1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #ifndef B2_MATH_H
20 #define B2_MATH_H
21 
22 #include <Box2D/Common/b2Settings.h>
23 #include <math.h>
24 
25 /// This function is used to ensure that a floating point number is not a NaN or infinity.
b2IsValid(float32 x)26 inline bool b2IsValid(float32 x)
27 {
28 	int32 ix = *reinterpret_cast<int32*>(&x);
29 	return (ix & 0x7f800000) != 0x7f800000;
30 }
31 
32 /// This is a approximate yet fast inverse square-root.
b2InvSqrt(float32 x)33 inline float32 b2InvSqrt(float32 x)
34 {
35 	union
36 	{
37 		float32 x;
38 		int32 i;
39 	} convert;
40 
41 	convert.x = x;
42 	float32 xhalf = 0.5f * x;
43 	convert.i = 0x5f3759df - (convert.i >> 1);
44 	x = convert.x;
45 	x = x * (1.5f - xhalf * x * x);
46 	return x;
47 }
48 
49 #define	b2Sqrt(x)	sqrtf(x)
50 #define	b2Atan2(y, x)	atan2f(y, x)
51 
52 /// A 2D column vector.
53 struct b2Vec2
54 {
55 	/// Default constructor does nothing (for performance).
b2Vec2b2Vec256 	b2Vec2() {}
57 
58 	/// Construct using coordinates.
b2Vec2b2Vec259 	b2Vec2(float32 x, float32 y) : x(x), y(y) {}
60 
61 	/// Set this vector to all zeros.
SetZerob2Vec262 	void SetZero() { x = 0.0f; y = 0.0f; }
63 
64 	/// Set this vector to some specified coordinates.
Setb2Vec265 	void Set(float32 x_, float32 y_) { x = x_; y = y_; }
66 
67 	/// Negate this vector.
68 	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
69 
70 	/// Read from and indexed element.
operatorb2Vec271 	float32 operator () (int32 i) const
72 	{
73 		return (&x)[i];
74 	}
75 
76 	/// Write to an indexed element.
operatorb2Vec277 	float32& operator () (int32 i)
78 	{
79 		return (&x)[i];
80 	}
81 
82 	/// Add a vector to this vector.
83 	void operator += (const b2Vec2& v)
84 	{
85 		x += v.x; y += v.y;
86 	}
87 
88 	/// Subtract a vector from this vector.
89 	void operator -= (const b2Vec2& v)
90 	{
91 		x -= v.x; y -= v.y;
92 	}
93 
94 	/// Multiply this vector by a scalar.
95 	void operator *= (float32 a)
96 	{
97 		x *= a; y *= a;
98 	}
99 
100 	/// Get the length of this vector (the norm).
Lengthb2Vec2101 	float32 Length() const
102 	{
103 		return b2Sqrt(x * x + y * y);
104 	}
105 
106 	/// Get the length squared. For performance, use this instead of
107 	/// b2Vec2::Length (if possible).
LengthSquaredb2Vec2108 	float32 LengthSquared() const
109 	{
110 		return x * x + y * y;
111 	}
112 
113 	/// Convert this vector into a unit vector. Returns the length.
Normalizeb2Vec2114 	float32 Normalize()
115 	{
116 		float32 length = Length();
117 		if (length < b2_epsilon)
118 		{
119 			return 0.0f;
120 		}
121 		float32 invLength = 1.0f / length;
122 		x *= invLength;
123 		y *= invLength;
124 
125 		return length;
126 	}
127 
128 	/// Does this vector contain finite coordinates?
IsValidb2Vec2129 	bool IsValid() const
130 	{
131 		return b2IsValid(x) && b2IsValid(y);
132 	}
133 
134 	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
Skewb2Vec2135 	b2Vec2 Skew() const
136 	{
137 		return b2Vec2(-y, x);
138 	}
139 
140 	float32 x, y;
141 };
142 
143 /// A 2D column vector with 3 elements.
144 struct b2Vec3
145 {
146 	/// Default constructor does nothing (for performance).
b2Vec3b2Vec3147 	b2Vec3() {}
148 
149 	/// Construct using coordinates.
b2Vec3b2Vec3150 	b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
151 
152 	/// Set this vector to all zeros.
SetZerob2Vec3153 	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
154 
155 	/// Set this vector to some specified coordinates.
Setb2Vec3156 	void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
157 
158 	/// Negate this vector.
159 	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
160 
161 	/// Add a vector to this vector.
162 	void operator += (const b2Vec3& v)
163 	{
164 		x += v.x; y += v.y; z += v.z;
165 	}
166 
167 	/// Subtract a vector from this vector.
168 	void operator -= (const b2Vec3& v)
169 	{
170 		x -= v.x; y -= v.y; z -= v.z;
171 	}
172 
173 	/// Multiply this vector by a scalar.
174 	void operator *= (float32 s)
175 	{
176 		x *= s; y *= s; z *= s;
177 	}
178 
179 	float32 x, y, z;
180 };
181 
182 /// A 2-by-2 matrix. Stored in column-major order.
183 struct b2Mat22
184 {
185 	/// The default constructor does nothing (for performance).
b2Mat22b2Mat22186 	b2Mat22() {}
187 
188 	/// Construct this matrix using columns.
b2Mat22b2Mat22189 	b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
190 	{
191 		ex = c1;
192 		ey = c2;
193 	}
194 
195 	/// Construct this matrix using scalars.
b2Mat22b2Mat22196 	b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
197 	{
198 		ex.x = a11; ex.y = a21;
199 		ey.x = a12; ey.y = a22;
200 	}
201 
202 	/// Initialize this matrix using columns.
Setb2Mat22203 	void Set(const b2Vec2& c1, const b2Vec2& c2)
204 	{
205 		ex = c1;
206 		ey = c2;
207 	}
208 
209 	/// Set this to the identity matrix.
SetIdentityb2Mat22210 	void SetIdentity()
211 	{
212 		ex.x = 1.0f; ey.x = 0.0f;
213 		ex.y = 0.0f; ey.y = 1.0f;
214 	}
215 
216 	/// Set this matrix to all zeros.
SetZerob2Mat22217 	void SetZero()
218 	{
219 		ex.x = 0.0f; ey.x = 0.0f;
220 		ex.y = 0.0f; ey.y = 0.0f;
221 	}
222 
GetInverseb2Mat22223 	b2Mat22 GetInverse() const
224 	{
225 		float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
226 		b2Mat22 B;
227 		float32 det = a * d - b * c;
228 		if (det != 0.0f)
229 		{
230 			det = 1.0f / det;
231 		}
232 		B.ex.x =  det * d;	B.ey.x = -det * b;
233 		B.ex.y = -det * c;	B.ey.y =  det * a;
234 		return B;
235 	}
236 
237 	/// Solve A * x = b, where b is a column vector. This is more efficient
238 	/// than computing the inverse in one-shot cases.
Solveb2Mat22239 	b2Vec2 Solve(const b2Vec2& b) const
240 	{
241 		float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
242 		float32 det = a11 * a22 - a12 * a21;
243 		if (det != 0.0f)
244 		{
245 			det = 1.0f / det;
246 		}
247 		b2Vec2 x;
248 		x.x = det * (a22 * b.x - a12 * b.y);
249 		x.y = det * (a11 * b.y - a21 * b.x);
250 		return x;
251 	}
252 
253 	b2Vec2 ex, ey;
254 };
255 
256 /// A 3-by-3 matrix. Stored in column-major order.
257 struct b2Mat33
258 {
259 	/// The default constructor does nothing (for performance).
b2Mat33b2Mat33260 	b2Mat33() {}
261 
262 	/// Construct this matrix using columns.
b2Mat33b2Mat33263 	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
264 	{
265 		ex = c1;
266 		ey = c2;
267 		ez = c3;
268 	}
269 
270 	/// Set this matrix to all zeros.
SetZerob2Mat33271 	void SetZero()
272 	{
273 		ex.SetZero();
274 		ey.SetZero();
275 		ez.SetZero();
276 	}
277 
278 	/// Solve A * x = b, where b is a column vector. This is more efficient
279 	/// than computing the inverse in one-shot cases.
280 	b2Vec3 Solve33(const b2Vec3& b) const;
281 
282 	/// Solve A * x = b, where b is a column vector. This is more efficient
283 	/// than computing the inverse in one-shot cases. Solve only the upper
284 	/// 2-by-2 matrix equation.
285 	b2Vec2 Solve22(const b2Vec2& b) const;
286 
287 	/// Get the inverse of this matrix as a 2-by-2.
288 	/// Returns the zero matrix if singular.
289 	void GetInverse22(b2Mat33* M) const;
290 
291 	/// Get the symmetric inverse of this matrix as a 3-by-3.
292 	/// Returns the zero matrix if singular.
293 	void GetSymInverse33(b2Mat33* M) const;
294 
295 	b2Vec3 ex, ey, ez;
296 };
297 
298 /// Rotation
299 struct b2Rot
300 {
b2Rotb2Rot301 	b2Rot() {}
302 
303 	/// Initialize from an angle in radians
b2Rotb2Rot304 	explicit b2Rot(float32 angle)
305 	{
306 		/// TODO_ERIN optimize
307 		s = sinf(angle);
308 		c = cosf(angle);
309 	}
310 
311 	/// Set using an angle in radians.
Setb2Rot312 	void Set(float32 angle)
313 	{
314 		/// TODO_ERIN optimize
315 		s = sinf(angle);
316 		c = cosf(angle);
317 	}
318 
319 	/// Set to the identity rotation
SetIdentityb2Rot320 	void SetIdentity()
321 	{
322 		s = 0.0f;
323 		c = 1.0f;
324 	}
325 
326 	/// Get the angle in radians
GetAngleb2Rot327 	float32 GetAngle() const
328 	{
329 		return b2Atan2(s, c);
330 	}
331 
332 	/// Get the x-axis
GetXAxisb2Rot333 	b2Vec2 GetXAxis() const
334 	{
335 		return b2Vec2(c, s);
336 	}
337 
338 	/// Get the u-axis
GetYAxisb2Rot339 	b2Vec2 GetYAxis() const
340 	{
341 		return b2Vec2(-s, c);
342 	}
343 
344 	/// Sine and cosine
345 	float32 s, c;
346 };
347 
348 /// A transform contains translation and rotation. It is used to represent
349 /// the position and orientation of rigid frames.
350 struct b2Transform
351 {
352 	/// The default constructor does nothing.
b2Transformb2Transform353 	b2Transform() {}
354 
355 	/// Initialize using a position vector and a rotation.
b2Transformb2Transform356 	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
357 
358 	/// Set this to the identity transform.
SetIdentityb2Transform359 	void SetIdentity()
360 	{
361 		p.SetZero();
362 		q.SetIdentity();
363 	}
364 
365 	/// Set this based on the position and angle.
Setb2Transform366 	void Set(const b2Vec2& position, float32 angle)
367 	{
368 		p = position;
369 		q.Set(angle);
370 	}
371 
372 	b2Vec2 p;
373 	b2Rot q;
374 };
375 
376 /// This describes the motion of a body/shape for TOI computation.
377 /// Shapes are defined with respect to the body origin, which may
378 /// no coincide with the center of mass. However, to support dynamics
379 /// we must interpolate the center of mass position.
380 struct b2Sweep
381 {
382 	/// Get the interpolated transform at a specific time.
383 	/// @param beta is a factor in [0,1], where 0 indicates alpha0.
384 	void GetTransform(b2Transform* xfb, float32 beta) const;
385 
386 	/// Advance the sweep forward, yielding a new initial state.
387 	/// @param alpha the new initial time.
388 	void Advance(float32 alpha);
389 
390 	/// Normalize the angles.
391 	void Normalize();
392 
393 	b2Vec2 localCenter;	///< local center of mass position
394 	b2Vec2 c0, c;		///< center world positions
395 	float32 a0, a;		///< world angles
396 
397 	/// Fraction of the current time step in the range [0,1]
398 	/// c0 and a0 are the positions at alpha0.
399 	float32 alpha0;
400 };
401 
402 /// Useful constant
403 extern const b2Vec2 b2Vec2_zero;
404 
405 /// Perform the dot product on two vectors.
b2Dot(const b2Vec2 & a,const b2Vec2 & b)406 inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
407 {
408 	return a.x * b.x + a.y * b.y;
409 }
410 
411 /// Perform the cross product on two vectors. In 2D this produces a scalar.
b2Cross(const b2Vec2 & a,const b2Vec2 & b)412 inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
413 {
414 	return a.x * b.y - a.y * b.x;
415 }
416 
417 /// Perform the cross product on a vector and a scalar. In 2D this produces
418 /// a vector.
b2Cross(const b2Vec2 & a,float32 s)419 inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
420 {
421 	return b2Vec2(s * a.y, -s * a.x);
422 }
423 
424 /// Perform the cross product on a scalar and a vector. In 2D this produces
425 /// a vector.
b2Cross(float32 s,const b2Vec2 & a)426 inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
427 {
428 	return b2Vec2(-s * a.y, s * a.x);
429 }
430 
431 /// Multiply a matrix times a vector. If a rotation matrix is provided,
432 /// then this transforms the vector from one frame to another.
b2Mul(const b2Mat22 & A,const b2Vec2 & v)433 inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
434 {
435 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
436 }
437 
438 /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
439 /// then this transforms the vector from one frame to another (inverse transform).
b2MulT(const b2Mat22 & A,const b2Vec2 & v)440 inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
441 {
442 	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
443 }
444 
445 /// Add two vectors component-wise.
446 inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
447 {
448 	return b2Vec2(a.x + b.x, a.y + b.y);
449 }
450 
451 /// Subtract two vectors component-wise.
452 inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
453 {
454 	return b2Vec2(a.x - b.x, a.y - b.y);
455 }
456 
457 inline b2Vec2 operator * (float32 s, const b2Vec2& a)
458 {
459 	return b2Vec2(s * a.x, s * a.y);
460 }
461 
462 inline bool operator == (const b2Vec2& a, const b2Vec2& b)
463 {
464 	return a.x == b.x && a.y == b.y;
465 }
466 
b2Distance(const b2Vec2 & a,const b2Vec2 & b)467 inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
468 {
469 	b2Vec2 c = a - b;
470 	return c.Length();
471 }
472 
b2DistanceSquared(const b2Vec2 & a,const b2Vec2 & b)473 inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
474 {
475 	b2Vec2 c = a - b;
476 	return b2Dot(c, c);
477 }
478 
479 inline b2Vec3 operator * (float32 s, const b2Vec3& a)
480 {
481 	return b2Vec3(s * a.x, s * a.y, s * a.z);
482 }
483 
484 /// Add two vectors component-wise.
485 inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
486 {
487 	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
488 }
489 
490 /// Subtract two vectors component-wise.
491 inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
492 {
493 	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
494 }
495 
496 /// Perform the dot product on two vectors.
b2Dot(const b2Vec3 & a,const b2Vec3 & b)497 inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
498 {
499 	return a.x * b.x + a.y * b.y + a.z * b.z;
500 }
501 
502 /// Perform the cross product on two vectors.
b2Cross(const b2Vec3 & a,const b2Vec3 & b)503 inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
504 {
505 	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
506 }
507 
508 inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
509 {
510 	return b2Mat22(A.ex + B.ex, A.ey + B.ey);
511 }
512 
513 // A * B
b2Mul(const b2Mat22 & A,const b2Mat22 & B)514 inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
515 {
516 	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
517 }
518 
519 // A^T * B
b2MulT(const b2Mat22 & A,const b2Mat22 & B)520 inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
521 {
522 	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
523 	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
524 	return b2Mat22(c1, c2);
525 }
526 
527 /// Multiply a matrix times a vector.
b2Mul(const b2Mat33 & A,const b2Vec3 & v)528 inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
529 {
530 	return v.x * A.ex + v.y * A.ey + v.z * A.ez;
531 }
532 
533 /// Multiply a matrix times a vector.
b2Mul22(const b2Mat33 & A,const b2Vec2 & v)534 inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
535 {
536 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
537 }
538 
539 /// Multiply two rotations: q * r
b2Mul(const b2Rot & q,const b2Rot & r)540 inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
541 {
542 	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
543 	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
544 	// s = qs * rc + qc * rs
545 	// c = qc * rc - qs * rs
546 	b2Rot qr;
547 	qr.s = q.s * r.c + q.c * r.s;
548 	qr.c = q.c * r.c - q.s * r.s;
549 	return qr;
550 }
551 
552 /// Transpose multiply two rotations: qT * r
b2MulT(const b2Rot & q,const b2Rot & r)553 inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
554 {
555 	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
556 	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
557 	// s = qc * rs - qs * rc
558 	// c = qc * rc + qs * rs
559 	b2Rot qr;
560 	qr.s = q.c * r.s - q.s * r.c;
561 	qr.c = q.c * r.c + q.s * r.s;
562 	return qr;
563 }
564 
565 /// Rotate a vector
b2Mul(const b2Rot & q,const b2Vec2 & v)566 inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
567 {
568 	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
569 }
570 
571 /// Inverse rotate a vector
b2MulT(const b2Rot & q,const b2Vec2 & v)572 inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
573 {
574 	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
575 }
576 
b2Mul(const b2Transform & T,const b2Vec2 & v)577 inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
578 {
579 	float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
580 	float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
581 
582 	return b2Vec2(x, y);
583 }
584 
b2MulT(const b2Transform & T,const b2Vec2 & v)585 inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
586 {
587 	float32 px = v.x - T.p.x;
588 	float32 py = v.y - T.p.y;
589 	float32 x = (T.q.c * px + T.q.s * py);
590 	float32 y = (-T.q.s * px + T.q.c * py);
591 
592 	return b2Vec2(x, y);
593 }
594 
595 // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
596 //    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
b2Mul(const b2Transform & A,const b2Transform & B)597 inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
598 {
599 	b2Transform C;
600 	C.q = b2Mul(A.q, B.q);
601 	C.p = b2Mul(A.q, B.p) + A.p;
602 	return C;
603 }
604 
605 // v2 = A.q' * (B.q * v1 + B.p - A.p)
606 //    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
b2MulT(const b2Transform & A,const b2Transform & B)607 inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
608 {
609 	b2Transform C;
610 	C.q = b2MulT(A.q, B.q);
611 	C.p = b2MulT(A.q, B.p - A.p);
612 	return C;
613 }
614 
615 template <typename T>
b2Abs(T a)616 inline T b2Abs(T a)
617 {
618 	return a > T(0) ? a : -a;
619 }
620 
b2Abs(const b2Vec2 & a)621 inline b2Vec2 b2Abs(const b2Vec2& a)
622 {
623 	return b2Vec2(b2Abs(a.x), b2Abs(a.y));
624 }
625 
b2Abs(const b2Mat22 & A)626 inline b2Mat22 b2Abs(const b2Mat22& A)
627 {
628 	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
629 }
630 
631 template <typename T>
b2Min(T a,T b)632 inline T b2Min(T a, T b)
633 {
634 	return a < b ? a : b;
635 }
636 
b2Min(const b2Vec2 & a,const b2Vec2 & b)637 inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
638 {
639 	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
640 }
641 
642 template <typename T>
b2Max(T a,T b)643 inline T b2Max(T a, T b)
644 {
645 	return a > b ? a : b;
646 }
647 
b2Max(const b2Vec2 & a,const b2Vec2 & b)648 inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
649 {
650 	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
651 }
652 
653 template <typename T>
b2Clamp(T a,T low,T high)654 inline T b2Clamp(T a, T low, T high)
655 {
656 	return b2Max(low, b2Min(a, high));
657 }
658 
b2Clamp(const b2Vec2 & a,const b2Vec2 & low,const b2Vec2 & high)659 inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
660 {
661 	return b2Max(low, b2Min(a, high));
662 }
663 
b2Swap(T & a,T & b)664 template<typename T> inline void b2Swap(T& a, T& b)
665 {
666 	T tmp = a;
667 	a = b;
668 	b = tmp;
669 }
670 
671 /// "Next Largest Power of 2
672 /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
673 /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
674 /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
675 /// largest power of 2. For a 32-bit value:"
b2NextPowerOfTwo(uint32 x)676 inline uint32 b2NextPowerOfTwo(uint32 x)
677 {
678 	x |= (x >> 1);
679 	x |= (x >> 2);
680 	x |= (x >> 4);
681 	x |= (x >> 8);
682 	x |= (x >> 16);
683 	return x + 1;
684 }
685 
b2IsPowerOfTwo(uint32 x)686 inline bool b2IsPowerOfTwo(uint32 x)
687 {
688 	bool result = x > 0 && (x & (x - 1)) == 0;
689 	return result;
690 }
691 
GetTransform(b2Transform * xf,float32 beta)692 inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
693 {
694 	xf->p = (1.0f - beta) * c0 + beta * c;
695 	float32 angle = (1.0f - beta) * a0 + beta * a;
696 	xf->q.Set(angle);
697 
698 	// Shift to origin
699 	xf->p -= b2Mul(xf->q, localCenter);
700 }
701 
Advance(float32 alpha)702 inline void b2Sweep::Advance(float32 alpha)
703 {
704 	b2Assert(alpha0 < 1.0f);
705 	float32 beta = (alpha - alpha0) / (1.0f - alpha0);
706 	c0 += beta * (c - c0);
707 	a0 += beta * (a - a0);
708 	alpha0 = alpha;
709 }
710 
711 /// Normalize an angle in radians to be between -pi and pi
Normalize()712 inline void b2Sweep::Normalize()
713 {
714 	float32 twoPi = 2.0f * b2_pi;
715 	float32 d =  twoPi * floorf(a0 / twoPi);
716 	a0 -= d;
717 	a -= d;
718 }
719 
720 #endif
721