1 /*
2 * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #ifndef B2_REVOLUTE_JOINT_H
20 #define B2_REVOLUTE_JOINT_H
21 
22 #include "b2Joint.h"
23 
24 /// Revolute joint definition. This requires defining an
25 /// anchor point where the bodies are joined. The definition
26 /// uses local anchor points so that the initial configuration
27 /// can violate the constraint slightly. You also need to
28 /// specify the initial relative angle for joint limits. This
29 /// helps when saving and loading a game.
30 /// The local anchor points are measured from the body's origin
31 /// rather than the center of mass because:
32 /// 1. you might not know where the center of mass will be.
33 /// 2. if you add/remove shapes from a body and recompute the mass,
34 ///    the joints will be broken.
35 struct b2RevoluteJointDef : public b2JointDef
36 {
b2RevoluteJointDefb2RevoluteJointDef37 	b2RevoluteJointDef()
38 	{
39 		type = e_revoluteJoint;
40 		localAnchor1.Set(0.0f, 0.0f);
41 		localAnchor2.Set(0.0f, 0.0f);
42 		referenceAngle = 0.0f;
43 		lowerAngle = 0.0f;
44 		upperAngle = 0.0f;
45 		maxMotorTorque = 0.0f;
46 		motorSpeed = 0.0f;
47 		enableLimit = false;
48 		enableMotor = false;
49 	}
50 
51 	/// Initialize the bodies, anchors, and reference angle using the world
52 	/// anchor.
53 	void Initialize(b2Body* body1, b2Body* body2, const b2Vec2& anchor);
54 
55 	/// The local anchor point relative to body1's origin.
56 	b2Vec2 localAnchor1;
57 
58 	/// The local anchor point relative to body2's origin.
59 	b2Vec2 localAnchor2;
60 
61 	/// The body2 angle minus body1 angle in the reference state (radians).
62 	float32 referenceAngle;
63 
64 	/// A flag to enable joint limits.
65 	bool enableLimit;
66 
67 	/// The lower angle for the joint limit (radians).
68 	float32 lowerAngle;
69 
70 	/// The upper angle for the joint limit (radians).
71 	float32 upperAngle;
72 
73 	/// A flag to enable the joint motor.
74 	bool enableMotor;
75 
76 	/// The desired motor speed. Usually in radians per second.
77 	float32 motorSpeed;
78 
79 	/// The maximum motor torque used to achieve the desired motor speed.
80 	/// Usually in N-m.
81 	float32 maxMotorTorque;
82 };
83 
84 /// A revolute joint constrains to bodies to share a common point while they
85 /// are free to rotate about the point. The relative rotation about the shared
86 /// point is the joint angle. You can limit the relative rotation with
87 /// a joint limit that specifies a lower and upper angle. You can use a motor
88 /// to drive the relative rotation about the shared point. A maximum motor torque
89 /// is provided so that infinite forces are not generated.
90 class b2RevoluteJoint : public b2Joint
91 {
92 public:
93 	b2Vec2 GetAnchor1() const;
94 	b2Vec2 GetAnchor2() const;
95 
96 	b2Vec2 GetReactionForce() const;
97 	float32 GetReactionTorque() const;
98 
99 	/// Get the current joint angle in radians.
100 	float32 GetJointAngle() const;
101 
102 	/// Get the current joint angle speed in radians per second.
103 	float32 GetJointSpeed() const;
104 
105 	/// Is the joint limit enabled?
106 	bool IsLimitEnabled() const;
107 
108 	/// Enable/disable the joint limit.
109 	void EnableLimit(bool flag);
110 
111 	/// Get the lower joint limit in radians.
112 	float32 GetLowerLimit() const;
113 
114 	/// Get the upper joint limit in radians.
115 	float32 GetUpperLimit() const;
116 
117 	/// Set the joint limits in radians.
118 	void SetLimits(float32 lower, float32 upper);
119 
120 	/// Is the joint motor enabled?
121 	bool IsMotorEnabled() const;
122 
123 	/// Enable/disable the joint motor.
124 	void EnableMotor(bool flag);
125 
126 	/// Set the motor speed in radians per second.
127 	void SetMotorSpeed(float32 speed);
128 
129 	/// Get the motor speed in radians per second.
130 	float32 GetMotorSpeed() const;
131 
132 	/// Set the maximum motor torque, usually in N-m.
133 	void SetMaxMotorTorque(float32 torque);
134 
135 	/// Get the current motor torque, usually in N-m.
136 	float32 GetMotorTorque() const;
137 
138 	//--------------- Internals Below -------------------
139 	b2RevoluteJoint(const b2RevoluteJointDef* def);
140 
141 	void InitVelocityConstraints(const b2TimeStep& step);
142 	void SolveVelocityConstraints(const b2TimeStep& step);
143 
144 	bool SolvePositionConstraints();
145 
146 	b2Vec2 m_localAnchor1;	// relative
147 	b2Vec2 m_localAnchor2;
148 	b2Vec2 m_pivotForce;
149 	float32 m_motorForce;
150 	float32 m_limitForce;
151 	float32 m_limitPositionImpulse;
152 
153 	b2Mat22 m_pivotMass;		// effective mass for point-to-point constraint.
154 	float32 m_motorMass;	// effective mass for motor/limit angular constraint.
155 
156 	bool m_enableMotor;
157 	float32 m_maxMotorTorque;
158 	float32 m_motorSpeed;
159 
160 	bool m_enableLimit;
161 	float32 m_referenceAngle;
162 	float32 m_lowerAngle;
163 	float32 m_upperAngle;
164 	b2LimitState m_limitState;
165 };
166 
GetMotorSpeed()167 inline float32 b2RevoluteJoint::GetMotorSpeed() const
168 {
169 	return m_motorSpeed;
170 }
171 
172 #endif
173