: " << TC.getThreadModel();
1541 OS << '\n';
1542
1543 // Print out the install directory.
1544 OS << "InstalledDir: " << InstalledDir << '\n';
1545
1546 // If configuration file was used, print its path.
1547 if (!ConfigFile.empty())
1548 OS << "Configuration file: " << ConfigFile << '\n';
1549 }
1550
1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1552 /// option.
PrintDiagnosticCategories(raw_ostream & OS)1553 static void PrintDiagnosticCategories(raw_ostream &OS) {
1554 // Skip the empty category.
1555 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1556 ++i)
1557 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1558 }
1559
HandleAutocompletions(StringRef PassedFlags) const1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1561 if (PassedFlags == "")
1562 return;
1563 // Print out all options that start with a given argument. This is used for
1564 // shell autocompletion.
1565 std::vector<std::string> SuggestedCompletions;
1566 std::vector<std::string> Flags;
1567
1568 unsigned short DisableFlags =
1569 options::NoDriverOption | options::Unsupported | options::Ignored;
1570
1571 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1572 // because the latter indicates that the user put space before pushing tab
1573 // which should end up in a file completion.
1574 const bool HasSpace = PassedFlags.endswith(",");
1575
1576 // Parse PassedFlags by "," as all the command-line flags are passed to this
1577 // function separated by ","
1578 StringRef TargetFlags = PassedFlags;
1579 while (TargetFlags != "") {
1580 StringRef CurFlag;
1581 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1582 Flags.push_back(std::string(CurFlag));
1583 }
1584
1585 // We want to show cc1-only options only when clang is invoked with -cc1 or
1586 // -Xclang.
1587 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1588 DisableFlags &= ~options::NoDriverOption;
1589
1590 StringRef Cur;
1591 Cur = Flags.at(Flags.size() - 1);
1592 StringRef Prev;
1593 if (Flags.size() >= 2) {
1594 Prev = Flags.at(Flags.size() - 2);
1595 SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1596 }
1597
1598 if (SuggestedCompletions.empty())
1599 SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1600
1601 // If Flags were empty, it means the user typed `clang [tab]` where we should
1602 // list all possible flags. If there was no value completion and the user
1603 // pressed tab after a space, we should fall back to a file completion.
1604 // We're printing a newline to be consistent with what we print at the end of
1605 // this function.
1606 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1607 llvm::outs() << '\n';
1608 return;
1609 }
1610
1611 // When flag ends with '=' and there was no value completion, return empty
1612 // string and fall back to the file autocompletion.
1613 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1614 // If the flag is in the form of "--autocomplete=-foo",
1615 // we were requested to print out all option names that start with "-foo".
1616 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1617 SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1618
1619 // We have to query the -W flags manually as they're not in the OptTable.
1620 // TODO: Find a good way to add them to OptTable instead and them remove
1621 // this code.
1622 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1623 if (S.startswith(Cur))
1624 SuggestedCompletions.push_back(S);
1625 }
1626
1627 // Sort the autocomplete candidates so that shells print them out in a
1628 // deterministic order. We could sort in any way, but we chose
1629 // case-insensitive sorting for consistency with the -help option
1630 // which prints out options in the case-insensitive alphabetical order.
1631 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1632 if (int X = A.compare_lower(B))
1633 return X < 0;
1634 return A.compare(B) > 0;
1635 });
1636
1637 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1638 }
1639
HandleImmediateArgs(const Compilation & C)1640 bool Driver::HandleImmediateArgs(const Compilation &C) {
1641 // The order these options are handled in gcc is all over the place, but we
1642 // don't expect inconsistencies w.r.t. that to matter in practice.
1643
1644 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1645 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1646 return false;
1647 }
1648
1649 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1650 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1651 // return an answer which matches our definition of __VERSION__.
1652 llvm::outs() << CLANG_VERSION_STRING << "\n";
1653 return false;
1654 }
1655
1656 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1657 PrintDiagnosticCategories(llvm::outs());
1658 return false;
1659 }
1660
1661 if (C.getArgs().hasArg(options::OPT_help) ||
1662 C.getArgs().hasArg(options::OPT__help_hidden)) {
1663 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1664 return false;
1665 }
1666
1667 if (C.getArgs().hasArg(options::OPT__version)) {
1668 // Follow gcc behavior and use stdout for --version and stderr for -v.
1669 PrintVersion(C, llvm::outs());
1670 return false;
1671 }
1672
1673 if (C.getArgs().hasArg(options::OPT_v) ||
1674 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1675 C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1676 PrintVersion(C, llvm::errs());
1677 SuppressMissingInputWarning = true;
1678 }
1679
1680 if (C.getArgs().hasArg(options::OPT_v)) {
1681 if (!SystemConfigDir.empty())
1682 llvm::errs() << "System configuration file directory: "
1683 << SystemConfigDir << "\n";
1684 if (!UserConfigDir.empty())
1685 llvm::errs() << "User configuration file directory: "
1686 << UserConfigDir << "\n";
1687 }
1688
1689 const ToolChain &TC = C.getDefaultToolChain();
1690
1691 if (C.getArgs().hasArg(options::OPT_v))
1692 TC.printVerboseInfo(llvm::errs());
1693
1694 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1695 llvm::outs() << ResourceDir << '\n';
1696 return false;
1697 }
1698
1699 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1700 llvm::outs() << "programs: =";
1701 bool separator = false;
1702 for (const std::string &Path : TC.getProgramPaths()) {
1703 if (separator)
1704 llvm::outs() << llvm::sys::EnvPathSeparator;
1705 llvm::outs() << Path;
1706 separator = true;
1707 }
1708 llvm::outs() << "\n";
1709 llvm::outs() << "libraries: =" << ResourceDir;
1710
1711 StringRef sysroot = C.getSysRoot();
1712
1713 for (const std::string &Path : TC.getFilePaths()) {
1714 // Always print a separator. ResourceDir was the first item shown.
1715 llvm::outs() << llvm::sys::EnvPathSeparator;
1716 // Interpretation of leading '=' is needed only for NetBSD.
1717 if (Path[0] == '=')
1718 llvm::outs() << sysroot << Path.substr(1);
1719 else
1720 llvm::outs() << Path;
1721 }
1722 llvm::outs() << "\n";
1723 return false;
1724 }
1725
1726 // FIXME: The following handlers should use a callback mechanism, we don't
1727 // know what the client would like to do.
1728 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1729 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1730 return false;
1731 }
1732
1733 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1734 StringRef ProgName = A->getValue();
1735
1736 // Null program name cannot have a path.
1737 if (! ProgName.empty())
1738 llvm::outs() << GetProgramPath(ProgName, TC);
1739
1740 llvm::outs() << "\n";
1741 return false;
1742 }
1743
1744 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1745 StringRef PassedFlags = A->getValue();
1746 HandleAutocompletions(PassedFlags);
1747 return false;
1748 }
1749
1750 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1751 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1752 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1753 RegisterEffectiveTriple TripleRAII(TC, Triple);
1754 switch (RLT) {
1755 case ToolChain::RLT_CompilerRT:
1756 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1757 break;
1758 case ToolChain::RLT_Libgcc:
1759 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1760 break;
1761 }
1762 return false;
1763 }
1764
1765 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1766 for (const Multilib &Multilib : TC.getMultilibs())
1767 llvm::outs() << Multilib << "\n";
1768 return false;
1769 }
1770
1771 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1772 const Multilib &Multilib = TC.getMultilib();
1773 if (Multilib.gccSuffix().empty())
1774 llvm::outs() << ".\n";
1775 else {
1776 StringRef Suffix(Multilib.gccSuffix());
1777 assert(Suffix.front() == '/');
1778 llvm::outs() << Suffix.substr(1) << "\n";
1779 }
1780 return false;
1781 }
1782
1783 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1784 llvm::outs() << TC.getTripleString() << "\n";
1785 return false;
1786 }
1787
1788 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1789 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1790 llvm::outs() << Triple.getTriple() << "\n";
1791 return false;
1792 }
1793
1794 return true;
1795 }
1796
1797 // Display an action graph human-readably. Action A is the "sink" node
1798 // and latest-occuring action. Traversal is in pre-order, visiting the
1799 // inputs to each action before printing the action itself.
PrintActions1(const Compilation & C,Action * A,std::map<Action *,unsigned> & Ids)1800 static unsigned PrintActions1(const Compilation &C, Action *A,
1801 std::map<Action *, unsigned> &Ids) {
1802 if (Ids.count(A)) // A was already visited.
1803 return Ids[A];
1804
1805 std::string str;
1806 llvm::raw_string_ostream os(str);
1807
1808 os << Action::getClassName(A->getKind()) << ", ";
1809 if (InputAction *IA = dyn_cast<InputAction>(A)) {
1810 os << "\"" << IA->getInputArg().getValue() << "\"";
1811 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1812 os << '"' << BIA->getArchName() << '"' << ", {"
1813 << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1814 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1815 bool IsFirst = true;
1816 OA->doOnEachDependence(
1817 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1818 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1819 // sm_35 this will generate:
1820 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1821 // (nvptx64-nvidia-cuda:sm_35) {#ID}
1822 if (!IsFirst)
1823 os << ", ";
1824 os << '"';
1825 if (TC)
1826 os << A->getOffloadingKindPrefix();
1827 else
1828 os << "host";
1829 os << " (";
1830 os << TC->getTriple().normalize();
1831
1832 if (BoundArch)
1833 os << ":" << BoundArch;
1834 os << ")";
1835 os << '"';
1836 os << " {" << PrintActions1(C, A, Ids) << "}";
1837 IsFirst = false;
1838 });
1839 } else {
1840 const ActionList *AL = &A->getInputs();
1841
1842 if (AL->size()) {
1843 const char *Prefix = "{";
1844 for (Action *PreRequisite : *AL) {
1845 os << Prefix << PrintActions1(C, PreRequisite, Ids);
1846 Prefix = ", ";
1847 }
1848 os << "}";
1849 } else
1850 os << "{}";
1851 }
1852
1853 // Append offload info for all options other than the offloading action
1854 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1855 std::string offload_str;
1856 llvm::raw_string_ostream offload_os(offload_str);
1857 if (!isa<OffloadAction>(A)) {
1858 auto S = A->getOffloadingKindPrefix();
1859 if (!S.empty()) {
1860 offload_os << ", (" << S;
1861 if (A->getOffloadingArch())
1862 offload_os << ", " << A->getOffloadingArch();
1863 offload_os << ")";
1864 }
1865 }
1866
1867 unsigned Id = Ids.size();
1868 Ids[A] = Id;
1869 llvm::errs() << Id << ": " << os.str() << ", "
1870 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1871
1872 return Id;
1873 }
1874
1875 // Print the action graphs in a compilation C.
1876 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
PrintActions(const Compilation & C) const1877 void Driver::PrintActions(const Compilation &C) const {
1878 std::map<Action *, unsigned> Ids;
1879 for (Action *A : C.getActions())
1880 PrintActions1(C, A, Ids);
1881 }
1882
1883 /// Check whether the given input tree contains any compilation or
1884 /// assembly actions.
ContainsCompileOrAssembleAction(const Action * A)1885 static bool ContainsCompileOrAssembleAction(const Action *A) {
1886 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1887 isa<AssembleJobAction>(A))
1888 return true;
1889
1890 for (const Action *Input : A->inputs())
1891 if (ContainsCompileOrAssembleAction(Input))
1892 return true;
1893
1894 return false;
1895 }
1896
BuildUniversalActions(Compilation & C,const ToolChain & TC,const InputList & BAInputs) const1897 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1898 const InputList &BAInputs) const {
1899 DerivedArgList &Args = C.getArgs();
1900 ActionList &Actions = C.getActions();
1901 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1902 // Collect the list of architectures. Duplicates are allowed, but should only
1903 // be handled once (in the order seen).
1904 llvm::StringSet<> ArchNames;
1905 SmallVector<const char *, 4> Archs;
1906 for (Arg *A : Args) {
1907 if (A->getOption().matches(options::OPT_arch)) {
1908 // Validate the option here; we don't save the type here because its
1909 // particular spelling may participate in other driver choices.
1910 llvm::Triple::ArchType Arch =
1911 tools::darwin::getArchTypeForMachOArchName(A->getValue());
1912 if (Arch == llvm::Triple::UnknownArch) {
1913 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1914 continue;
1915 }
1916
1917 A->claim();
1918 if (ArchNames.insert(A->getValue()).second)
1919 Archs.push_back(A->getValue());
1920 }
1921 }
1922
1923 // When there is no explicit arch for this platform, make sure we still bind
1924 // the architecture (to the default) so that -Xarch_ is handled correctly.
1925 if (!Archs.size())
1926 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1927
1928 ActionList SingleActions;
1929 BuildActions(C, Args, BAInputs, SingleActions);
1930
1931 // Add in arch bindings for every top level action, as well as lipo and
1932 // dsymutil steps if needed.
1933 for (Action* Act : SingleActions) {
1934 // Make sure we can lipo this kind of output. If not (and it is an actual
1935 // output) then we disallow, since we can't create an output file with the
1936 // right name without overwriting it. We could remove this oddity by just
1937 // changing the output names to include the arch, which would also fix
1938 // -save-temps. Compatibility wins for now.
1939
1940 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1941 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1942 << types::getTypeName(Act->getType());
1943
1944 ActionList Inputs;
1945 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1946 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1947
1948 // Lipo if necessary, we do it this way because we need to set the arch flag
1949 // so that -Xarch_ gets overwritten.
1950 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1951 Actions.append(Inputs.begin(), Inputs.end());
1952 else
1953 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1954
1955 // Handle debug info queries.
1956 Arg *A = Args.getLastArg(options::OPT_g_Group);
1957 if (A && !A->getOption().matches(options::OPT_g0) &&
1958 !A->getOption().matches(options::OPT_gstabs) &&
1959 ContainsCompileOrAssembleAction(Actions.back())) {
1960
1961 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1962 // have a compile input. We need to run 'dsymutil' ourselves in such cases
1963 // because the debug info will refer to a temporary object file which
1964 // will be removed at the end of the compilation process.
1965 if (Act->getType() == types::TY_Image) {
1966 ActionList Inputs;
1967 Inputs.push_back(Actions.back());
1968 Actions.pop_back();
1969 Actions.push_back(
1970 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1971 }
1972
1973 // Verify the debug info output.
1974 if (Args.hasArg(options::OPT_verify_debug_info)) {
1975 Action* LastAction = Actions.back();
1976 Actions.pop_back();
1977 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1978 LastAction, types::TY_Nothing));
1979 }
1980 }
1981 }
1982 }
1983
DiagnoseInputExistence(const DerivedArgList & Args,StringRef Value,types::ID Ty,bool TypoCorrect) const1984 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
1985 types::ID Ty, bool TypoCorrect) const {
1986 if (!getCheckInputsExist())
1987 return true;
1988
1989 // stdin always exists.
1990 if (Value == "-")
1991 return true;
1992
1993 SmallString<64> Path(Value);
1994 if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1995 if (!llvm::sys::path::is_absolute(Path)) {
1996 SmallString<64> Directory(WorkDir->getValue());
1997 llvm::sys::path::append(Directory, Value);
1998 Path.assign(Directory);
1999 }
2000 }
2001
2002 if (getVFS().exists(Path))
2003 return true;
2004
2005 if (IsCLMode()) {
2006 if (!llvm::sys::path::is_absolute(Twine(Path)) &&
2007 llvm::sys::Process::FindInEnvPath("LIB", Value))
2008 return true;
2009
2010 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2011 // Arguments to the /link flag might cause the linker to search for object
2012 // and library files in paths we don't know about. Don't error in such
2013 // cases.
2014 return true;
2015 }
2016 }
2017
2018 if (TypoCorrect) {
2019 // Check if the filename is a typo for an option flag. OptTable thinks
2020 // that all args that are not known options and that start with / are
2021 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2022 // the option `/diagnostics:caret` than a reference to a file in the root
2023 // directory.
2024 unsigned IncludedFlagsBitmask;
2025 unsigned ExcludedFlagsBitmask;
2026 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2027 getIncludeExcludeOptionFlagMasks(IsCLMode());
2028 std::string Nearest;
2029 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2030 ExcludedFlagsBitmask) <= 1) {
2031 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2032 << Path << Nearest;
2033 return false;
2034 }
2035 }
2036
2037 Diag(clang::diag::err_drv_no_such_file) << Path;
2038 return false;
2039 }
2040
2041 // Construct a the list of inputs and their types.
BuildInputs(const ToolChain & TC,DerivedArgList & Args,InputList & Inputs) const2042 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2043 InputList &Inputs) const {
2044 // Track the current user specified (-x) input. We also explicitly track the
2045 // argument used to set the type; we only want to claim the type when we
2046 // actually use it, so we warn about unused -x arguments.
2047 types::ID InputType = types::TY_Nothing;
2048 Arg *InputTypeArg = nullptr;
2049
2050 // The last /TC or /TP option sets the input type to C or C++ globally.
2051 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2052 options::OPT__SLASH_TP)) {
2053 InputTypeArg = TCTP;
2054 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2055 ? types::TY_C
2056 : types::TY_CXX;
2057
2058 Arg *Previous = nullptr;
2059 bool ShowNote = false;
2060 for (Arg *A :
2061 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2062 if (Previous) {
2063 Diag(clang::diag::warn_drv_overriding_flag_option)
2064 << Previous->getSpelling() << A->getSpelling();
2065 ShowNote = true;
2066 }
2067 Previous = A;
2068 }
2069 if (ShowNote)
2070 Diag(clang::diag::note_drv_t_option_is_global);
2071
2072 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2073 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2074 }
2075
2076 for (Arg *A : Args) {
2077 if (A->getOption().getKind() == Option::InputClass) {
2078 const char *Value = A->getValue();
2079 types::ID Ty = types::TY_INVALID;
2080
2081 // Infer the input type if necessary.
2082 if (InputType == types::TY_Nothing) {
2083 // If there was an explicit arg for this, claim it.
2084 if (InputTypeArg)
2085 InputTypeArg->claim();
2086
2087 // stdin must be handled specially.
2088 if (memcmp(Value, "-", 2) == 0) {
2089 // If running with -E, treat as a C input (this changes the builtin
2090 // macros, for example). This may be overridden by -ObjC below.
2091 //
2092 // Otherwise emit an error but still use a valid type to avoid
2093 // spurious errors (e.g., no inputs).
2094 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2095 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2096 : clang::diag::err_drv_unknown_stdin_type);
2097 Ty = types::TY_C;
2098 } else {
2099 // Otherwise lookup by extension.
2100 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2101 // clang-cl /E, or Object otherwise.
2102 // We use a host hook here because Darwin at least has its own
2103 // idea of what .s is.
2104 if (const char *Ext = strrchr(Value, '.'))
2105 Ty = TC.LookupTypeForExtension(Ext + 1);
2106
2107 if (Ty == types::TY_INVALID) {
2108 if (CCCIsCPP())
2109 Ty = types::TY_C;
2110 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2111 Ty = types::TY_CXX;
2112 else
2113 Ty = types::TY_Object;
2114 }
2115
2116 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2117 // should autodetect some input files as C++ for g++ compatibility.
2118 if (CCCIsCXX()) {
2119 types::ID OldTy = Ty;
2120 Ty = types::lookupCXXTypeForCType(Ty);
2121
2122 if (Ty != OldTy)
2123 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2124 << getTypeName(OldTy) << getTypeName(Ty);
2125 }
2126
2127 // If running with -fthinlto-index=, extensions that normally identify
2128 // native object files actually identify LLVM bitcode files.
2129 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2130 Ty == types::TY_Object)
2131 Ty = types::TY_LLVM_BC;
2132 }
2133
2134 // -ObjC and -ObjC++ override the default language, but only for "source
2135 // files". We just treat everything that isn't a linker input as a
2136 // source file.
2137 //
2138 // FIXME: Clean this up if we move the phase sequence into the type.
2139 if (Ty != types::TY_Object) {
2140 if (Args.hasArg(options::OPT_ObjC))
2141 Ty = types::TY_ObjC;
2142 else if (Args.hasArg(options::OPT_ObjCXX))
2143 Ty = types::TY_ObjCXX;
2144 }
2145 } else {
2146 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2147 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2148 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2149 // object files.
2150 const char *Ext = strrchr(Value, '.');
2151 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2152 Ty = types::TY_Object;
2153 }
2154 if (Ty == types::TY_INVALID) {
2155 Ty = InputType;
2156 InputTypeArg->claim();
2157 }
2158 }
2159
2160 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2161 Inputs.push_back(std::make_pair(Ty, A));
2162
2163 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2164 StringRef Value = A->getValue();
2165 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2166 /*TypoCorrect=*/false)) {
2167 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2168 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2169 }
2170 A->claim();
2171 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2172 StringRef Value = A->getValue();
2173 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2174 /*TypoCorrect=*/false)) {
2175 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2176 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2177 }
2178 A->claim();
2179 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2180 // Just treat as object type, we could make a special type for this if
2181 // necessary.
2182 Inputs.push_back(std::make_pair(types::TY_Object, A));
2183
2184 } else if (A->getOption().matches(options::OPT_x)) {
2185 InputTypeArg = A;
2186 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2187 A->claim();
2188
2189 // Follow gcc behavior and treat as linker input for invalid -x
2190 // options. Its not clear why we shouldn't just revert to unknown; but
2191 // this isn't very important, we might as well be bug compatible.
2192 if (!InputType) {
2193 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2194 InputType = types::TY_Object;
2195 }
2196 } else if (A->getOption().getID() == options::OPT_U) {
2197 assert(A->getNumValues() == 1 && "The /U option has one value.");
2198 StringRef Val = A->getValue(0);
2199 if (Val.find_first_of("/\\") != StringRef::npos) {
2200 // Warn about e.g. "/Users/me/myfile.c".
2201 Diag(diag::warn_slash_u_filename) << Val;
2202 Diag(diag::note_use_dashdash);
2203 }
2204 }
2205 }
2206 if (CCCIsCPP() && Inputs.empty()) {
2207 // If called as standalone preprocessor, stdin is processed
2208 // if no other input is present.
2209 Arg *A = MakeInputArg(Args, *Opts, "-");
2210 Inputs.push_back(std::make_pair(types::TY_C, A));
2211 }
2212 }
2213
2214 namespace {
2215 /// Provides a convenient interface for different programming models to generate
2216 /// the required device actions.
2217 class OffloadingActionBuilder final {
2218 /// Flag used to trace errors in the builder.
2219 bool IsValid = false;
2220
2221 /// The compilation that is using this builder.
2222 Compilation &C;
2223
2224 /// Map between an input argument and the offload kinds used to process it.
2225 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2226
2227 /// Builder interface. It doesn't build anything or keep any state.
2228 class DeviceActionBuilder {
2229 public:
2230 typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy;
2231
2232 enum ActionBuilderReturnCode {
2233 // The builder acted successfully on the current action.
2234 ABRT_Success,
2235 // The builder didn't have to act on the current action.
2236 ABRT_Inactive,
2237 // The builder was successful and requested the host action to not be
2238 // generated.
2239 ABRT_Ignore_Host,
2240 };
2241
2242 protected:
2243 /// Compilation associated with this builder.
2244 Compilation &C;
2245
2246 /// Tool chains associated with this builder. The same programming
2247 /// model may have associated one or more tool chains.
2248 SmallVector<const ToolChain *, 2> ToolChains;
2249
2250 /// The derived arguments associated with this builder.
2251 DerivedArgList &Args;
2252
2253 /// The inputs associated with this builder.
2254 const Driver::InputList &Inputs;
2255
2256 /// The associated offload kind.
2257 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2258
2259 public:
DeviceActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind AssociatedOffloadKind)2260 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2261 const Driver::InputList &Inputs,
2262 Action::OffloadKind AssociatedOffloadKind)
2263 : C(C), Args(Args), Inputs(Inputs),
2264 AssociatedOffloadKind(AssociatedOffloadKind) {}
~DeviceActionBuilder()2265 virtual ~DeviceActionBuilder() {}
2266
2267 /// Fill up the array \a DA with all the device dependences that should be
2268 /// added to the provided host action \a HostAction. By default it is
2269 /// inactive.
2270 virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2271 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2272 phases::ID CurPhase, phases::ID FinalPhase,
2273 PhasesTy &Phases) {
2274 return ABRT_Inactive;
2275 }
2276
2277 /// Update the state to include the provided host action \a HostAction as a
2278 /// dependency of the current device action. By default it is inactive.
addDeviceDepences(Action * HostAction)2279 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2280 return ABRT_Inactive;
2281 }
2282
2283 /// Append top level actions generated by the builder. Return true if errors
2284 /// were found.
appendTopLevelActions(ActionList & AL)2285 virtual void appendTopLevelActions(ActionList &AL) {}
2286
2287 /// Append linker actions generated by the builder. Return true if errors
2288 /// were found.
appendLinkDependences(OffloadAction::DeviceDependences & DA)2289 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2290
2291 /// Initialize the builder. Return true if any initialization errors are
2292 /// found.
initialize()2293 virtual bool initialize() { return false; }
2294
2295 /// Return true if the builder can use bundling/unbundling.
canUseBundlerUnbundler() const2296 virtual bool canUseBundlerUnbundler() const { return false; }
2297
2298 /// Return true if this builder is valid. We have a valid builder if we have
2299 /// associated device tool chains.
isValid()2300 bool isValid() { return !ToolChains.empty(); }
2301
2302 /// Return the associated offload kind.
getAssociatedOffloadKind()2303 Action::OffloadKind getAssociatedOffloadKind() {
2304 return AssociatedOffloadKind;
2305 }
2306 };
2307
2308 /// Base class for CUDA/HIP action builder. It injects device code in
2309 /// the host backend action.
2310 class CudaActionBuilderBase : public DeviceActionBuilder {
2311 protected:
2312 /// Flags to signal if the user requested host-only or device-only
2313 /// compilation.
2314 bool CompileHostOnly = false;
2315 bool CompileDeviceOnly = false;
2316
2317 /// List of GPU architectures to use in this compilation.
2318 SmallVector<CudaArch, 4> GpuArchList;
2319
2320 /// The CUDA actions for the current input.
2321 ActionList CudaDeviceActions;
2322
2323 /// The CUDA fat binary if it was generated for the current input.
2324 Action *CudaFatBinary = nullptr;
2325
2326 /// Flag that is set to true if this builder acted on the current input.
2327 bool IsActive = false;
2328
2329 /// Flag for -fgpu-rdc.
2330 bool Relocatable = false;
2331 public:
CudaActionBuilderBase(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind OFKind)2332 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2333 const Driver::InputList &Inputs,
2334 Action::OffloadKind OFKind)
2335 : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2336
addDeviceDepences(Action * HostAction)2337 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2338 // While generating code for CUDA, we only depend on the host input action
2339 // to trigger the creation of all the CUDA device actions.
2340
2341 // If we are dealing with an input action, replicate it for each GPU
2342 // architecture. If we are in host-only mode we return 'success' so that
2343 // the host uses the CUDA offload kind.
2344 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2345 assert(!GpuArchList.empty() &&
2346 "We should have at least one GPU architecture.");
2347
2348 // If the host input is not CUDA or HIP, we don't need to bother about
2349 // this input.
2350 if (IA->getType() != types::TY_CUDA &&
2351 IA->getType() != types::TY_HIP) {
2352 // The builder will ignore this input.
2353 IsActive = false;
2354 return ABRT_Inactive;
2355 }
2356
2357 // Set the flag to true, so that the builder acts on the current input.
2358 IsActive = true;
2359
2360 if (CompileHostOnly)
2361 return ABRT_Success;
2362
2363 // Replicate inputs for each GPU architecture.
2364 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2365 : types::TY_CUDA_DEVICE;
2366 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2367 CudaDeviceActions.push_back(
2368 C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2369 }
2370
2371 return ABRT_Success;
2372 }
2373
2374 // If this is an unbundling action use it as is for each CUDA toolchain.
2375 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2376
2377 // If -fgpu-rdc is disabled, should not unbundle since there is no
2378 // device code to link.
2379 if (!Relocatable)
2380 return ABRT_Inactive;
2381
2382 CudaDeviceActions.clear();
2383 auto *IA = cast<InputAction>(UA->getInputs().back());
2384 std::string FileName = IA->getInputArg().getAsString(Args);
2385 // Check if the type of the file is the same as the action. Do not
2386 // unbundle it if it is not. Do not unbundle .so files, for example,
2387 // which are not object files.
2388 if (IA->getType() == types::TY_Object &&
2389 (!llvm::sys::path::has_extension(FileName) ||
2390 types::lookupTypeForExtension(
2391 llvm::sys::path::extension(FileName).drop_front()) !=
2392 types::TY_Object))
2393 return ABRT_Inactive;
2394
2395 for (auto Arch : GpuArchList) {
2396 CudaDeviceActions.push_back(UA);
2397 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2398 AssociatedOffloadKind);
2399 }
2400 return ABRT_Success;
2401 }
2402
2403 return IsActive ? ABRT_Success : ABRT_Inactive;
2404 }
2405
appendTopLevelActions(ActionList & AL)2406 void appendTopLevelActions(ActionList &AL) override {
2407 // Utility to append actions to the top level list.
2408 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2409 OffloadAction::DeviceDependences Dep;
2410 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2411 AssociatedOffloadKind);
2412 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2413 };
2414
2415 // If we have a fat binary, add it to the list.
2416 if (CudaFatBinary) {
2417 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2418 CudaDeviceActions.clear();
2419 CudaFatBinary = nullptr;
2420 return;
2421 }
2422
2423 if (CudaDeviceActions.empty())
2424 return;
2425
2426 // If we have CUDA actions at this point, that's because we have a have
2427 // partial compilation, so we should have an action for each GPU
2428 // architecture.
2429 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2430 "Expecting one action per GPU architecture.");
2431 assert(ToolChains.size() == 1 &&
2432 "Expecting to have a sing CUDA toolchain.");
2433 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2434 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2435
2436 CudaDeviceActions.clear();
2437 }
2438
initialize()2439 bool initialize() override {
2440 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2441 AssociatedOffloadKind == Action::OFK_HIP);
2442
2443 // We don't need to support CUDA.
2444 if (AssociatedOffloadKind == Action::OFK_Cuda &&
2445 !C.hasOffloadToolChain<Action::OFK_Cuda>())
2446 return false;
2447
2448 // We don't need to support HIP.
2449 if (AssociatedOffloadKind == Action::OFK_HIP &&
2450 !C.hasOffloadToolChain<Action::OFK_HIP>())
2451 return false;
2452
2453 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2454 options::OPT_fno_gpu_rdc, /*Default=*/false);
2455
2456 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2457 assert(HostTC && "No toolchain for host compilation.");
2458 if (HostTC->getTriple().isNVPTX() ||
2459 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2460 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2461 // an error and abort pipeline construction early so we don't trip
2462 // asserts that assume device-side compilation.
2463 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2464 << HostTC->getTriple().getArchName();
2465 return true;
2466 }
2467
2468 ToolChains.push_back(
2469 AssociatedOffloadKind == Action::OFK_Cuda
2470 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2471 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2472
2473 Arg *PartialCompilationArg = Args.getLastArg(
2474 options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2475 options::OPT_cuda_compile_host_device);
2476 CompileHostOnly = PartialCompilationArg &&
2477 PartialCompilationArg->getOption().matches(
2478 options::OPT_cuda_host_only);
2479 CompileDeviceOnly = PartialCompilationArg &&
2480 PartialCompilationArg->getOption().matches(
2481 options::OPT_cuda_device_only);
2482
2483 // Collect all cuda_gpu_arch parameters, removing duplicates.
2484 std::set<CudaArch> GpuArchs;
2485 bool Error = false;
2486 for (Arg *A : Args) {
2487 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2488 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2489 continue;
2490 A->claim();
2491
2492 const StringRef ArchStr = A->getValue();
2493 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2494 ArchStr == "all") {
2495 GpuArchs.clear();
2496 continue;
2497 }
2498 CudaArch Arch = StringToCudaArch(ArchStr);
2499 if (Arch == CudaArch::UNKNOWN) {
2500 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2501 Error = true;
2502 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2503 GpuArchs.insert(Arch);
2504 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2505 GpuArchs.erase(Arch);
2506 else
2507 llvm_unreachable("Unexpected option.");
2508 }
2509
2510 // Collect list of GPUs remaining in the set.
2511 for (CudaArch Arch : GpuArchs)
2512 GpuArchList.push_back(Arch);
2513
2514 // Default to sm_20 which is the lowest common denominator for
2515 // supported GPUs. sm_20 code should work correctly, if
2516 // suboptimally, on all newer GPUs.
2517 if (GpuArchList.empty())
2518 GpuArchList.push_back(CudaArch::SM_20);
2519
2520 return Error;
2521 }
2522 };
2523
2524 /// \brief CUDA action builder. It injects device code in the host backend
2525 /// action.
2526 class CudaActionBuilder final : public CudaActionBuilderBase {
2527 public:
CudaActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2528 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2529 const Driver::InputList &Inputs)
2530 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2531
2532 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2533 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2534 phases::ID CurPhase, phases::ID FinalPhase,
2535 PhasesTy &Phases) override {
2536 if (!IsActive)
2537 return ABRT_Inactive;
2538
2539 // If we don't have more CUDA actions, we don't have any dependences to
2540 // create for the host.
2541 if (CudaDeviceActions.empty())
2542 return ABRT_Success;
2543
2544 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2545 "Expecting one action per GPU architecture.");
2546 assert(!CompileHostOnly &&
2547 "Not expecting CUDA actions in host-only compilation.");
2548
2549 // If we are generating code for the device or we are in a backend phase,
2550 // we attempt to generate the fat binary. We compile each arch to ptx and
2551 // assemble to cubin, then feed the cubin *and* the ptx into a device
2552 // "link" action, which uses fatbinary to combine these cubins into one
2553 // fatbin. The fatbin is then an input to the host action if not in
2554 // device-only mode.
2555 if (CompileDeviceOnly || CurPhase == phases::Backend) {
2556 ActionList DeviceActions;
2557 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2558 // Produce the device action from the current phase up to the assemble
2559 // phase.
2560 for (auto Ph : Phases) {
2561 // Skip the phases that were already dealt with.
2562 if (Ph < CurPhase)
2563 continue;
2564 // We have to be consistent with the host final phase.
2565 if (Ph > FinalPhase)
2566 break;
2567
2568 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2569 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2570
2571 if (Ph == phases::Assemble)
2572 break;
2573 }
2574
2575 // If we didn't reach the assemble phase, we can't generate the fat
2576 // binary. We don't need to generate the fat binary if we are not in
2577 // device-only mode.
2578 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2579 CompileDeviceOnly)
2580 continue;
2581
2582 Action *AssembleAction = CudaDeviceActions[I];
2583 assert(AssembleAction->getType() == types::TY_Object);
2584 assert(AssembleAction->getInputs().size() == 1);
2585
2586 Action *BackendAction = AssembleAction->getInputs()[0];
2587 assert(BackendAction->getType() == types::TY_PP_Asm);
2588
2589 for (auto &A : {AssembleAction, BackendAction}) {
2590 OffloadAction::DeviceDependences DDep;
2591 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2592 Action::OFK_Cuda);
2593 DeviceActions.push_back(
2594 C.MakeAction<OffloadAction>(DDep, A->getType()));
2595 }
2596 }
2597
2598 // We generate the fat binary if we have device input actions.
2599 if (!DeviceActions.empty()) {
2600 CudaFatBinary =
2601 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2602
2603 if (!CompileDeviceOnly) {
2604 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2605 Action::OFK_Cuda);
2606 // Clear the fat binary, it is already a dependence to an host
2607 // action.
2608 CudaFatBinary = nullptr;
2609 }
2610
2611 // Remove the CUDA actions as they are already connected to an host
2612 // action or fat binary.
2613 CudaDeviceActions.clear();
2614 }
2615
2616 // We avoid creating host action in device-only mode.
2617 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2618 } else if (CurPhase > phases::Backend) {
2619 // If we are past the backend phase and still have a device action, we
2620 // don't have to do anything as this action is already a device
2621 // top-level action.
2622 return ABRT_Success;
2623 }
2624
2625 assert(CurPhase < phases::Backend && "Generating single CUDA "
2626 "instructions should only occur "
2627 "before the backend phase!");
2628
2629 // By default, we produce an action for each device arch.
2630 for (Action *&A : CudaDeviceActions)
2631 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2632
2633 return ABRT_Success;
2634 }
2635 };
2636 /// \brief HIP action builder. It injects device code in the host backend
2637 /// action.
2638 class HIPActionBuilder final : public CudaActionBuilderBase {
2639 /// The linker inputs obtained for each device arch.
2640 SmallVector<ActionList, 8> DeviceLinkerInputs;
2641
2642 public:
HIPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2643 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2644 const Driver::InputList &Inputs)
2645 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2646
canUseBundlerUnbundler() const2647 bool canUseBundlerUnbundler() const override { return true; }
2648
2649 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2650 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2651 phases::ID CurPhase, phases::ID FinalPhase,
2652 PhasesTy &Phases) override {
2653 // amdgcn does not support linking of object files, therefore we skip
2654 // backend and assemble phases to output LLVM IR. Except for generating
2655 // non-relocatable device coee, where we generate fat binary for device
2656 // code and pass to host in Backend phase.
2657 if (CudaDeviceActions.empty() ||
2658 (CurPhase == phases::Backend && Relocatable) ||
2659 CurPhase == phases::Assemble)
2660 return ABRT_Success;
2661
2662 assert(((CurPhase == phases::Link && Relocatable) ||
2663 CudaDeviceActions.size() == GpuArchList.size()) &&
2664 "Expecting one action per GPU architecture.");
2665 assert(!CompileHostOnly &&
2666 "Not expecting CUDA actions in host-only compilation.");
2667
2668 if (!Relocatable && CurPhase == phases::Backend) {
2669 // If we are in backend phase, we attempt to generate the fat binary.
2670 // We compile each arch to IR and use a link action to generate code
2671 // object containing ISA. Then we use a special "link" action to create
2672 // a fat binary containing all the code objects for different GPU's.
2673 // The fat binary is then an input to the host action.
2674 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2675 // Create a link action to link device IR with device library
2676 // and generate ISA.
2677 ActionList AL;
2678 AL.push_back(CudaDeviceActions[I]);
2679 CudaDeviceActions[I] =
2680 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2681
2682 // OffloadingActionBuilder propagates device arch until an offload
2683 // action. Since the next action for creating fatbin does
2684 // not have device arch, whereas the above link action and its input
2685 // have device arch, an offload action is needed to stop the null
2686 // device arch of the next action being propagated to the above link
2687 // action.
2688 OffloadAction::DeviceDependences DDep;
2689 DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2690 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2691 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2692 DDep, CudaDeviceActions[I]->getType());
2693 }
2694 // Create HIP fat binary with a special "link" action.
2695 CudaFatBinary =
2696 C.MakeAction<LinkJobAction>(CudaDeviceActions,
2697 types::TY_HIP_FATBIN);
2698
2699 if (!CompileDeviceOnly) {
2700 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2701 AssociatedOffloadKind);
2702 // Clear the fat binary, it is already a dependence to an host
2703 // action.
2704 CudaFatBinary = nullptr;
2705 }
2706
2707 // Remove the CUDA actions as they are already connected to an host
2708 // action or fat binary.
2709 CudaDeviceActions.clear();
2710
2711 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2712 } else if (CurPhase == phases::Link) {
2713 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2714 // This happens to each device action originated from each input file.
2715 // Later on, device actions in DeviceLinkerInputs are used to create
2716 // device link actions in appendLinkDependences and the created device
2717 // link actions are passed to the offload action as device dependence.
2718 DeviceLinkerInputs.resize(CudaDeviceActions.size());
2719 auto LI = DeviceLinkerInputs.begin();
2720 for (auto *A : CudaDeviceActions) {
2721 LI->push_back(A);
2722 ++LI;
2723 }
2724
2725 // We will pass the device action as a host dependence, so we don't
2726 // need to do anything else with them.
2727 CudaDeviceActions.clear();
2728 return ABRT_Success;
2729 }
2730
2731 // By default, we produce an action for each device arch.
2732 for (Action *&A : CudaDeviceActions)
2733 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2734 AssociatedOffloadKind);
2735
2736 return ABRT_Success;
2737 }
2738
appendLinkDependences(OffloadAction::DeviceDependences & DA)2739 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2740 // Append a new link action for each device.
2741 unsigned I = 0;
2742 for (auto &LI : DeviceLinkerInputs) {
2743 auto *DeviceLinkAction =
2744 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2745 DA.add(*DeviceLinkAction, *ToolChains[0],
2746 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2747 ++I;
2748 }
2749 }
2750 };
2751
2752 /// OpenMP action builder. The host bitcode is passed to the device frontend
2753 /// and all the device linked images are passed to the host link phase.
2754 class OpenMPActionBuilder final : public DeviceActionBuilder {
2755 /// The OpenMP actions for the current input.
2756 ActionList OpenMPDeviceActions;
2757
2758 /// The linker inputs obtained for each toolchain.
2759 SmallVector<ActionList, 8> DeviceLinkerInputs;
2760
2761 public:
OpenMPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2762 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2763 const Driver::InputList &Inputs)
2764 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2765
2766 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2767 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2768 phases::ID CurPhase, phases::ID FinalPhase,
2769 PhasesTy &Phases) override {
2770 if (OpenMPDeviceActions.empty())
2771 return ABRT_Inactive;
2772
2773 // We should always have an action for each input.
2774 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2775 "Number of OpenMP actions and toolchains do not match.");
2776
2777 // The host only depends on device action in the linking phase, when all
2778 // the device images have to be embedded in the host image.
2779 if (CurPhase == phases::Link) {
2780 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2781 "Toolchains and linker inputs sizes do not match.");
2782 auto LI = DeviceLinkerInputs.begin();
2783 for (auto *A : OpenMPDeviceActions) {
2784 LI->push_back(A);
2785 ++LI;
2786 }
2787
2788 // We passed the device action as a host dependence, so we don't need to
2789 // do anything else with them.
2790 OpenMPDeviceActions.clear();
2791 return ABRT_Success;
2792 }
2793
2794 // By default, we produce an action for each device arch.
2795 for (Action *&A : OpenMPDeviceActions)
2796 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2797
2798 return ABRT_Success;
2799 }
2800
addDeviceDepences(Action * HostAction)2801 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2802
2803 // If this is an input action replicate it for each OpenMP toolchain.
2804 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2805 OpenMPDeviceActions.clear();
2806 for (unsigned I = 0; I < ToolChains.size(); ++I)
2807 OpenMPDeviceActions.push_back(
2808 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2809 return ABRT_Success;
2810 }
2811
2812 // If this is an unbundling action use it as is for each OpenMP toolchain.
2813 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2814 OpenMPDeviceActions.clear();
2815 auto *IA = cast<InputAction>(UA->getInputs().back());
2816 std::string FileName = IA->getInputArg().getAsString(Args);
2817 // Check if the type of the file is the same as the action. Do not
2818 // unbundle it if it is not. Do not unbundle .so files, for example,
2819 // which are not object files.
2820 if (IA->getType() == types::TY_Object &&
2821 (!llvm::sys::path::has_extension(FileName) ||
2822 types::lookupTypeForExtension(
2823 llvm::sys::path::extension(FileName).drop_front()) !=
2824 types::TY_Object))
2825 return ABRT_Inactive;
2826 for (unsigned I = 0; I < ToolChains.size(); ++I) {
2827 OpenMPDeviceActions.push_back(UA);
2828 UA->registerDependentActionInfo(
2829 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2830 }
2831 return ABRT_Success;
2832 }
2833
2834 // When generating code for OpenMP we use the host compile phase result as
2835 // a dependence to the device compile phase so that it can learn what
2836 // declarations should be emitted. However, this is not the only use for
2837 // the host action, so we prevent it from being collapsed.
2838 if (isa<CompileJobAction>(HostAction)) {
2839 HostAction->setCannotBeCollapsedWithNextDependentAction();
2840 assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2841 "Toolchains and device action sizes do not match.");
2842 OffloadAction::HostDependence HDep(
2843 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2844 /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2845 auto TC = ToolChains.begin();
2846 for (Action *&A : OpenMPDeviceActions) {
2847 assert(isa<CompileJobAction>(A));
2848 OffloadAction::DeviceDependences DDep;
2849 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2850 A = C.MakeAction<OffloadAction>(HDep, DDep);
2851 ++TC;
2852 }
2853 }
2854 return ABRT_Success;
2855 }
2856
appendTopLevelActions(ActionList & AL)2857 void appendTopLevelActions(ActionList &AL) override {
2858 if (OpenMPDeviceActions.empty())
2859 return;
2860
2861 // We should always have an action for each input.
2862 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2863 "Number of OpenMP actions and toolchains do not match.");
2864
2865 // Append all device actions followed by the proper offload action.
2866 auto TI = ToolChains.begin();
2867 for (auto *A : OpenMPDeviceActions) {
2868 OffloadAction::DeviceDependences Dep;
2869 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2870 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2871 ++TI;
2872 }
2873 // We no longer need the action stored in this builder.
2874 OpenMPDeviceActions.clear();
2875 }
2876
appendLinkDependences(OffloadAction::DeviceDependences & DA)2877 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2878 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2879 "Toolchains and linker inputs sizes do not match.");
2880
2881 // Append a new link action for each device.
2882 auto TC = ToolChains.begin();
2883 for (auto &LI : DeviceLinkerInputs) {
2884 auto *DeviceLinkAction =
2885 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2886 DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2887 Action::OFK_OpenMP);
2888 ++TC;
2889 }
2890 }
2891
initialize()2892 bool initialize() override {
2893 // Get the OpenMP toolchains. If we don't get any, the action builder will
2894 // know there is nothing to do related to OpenMP offloading.
2895 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2896 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2897 ++TI)
2898 ToolChains.push_back(TI->second);
2899
2900 DeviceLinkerInputs.resize(ToolChains.size());
2901 return false;
2902 }
2903
canUseBundlerUnbundler() const2904 bool canUseBundlerUnbundler() const override {
2905 // OpenMP should use bundled files whenever possible.
2906 return true;
2907 }
2908 };
2909
2910 ///
2911 /// TODO: Add the implementation for other specialized builders here.
2912 ///
2913
2914 /// Specialized builders being used by this offloading action builder.
2915 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2916
2917 /// Flag set to true if all valid builders allow file bundling/unbundling.
2918 bool CanUseBundler;
2919
2920 public:
OffloadingActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2921 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2922 const Driver::InputList &Inputs)
2923 : C(C) {
2924 // Create a specialized builder for each device toolchain.
2925
2926 IsValid = true;
2927
2928 // Create a specialized builder for CUDA.
2929 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2930
2931 // Create a specialized builder for HIP.
2932 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2933
2934 // Create a specialized builder for OpenMP.
2935 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2936
2937 //
2938 // TODO: Build other specialized builders here.
2939 //
2940
2941 // Initialize all the builders, keeping track of errors. If all valid
2942 // builders agree that we can use bundling, set the flag to true.
2943 unsigned ValidBuilders = 0u;
2944 unsigned ValidBuildersSupportingBundling = 0u;
2945 for (auto *SB : SpecializedBuilders) {
2946 IsValid = IsValid && !SB->initialize();
2947
2948 // Update the counters if the builder is valid.
2949 if (SB->isValid()) {
2950 ++ValidBuilders;
2951 if (SB->canUseBundlerUnbundler())
2952 ++ValidBuildersSupportingBundling;
2953 }
2954 }
2955 CanUseBundler =
2956 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2957 }
2958
~OffloadingActionBuilder()2959 ~OffloadingActionBuilder() {
2960 for (auto *SB : SpecializedBuilders)
2961 delete SB;
2962 }
2963
2964 /// Generate an action that adds device dependences (if any) to a host action.
2965 /// If no device dependence actions exist, just return the host action \a
2966 /// HostAction. If an error is found or if no builder requires the host action
2967 /// to be generated, return nullptr.
2968 Action *
addDeviceDependencesToHostAction(Action * HostAction,const Arg * InputArg,phases::ID CurPhase,phases::ID FinalPhase,DeviceActionBuilder::PhasesTy & Phases)2969 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2970 phases::ID CurPhase, phases::ID FinalPhase,
2971 DeviceActionBuilder::PhasesTy &Phases) {
2972 if (!IsValid)
2973 return nullptr;
2974
2975 if (SpecializedBuilders.empty())
2976 return HostAction;
2977
2978 assert(HostAction && "Invalid host action!");
2979
2980 OffloadAction::DeviceDependences DDeps;
2981 // Check if all the programming models agree we should not emit the host
2982 // action. Also, keep track of the offloading kinds employed.
2983 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2984 unsigned InactiveBuilders = 0u;
2985 unsigned IgnoringBuilders = 0u;
2986 for (auto *SB : SpecializedBuilders) {
2987 if (!SB->isValid()) {
2988 ++InactiveBuilders;
2989 continue;
2990 }
2991
2992 auto RetCode =
2993 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2994
2995 // If the builder explicitly says the host action should be ignored,
2996 // we need to increment the variable that tracks the builders that request
2997 // the host object to be ignored.
2998 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2999 ++IgnoringBuilders;
3000
3001 // Unless the builder was inactive for this action, we have to record the
3002 // offload kind because the host will have to use it.
3003 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3004 OffloadKind |= SB->getAssociatedOffloadKind();
3005 }
3006
3007 // If all builders agree that the host object should be ignored, just return
3008 // nullptr.
3009 if (IgnoringBuilders &&
3010 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3011 return nullptr;
3012
3013 if (DDeps.getActions().empty())
3014 return HostAction;
3015
3016 // We have dependences we need to bundle together. We use an offload action
3017 // for that.
3018 OffloadAction::HostDependence HDep(
3019 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3020 /*BoundArch=*/nullptr, DDeps);
3021 return C.MakeAction<OffloadAction>(HDep, DDeps);
3022 }
3023
3024 /// Generate an action that adds a host dependence to a device action. The
3025 /// results will be kept in this action builder. Return true if an error was
3026 /// found.
addHostDependenceToDeviceActions(Action * & HostAction,const Arg * InputArg)3027 bool addHostDependenceToDeviceActions(Action *&HostAction,
3028 const Arg *InputArg) {
3029 if (!IsValid)
3030 return true;
3031
3032 // If we are supporting bundling/unbundling and the current action is an
3033 // input action of non-source file, we replace the host action by the
3034 // unbundling action. The bundler tool has the logic to detect if an input
3035 // is a bundle or not and if the input is not a bundle it assumes it is a
3036 // host file. Therefore it is safe to create an unbundling action even if
3037 // the input is not a bundle.
3038 if (CanUseBundler && isa<InputAction>(HostAction) &&
3039 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3040 !types::isSrcFile(HostAction->getType())) {
3041 auto UnbundlingHostAction =
3042 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3043 UnbundlingHostAction->registerDependentActionInfo(
3044 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3045 /*BoundArch=*/StringRef(), Action::OFK_Host);
3046 HostAction = UnbundlingHostAction;
3047 }
3048
3049 assert(HostAction && "Invalid host action!");
3050
3051 // Register the offload kinds that are used.
3052 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3053 for (auto *SB : SpecializedBuilders) {
3054 if (!SB->isValid())
3055 continue;
3056
3057 auto RetCode = SB->addDeviceDepences(HostAction);
3058
3059 // Host dependences for device actions are not compatible with that same
3060 // action being ignored.
3061 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3062 "Host dependence not expected to be ignored.!");
3063
3064 // Unless the builder was inactive for this action, we have to record the
3065 // offload kind because the host will have to use it.
3066 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3067 OffloadKind |= SB->getAssociatedOffloadKind();
3068 }
3069
3070 // Do not use unbundler if the Host does not depend on device action.
3071 if (OffloadKind == Action::OFK_None && CanUseBundler)
3072 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3073 HostAction = UA->getInputs().back();
3074
3075 return false;
3076 }
3077
3078 /// Add the offloading top level actions to the provided action list. This
3079 /// function can replace the host action by a bundling action if the
3080 /// programming models allow it.
appendTopLevelActions(ActionList & AL,Action * HostAction,const Arg * InputArg)3081 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3082 const Arg *InputArg) {
3083 // Get the device actions to be appended.
3084 ActionList OffloadAL;
3085 for (auto *SB : SpecializedBuilders) {
3086 if (!SB->isValid())
3087 continue;
3088 SB->appendTopLevelActions(OffloadAL);
3089 }
3090
3091 // If we can use the bundler, replace the host action by the bundling one in
3092 // the resulting list. Otherwise, just append the device actions. For
3093 // device only compilation, HostAction is a null pointer, therefore only do
3094 // this when HostAction is not a null pointer.
3095 if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3096 // Add the host action to the list in order to create the bundling action.
3097 OffloadAL.push_back(HostAction);
3098
3099 // We expect that the host action was just appended to the action list
3100 // before this method was called.
3101 assert(HostAction == AL.back() && "Host action not in the list??");
3102 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3103 AL.back() = HostAction;
3104 } else
3105 AL.append(OffloadAL.begin(), OffloadAL.end());
3106
3107 // Propagate to the current host action (if any) the offload information
3108 // associated with the current input.
3109 if (HostAction)
3110 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3111 /*BoundArch=*/nullptr);
3112 return false;
3113 }
3114
3115 /// Processes the host linker action. This currently consists of replacing it
3116 /// with an offload action if there are device link objects and propagate to
3117 /// the host action all the offload kinds used in the current compilation. The
3118 /// resulting action is returned.
processHostLinkAction(Action * HostAction)3119 Action *processHostLinkAction(Action *HostAction) {
3120 // Add all the dependences from the device linking actions.
3121 OffloadAction::DeviceDependences DDeps;
3122 for (auto *SB : SpecializedBuilders) {
3123 if (!SB->isValid())
3124 continue;
3125
3126 SB->appendLinkDependences(DDeps);
3127 }
3128
3129 // Calculate all the offload kinds used in the current compilation.
3130 unsigned ActiveOffloadKinds = 0u;
3131 for (auto &I : InputArgToOffloadKindMap)
3132 ActiveOffloadKinds |= I.second;
3133
3134 // If we don't have device dependencies, we don't have to create an offload
3135 // action.
3136 if (DDeps.getActions().empty()) {
3137 // Propagate all the active kinds to host action. Given that it is a link
3138 // action it is assumed to depend on all actions generated so far.
3139 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3140 /*BoundArch=*/nullptr);
3141 return HostAction;
3142 }
3143
3144 // Create the offload action with all dependences. When an offload action
3145 // is created the kinds are propagated to the host action, so we don't have
3146 // to do that explicitly here.
3147 OffloadAction::HostDependence HDep(
3148 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3149 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3150 return C.MakeAction<OffloadAction>(HDep, DDeps);
3151 }
3152 };
3153 } // anonymous namespace.
3154
BuildActions(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3155 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3156 const InputList &Inputs, ActionList &Actions) const {
3157 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3158
3159 if (!SuppressMissingInputWarning && Inputs.empty()) {
3160 Diag(clang::diag::err_drv_no_input_files);
3161 return;
3162 }
3163
3164 Arg *FinalPhaseArg;
3165 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3166
3167 if (FinalPhase == phases::Link) {
3168 if (Args.hasArg(options::OPT_emit_llvm))
3169 Diag(clang::diag::err_drv_emit_llvm_link);
3170 if (IsCLMode() && LTOMode != LTOK_None &&
3171 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3172 Diag(clang::diag::err_drv_lto_without_lld);
3173 }
3174
3175 // Reject -Z* at the top level, these options should never have been exposed
3176 // by gcc.
3177 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3178 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3179
3180 // Diagnose misuse of /Fo.
3181 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3182 StringRef V = A->getValue();
3183 if (Inputs.size() > 1 && !V.empty() &&
3184 !llvm::sys::path::is_separator(V.back())) {
3185 // Check whether /Fo tries to name an output file for multiple inputs.
3186 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3187 << A->getSpelling() << V;
3188 Args.eraseArg(options::OPT__SLASH_Fo);
3189 }
3190 }
3191
3192 // Diagnose misuse of /Fa.
3193 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3194 StringRef V = A->getValue();
3195 if (Inputs.size() > 1 && !V.empty() &&
3196 !llvm::sys::path::is_separator(V.back())) {
3197 // Check whether /Fa tries to name an asm file for multiple inputs.
3198 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3199 << A->getSpelling() << V;
3200 Args.eraseArg(options::OPT__SLASH_Fa);
3201 }
3202 }
3203
3204 // Diagnose misuse of /o.
3205 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3206 if (A->getValue()[0] == '\0') {
3207 // It has to have a value.
3208 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3209 Args.eraseArg(options::OPT__SLASH_o);
3210 }
3211 }
3212
3213 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3214 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3215 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3216 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3217 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3218 Args.eraseArg(options::OPT__SLASH_Yc);
3219 Args.eraseArg(options::OPT__SLASH_Yu);
3220 YcArg = YuArg = nullptr;
3221 }
3222 if (YcArg && Inputs.size() > 1) {
3223 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3224 Args.eraseArg(options::OPT__SLASH_Yc);
3225 YcArg = nullptr;
3226 }
3227 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3228 // If only preprocessing or /Y- is used, all pch handling is disabled.
3229 // Rather than check for it everywhere, just remove clang-cl pch-related
3230 // flags here.
3231 Args.eraseArg(options::OPT__SLASH_Fp);
3232 Args.eraseArg(options::OPT__SLASH_Yc);
3233 Args.eraseArg(options::OPT__SLASH_Yu);
3234 YcArg = YuArg = nullptr;
3235 }
3236
3237 // Builder to be used to build offloading actions.
3238 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3239
3240 // Construct the actions to perform.
3241 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3242 ActionList LinkerInputs;
3243
3244 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3245 for (auto &I : Inputs) {
3246 types::ID InputType = I.first;
3247 const Arg *InputArg = I.second;
3248
3249 PL.clear();
3250 types::getCompilationPhases(InputType, PL);
3251
3252 // If the first step comes after the final phase we are doing as part of
3253 // this compilation, warn the user about it.
3254 phases::ID InitialPhase = PL[0];
3255 if (InitialPhase > FinalPhase) {
3256 if (InputArg->isClaimed())
3257 continue;
3258
3259 // Claim here to avoid the more general unused warning.
3260 InputArg->claim();
3261
3262 // Suppress all unused style warnings with -Qunused-arguments
3263 if (Args.hasArg(options::OPT_Qunused_arguments))
3264 continue;
3265
3266 // Special case when final phase determined by binary name, rather than
3267 // by a command-line argument with a corresponding Arg.
3268 if (CCCIsCPP())
3269 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3270 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3271 // Special case '-E' warning on a previously preprocessed file to make
3272 // more sense.
3273 else if (InitialPhase == phases::Compile &&
3274 FinalPhase == phases::Preprocess &&
3275 getPreprocessedType(InputType) == types::TY_INVALID)
3276 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3277 << InputArg->getAsString(Args) << !!FinalPhaseArg
3278 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3279 else
3280 Diag(clang::diag::warn_drv_input_file_unused)
3281 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3282 << !!FinalPhaseArg
3283 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3284 continue;
3285 }
3286
3287 if (YcArg) {
3288 // Add a separate precompile phase for the compile phase.
3289 if (FinalPhase >= phases::Compile) {
3290 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3291 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
3292 types::getCompilationPhases(HeaderType, PCHPL);
3293 // Build the pipeline for the pch file.
3294 Action *ClangClPch =
3295 C.MakeAction<InputAction>(*InputArg, HeaderType);
3296 for (phases::ID Phase : PCHPL)
3297 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3298 assert(ClangClPch);
3299 Actions.push_back(ClangClPch);
3300 // The driver currently exits after the first failed command. This
3301 // relies on that behavior, to make sure if the pch generation fails,
3302 // the main compilation won't run.
3303 // FIXME: If the main compilation fails, the PCH generation should
3304 // probably not be considered successful either.
3305 }
3306 }
3307
3308 // Build the pipeline for this file.
3309 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3310
3311 // Use the current host action in any of the offloading actions, if
3312 // required.
3313 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3314 break;
3315
3316 for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3317 i != e; ++i) {
3318 phases::ID Phase = *i;
3319
3320 // We are done if this step is past what the user requested.
3321 if (Phase > FinalPhase)
3322 break;
3323
3324 // Add any offload action the host action depends on.
3325 Current = OffloadBuilder.addDeviceDependencesToHostAction(
3326 Current, InputArg, Phase, FinalPhase, PL);
3327 if (!Current)
3328 break;
3329
3330 // Queue linker inputs.
3331 if (Phase == phases::Link) {
3332 assert((i + 1) == e && "linking must be final compilation step.");
3333 LinkerInputs.push_back(Current);
3334 Current = nullptr;
3335 break;
3336 }
3337
3338 // Each precompiled header file after a module file action is a module
3339 // header of that same module file, rather than being compiled to a
3340 // separate PCH.
3341 if (Phase == phases::Precompile && HeaderModuleAction &&
3342 getPrecompiledType(InputType) == types::TY_PCH) {
3343 HeaderModuleAction->addModuleHeaderInput(Current);
3344 Current = nullptr;
3345 break;
3346 }
3347
3348 // FIXME: Should we include any prior module file outputs as inputs of
3349 // later actions in the same command line?
3350
3351 // Otherwise construct the appropriate action.
3352 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3353
3354 // We didn't create a new action, so we will just move to the next phase.
3355 if (NewCurrent == Current)
3356 continue;
3357
3358 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3359 HeaderModuleAction = HMA;
3360
3361 Current = NewCurrent;
3362
3363 // Use the current host action in any of the offloading actions, if
3364 // required.
3365 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3366 break;
3367
3368 if (Current->getType() == types::TY_Nothing)
3369 break;
3370 }
3371
3372 // If we ended with something, add to the output list.
3373 if (Current)
3374 Actions.push_back(Current);
3375
3376 // Add any top level actions generated for offloading.
3377 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3378 }
3379
3380 // Add a link action if necessary.
3381 if (!LinkerInputs.empty()) {
3382 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3383 LA = OffloadBuilder.processHostLinkAction(LA);
3384 Actions.push_back(LA);
3385 }
3386
3387 // If we are linking, claim any options which are obviously only used for
3388 // compilation.
3389 if (FinalPhase == phases::Link && PL.size() == 1) {
3390 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3391 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3392 }
3393
3394 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3395 // Compile phase that prints out supported cpu models and quits.
3396 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3397 // Use the -mcpu=? flag as the dummy input to cc1.
3398 Actions.clear();
3399 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3400 Actions.push_back(
3401 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3402 for (auto &I : Inputs)
3403 I.second->claim();
3404 }
3405
3406 // Claim ignored clang-cl options.
3407 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3408
3409 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3410 // to non-CUDA compilations and should not trigger warnings there.
3411 Args.ClaimAllArgs(options::OPT_cuda_host_only);
3412 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3413 }
3414
ConstructPhaseAction(Compilation & C,const ArgList & Args,phases::ID Phase,Action * Input,Action::OffloadKind TargetDeviceOffloadKind) const3415 Action *Driver::ConstructPhaseAction(
3416 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3417 Action::OffloadKind TargetDeviceOffloadKind) const {
3418 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3419
3420 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3421 // encode this in the steps because the intermediate type depends on
3422 // arguments. Just special case here.
3423 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3424 return Input;
3425
3426 // Build the appropriate action.
3427 switch (Phase) {
3428 case phases::Link:
3429 llvm_unreachable("link action invalid here.");
3430 case phases::Preprocess: {
3431 types::ID OutputTy;
3432 // -{M, MM} alter the output type.
3433 if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3434 OutputTy = types::TY_Dependencies;
3435 } else {
3436 OutputTy = Input->getType();
3437 if (!Args.hasFlag(options::OPT_frewrite_includes,
3438 options::OPT_fno_rewrite_includes, false) &&
3439 !Args.hasFlag(options::OPT_frewrite_imports,
3440 options::OPT_fno_rewrite_imports, false) &&
3441 !CCGenDiagnostics)
3442 OutputTy = types::getPreprocessedType(OutputTy);
3443 assert(OutputTy != types::TY_INVALID &&
3444 "Cannot preprocess this input type!");
3445 }
3446 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3447 }
3448 case phases::Precompile: {
3449 types::ID OutputTy = getPrecompiledType(Input->getType());
3450 assert(OutputTy != types::TY_INVALID &&
3451 "Cannot precompile this input type!");
3452
3453 // If we're given a module name, precompile header file inputs as a
3454 // module, not as a precompiled header.
3455 const char *ModName = nullptr;
3456 if (OutputTy == types::TY_PCH) {
3457 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3458 ModName = A->getValue();
3459 if (ModName)
3460 OutputTy = types::TY_ModuleFile;
3461 }
3462
3463 if (Args.hasArg(options::OPT_fsyntax_only)) {
3464 // Syntax checks should not emit a PCH file
3465 OutputTy = types::TY_Nothing;
3466 }
3467
3468 if (ModName)
3469 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3470 ModName);
3471 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3472 }
3473 case phases::Compile: {
3474 if (Args.hasArg(options::OPT_fsyntax_only))
3475 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3476 if (Args.hasArg(options::OPT_rewrite_objc))
3477 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3478 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3479 return C.MakeAction<CompileJobAction>(Input,
3480 types::TY_RewrittenLegacyObjC);
3481 if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3482 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3483 if (Args.hasArg(options::OPT__migrate))
3484 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3485 if (Args.hasArg(options::OPT_emit_ast))
3486 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3487 if (Args.hasArg(options::OPT_module_file_info))
3488 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3489 if (Args.hasArg(options::OPT_verify_pch))
3490 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3491 if (Args.hasArg(options::OPT_emit_iterface_stubs))
3492 return C.MakeAction<CompileJobAction>(Input, types::TY_IFS);
3493 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3494 }
3495 case phases::Backend: {
3496 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3497 types::ID Output =
3498 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3499 return C.MakeAction<BackendJobAction>(Input, Output);
3500 }
3501 if (Args.hasArg(options::OPT_emit_llvm)) {
3502 types::ID Output =
3503 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3504 return C.MakeAction<BackendJobAction>(Input, Output);
3505 }
3506 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3507 }
3508 case phases::Assemble:
3509 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3510 }
3511
3512 llvm_unreachable("invalid phase in ConstructPhaseAction");
3513 }
3514
BuildJobs(Compilation & C) const3515 void Driver::BuildJobs(Compilation &C) const {
3516 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3517
3518 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3519
3520 // It is an error to provide a -o option if we are making multiple output
3521 // files.
3522 if (FinalOutput) {
3523 unsigned NumOutputs = 0;
3524 for (const Action *A : C.getActions())
3525 if (A->getType() != types::TY_Nothing)
3526 ++NumOutputs;
3527
3528 if (NumOutputs > 1) {
3529 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3530 FinalOutput = nullptr;
3531 }
3532 }
3533
3534 // Collect the list of architectures.
3535 llvm::StringSet<> ArchNames;
3536 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3537 for (const Arg *A : C.getArgs())
3538 if (A->getOption().matches(options::OPT_arch))
3539 ArchNames.insert(A->getValue());
3540
3541 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3542 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3543 for (Action *A : C.getActions()) {
3544 // If we are linking an image for multiple archs then the linker wants
3545 // -arch_multiple and -final_output <final image name>. Unfortunately, this
3546 // doesn't fit in cleanly because we have to pass this information down.
3547 //
3548 // FIXME: This is a hack; find a cleaner way to integrate this into the
3549 // process.
3550 const char *LinkingOutput = nullptr;
3551 if (isa<LipoJobAction>(A)) {
3552 if (FinalOutput)
3553 LinkingOutput = FinalOutput->getValue();
3554 else
3555 LinkingOutput = getDefaultImageName();
3556 }
3557
3558 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3559 /*BoundArch*/ StringRef(),
3560 /*AtTopLevel*/ true,
3561 /*MultipleArchs*/ ArchNames.size() > 1,
3562 /*LinkingOutput*/ LinkingOutput, CachedResults,
3563 /*TargetDeviceOffloadKind*/ Action::OFK_None);
3564 }
3565
3566 // If the user passed -Qunused-arguments or there were errors, don't warn
3567 // about any unused arguments.
3568 if (Diags.hasErrorOccurred() ||
3569 C.getArgs().hasArg(options::OPT_Qunused_arguments))
3570 return;
3571
3572 // Claim -### here.
3573 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3574
3575 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3576 (void)C.getArgs().hasArg(options::OPT_driver_mode);
3577 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3578
3579 for (Arg *A : C.getArgs()) {
3580 // FIXME: It would be nice to be able to send the argument to the
3581 // DiagnosticsEngine, so that extra values, position, and so on could be
3582 // printed.
3583 if (!A->isClaimed()) {
3584 if (A->getOption().hasFlag(options::NoArgumentUnused))
3585 continue;
3586
3587 // Suppress the warning automatically if this is just a flag, and it is an
3588 // instance of an argument we already claimed.
3589 const Option &Opt = A->getOption();
3590 if (Opt.getKind() == Option::FlagClass) {
3591 bool DuplicateClaimed = false;
3592
3593 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3594 if (AA->isClaimed()) {
3595 DuplicateClaimed = true;
3596 break;
3597 }
3598 }
3599
3600 if (DuplicateClaimed)
3601 continue;
3602 }
3603
3604 // In clang-cl, don't mention unknown arguments here since they have
3605 // already been warned about.
3606 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3607 Diag(clang::diag::warn_drv_unused_argument)
3608 << A->getAsString(C.getArgs());
3609 }
3610 }
3611 }
3612
3613 namespace {
3614 /// Utility class to control the collapse of dependent actions and select the
3615 /// tools accordingly.
3616 class ToolSelector final {
3617 /// The tool chain this selector refers to.
3618 const ToolChain &TC;
3619
3620 /// The compilation this selector refers to.
3621 const Compilation &C;
3622
3623 /// The base action this selector refers to.
3624 const JobAction *BaseAction;
3625
3626 /// Set to true if the current toolchain refers to host actions.
3627 bool IsHostSelector;
3628
3629 /// Set to true if save-temps and embed-bitcode functionalities are active.
3630 bool SaveTemps;
3631 bool EmbedBitcode;
3632
3633 /// Get previous dependent action or null if that does not exist. If
3634 /// \a CanBeCollapsed is false, that action must be legal to collapse or
3635 /// null will be returned.
getPrevDependentAction(const ActionList & Inputs,ActionList & SavedOffloadAction,bool CanBeCollapsed=true)3636 const JobAction *getPrevDependentAction(const ActionList &Inputs,
3637 ActionList &SavedOffloadAction,
3638 bool CanBeCollapsed = true) {
3639 // An option can be collapsed only if it has a single input.
3640 if (Inputs.size() != 1)
3641 return nullptr;
3642
3643 Action *CurAction = *Inputs.begin();
3644 if (CanBeCollapsed &&
3645 !CurAction->isCollapsingWithNextDependentActionLegal())
3646 return nullptr;
3647
3648 // If the input action is an offload action. Look through it and save any
3649 // offload action that can be dropped in the event of a collapse.
3650 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3651 // If the dependent action is a device action, we will attempt to collapse
3652 // only with other device actions. Otherwise, we would do the same but
3653 // with host actions only.
3654 if (!IsHostSelector) {
3655 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3656 CurAction =
3657 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3658 if (CanBeCollapsed &&
3659 !CurAction->isCollapsingWithNextDependentActionLegal())
3660 return nullptr;
3661 SavedOffloadAction.push_back(OA);
3662 return dyn_cast<JobAction>(CurAction);
3663 }
3664 } else if (OA->hasHostDependence()) {
3665 CurAction = OA->getHostDependence();
3666 if (CanBeCollapsed &&
3667 !CurAction->isCollapsingWithNextDependentActionLegal())
3668 return nullptr;
3669 SavedOffloadAction.push_back(OA);
3670 return dyn_cast<JobAction>(CurAction);
3671 }
3672 return nullptr;
3673 }
3674
3675 return dyn_cast<JobAction>(CurAction);
3676 }
3677
3678 /// Return true if an assemble action can be collapsed.
canCollapseAssembleAction() const3679 bool canCollapseAssembleAction() const {
3680 return TC.useIntegratedAs() && !SaveTemps &&
3681 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3682 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3683 !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3684 }
3685
3686 /// Return true if a preprocessor action can be collapsed.
canCollapsePreprocessorAction() const3687 bool canCollapsePreprocessorAction() const {
3688 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3689 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3690 !C.getArgs().hasArg(options::OPT_rewrite_objc);
3691 }
3692
3693 /// Struct that relates an action with the offload actions that would be
3694 /// collapsed with it.
3695 struct JobActionInfo final {
3696 /// The action this info refers to.
3697 const JobAction *JA = nullptr;
3698 /// The offload actions we need to take care off if this action is
3699 /// collapsed.
3700 ActionList SavedOffloadAction;
3701 };
3702
3703 /// Append collapsed offload actions from the give nnumber of elements in the
3704 /// action info array.
AppendCollapsedOffloadAction(ActionList & CollapsedOffloadAction,ArrayRef<JobActionInfo> & ActionInfo,unsigned ElementNum)3705 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3706 ArrayRef<JobActionInfo> &ActionInfo,
3707 unsigned ElementNum) {
3708 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3709 for (unsigned I = 0; I < ElementNum; ++I)
3710 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3711 ActionInfo[I].SavedOffloadAction.end());
3712 }
3713
3714 /// Functions that attempt to perform the combining. They detect if that is
3715 /// legal, and if so they update the inputs \a Inputs and the offload action
3716 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3717 /// the combined action is returned. If the combining is not legal or if the
3718 /// tool does not exist, null is returned.
3719 /// Currently three kinds of collapsing are supported:
3720 /// - Assemble + Backend + Compile;
3721 /// - Assemble + Backend ;
3722 /// - Backend + Compile.
3723 const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)3724 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3725 ActionList &Inputs,
3726 ActionList &CollapsedOffloadAction) {
3727 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3728 return nullptr;
3729 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3730 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3731 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3732 if (!AJ || !BJ || !CJ)
3733 return nullptr;
3734
3735 // Get compiler tool.
3736 const Tool *T = TC.SelectTool(*CJ);
3737 if (!T)
3738 return nullptr;
3739
3740 // When using -fembed-bitcode, it is required to have the same tool (clang)
3741 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3742 if (EmbedBitcode) {
3743 const Tool *BT = TC.SelectTool(*BJ);
3744 if (BT == T)
3745 return nullptr;
3746 }
3747
3748 if (!T->hasIntegratedAssembler())
3749 return nullptr;
3750
3751 Inputs = CJ->getInputs();
3752 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3753 /*NumElements=*/3);
3754 return T;
3755 }
combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)3756 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3757 ActionList &Inputs,
3758 ActionList &CollapsedOffloadAction) {
3759 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3760 return nullptr;
3761 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3762 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3763 if (!AJ || !BJ)
3764 return nullptr;
3765
3766 // Retrieve the compile job, backend action must always be preceded by one.
3767 ActionList CompileJobOffloadActions;
3768 auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3769 /*CanBeCollapsed=*/false);
3770 if (!AJ || !BJ || !CJ)
3771 return nullptr;
3772
3773 assert(isa<CompileJobAction>(CJ) &&
3774 "Expecting compile job preceding backend job.");
3775
3776 // Get compiler tool.
3777 const Tool *T = TC.SelectTool(*CJ);
3778 if (!T)
3779 return nullptr;
3780
3781 if (!T->hasIntegratedAssembler())
3782 return nullptr;
3783
3784 Inputs = BJ->getInputs();
3785 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3786 /*NumElements=*/2);
3787 return T;
3788 }
combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)3789 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3790 ActionList &Inputs,
3791 ActionList &CollapsedOffloadAction) {
3792 if (ActionInfo.size() < 2)
3793 return nullptr;
3794 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3795 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3796 if (!BJ || !CJ)
3797 return nullptr;
3798
3799 // Check if the initial input (to the compile job or its predessor if one
3800 // exists) is LLVM bitcode. In that case, no preprocessor step is required
3801 // and we can still collapse the compile and backend jobs when we have
3802 // -save-temps. I.e. there is no need for a separate compile job just to
3803 // emit unoptimized bitcode.
3804 bool InputIsBitcode = true;
3805 for (size_t i = 1; i < ActionInfo.size(); i++)
3806 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3807 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3808 InputIsBitcode = false;
3809 break;
3810 }
3811 if (!InputIsBitcode && !canCollapsePreprocessorAction())
3812 return nullptr;
3813
3814 // Get compiler tool.
3815 const Tool *T = TC.SelectTool(*CJ);
3816 if (!T)
3817 return nullptr;
3818
3819 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3820 return nullptr;
3821
3822 Inputs = CJ->getInputs();
3823 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3824 /*NumElements=*/2);
3825 return T;
3826 }
3827
3828 /// Updates the inputs if the obtained tool supports combining with
3829 /// preprocessor action, and the current input is indeed a preprocessor
3830 /// action. If combining results in the collapse of offloading actions, those
3831 /// are appended to \a CollapsedOffloadAction.
combineWithPreprocessor(const Tool * T,ActionList & Inputs,ActionList & CollapsedOffloadAction)3832 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3833 ActionList &CollapsedOffloadAction) {
3834 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3835 return;
3836
3837 // Attempt to get a preprocessor action dependence.
3838 ActionList PreprocessJobOffloadActions;
3839 ActionList NewInputs;
3840 for (Action *A : Inputs) {
3841 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3842 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3843 NewInputs.push_back(A);
3844 continue;
3845 }
3846
3847 // This is legal to combine. Append any offload action we found and add the
3848 // current input to preprocessor inputs.
3849 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3850 PreprocessJobOffloadActions.end());
3851 NewInputs.append(PJ->input_begin(), PJ->input_end());
3852 }
3853 Inputs = NewInputs;
3854 }
3855
3856 public:
ToolSelector(const JobAction * BaseAction,const ToolChain & TC,const Compilation & C,bool SaveTemps,bool EmbedBitcode)3857 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3858 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3859 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3860 EmbedBitcode(EmbedBitcode) {
3861 assert(BaseAction && "Invalid base action.");
3862 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3863 }
3864
3865 /// Check if a chain of actions can be combined and return the tool that can
3866 /// handle the combination of actions. The pointer to the current inputs \a
3867 /// Inputs and the list of offload actions \a CollapsedOffloadActions
3868 /// connected to collapsed actions are updated accordingly. The latter enables
3869 /// the caller of the selector to process them afterwards instead of just
3870 /// dropping them. If no suitable tool is found, null will be returned.
getTool(ActionList & Inputs,ActionList & CollapsedOffloadAction)3871 const Tool *getTool(ActionList &Inputs,
3872 ActionList &CollapsedOffloadAction) {
3873 //
3874 // Get the largest chain of actions that we could combine.
3875 //
3876
3877 SmallVector<JobActionInfo, 5> ActionChain(1);
3878 ActionChain.back().JA = BaseAction;
3879 while (ActionChain.back().JA) {
3880 const Action *CurAction = ActionChain.back().JA;
3881
3882 // Grow the chain by one element.
3883 ActionChain.resize(ActionChain.size() + 1);
3884 JobActionInfo &AI = ActionChain.back();
3885
3886 // Attempt to fill it with the
3887 AI.JA =
3888 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3889 }
3890
3891 // Pop the last action info as it could not be filled.
3892 ActionChain.pop_back();
3893
3894 //
3895 // Attempt to combine actions. If all combining attempts failed, just return
3896 // the tool of the provided action. At the end we attempt to combine the
3897 // action with any preprocessor action it may depend on.
3898 //
3899
3900 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3901 CollapsedOffloadAction);
3902 if (!T)
3903 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3904 if (!T)
3905 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3906 if (!T) {
3907 Inputs = BaseAction->getInputs();
3908 T = TC.SelectTool(*BaseAction);
3909 }
3910
3911 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3912 return T;
3913 }
3914 };
3915 }
3916
3917 /// Return a string that uniquely identifies the result of a job. The bound arch
3918 /// is not necessarily represented in the toolchain's triple -- for example,
3919 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3920 /// Also, we need to add the offloading device kind, as the same tool chain can
3921 /// be used for host and device for some programming models, e.g. OpenMP.
GetTriplePlusArchString(const ToolChain * TC,StringRef BoundArch,Action::OffloadKind OffloadKind)3922 static std::string GetTriplePlusArchString(const ToolChain *TC,
3923 StringRef BoundArch,
3924 Action::OffloadKind OffloadKind) {
3925 std::string TriplePlusArch = TC->getTriple().normalize();
3926 if (!BoundArch.empty()) {
3927 TriplePlusArch += "-";
3928 TriplePlusArch += BoundArch;
3929 }
3930 TriplePlusArch += "-";
3931 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3932 return TriplePlusArch;
3933 }
3934
BuildJobsForAction(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfo> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const3935 InputInfo Driver::BuildJobsForAction(
3936 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3937 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3938 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3939 Action::OffloadKind TargetDeviceOffloadKind) const {
3940 std::pair<const Action *, std::string> ActionTC = {
3941 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3942 auto CachedResult = CachedResults.find(ActionTC);
3943 if (CachedResult != CachedResults.end()) {
3944 return CachedResult->second;
3945 }
3946 InputInfo Result = BuildJobsForActionNoCache(
3947 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3948 CachedResults, TargetDeviceOffloadKind);
3949 CachedResults[ActionTC] = Result;
3950 return Result;
3951 }
3952
BuildJobsForActionNoCache(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfo> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const3953 InputInfo Driver::BuildJobsForActionNoCache(
3954 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3955 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3956 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3957 Action::OffloadKind TargetDeviceOffloadKind) const {
3958 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3959
3960 InputInfoList OffloadDependencesInputInfo;
3961 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3962 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3963 // The 'Darwin' toolchain is initialized only when its arguments are
3964 // computed. Get the default arguments for OFK_None to ensure that
3965 // initialization is performed before processing the offload action.
3966 // FIXME: Remove when darwin's toolchain is initialized during construction.
3967 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3968
3969 // The offload action is expected to be used in four different situations.
3970 //
3971 // a) Set a toolchain/architecture/kind for a host action:
3972 // Host Action 1 -> OffloadAction -> Host Action 2
3973 //
3974 // b) Set a toolchain/architecture/kind for a device action;
3975 // Device Action 1 -> OffloadAction -> Device Action 2
3976 //
3977 // c) Specify a device dependence to a host action;
3978 // Device Action 1 _
3979 // \
3980 // Host Action 1 ---> OffloadAction -> Host Action 2
3981 //
3982 // d) Specify a host dependence to a device action.
3983 // Host Action 1 _
3984 // \
3985 // Device Action 1 ---> OffloadAction -> Device Action 2
3986 //
3987 // For a) and b), we just return the job generated for the dependence. For
3988 // c) and d) we override the current action with the host/device dependence
3989 // if the current toolchain is host/device and set the offload dependences
3990 // info with the jobs obtained from the device/host dependence(s).
3991
3992 // If there is a single device option, just generate the job for it.
3993 if (OA->hasSingleDeviceDependence()) {
3994 InputInfo DevA;
3995 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3996 const char *DepBoundArch) {
3997 DevA =
3998 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3999 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4000 CachedResults, DepA->getOffloadingDeviceKind());
4001 });
4002 return DevA;
4003 }
4004
4005 // If 'Action 2' is host, we generate jobs for the device dependences and
4006 // override the current action with the host dependence. Otherwise, we
4007 // generate the host dependences and override the action with the device
4008 // dependence. The dependences can't therefore be a top-level action.
4009 OA->doOnEachDependence(
4010 /*IsHostDependence=*/BuildingForOffloadDevice,
4011 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4012 OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4013 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4014 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4015 DepA->getOffloadingDeviceKind()));
4016 });
4017
4018 A = BuildingForOffloadDevice
4019 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4020 : OA->getHostDependence();
4021 }
4022
4023 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4024 // FIXME: It would be nice to not claim this here; maybe the old scheme of
4025 // just using Args was better?
4026 const Arg &Input = IA->getInputArg();
4027 Input.claim();
4028 if (Input.getOption().matches(options::OPT_INPUT)) {
4029 const char *Name = Input.getValue();
4030 return InputInfo(A, Name, /* _BaseInput = */ Name);
4031 }
4032 return InputInfo(A, &Input, /* _BaseInput = */ "");
4033 }
4034
4035 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4036 const ToolChain *TC;
4037 StringRef ArchName = BAA->getArchName();
4038
4039 if (!ArchName.empty())
4040 TC = &getToolChain(C.getArgs(),
4041 computeTargetTriple(*this, TargetTriple,
4042 C.getArgs(), ArchName));
4043 else
4044 TC = &C.getDefaultToolChain();
4045
4046 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4047 MultipleArchs, LinkingOutput, CachedResults,
4048 TargetDeviceOffloadKind);
4049 }
4050
4051
4052 ActionList Inputs = A->getInputs();
4053
4054 const JobAction *JA = cast<JobAction>(A);
4055 ActionList CollapsedOffloadActions;
4056
4057 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4058 embedBitcodeInObject() && !isUsingLTO());
4059 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4060
4061 if (!T)
4062 return InputInfo();
4063
4064 // If we've collapsed action list that contained OffloadAction we
4065 // need to build jobs for host/device-side inputs it may have held.
4066 for (const auto *OA : CollapsedOffloadActions)
4067 cast<OffloadAction>(OA)->doOnEachDependence(
4068 /*IsHostDependence=*/BuildingForOffloadDevice,
4069 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4070 OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4071 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4072 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4073 DepA->getOffloadingDeviceKind()));
4074 });
4075
4076 // Only use pipes when there is exactly one input.
4077 InputInfoList InputInfos;
4078 for (const Action *Input : Inputs) {
4079 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4080 // shouldn't get temporary output names.
4081 // FIXME: Clean this up.
4082 bool SubJobAtTopLevel =
4083 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4084 InputInfos.push_back(BuildJobsForAction(
4085 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4086 CachedResults, A->getOffloadingDeviceKind()));
4087 }
4088
4089 // Always use the first input as the base input.
4090 const char *BaseInput = InputInfos[0].getBaseInput();
4091
4092 // ... except dsymutil actions, which use their actual input as the base
4093 // input.
4094 if (JA->getType() == types::TY_dSYM)
4095 BaseInput = InputInfos[0].getFilename();
4096
4097 // ... and in header module compilations, which use the module name.
4098 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4099 BaseInput = ModuleJA->getModuleName();
4100
4101 // Append outputs of offload device jobs to the input list
4102 if (!OffloadDependencesInputInfo.empty())
4103 InputInfos.append(OffloadDependencesInputInfo.begin(),
4104 OffloadDependencesInputInfo.end());
4105
4106 // Set the effective triple of the toolchain for the duration of this job.
4107 llvm::Triple EffectiveTriple;
4108 const ToolChain &ToolTC = T->getToolChain();
4109 const ArgList &Args =
4110 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4111 if (InputInfos.size() != 1) {
4112 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4113 } else {
4114 // Pass along the input type if it can be unambiguously determined.
4115 EffectiveTriple = llvm::Triple(
4116 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4117 }
4118 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4119
4120 // Determine the place to write output to, if any.
4121 InputInfo Result;
4122 InputInfoList UnbundlingResults;
4123 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4124 // If we have an unbundling job, we need to create results for all the
4125 // outputs. We also update the results cache so that other actions using
4126 // this unbundling action can get the right results.
4127 for (auto &UI : UA->getDependentActionsInfo()) {
4128 assert(UI.DependentOffloadKind != Action::OFK_None &&
4129 "Unbundling with no offloading??");
4130
4131 // Unbundling actions are never at the top level. When we generate the
4132 // offloading prefix, we also do that for the host file because the
4133 // unbundling action does not change the type of the output which can
4134 // cause a overwrite.
4135 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4136 UI.DependentOffloadKind,
4137 UI.DependentToolChain->getTriple().normalize(),
4138 /*CreatePrefixForHost=*/true);
4139 auto CurI = InputInfo(
4140 UA,
4141 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4142 /*AtTopLevel=*/false,
4143 MultipleArchs ||
4144 UI.DependentOffloadKind == Action::OFK_HIP,
4145 OffloadingPrefix),
4146 BaseInput);
4147 // Save the unbundling result.
4148 UnbundlingResults.push_back(CurI);
4149
4150 // Get the unique string identifier for this dependence and cache the
4151 // result.
4152 StringRef Arch;
4153 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4154 if (UI.DependentOffloadKind == Action::OFK_Host)
4155 Arch = StringRef();
4156 else
4157 Arch = UI.DependentBoundArch;
4158 } else
4159 Arch = BoundArch;
4160
4161 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4162 UI.DependentOffloadKind)}] =
4163 CurI;
4164 }
4165
4166 // Now that we have all the results generated, select the one that should be
4167 // returned for the current depending action.
4168 std::pair<const Action *, std::string> ActionTC = {
4169 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4170 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4171 "Result does not exist??");
4172 Result = CachedResults[ActionTC];
4173 } else if (JA->getType() == types::TY_Nothing)
4174 Result = InputInfo(A, BaseInput);
4175 else {
4176 // We only have to generate a prefix for the host if this is not a top-level
4177 // action.
4178 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4179 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4180 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4181 !AtTopLevel);
4182 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4183 AtTopLevel, MultipleArchs,
4184 OffloadingPrefix),
4185 BaseInput);
4186 }
4187
4188 if (CCCPrintBindings && !CCGenDiagnostics) {
4189 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4190 << " - \"" << T->getName() << "\", inputs: [";
4191 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4192 llvm::errs() << InputInfos[i].getAsString();
4193 if (i + 1 != e)
4194 llvm::errs() << ", ";
4195 }
4196 if (UnbundlingResults.empty())
4197 llvm::errs() << "], output: " << Result.getAsString() << "\n";
4198 else {
4199 llvm::errs() << "], outputs: [";
4200 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4201 llvm::errs() << UnbundlingResults[i].getAsString();
4202 if (i + 1 != e)
4203 llvm::errs() << ", ";
4204 }
4205 llvm::errs() << "] \n";
4206 }
4207 } else {
4208 if (UnbundlingResults.empty())
4209 T->ConstructJob(
4210 C, *JA, Result, InputInfos,
4211 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4212 LinkingOutput);
4213 else
4214 T->ConstructJobMultipleOutputs(
4215 C, *JA, UnbundlingResults, InputInfos,
4216 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4217 LinkingOutput);
4218 }
4219 return Result;
4220 }
4221
getDefaultImageName() const4222 const char *Driver::getDefaultImageName() const {
4223 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4224 return Target.isOSWindows() ? "a.exe" : "a.out";
4225 }
4226
4227 /// Create output filename based on ArgValue, which could either be a
4228 /// full filename, filename without extension, or a directory. If ArgValue
4229 /// does not provide a filename, then use BaseName, and use the extension
4230 /// suitable for FileType.
MakeCLOutputFilename(const ArgList & Args,StringRef ArgValue,StringRef BaseName,types::ID FileType)4231 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4232 StringRef BaseName,
4233 types::ID FileType) {
4234 SmallString<128> Filename = ArgValue;
4235
4236 if (ArgValue.empty()) {
4237 // If the argument is empty, output to BaseName in the current dir.
4238 Filename = BaseName;
4239 } else if (llvm::sys::path::is_separator(Filename.back())) {
4240 // If the argument is a directory, output to BaseName in that dir.
4241 llvm::sys::path::append(Filename, BaseName);
4242 }
4243
4244 if (!llvm::sys::path::has_extension(ArgValue)) {
4245 // If the argument didn't provide an extension, then set it.
4246 const char *Extension = types::getTypeTempSuffix(FileType, true);
4247
4248 if (FileType == types::TY_Image &&
4249 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4250 // The output file is a dll.
4251 Extension = "dll";
4252 }
4253
4254 llvm::sys::path::replace_extension(Filename, Extension);
4255 }
4256
4257 return Args.MakeArgString(Filename.c_str());
4258 }
4259
GetNamedOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,StringRef OffloadingPrefix) const4260 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4261 const char *BaseInput,
4262 StringRef BoundArch, bool AtTopLevel,
4263 bool MultipleArchs,
4264 StringRef OffloadingPrefix) const {
4265 llvm::PrettyStackTraceString CrashInfo("Computing output path");
4266 // Output to a user requested destination?
4267 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4268 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4269 return C.addResultFile(FinalOutput->getValue(), &JA);
4270 }
4271
4272 // For /P, preprocess to file named after BaseInput.
4273 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4274 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4275 StringRef BaseName = llvm::sys::path::filename(BaseInput);
4276 StringRef NameArg;
4277 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4278 NameArg = A->getValue();
4279 return C.addResultFile(
4280 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4281 &JA);
4282 }
4283
4284 // Default to writing to stdout?
4285 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4286 return "-";
4287
4288 // Is this the assembly listing for /FA?
4289 if (JA.getType() == types::TY_PP_Asm &&
4290 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4291 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4292 // Use /Fa and the input filename to determine the asm file name.
4293 StringRef BaseName = llvm::sys::path::filename(BaseInput);
4294 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4295 return C.addResultFile(
4296 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4297 &JA);
4298 }
4299
4300 // Output to a temporary file?
4301 if ((!AtTopLevel && !isSaveTempsEnabled() &&
4302 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4303 CCGenDiagnostics) {
4304 StringRef Name = llvm::sys::path::filename(BaseInput);
4305 std::pair<StringRef, StringRef> Split = Name.split('.');
4306 SmallString<128> TmpName;
4307 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4308 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4309 if (CCGenDiagnostics && A) {
4310 SmallString<128> CrashDirectory(A->getValue());
4311 if (!getVFS().exists(CrashDirectory))
4312 llvm::sys::fs::create_directories(CrashDirectory);
4313 llvm::sys::path::append(CrashDirectory, Split.first);
4314 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4315 std::error_code EC = llvm::sys::fs::createUniqueFile(
4316 CrashDirectory + Middle + Suffix, TmpName);
4317 if (EC) {
4318 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4319 return "";
4320 }
4321 } else {
4322 TmpName = GetTemporaryPath(Split.first, Suffix);
4323 }
4324 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4325 }
4326
4327 SmallString<128> BasePath(BaseInput);
4328 StringRef BaseName;
4329
4330 // Dsymutil actions should use the full path.
4331 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4332 BaseName = BasePath;
4333 else
4334 BaseName = llvm::sys::path::filename(BasePath);
4335
4336 // Determine what the derived output name should be.
4337 const char *NamedOutput;
4338
4339 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4340 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4341 // The /Fo or /o flag decides the object filename.
4342 StringRef Val =
4343 C.getArgs()
4344 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4345 ->getValue();
4346 NamedOutput =
4347 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4348 } else if (JA.getType() == types::TY_Image &&
4349 C.getArgs().hasArg(options::OPT__SLASH_Fe,
4350 options::OPT__SLASH_o)) {
4351 // The /Fe or /o flag names the linked file.
4352 StringRef Val =
4353 C.getArgs()
4354 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4355 ->getValue();
4356 NamedOutput =
4357 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4358 } else if (JA.getType() == types::TY_Image) {
4359 if (IsCLMode()) {
4360 // clang-cl uses BaseName for the executable name.
4361 NamedOutput =
4362 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4363 } else {
4364 SmallString<128> Output(getDefaultImageName());
4365 Output += OffloadingPrefix;
4366 if (MultipleArchs && !BoundArch.empty()) {
4367 Output += "-";
4368 Output.append(BoundArch);
4369 }
4370 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4371 }
4372 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4373 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4374 } else {
4375 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4376 assert(Suffix && "All types used for output should have a suffix.");
4377
4378 std::string::size_type End = std::string::npos;
4379 if (!types::appendSuffixForType(JA.getType()))
4380 End = BaseName.rfind('.');
4381 SmallString<128> Suffixed(BaseName.substr(0, End));
4382 Suffixed += OffloadingPrefix;
4383 if (MultipleArchs && !BoundArch.empty()) {
4384 Suffixed += "-";
4385 Suffixed.append(BoundArch);
4386 }
4387 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4388 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4389 // optimized bitcode output.
4390 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4391 JA.getType() == types::TY_LLVM_BC)
4392 Suffixed += ".tmp";
4393 Suffixed += '.';
4394 Suffixed += Suffix;
4395 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4396 }
4397
4398 // Prepend object file path if -save-temps=obj
4399 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4400 JA.getType() != types::TY_PCH) {
4401 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4402 SmallString<128> TempPath(FinalOutput->getValue());
4403 llvm::sys::path::remove_filename(TempPath);
4404 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4405 llvm::sys::path::append(TempPath, OutputFileName);
4406 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4407 }
4408
4409 // If we're saving temps and the temp file conflicts with the input file,
4410 // then avoid overwriting input file.
4411 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4412 bool SameFile = false;
4413 SmallString<256> Result;
4414 llvm::sys::fs::current_path(Result);
4415 llvm::sys::path::append(Result, BaseName);
4416 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4417 // Must share the same path to conflict.
4418 if (SameFile) {
4419 StringRef Name = llvm::sys::path::filename(BaseInput);
4420 std::pair<StringRef, StringRef> Split = Name.split('.');
4421 std::string TmpName = GetTemporaryPath(
4422 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4423 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4424 }
4425 }
4426
4427 // As an annoying special case, PCH generation doesn't strip the pathname.
4428 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4429 llvm::sys::path::remove_filename(BasePath);
4430 if (BasePath.empty())
4431 BasePath = NamedOutput;
4432 else
4433 llvm::sys::path::append(BasePath, NamedOutput);
4434 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4435 } else {
4436 return C.addResultFile(NamedOutput, &JA);
4437 }
4438 }
4439
GetFilePath(StringRef Name,const ToolChain & TC) const4440 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4441 // Search for Name in a list of paths.
4442 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4443 -> llvm::Optional<std::string> {
4444 // Respect a limited subset of the '-Bprefix' functionality in GCC by
4445 // attempting to use this prefix when looking for file paths.
4446 for (const auto &Dir : P) {
4447 if (Dir.empty())
4448 continue;
4449 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4450 llvm::sys::path::append(P, Name);
4451 if (llvm::sys::fs::exists(Twine(P)))
4452 return P.str().str();
4453 }
4454 return None;
4455 };
4456
4457 if (auto P = SearchPaths(PrefixDirs))
4458 return *P;
4459
4460 SmallString<128> R(ResourceDir);
4461 llvm::sys::path::append(R, Name);
4462 if (llvm::sys::fs::exists(Twine(R)))
4463 return R.str();
4464
4465 SmallString<128> P(TC.getCompilerRTPath());
4466 llvm::sys::path::append(P, Name);
4467 if (llvm::sys::fs::exists(Twine(P)))
4468 return P.str();
4469
4470 SmallString<128> D(Dir);
4471 llvm::sys::path::append(D, "..", Name);
4472 if (llvm::sys::fs::exists(Twine(D)))
4473 return D.str();
4474
4475 if (auto P = SearchPaths(TC.getLibraryPaths()))
4476 return *P;
4477
4478 if (auto P = SearchPaths(TC.getFilePaths()))
4479 return *P;
4480
4481 return Name;
4482 }
4483
generatePrefixedToolNames(StringRef Tool,const ToolChain & TC,SmallVectorImpl<std::string> & Names) const4484 void Driver::generatePrefixedToolNames(
4485 StringRef Tool, const ToolChain &TC,
4486 SmallVectorImpl<std::string> &Names) const {
4487 // FIXME: Needs a better variable than TargetTriple
4488 Names.emplace_back((TargetTriple + "-" + Tool).str());
4489 Names.emplace_back(Tool);
4490
4491 // Allow the discovery of tools prefixed with LLVM's default target triple.
4492 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4493 if (DefaultTargetTriple != TargetTriple)
4494 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4495 }
4496
ScanDirForExecutable(SmallString<128> & Dir,ArrayRef<std::string> Names)4497 static bool ScanDirForExecutable(SmallString<128> &Dir,
4498 ArrayRef<std::string> Names) {
4499 for (const auto &Name : Names) {
4500 llvm::sys::path::append(Dir, Name);
4501 if (llvm::sys::fs::can_execute(Twine(Dir)))
4502 return true;
4503 llvm::sys::path::remove_filename(Dir);
4504 }
4505 return false;
4506 }
4507
GetProgramPath(StringRef Name,const ToolChain & TC) const4508 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4509 SmallVector<std::string, 2> TargetSpecificExecutables;
4510 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4511
4512 // Respect a limited subset of the '-Bprefix' functionality in GCC by
4513 // attempting to use this prefix when looking for program paths.
4514 for (const auto &PrefixDir : PrefixDirs) {
4515 if (llvm::sys::fs::is_directory(PrefixDir)) {
4516 SmallString<128> P(PrefixDir);
4517 if (ScanDirForExecutable(P, TargetSpecificExecutables))
4518 return P.str();
4519 } else {
4520 SmallString<128> P((PrefixDir + Name).str());
4521 if (llvm::sys::fs::can_execute(Twine(P)))
4522 return P.str();
4523 }
4524 }
4525
4526 const ToolChain::path_list &List = TC.getProgramPaths();
4527 for (const auto &Path : List) {
4528 SmallString<128> P(Path);
4529 if (ScanDirForExecutable(P, TargetSpecificExecutables))
4530 return P.str();
4531 }
4532
4533 // If all else failed, search the path.
4534 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4535 if (llvm::ErrorOr<std::string> P =
4536 llvm::sys::findProgramByName(TargetSpecificExecutable))
4537 return *P;
4538
4539 return Name;
4540 }
4541
GetTemporaryPath(StringRef Prefix,StringRef Suffix) const4542 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4543 SmallString<128> Path;
4544 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4545 if (EC) {
4546 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4547 return "";
4548 }
4549
4550 return Path.str();
4551 }
4552
GetTemporaryDirectory(StringRef Prefix) const4553 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4554 SmallString<128> Path;
4555 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4556 if (EC) {
4557 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4558 return "";
4559 }
4560
4561 return Path.str();
4562 }
4563
GetClPchPath(Compilation & C,StringRef BaseName) const4564 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4565 SmallString<128> Output;
4566 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4567 // FIXME: If anybody needs it, implement this obscure rule:
4568 // "If you specify a directory without a file name, the default file name
4569 // is VCx0.pch., where x is the major version of Visual C++ in use."
4570 Output = FpArg->getValue();
4571
4572 // "If you do not specify an extension as part of the path name, an
4573 // extension of .pch is assumed. "
4574 if (!llvm::sys::path::has_extension(Output))
4575 Output += ".pch";
4576 } else {
4577 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4578 Output = YcArg->getValue();
4579 if (Output.empty())
4580 Output = BaseName;
4581 llvm::sys::path::replace_extension(Output, ".pch");
4582 }
4583 return Output.str();
4584 }
4585
getToolChain(const ArgList & Args,const llvm::Triple & Target) const4586 const ToolChain &Driver::getToolChain(const ArgList &Args,
4587 const llvm::Triple &Target) const {
4588
4589 auto &TC = ToolChains[Target.str()];
4590 if (!TC) {
4591 switch (Target.getOS()) {
4592 case llvm::Triple::Haiku:
4593 TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4594 break;
4595 case llvm::Triple::Ananas:
4596 TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4597 break;
4598 case llvm::Triple::CloudABI:
4599 TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4600 break;
4601 case llvm::Triple::Darwin:
4602 case llvm::Triple::MacOSX:
4603 case llvm::Triple::IOS:
4604 case llvm::Triple::TvOS:
4605 case llvm::Triple::WatchOS:
4606 TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4607 break;
4608 case llvm::Triple::DragonFly:
4609 TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4610 break;
4611 case llvm::Triple::OpenBSD:
4612 TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4613 break;
4614 case llvm::Triple::NetBSD:
4615 TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4616 break;
4617 case llvm::Triple::FreeBSD:
4618 TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4619 break;
4620 case llvm::Triple::Minix:
4621 TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4622 break;
4623 case llvm::Triple::Linux:
4624 case llvm::Triple::ELFIAMCU:
4625 if (Target.getArch() == llvm::Triple::hexagon)
4626 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4627 Args);
4628 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4629 !Target.hasEnvironment())
4630 TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4631 Args);
4632 else if (Target.getArch() == llvm::Triple::ppc ||
4633 Target.getArch() == llvm::Triple::ppc64 ||
4634 Target.getArch() == llvm::Triple::ppc64le)
4635 TC = llvm::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4636 Args);
4637 else
4638 TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4639 break;
4640 case llvm::Triple::NaCl:
4641 TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4642 break;
4643 case llvm::Triple::Fuchsia:
4644 TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4645 break;
4646 case llvm::Triple::Solaris:
4647 TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4648 break;
4649 case llvm::Triple::AMDHSA:
4650 case llvm::Triple::AMDPAL:
4651 case llvm::Triple::Mesa3D:
4652 TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4653 break;
4654 case llvm::Triple::Win32:
4655 switch (Target.getEnvironment()) {
4656 default:
4657 if (Target.isOSBinFormatELF())
4658 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4659 else if (Target.isOSBinFormatMachO())
4660 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4661 else
4662 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4663 break;
4664 case llvm::Triple::GNU:
4665 TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4666 break;
4667 case llvm::Triple::Itanium:
4668 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4669 Args);
4670 break;
4671 case llvm::Triple::MSVC:
4672 case llvm::Triple::UnknownEnvironment:
4673 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4674 .startswith_lower("bfd"))
4675 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4676 *this, Target, Args);
4677 else
4678 TC =
4679 llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4680 break;
4681 }
4682 break;
4683 case llvm::Triple::PS4:
4684 TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4685 break;
4686 case llvm::Triple::Contiki:
4687 TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4688 break;
4689 case llvm::Triple::Hurd:
4690 TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args);
4691 break;
4692 default:
4693 // Of these targets, Hexagon is the only one that might have
4694 // an OS of Linux, in which case it got handled above already.
4695 switch (Target.getArch()) {
4696 case llvm::Triple::tce:
4697 TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4698 break;
4699 case llvm::Triple::tcele:
4700 TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4701 break;
4702 case llvm::Triple::hexagon:
4703 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4704 Args);
4705 break;
4706 case llvm::Triple::lanai:
4707 TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4708 break;
4709 case llvm::Triple::xcore:
4710 TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4711 break;
4712 case llvm::Triple::wasm32:
4713 case llvm::Triple::wasm64:
4714 TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4715 break;
4716 case llvm::Triple::avr:
4717 TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4718 break;
4719 case llvm::Triple::msp430:
4720 TC =
4721 llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4722 break;
4723 case llvm::Triple::riscv32:
4724 case llvm::Triple::riscv64:
4725 TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4726 break;
4727 default:
4728 if (Target.getVendor() == llvm::Triple::Myriad)
4729 TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4730 Args);
4731 else if (toolchains::BareMetal::handlesTarget(Target))
4732 TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4733 else if (Target.isOSBinFormatELF())
4734 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4735 else if (Target.isOSBinFormatMachO())
4736 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4737 else
4738 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4739 }
4740 }
4741 }
4742
4743 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4744 // compiles always need two toolchains, the CUDA toolchain and the host
4745 // toolchain. So the only valid way to create a CUDA toolchain is via
4746 // CreateOffloadingDeviceToolChains.
4747
4748 return *TC;
4749 }
4750
ShouldUseClangCompiler(const JobAction & JA) const4751 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
4752 // Say "no" if there is not exactly one input of a type clang understands.
4753 if (JA.size() != 1 ||
4754 !types::isAcceptedByClang((*JA.input_begin())->getType()))
4755 return false;
4756
4757 // And say "no" if this is not a kind of action clang understands.
4758 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4759 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4760 return false;
4761
4762 return true;
4763 }
4764
4765 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4766 /// grouped values as integers. Numbers which are not provided are set to 0.
4767 ///
4768 /// \return True if the entire string was parsed (9.2), or all groups were
4769 /// parsed (10.3.5extrastuff).
GetReleaseVersion(StringRef Str,unsigned & Major,unsigned & Minor,unsigned & Micro,bool & HadExtra)4770 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4771 unsigned &Micro, bool &HadExtra) {
4772 HadExtra = false;
4773
4774 Major = Minor = Micro = 0;
4775 if (Str.empty())
4776 return false;
4777
4778 if (Str.consumeInteger(10, Major))
4779 return false;
4780 if (Str.empty())
4781 return true;
4782 if (Str[0] != '.')
4783 return false;
4784
4785 Str = Str.drop_front(1);
4786
4787 if (Str.consumeInteger(10, Minor))
4788 return false;
4789 if (Str.empty())
4790 return true;
4791 if (Str[0] != '.')
4792 return false;
4793 Str = Str.drop_front(1);
4794
4795 if (Str.consumeInteger(10, Micro))
4796 return false;
4797 if (!Str.empty())
4798 HadExtra = true;
4799 return true;
4800 }
4801
4802 /// Parse digits from a string \p Str and fulfill \p Digits with
4803 /// the parsed numbers. This method assumes that the max number of
4804 /// digits to look for is equal to Digits.size().
4805 ///
4806 /// \return True if the entire string was parsed and there are
4807 /// no extra characters remaining at the end.
GetReleaseVersion(StringRef Str,MutableArrayRef<unsigned> Digits)4808 bool Driver::GetReleaseVersion(StringRef Str,
4809 MutableArrayRef<unsigned> Digits) {
4810 if (Str.empty())
4811 return false;
4812
4813 unsigned CurDigit = 0;
4814 while (CurDigit < Digits.size()) {
4815 unsigned Digit;
4816 if (Str.consumeInteger(10, Digit))
4817 return false;
4818 Digits[CurDigit] = Digit;
4819 if (Str.empty())
4820 return true;
4821 if (Str[0] != '.')
4822 return false;
4823 Str = Str.drop_front(1);
4824 CurDigit++;
4825 }
4826
4827 // More digits than requested, bail out...
4828 return false;
4829 }
4830
4831 std::pair<unsigned, unsigned>
getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const4832 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4833 unsigned IncludedFlagsBitmask = 0;
4834 unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4835
4836 if (IsClCompatMode) {
4837 // Include CL and Core options.
4838 IncludedFlagsBitmask |= options::CLOption;
4839 IncludedFlagsBitmask |= options::CoreOption;
4840 } else {
4841 ExcludedFlagsBitmask |= options::CLOption;
4842 }
4843
4844 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4845 }
4846
isOptimizationLevelFast(const ArgList & Args)4847 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4848 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4849 }
4850