1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "diagnostic-core.h"
32 #include "ggc.h"
33 #include "target.h"
34 #include "langhooks.h"
35 #include "regs.h"
36 #include "params.h"
37 #include "cgraph.h"
38 #include "tree-inline.h"
39 #include "tree-dump.h"
40 #include "gimple.h"
41
42 /* Data type for the expressions representing sizes of data types.
43 It is the first integer type laid out. */
44 tree sizetype_tab[(int) stk_type_kind_last];
45
46 /* If nonzero, this is an upper limit on alignment of structure fields.
47 The value is measured in bits. */
48 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
49
50 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
51 in the address spaces' address_mode, not pointer_mode. Set only by
52 internal_reference_types called only by a front end. */
53 static int reference_types_internal = 0;
54
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
61 HOST_WIDE_INT, tree);
62 #endif
63 extern void debug_rli (record_layout_info);
64
65 /* Show that REFERENCE_TYPES are internal and should use address_mode.
66 Called only by front end. */
67
68 void
internal_reference_types(void)69 internal_reference_types (void)
70 {
71 reference_types_internal = 1;
72 }
73
74 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
75 to serve as the actual size-expression for a type or decl. */
76
77 tree
variable_size(tree size)78 variable_size (tree size)
79 {
80 /* Obviously. */
81 if (TREE_CONSTANT (size))
82 return size;
83
84 /* If the size is self-referential, we can't make a SAVE_EXPR (see
85 save_expr for the rationale). But we can do something else. */
86 if (CONTAINS_PLACEHOLDER_P (size))
87 return self_referential_size (size);
88
89 /* If we are in the global binding level, we can't make a SAVE_EXPR
90 since it may end up being shared across functions, so it is up
91 to the front-end to deal with this case. */
92 if (lang_hooks.decls.global_bindings_p ())
93 return size;
94
95 return save_expr (size);
96 }
97
98 /* An array of functions used for self-referential size computation. */
99 static GTY(()) vec<tree, va_gc> *size_functions;
100
101 /* Look inside EXPR into simple arithmetic operations involving constants.
102 Return the outermost non-arithmetic or non-constant node. */
103
104 static tree
skip_simple_constant_arithmetic(tree expr)105 skip_simple_constant_arithmetic (tree expr)
106 {
107 while (true)
108 {
109 if (UNARY_CLASS_P (expr))
110 expr = TREE_OPERAND (expr, 0);
111 else if (BINARY_CLASS_P (expr))
112 {
113 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
114 expr = TREE_OPERAND (expr, 0);
115 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
116 expr = TREE_OPERAND (expr, 1);
117 else
118 break;
119 }
120 else
121 break;
122 }
123
124 return expr;
125 }
126
127 /* Similar to copy_tree_r but do not copy component references involving
128 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
129 and substituted in substitute_in_expr. */
130
131 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)132 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
133 {
134 enum tree_code code = TREE_CODE (*tp);
135
136 /* Stop at types, decls, constants like copy_tree_r. */
137 if (TREE_CODE_CLASS (code) == tcc_type
138 || TREE_CODE_CLASS (code) == tcc_declaration
139 || TREE_CODE_CLASS (code) == tcc_constant)
140 {
141 *walk_subtrees = 0;
142 return NULL_TREE;
143 }
144
145 /* This is the pattern built in ada/make_aligning_type. */
146 else if (code == ADDR_EXPR
147 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
148 {
149 *walk_subtrees = 0;
150 return NULL_TREE;
151 }
152
153 /* Default case: the component reference. */
154 else if (code == COMPONENT_REF)
155 {
156 tree inner;
157 for (inner = TREE_OPERAND (*tp, 0);
158 REFERENCE_CLASS_P (inner);
159 inner = TREE_OPERAND (inner, 0))
160 ;
161
162 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
163 {
164 *walk_subtrees = 0;
165 return NULL_TREE;
166 }
167 }
168
169 /* We're not supposed to have them in self-referential size trees
170 because we wouldn't properly control when they are evaluated.
171 However, not creating superfluous SAVE_EXPRs requires accurate
172 tracking of readonly-ness all the way down to here, which we
173 cannot always guarantee in practice. So punt in this case. */
174 else if (code == SAVE_EXPR)
175 return error_mark_node;
176
177 else if (code == STATEMENT_LIST)
178 gcc_unreachable ();
179
180 return copy_tree_r (tp, walk_subtrees, data);
181 }
182
183 /* Given a SIZE expression that is self-referential, return an equivalent
184 expression to serve as the actual size expression for a type. */
185
186 static tree
self_referential_size(tree size)187 self_referential_size (tree size)
188 {
189 static unsigned HOST_WIDE_INT fnno = 0;
190 vec<tree> self_refs = vNULL;
191 tree param_type_list = NULL, param_decl_list = NULL;
192 tree t, ref, return_type, fntype, fnname, fndecl;
193 unsigned int i;
194 char buf[128];
195 vec<tree, va_gc> *args = NULL;
196
197 /* Do not factor out simple operations. */
198 t = skip_simple_constant_arithmetic (size);
199 if (TREE_CODE (t) == CALL_EXPR)
200 return size;
201
202 /* Collect the list of self-references in the expression. */
203 find_placeholder_in_expr (size, &self_refs);
204 gcc_assert (self_refs.length () > 0);
205
206 /* Obtain a private copy of the expression. */
207 t = size;
208 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
209 return size;
210 size = t;
211
212 /* Build the parameter and argument lists in parallel; also
213 substitute the former for the latter in the expression. */
214 vec_alloc (args, self_refs.length ());
215 FOR_EACH_VEC_ELT (self_refs, i, ref)
216 {
217 tree subst, param_name, param_type, param_decl;
218
219 if (DECL_P (ref))
220 {
221 /* We shouldn't have true variables here. */
222 gcc_assert (TREE_READONLY (ref));
223 subst = ref;
224 }
225 /* This is the pattern built in ada/make_aligning_type. */
226 else if (TREE_CODE (ref) == ADDR_EXPR)
227 subst = ref;
228 /* Default case: the component reference. */
229 else
230 subst = TREE_OPERAND (ref, 1);
231
232 sprintf (buf, "p%d", i);
233 param_name = get_identifier (buf);
234 param_type = TREE_TYPE (ref);
235 param_decl
236 = build_decl (input_location, PARM_DECL, param_name, param_type);
237 if (targetm.calls.promote_prototypes (NULL_TREE)
238 && INTEGRAL_TYPE_P (param_type)
239 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
240 DECL_ARG_TYPE (param_decl) = integer_type_node;
241 else
242 DECL_ARG_TYPE (param_decl) = param_type;
243 DECL_ARTIFICIAL (param_decl) = 1;
244 TREE_READONLY (param_decl) = 1;
245
246 size = substitute_in_expr (size, subst, param_decl);
247
248 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
249 param_decl_list = chainon (param_decl, param_decl_list);
250 args->quick_push (ref);
251 }
252
253 self_refs.release ();
254
255 /* Append 'void' to indicate that the number of parameters is fixed. */
256 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
257
258 /* The 3 lists have been created in reverse order. */
259 param_type_list = nreverse (param_type_list);
260 param_decl_list = nreverse (param_decl_list);
261
262 /* Build the function type. */
263 return_type = TREE_TYPE (size);
264 fntype = build_function_type (return_type, param_type_list);
265
266 /* Build the function declaration. */
267 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
268 fnname = get_file_function_name (buf);
269 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
270 for (t = param_decl_list; t; t = DECL_CHAIN (t))
271 DECL_CONTEXT (t) = fndecl;
272 DECL_ARGUMENTS (fndecl) = param_decl_list;
273 DECL_RESULT (fndecl)
274 = build_decl (input_location, RESULT_DECL, 0, return_type);
275 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
276
277 /* The function has been created by the compiler and we don't
278 want to emit debug info for it. */
279 DECL_ARTIFICIAL (fndecl) = 1;
280 DECL_IGNORED_P (fndecl) = 1;
281
282 /* It is supposed to be "const" and never throw. */
283 TREE_READONLY (fndecl) = 1;
284 TREE_NOTHROW (fndecl) = 1;
285
286 /* We want it to be inlined when this is deemed profitable, as
287 well as discarded if every call has been integrated. */
288 DECL_DECLARED_INLINE_P (fndecl) = 1;
289
290 /* It is made up of a unique return statement. */
291 DECL_INITIAL (fndecl) = make_node (BLOCK);
292 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
293 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
294 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
295 TREE_STATIC (fndecl) = 1;
296
297 /* Put it onto the list of size functions. */
298 vec_safe_push (size_functions, fndecl);
299
300 /* Replace the original expression with a call to the size function. */
301 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
302 }
303
304 /* Take, queue and compile all the size functions. It is essential that
305 the size functions be gimplified at the very end of the compilation
306 in order to guarantee transparent handling of self-referential sizes.
307 Otherwise the GENERIC inliner would not be able to inline them back
308 at each of their call sites, thus creating artificial non-constant
309 size expressions which would trigger nasty problems later on. */
310
311 void
finalize_size_functions(void)312 finalize_size_functions (void)
313 {
314 unsigned int i;
315 tree fndecl;
316
317 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
318 {
319 allocate_struct_function (fndecl, false);
320 set_cfun (NULL);
321 dump_function (TDI_original, fndecl);
322 gimplify_function_tree (fndecl);
323 dump_function (TDI_generic, fndecl);
324 cgraph_finalize_function (fndecl, false);
325 }
326
327 vec_free (size_functions);
328 }
329
330 /* Return the machine mode to use for a nonscalar of SIZE bits. The
331 mode must be in class MCLASS, and have exactly that many value bits;
332 it may have padding as well. If LIMIT is nonzero, modes of wider
333 than MAX_FIXED_MODE_SIZE will not be used. */
334
335 enum machine_mode
mode_for_size(unsigned int size,enum mode_class mclass,int limit)336 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
337 {
338 enum machine_mode mode;
339
340 if (limit && size > MAX_FIXED_MODE_SIZE)
341 return BLKmode;
342
343 /* Get the first mode which has this size, in the specified class. */
344 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
345 mode = GET_MODE_WIDER_MODE (mode))
346 if (GET_MODE_PRECISION (mode) == size)
347 return mode;
348
349 return BLKmode;
350 }
351
352 /* Similar, except passed a tree node. */
353
354 enum machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)355 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
356 {
357 unsigned HOST_WIDE_INT uhwi;
358 unsigned int ui;
359
360 if (!host_integerp (size, 1))
361 return BLKmode;
362 uhwi = tree_low_cst (size, 1);
363 ui = uhwi;
364 if (uhwi != ui)
365 return BLKmode;
366 return mode_for_size (ui, mclass, limit);
367 }
368
369 /* Similar, but never return BLKmode; return the narrowest mode that
370 contains at least the requested number of value bits. */
371
372 enum machine_mode
smallest_mode_for_size(unsigned int size,enum mode_class mclass)373 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
374 {
375 enum machine_mode mode;
376
377 /* Get the first mode which has at least this size, in the
378 specified class. */
379 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
380 mode = GET_MODE_WIDER_MODE (mode))
381 if (GET_MODE_PRECISION (mode) >= size)
382 return mode;
383
384 gcc_unreachable ();
385 }
386
387 /* Find an integer mode of the exact same size, or BLKmode on failure. */
388
389 enum machine_mode
int_mode_for_mode(enum machine_mode mode)390 int_mode_for_mode (enum machine_mode mode)
391 {
392 switch (GET_MODE_CLASS (mode))
393 {
394 case MODE_INT:
395 case MODE_PARTIAL_INT:
396 break;
397
398 case MODE_COMPLEX_INT:
399 case MODE_COMPLEX_FLOAT:
400 case MODE_FLOAT:
401 case MODE_DECIMAL_FLOAT:
402 case MODE_VECTOR_INT:
403 case MODE_VECTOR_FLOAT:
404 case MODE_FRACT:
405 case MODE_ACCUM:
406 case MODE_UFRACT:
407 case MODE_UACCUM:
408 case MODE_VECTOR_FRACT:
409 case MODE_VECTOR_ACCUM:
410 case MODE_VECTOR_UFRACT:
411 case MODE_VECTOR_UACCUM:
412 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
413 break;
414
415 case MODE_RANDOM:
416 if (mode == BLKmode)
417 break;
418
419 /* ... fall through ... */
420
421 case MODE_CC:
422 default:
423 gcc_unreachable ();
424 }
425
426 return mode;
427 }
428
429 /* Find a mode that is suitable for representing a vector with
430 NUNITS elements of mode INNERMODE. Returns BLKmode if there
431 is no suitable mode. */
432
433 enum machine_mode
mode_for_vector(enum machine_mode innermode,unsigned nunits)434 mode_for_vector (enum machine_mode innermode, unsigned nunits)
435 {
436 enum machine_mode mode;
437
438 /* First, look for a supported vector type. */
439 if (SCALAR_FLOAT_MODE_P (innermode))
440 mode = MIN_MODE_VECTOR_FLOAT;
441 else if (SCALAR_FRACT_MODE_P (innermode))
442 mode = MIN_MODE_VECTOR_FRACT;
443 else if (SCALAR_UFRACT_MODE_P (innermode))
444 mode = MIN_MODE_VECTOR_UFRACT;
445 else if (SCALAR_ACCUM_MODE_P (innermode))
446 mode = MIN_MODE_VECTOR_ACCUM;
447 else if (SCALAR_UACCUM_MODE_P (innermode))
448 mode = MIN_MODE_VECTOR_UACCUM;
449 else
450 mode = MIN_MODE_VECTOR_INT;
451
452 /* Do not check vector_mode_supported_p here. We'll do that
453 later in vector_type_mode. */
454 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
455 if (GET_MODE_NUNITS (mode) == nunits
456 && GET_MODE_INNER (mode) == innermode)
457 break;
458
459 /* For integers, try mapping it to a same-sized scalar mode. */
460 if (mode == VOIDmode
461 && GET_MODE_CLASS (innermode) == MODE_INT)
462 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
463 MODE_INT, 0);
464
465 if (mode == VOIDmode
466 || (GET_MODE_CLASS (mode) == MODE_INT
467 && !have_regs_of_mode[mode]))
468 return BLKmode;
469
470 return mode;
471 }
472
473 /* Return the alignment of MODE. This will be bounded by 1 and
474 BIGGEST_ALIGNMENT. */
475
476 unsigned int
get_mode_alignment(enum machine_mode mode)477 get_mode_alignment (enum machine_mode mode)
478 {
479 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
480 }
481
482 /* Return the natural mode of an array, given that it is SIZE bytes in
483 total and has elements of type ELEM_TYPE. */
484
485 static enum machine_mode
mode_for_array(tree elem_type,tree size)486 mode_for_array (tree elem_type, tree size)
487 {
488 tree elem_size;
489 unsigned HOST_WIDE_INT int_size, int_elem_size;
490 bool limit_p;
491
492 /* One-element arrays get the component type's mode. */
493 elem_size = TYPE_SIZE (elem_type);
494 if (simple_cst_equal (size, elem_size))
495 return TYPE_MODE (elem_type);
496
497 limit_p = true;
498 if (host_integerp (size, 1) && host_integerp (elem_size, 1))
499 {
500 int_size = tree_low_cst (size, 1);
501 int_elem_size = tree_low_cst (elem_size, 1);
502 if (int_elem_size > 0
503 && int_size % int_elem_size == 0
504 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
505 int_size / int_elem_size))
506 limit_p = false;
507 }
508 return mode_for_size_tree (size, MODE_INT, limit_p);
509 }
510
511 /* Subroutine of layout_decl: Force alignment required for the data type.
512 But if the decl itself wants greater alignment, don't override that. */
513
514 static inline void
do_type_align(tree type,tree decl)515 do_type_align (tree type, tree decl)
516 {
517 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
518 {
519 DECL_ALIGN (decl) = TYPE_ALIGN (type);
520 if (TREE_CODE (decl) == FIELD_DECL)
521 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
522 }
523 }
524
525 /* Set the size, mode and alignment of a ..._DECL node.
526 TYPE_DECL does need this for C++.
527 Note that LABEL_DECL and CONST_DECL nodes do not need this,
528 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
529 Don't call layout_decl for them.
530
531 KNOWN_ALIGN is the amount of alignment we can assume this
532 decl has with no special effort. It is relevant only for FIELD_DECLs
533 and depends on the previous fields.
534 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
535 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
536 the record will be aligned to suit. */
537
538 void
layout_decl(tree decl,unsigned int known_align)539 layout_decl (tree decl, unsigned int known_align)
540 {
541 tree type = TREE_TYPE (decl);
542 enum tree_code code = TREE_CODE (decl);
543 rtx rtl = NULL_RTX;
544 location_t loc = DECL_SOURCE_LOCATION (decl);
545
546 if (code == CONST_DECL)
547 return;
548
549 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
550 || code == TYPE_DECL ||code == FIELD_DECL);
551
552 rtl = DECL_RTL_IF_SET (decl);
553
554 if (type == error_mark_node)
555 type = void_type_node;
556
557 /* Usually the size and mode come from the data type without change,
558 however, the front-end may set the explicit width of the field, so its
559 size may not be the same as the size of its type. This happens with
560 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
561 also happens with other fields. For example, the C++ front-end creates
562 zero-sized fields corresponding to empty base classes, and depends on
563 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
564 size in bytes from the size in bits. If we have already set the mode,
565 don't set it again since we can be called twice for FIELD_DECLs. */
566
567 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
568 if (DECL_MODE (decl) == VOIDmode)
569 DECL_MODE (decl) = TYPE_MODE (type);
570
571 if (DECL_SIZE (decl) == 0)
572 {
573 DECL_SIZE (decl) = TYPE_SIZE (type);
574 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
575 }
576 else if (DECL_SIZE_UNIT (decl) == 0)
577 DECL_SIZE_UNIT (decl)
578 = fold_convert_loc (loc, sizetype,
579 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
580 bitsize_unit_node));
581
582 if (code != FIELD_DECL)
583 /* For non-fields, update the alignment from the type. */
584 do_type_align (type, decl);
585 else
586 /* For fields, it's a bit more complicated... */
587 {
588 bool old_user_align = DECL_USER_ALIGN (decl);
589 bool zero_bitfield = false;
590 bool packed_p = DECL_PACKED (decl);
591 unsigned int mfa;
592
593 if (DECL_BIT_FIELD (decl))
594 {
595 DECL_BIT_FIELD_TYPE (decl) = type;
596
597 /* A zero-length bit-field affects the alignment of the next
598 field. In essence such bit-fields are not influenced by
599 any packing due to #pragma pack or attribute packed. */
600 if (integer_zerop (DECL_SIZE (decl))
601 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
602 {
603 zero_bitfield = true;
604 packed_p = false;
605 #ifdef PCC_BITFIELD_TYPE_MATTERS
606 if (PCC_BITFIELD_TYPE_MATTERS)
607 do_type_align (type, decl);
608 else
609 #endif
610 {
611 #ifdef EMPTY_FIELD_BOUNDARY
612 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
613 {
614 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
615 DECL_USER_ALIGN (decl) = 0;
616 }
617 #endif
618 }
619 }
620
621 /* See if we can use an ordinary integer mode for a bit-field.
622 Conditions are: a fixed size that is correct for another mode,
623 occupying a complete byte or bytes on proper boundary,
624 and not -fstrict-volatile-bitfields. If the latter is set,
625 we unfortunately can't check TREE_THIS_VOLATILE, as a cast
626 may make a volatile object later. */
627 if (TYPE_SIZE (type) != 0
628 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
629 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
630 && flag_strict_volatile_bitfields <= 0)
631 {
632 enum machine_mode xmode
633 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
634 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
635
636 if (xmode != BLKmode
637 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
638 && (known_align == 0 || known_align >= xalign))
639 {
640 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
641 DECL_MODE (decl) = xmode;
642 DECL_BIT_FIELD (decl) = 0;
643 }
644 }
645
646 /* Turn off DECL_BIT_FIELD if we won't need it set. */
647 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
648 && known_align >= TYPE_ALIGN (type)
649 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
650 DECL_BIT_FIELD (decl) = 0;
651 }
652 else if (packed_p && DECL_USER_ALIGN (decl))
653 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
654 round up; we'll reduce it again below. We want packing to
655 supersede USER_ALIGN inherited from the type, but defer to
656 alignment explicitly specified on the field decl. */;
657 else
658 do_type_align (type, decl);
659
660 /* If the field is packed and not explicitly aligned, give it the
661 minimum alignment. Note that do_type_align may set
662 DECL_USER_ALIGN, so we need to check old_user_align instead. */
663 if (packed_p
664 && !old_user_align)
665 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
666
667 if (! packed_p && ! DECL_USER_ALIGN (decl))
668 {
669 /* Some targets (i.e. i386, VMS) limit struct field alignment
670 to a lower boundary than alignment of variables unless
671 it was overridden by attribute aligned. */
672 #ifdef BIGGEST_FIELD_ALIGNMENT
673 DECL_ALIGN (decl)
674 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
675 #endif
676 #ifdef ADJUST_FIELD_ALIGN
677 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
678 #endif
679 }
680
681 if (zero_bitfield)
682 mfa = initial_max_fld_align * BITS_PER_UNIT;
683 else
684 mfa = maximum_field_alignment;
685 /* Should this be controlled by DECL_USER_ALIGN, too? */
686 if (mfa != 0)
687 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
688 }
689
690 /* Evaluate nonconstant size only once, either now or as soon as safe. */
691 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
692 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
693 if (DECL_SIZE_UNIT (decl) != 0
694 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
695 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
696
697 /* If requested, warn about definitions of large data objects. */
698 if (warn_larger_than
699 && (code == VAR_DECL || code == PARM_DECL)
700 && ! DECL_EXTERNAL (decl))
701 {
702 tree size = DECL_SIZE_UNIT (decl);
703
704 if (size != 0 && TREE_CODE (size) == INTEGER_CST
705 && compare_tree_int (size, larger_than_size) > 0)
706 {
707 int size_as_int = TREE_INT_CST_LOW (size);
708
709 if (compare_tree_int (size, size_as_int) == 0)
710 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
711 else
712 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
713 decl, larger_than_size);
714 }
715 }
716
717 /* If the RTL was already set, update its mode and mem attributes. */
718 if (rtl)
719 {
720 PUT_MODE (rtl, DECL_MODE (decl));
721 SET_DECL_RTL (decl, 0);
722 set_mem_attributes (rtl, decl, 1);
723 SET_DECL_RTL (decl, rtl);
724 }
725 }
726
727 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
728 a previous call to layout_decl and calls it again. */
729
730 void
relayout_decl(tree decl)731 relayout_decl (tree decl)
732 {
733 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
734 DECL_MODE (decl) = VOIDmode;
735 if (!DECL_USER_ALIGN (decl))
736 DECL_ALIGN (decl) = 0;
737 SET_DECL_RTL (decl, 0);
738
739 layout_decl (decl, 0);
740 }
741
742 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
743 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
744 is to be passed to all other layout functions for this record. It is the
745 responsibility of the caller to call `free' for the storage returned.
746 Note that garbage collection is not permitted until we finish laying
747 out the record. */
748
749 record_layout_info
start_record_layout(tree t)750 start_record_layout (tree t)
751 {
752 record_layout_info rli = XNEW (struct record_layout_info_s);
753
754 rli->t = t;
755
756 /* If the type has a minimum specified alignment (via an attribute
757 declaration, for example) use it -- otherwise, start with a
758 one-byte alignment. */
759 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
760 rli->unpacked_align = rli->record_align;
761 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
762
763 #ifdef STRUCTURE_SIZE_BOUNDARY
764 /* Packed structures don't need to have minimum size. */
765 if (! TYPE_PACKED (t))
766 {
767 unsigned tmp;
768
769 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
770 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
771 if (maximum_field_alignment != 0)
772 tmp = MIN (tmp, maximum_field_alignment);
773 rli->record_align = MAX (rli->record_align, tmp);
774 }
775 #endif
776
777 rli->offset = size_zero_node;
778 rli->bitpos = bitsize_zero_node;
779 rli->prev_field = 0;
780 rli->pending_statics = 0;
781 rli->packed_maybe_necessary = 0;
782 rli->remaining_in_alignment = 0;
783
784 return rli;
785 }
786
787 /* Return the combined bit position for the byte offset OFFSET and the
788 bit position BITPOS.
789
790 These functions operate on byte and bit positions present in FIELD_DECLs
791 and assume that these expressions result in no (intermediate) overflow.
792 This assumption is necessary to fold the expressions as much as possible,
793 so as to avoid creating artificially variable-sized types in languages
794 supporting variable-sized types like Ada. */
795
796 tree
bit_from_pos(tree offset,tree bitpos)797 bit_from_pos (tree offset, tree bitpos)
798 {
799 if (TREE_CODE (offset) == PLUS_EXPR)
800 offset = size_binop (PLUS_EXPR,
801 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
802 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
803 else
804 offset = fold_convert (bitsizetype, offset);
805 return size_binop (PLUS_EXPR, bitpos,
806 size_binop (MULT_EXPR, offset, bitsize_unit_node));
807 }
808
809 /* Return the combined truncated byte position for the byte offset OFFSET and
810 the bit position BITPOS. */
811
812 tree
byte_from_pos(tree offset,tree bitpos)813 byte_from_pos (tree offset, tree bitpos)
814 {
815 tree bytepos;
816 if (TREE_CODE (bitpos) == MULT_EXPR
817 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
818 bytepos = TREE_OPERAND (bitpos, 0);
819 else
820 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
821 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
822 }
823
824 /* Split the bit position POS into a byte offset *POFFSET and a bit
825 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
826
827 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)828 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
829 tree pos)
830 {
831 tree toff_align = bitsize_int (off_align);
832 if (TREE_CODE (pos) == MULT_EXPR
833 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
834 {
835 *poffset = size_binop (MULT_EXPR,
836 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
837 size_int (off_align / BITS_PER_UNIT));
838 *pbitpos = bitsize_zero_node;
839 }
840 else
841 {
842 *poffset = size_binop (MULT_EXPR,
843 fold_convert (sizetype,
844 size_binop (FLOOR_DIV_EXPR, pos,
845 toff_align)),
846 size_int (off_align / BITS_PER_UNIT));
847 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
848 }
849 }
850
851 /* Given a pointer to bit and byte offsets and an offset alignment,
852 normalize the offsets so they are within the alignment. */
853
854 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)855 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
856 {
857 /* If the bit position is now larger than it should be, adjust it
858 downwards. */
859 if (compare_tree_int (*pbitpos, off_align) >= 0)
860 {
861 tree offset, bitpos;
862 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
863 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
864 *pbitpos = bitpos;
865 }
866 }
867
868 /* Print debugging information about the information in RLI. */
869
870 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)871 debug_rli (record_layout_info rli)
872 {
873 print_node_brief (stderr, "type", rli->t, 0);
874 print_node_brief (stderr, "\noffset", rli->offset, 0);
875 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
876
877 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
878 rli->record_align, rli->unpacked_align,
879 rli->offset_align);
880
881 /* The ms_struct code is the only that uses this. */
882 if (targetm.ms_bitfield_layout_p (rli->t))
883 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
884
885 if (rli->packed_maybe_necessary)
886 fprintf (stderr, "packed may be necessary\n");
887
888 if (!vec_safe_is_empty (rli->pending_statics))
889 {
890 fprintf (stderr, "pending statics:\n");
891 debug_vec_tree (rli->pending_statics);
892 }
893 }
894
895 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
896 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
897
898 void
normalize_rli(record_layout_info rli)899 normalize_rli (record_layout_info rli)
900 {
901 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
902 }
903
904 /* Returns the size in bytes allocated so far. */
905
906 tree
rli_size_unit_so_far(record_layout_info rli)907 rli_size_unit_so_far (record_layout_info rli)
908 {
909 return byte_from_pos (rli->offset, rli->bitpos);
910 }
911
912 /* Returns the size in bits allocated so far. */
913
914 tree
rli_size_so_far(record_layout_info rli)915 rli_size_so_far (record_layout_info rli)
916 {
917 return bit_from_pos (rli->offset, rli->bitpos);
918 }
919
920 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
921 the next available location within the record is given by KNOWN_ALIGN.
922 Update the variable alignment fields in RLI, and return the alignment
923 to give the FIELD. */
924
925 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)926 update_alignment_for_field (record_layout_info rli, tree field,
927 unsigned int known_align)
928 {
929 /* The alignment required for FIELD. */
930 unsigned int desired_align;
931 /* The type of this field. */
932 tree type = TREE_TYPE (field);
933 /* True if the field was explicitly aligned by the user. */
934 bool user_align;
935 bool is_bitfield;
936
937 /* Do not attempt to align an ERROR_MARK node */
938 if (TREE_CODE (type) == ERROR_MARK)
939 return 0;
940
941 /* Lay out the field so we know what alignment it needs. */
942 layout_decl (field, known_align);
943 desired_align = DECL_ALIGN (field);
944 user_align = DECL_USER_ALIGN (field);
945
946 is_bitfield = (type != error_mark_node
947 && DECL_BIT_FIELD_TYPE (field)
948 && ! integer_zerop (TYPE_SIZE (type)));
949
950 /* Record must have at least as much alignment as any field.
951 Otherwise, the alignment of the field within the record is
952 meaningless. */
953 if (targetm.ms_bitfield_layout_p (rli->t))
954 {
955 /* Here, the alignment of the underlying type of a bitfield can
956 affect the alignment of a record; even a zero-sized field
957 can do this. The alignment should be to the alignment of
958 the type, except that for zero-size bitfields this only
959 applies if there was an immediately prior, nonzero-size
960 bitfield. (That's the way it is, experimentally.) */
961 if ((!is_bitfield && !DECL_PACKED (field))
962 || ((DECL_SIZE (field) == NULL_TREE
963 || !integer_zerop (DECL_SIZE (field)))
964 ? !DECL_PACKED (field)
965 : (rli->prev_field
966 && DECL_BIT_FIELD_TYPE (rli->prev_field)
967 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
968 {
969 unsigned int type_align = TYPE_ALIGN (type);
970 type_align = MAX (type_align, desired_align);
971 if (maximum_field_alignment != 0)
972 type_align = MIN (type_align, maximum_field_alignment);
973 rli->record_align = MAX (rli->record_align, type_align);
974 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
975 }
976 }
977 #ifdef PCC_BITFIELD_TYPE_MATTERS
978 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
979 {
980 /* Named bit-fields cause the entire structure to have the
981 alignment implied by their type. Some targets also apply the same
982 rules to unnamed bitfields. */
983 if (DECL_NAME (field) != 0
984 || targetm.align_anon_bitfield ())
985 {
986 unsigned int type_align = TYPE_ALIGN (type);
987
988 #ifdef ADJUST_FIELD_ALIGN
989 if (! TYPE_USER_ALIGN (type))
990 type_align = ADJUST_FIELD_ALIGN (field, type_align);
991 #endif
992
993 /* Targets might chose to handle unnamed and hence possibly
994 zero-width bitfield. Those are not influenced by #pragmas
995 or packed attributes. */
996 if (integer_zerop (DECL_SIZE (field)))
997 {
998 if (initial_max_fld_align)
999 type_align = MIN (type_align,
1000 initial_max_fld_align * BITS_PER_UNIT);
1001 }
1002 else if (maximum_field_alignment != 0)
1003 type_align = MIN (type_align, maximum_field_alignment);
1004 else if (DECL_PACKED (field))
1005 type_align = MIN (type_align, BITS_PER_UNIT);
1006
1007 /* The alignment of the record is increased to the maximum
1008 of the current alignment, the alignment indicated on the
1009 field (i.e., the alignment specified by an __aligned__
1010 attribute), and the alignment indicated by the type of
1011 the field. */
1012 rli->record_align = MAX (rli->record_align, desired_align);
1013 rli->record_align = MAX (rli->record_align, type_align);
1014
1015 if (warn_packed)
1016 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1017 user_align |= TYPE_USER_ALIGN (type);
1018 }
1019 }
1020 #endif
1021 else
1022 {
1023 rli->record_align = MAX (rli->record_align, desired_align);
1024 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1025 }
1026
1027 TYPE_USER_ALIGN (rli->t) |= user_align;
1028
1029 return desired_align;
1030 }
1031
1032 /* Called from place_field to handle unions. */
1033
1034 static void
place_union_field(record_layout_info rli,tree field)1035 place_union_field (record_layout_info rli, tree field)
1036 {
1037 update_alignment_for_field (rli, field, /*known_align=*/0);
1038
1039 DECL_FIELD_OFFSET (field) = size_zero_node;
1040 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1041 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1042
1043 /* If this is an ERROR_MARK return *after* having set the
1044 field at the start of the union. This helps when parsing
1045 invalid fields. */
1046 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1047 return;
1048
1049 /* We assume the union's size will be a multiple of a byte so we don't
1050 bother with BITPOS. */
1051 if (TREE_CODE (rli->t) == UNION_TYPE)
1052 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1053 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1054 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1055 DECL_SIZE_UNIT (field), rli->offset);
1056 }
1057
1058 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1059 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1060 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1061 units of alignment than the underlying TYPE. */
1062 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1063 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1064 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1065 {
1066 /* Note that the calculation of OFFSET might overflow; we calculate it so
1067 that we still get the right result as long as ALIGN is a power of two. */
1068 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1069
1070 offset = offset % align;
1071 return ((offset + size + align - 1) / align
1072 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1073 / align));
1074 }
1075 #endif
1076
1077 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1078 is a FIELD_DECL to be added after those fields already present in
1079 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1080 callers that desire that behavior must manually perform that step.) */
1081
1082 void
place_field(record_layout_info rli,tree field)1083 place_field (record_layout_info rli, tree field)
1084 {
1085 /* The alignment required for FIELD. */
1086 unsigned int desired_align;
1087 /* The alignment FIELD would have if we just dropped it into the
1088 record as it presently stands. */
1089 unsigned int known_align;
1090 unsigned int actual_align;
1091 /* The type of this field. */
1092 tree type = TREE_TYPE (field);
1093
1094 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1095
1096 /* If FIELD is static, then treat it like a separate variable, not
1097 really like a structure field. If it is a FUNCTION_DECL, it's a
1098 method. In both cases, all we do is lay out the decl, and we do
1099 it *after* the record is laid out. */
1100 if (TREE_CODE (field) == VAR_DECL)
1101 {
1102 vec_safe_push (rli->pending_statics, field);
1103 return;
1104 }
1105
1106 /* Enumerators and enum types which are local to this class need not
1107 be laid out. Likewise for initialized constant fields. */
1108 else if (TREE_CODE (field) != FIELD_DECL)
1109 return;
1110
1111 /* Unions are laid out very differently than records, so split
1112 that code off to another function. */
1113 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1114 {
1115 place_union_field (rli, field);
1116 return;
1117 }
1118
1119 else if (TREE_CODE (type) == ERROR_MARK)
1120 {
1121 /* Place this field at the current allocation position, so we
1122 maintain monotonicity. */
1123 DECL_FIELD_OFFSET (field) = rli->offset;
1124 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1125 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1126 return;
1127 }
1128
1129 /* Work out the known alignment so far. Note that A & (-A) is the
1130 value of the least-significant bit in A that is one. */
1131 if (! integer_zerop (rli->bitpos))
1132 known_align = (tree_low_cst (rli->bitpos, 1)
1133 & - tree_low_cst (rli->bitpos, 1));
1134 else if (integer_zerop (rli->offset))
1135 known_align = 0;
1136 else if (host_integerp (rli->offset, 1))
1137 known_align = (BITS_PER_UNIT
1138 * (tree_low_cst (rli->offset, 1)
1139 & - tree_low_cst (rli->offset, 1)));
1140 else
1141 known_align = rli->offset_align;
1142
1143 desired_align = update_alignment_for_field (rli, field, known_align);
1144 if (known_align == 0)
1145 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1146
1147 if (warn_packed && DECL_PACKED (field))
1148 {
1149 if (known_align >= TYPE_ALIGN (type))
1150 {
1151 if (TYPE_ALIGN (type) > desired_align)
1152 {
1153 if (STRICT_ALIGNMENT)
1154 warning (OPT_Wattributes, "packed attribute causes "
1155 "inefficient alignment for %q+D", field);
1156 /* Don't warn if DECL_PACKED was set by the type. */
1157 else if (!TYPE_PACKED (rli->t))
1158 warning (OPT_Wattributes, "packed attribute is "
1159 "unnecessary for %q+D", field);
1160 }
1161 }
1162 else
1163 rli->packed_maybe_necessary = 1;
1164 }
1165
1166 /* Does this field automatically have alignment it needs by virtue
1167 of the fields that precede it and the record's own alignment? */
1168 if (known_align < desired_align)
1169 {
1170 /* No, we need to skip space before this field.
1171 Bump the cumulative size to multiple of field alignment. */
1172
1173 if (!targetm.ms_bitfield_layout_p (rli->t)
1174 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1175 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1176
1177 /* If the alignment is still within offset_align, just align
1178 the bit position. */
1179 if (desired_align < rli->offset_align)
1180 rli->bitpos = round_up (rli->bitpos, desired_align);
1181 else
1182 {
1183 /* First adjust OFFSET by the partial bits, then align. */
1184 rli->offset
1185 = size_binop (PLUS_EXPR, rli->offset,
1186 fold_convert (sizetype,
1187 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1188 bitsize_unit_node)));
1189 rli->bitpos = bitsize_zero_node;
1190
1191 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1192 }
1193
1194 if (! TREE_CONSTANT (rli->offset))
1195 rli->offset_align = desired_align;
1196 if (targetm.ms_bitfield_layout_p (rli->t))
1197 rli->prev_field = NULL;
1198 }
1199
1200 /* Handle compatibility with PCC. Note that if the record has any
1201 variable-sized fields, we need not worry about compatibility. */
1202 #ifdef PCC_BITFIELD_TYPE_MATTERS
1203 if (PCC_BITFIELD_TYPE_MATTERS
1204 && ! targetm.ms_bitfield_layout_p (rli->t)
1205 && TREE_CODE (field) == FIELD_DECL
1206 && type != error_mark_node
1207 && DECL_BIT_FIELD (field)
1208 && (! DECL_PACKED (field)
1209 /* Enter for these packed fields only to issue a warning. */
1210 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1211 && maximum_field_alignment == 0
1212 && ! integer_zerop (DECL_SIZE (field))
1213 && host_integerp (DECL_SIZE (field), 1)
1214 && host_integerp (rli->offset, 1)
1215 && host_integerp (TYPE_SIZE (type), 1))
1216 {
1217 unsigned int type_align = TYPE_ALIGN (type);
1218 tree dsize = DECL_SIZE (field);
1219 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1220 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1221 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1222
1223 #ifdef ADJUST_FIELD_ALIGN
1224 if (! TYPE_USER_ALIGN (type))
1225 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1226 #endif
1227
1228 /* A bit field may not span more units of alignment of its type
1229 than its type itself. Advance to next boundary if necessary. */
1230 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1231 {
1232 if (DECL_PACKED (field))
1233 {
1234 if (warn_packed_bitfield_compat == 1)
1235 inform
1236 (input_location,
1237 "offset of packed bit-field %qD has changed in GCC 4.4",
1238 field);
1239 }
1240 else
1241 rli->bitpos = round_up (rli->bitpos, type_align);
1242 }
1243
1244 if (! DECL_PACKED (field))
1245 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1246 }
1247 #endif
1248
1249 #ifdef BITFIELD_NBYTES_LIMITED
1250 if (BITFIELD_NBYTES_LIMITED
1251 && ! targetm.ms_bitfield_layout_p (rli->t)
1252 && TREE_CODE (field) == FIELD_DECL
1253 && type != error_mark_node
1254 && DECL_BIT_FIELD_TYPE (field)
1255 && ! DECL_PACKED (field)
1256 && ! integer_zerop (DECL_SIZE (field))
1257 && host_integerp (DECL_SIZE (field), 1)
1258 && host_integerp (rli->offset, 1)
1259 && host_integerp (TYPE_SIZE (type), 1))
1260 {
1261 unsigned int type_align = TYPE_ALIGN (type);
1262 tree dsize = DECL_SIZE (field);
1263 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1264 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1265 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1266
1267 #ifdef ADJUST_FIELD_ALIGN
1268 if (! TYPE_USER_ALIGN (type))
1269 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1270 #endif
1271
1272 if (maximum_field_alignment != 0)
1273 type_align = MIN (type_align, maximum_field_alignment);
1274 /* ??? This test is opposite the test in the containing if
1275 statement, so this code is unreachable currently. */
1276 else if (DECL_PACKED (field))
1277 type_align = MIN (type_align, BITS_PER_UNIT);
1278
1279 /* A bit field may not span the unit of alignment of its type.
1280 Advance to next boundary if necessary. */
1281 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1282 rli->bitpos = round_up (rli->bitpos, type_align);
1283
1284 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1285 }
1286 #endif
1287
1288 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1289 A subtlety:
1290 When a bit field is inserted into a packed record, the whole
1291 size of the underlying type is used by one or more same-size
1292 adjacent bitfields. (That is, if its long:3, 32 bits is
1293 used in the record, and any additional adjacent long bitfields are
1294 packed into the same chunk of 32 bits. However, if the size
1295 changes, a new field of that size is allocated.) In an unpacked
1296 record, this is the same as using alignment, but not equivalent
1297 when packing.
1298
1299 Note: for compatibility, we use the type size, not the type alignment
1300 to determine alignment, since that matches the documentation */
1301
1302 if (targetm.ms_bitfield_layout_p (rli->t))
1303 {
1304 tree prev_saved = rli->prev_field;
1305 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1306
1307 /* This is a bitfield if it exists. */
1308 if (rli->prev_field)
1309 {
1310 /* If both are bitfields, nonzero, and the same size, this is
1311 the middle of a run. Zero declared size fields are special
1312 and handled as "end of run". (Note: it's nonzero declared
1313 size, but equal type sizes!) (Since we know that both
1314 the current and previous fields are bitfields by the
1315 time we check it, DECL_SIZE must be present for both.) */
1316 if (DECL_BIT_FIELD_TYPE (field)
1317 && !integer_zerop (DECL_SIZE (field))
1318 && !integer_zerop (DECL_SIZE (rli->prev_field))
1319 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1320 && host_integerp (TYPE_SIZE (type), 0)
1321 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1322 {
1323 /* We're in the middle of a run of equal type size fields; make
1324 sure we realign if we run out of bits. (Not decl size,
1325 type size!) */
1326 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1327
1328 if (rli->remaining_in_alignment < bitsize)
1329 {
1330 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1331
1332 /* out of bits; bump up to next 'word'. */
1333 rli->bitpos
1334 = size_binop (PLUS_EXPR, rli->bitpos,
1335 bitsize_int (rli->remaining_in_alignment));
1336 rli->prev_field = field;
1337 if (typesize < bitsize)
1338 rli->remaining_in_alignment = 0;
1339 else
1340 rli->remaining_in_alignment = typesize - bitsize;
1341 }
1342 else
1343 rli->remaining_in_alignment -= bitsize;
1344 }
1345 else
1346 {
1347 /* End of a run: if leaving a run of bitfields of the same type
1348 size, we have to "use up" the rest of the bits of the type
1349 size.
1350
1351 Compute the new position as the sum of the size for the prior
1352 type and where we first started working on that type.
1353 Note: since the beginning of the field was aligned then
1354 of course the end will be too. No round needed. */
1355
1356 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1357 {
1358 rli->bitpos
1359 = size_binop (PLUS_EXPR, rli->bitpos,
1360 bitsize_int (rli->remaining_in_alignment));
1361 }
1362 else
1363 /* We "use up" size zero fields; the code below should behave
1364 as if the prior field was not a bitfield. */
1365 prev_saved = NULL;
1366
1367 /* Cause a new bitfield to be captured, either this time (if
1368 currently a bitfield) or next time we see one. */
1369 if (!DECL_BIT_FIELD_TYPE(field)
1370 || integer_zerop (DECL_SIZE (field)))
1371 rli->prev_field = NULL;
1372 }
1373
1374 normalize_rli (rli);
1375 }
1376
1377 /* If we're starting a new run of same type size bitfields
1378 (or a run of non-bitfields), set up the "first of the run"
1379 fields.
1380
1381 That is, if the current field is not a bitfield, or if there
1382 was a prior bitfield the type sizes differ, or if there wasn't
1383 a prior bitfield the size of the current field is nonzero.
1384
1385 Note: we must be sure to test ONLY the type size if there was
1386 a prior bitfield and ONLY for the current field being zero if
1387 there wasn't. */
1388
1389 if (!DECL_BIT_FIELD_TYPE (field)
1390 || (prev_saved != NULL
1391 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1392 : !integer_zerop (DECL_SIZE (field)) ))
1393 {
1394 /* Never smaller than a byte for compatibility. */
1395 unsigned int type_align = BITS_PER_UNIT;
1396
1397 /* (When not a bitfield), we could be seeing a flex array (with
1398 no DECL_SIZE). Since we won't be using remaining_in_alignment
1399 until we see a bitfield (and come by here again) we just skip
1400 calculating it. */
1401 if (DECL_SIZE (field) != NULL
1402 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1403 && host_integerp (DECL_SIZE (field), 1))
1404 {
1405 unsigned HOST_WIDE_INT bitsize
1406 = tree_low_cst (DECL_SIZE (field), 1);
1407 unsigned HOST_WIDE_INT typesize
1408 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1409
1410 if (typesize < bitsize)
1411 rli->remaining_in_alignment = 0;
1412 else
1413 rli->remaining_in_alignment = typesize - bitsize;
1414 }
1415
1416 /* Now align (conventionally) for the new type. */
1417 type_align = TYPE_ALIGN (TREE_TYPE (field));
1418
1419 if (maximum_field_alignment != 0)
1420 type_align = MIN (type_align, maximum_field_alignment);
1421
1422 rli->bitpos = round_up (rli->bitpos, type_align);
1423
1424 /* If we really aligned, don't allow subsequent bitfields
1425 to undo that. */
1426 rli->prev_field = NULL;
1427 }
1428 }
1429
1430 /* Offset so far becomes the position of this field after normalizing. */
1431 normalize_rli (rli);
1432 DECL_FIELD_OFFSET (field) = rli->offset;
1433 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1434 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1435
1436 /* If this field ended up more aligned than we thought it would be (we
1437 approximate this by seeing if its position changed), lay out the field
1438 again; perhaps we can use an integral mode for it now. */
1439 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1440 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1441 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1442 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1443 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1444 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1445 actual_align = (BITS_PER_UNIT
1446 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1447 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1448 else
1449 actual_align = DECL_OFFSET_ALIGN (field);
1450 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1451 store / extract bit field operations will check the alignment of the
1452 record against the mode of bit fields. */
1453
1454 if (known_align != actual_align)
1455 layout_decl (field, actual_align);
1456
1457 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1458 rli->prev_field = field;
1459
1460 /* Now add size of this field to the size of the record. If the size is
1461 not constant, treat the field as being a multiple of bytes and just
1462 adjust the offset, resetting the bit position. Otherwise, apportion the
1463 size amongst the bit position and offset. First handle the case of an
1464 unspecified size, which can happen when we have an invalid nested struct
1465 definition, such as struct j { struct j { int i; } }. The error message
1466 is printed in finish_struct. */
1467 if (DECL_SIZE (field) == 0)
1468 /* Do nothing. */;
1469 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1470 || TREE_OVERFLOW (DECL_SIZE (field)))
1471 {
1472 rli->offset
1473 = size_binop (PLUS_EXPR, rli->offset,
1474 fold_convert (sizetype,
1475 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1476 bitsize_unit_node)));
1477 rli->offset
1478 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1479 rli->bitpos = bitsize_zero_node;
1480 rli->offset_align = MIN (rli->offset_align, desired_align);
1481 }
1482 else if (targetm.ms_bitfield_layout_p (rli->t))
1483 {
1484 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1485
1486 /* If we ended a bitfield before the full length of the type then
1487 pad the struct out to the full length of the last type. */
1488 if ((DECL_CHAIN (field) == NULL
1489 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1490 && DECL_BIT_FIELD_TYPE (field)
1491 && !integer_zerop (DECL_SIZE (field)))
1492 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1493 bitsize_int (rli->remaining_in_alignment));
1494
1495 normalize_rli (rli);
1496 }
1497 else
1498 {
1499 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1500 normalize_rli (rli);
1501 }
1502 }
1503
1504 /* Assuming that all the fields have been laid out, this function uses
1505 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1506 indicated by RLI. */
1507
1508 static void
finalize_record_size(record_layout_info rli)1509 finalize_record_size (record_layout_info rli)
1510 {
1511 tree unpadded_size, unpadded_size_unit;
1512
1513 /* Now we want just byte and bit offsets, so set the offset alignment
1514 to be a byte and then normalize. */
1515 rli->offset_align = BITS_PER_UNIT;
1516 normalize_rli (rli);
1517
1518 /* Determine the desired alignment. */
1519 #ifdef ROUND_TYPE_ALIGN
1520 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1521 rli->record_align);
1522 #else
1523 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1524 #endif
1525
1526 /* Compute the size so far. Be sure to allow for extra bits in the
1527 size in bytes. We have guaranteed above that it will be no more
1528 than a single byte. */
1529 unpadded_size = rli_size_so_far (rli);
1530 unpadded_size_unit = rli_size_unit_so_far (rli);
1531 if (! integer_zerop (rli->bitpos))
1532 unpadded_size_unit
1533 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1534
1535 /* Round the size up to be a multiple of the required alignment. */
1536 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1537 TYPE_SIZE_UNIT (rli->t)
1538 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1539
1540 if (TREE_CONSTANT (unpadded_size)
1541 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1542 && input_location != BUILTINS_LOCATION)
1543 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1544
1545 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1546 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1547 && TREE_CONSTANT (unpadded_size))
1548 {
1549 tree unpacked_size;
1550
1551 #ifdef ROUND_TYPE_ALIGN
1552 rli->unpacked_align
1553 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1554 #else
1555 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1556 #endif
1557
1558 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1559 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1560 {
1561 if (TYPE_NAME (rli->t))
1562 {
1563 tree name;
1564
1565 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1566 name = TYPE_NAME (rli->t);
1567 else
1568 name = DECL_NAME (TYPE_NAME (rli->t));
1569
1570 if (STRICT_ALIGNMENT)
1571 warning (OPT_Wpacked, "packed attribute causes inefficient "
1572 "alignment for %qE", name);
1573 else
1574 warning (OPT_Wpacked,
1575 "packed attribute is unnecessary for %qE", name);
1576 }
1577 else
1578 {
1579 if (STRICT_ALIGNMENT)
1580 warning (OPT_Wpacked,
1581 "packed attribute causes inefficient alignment");
1582 else
1583 warning (OPT_Wpacked, "packed attribute is unnecessary");
1584 }
1585 }
1586 }
1587 }
1588
1589 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1590
1591 void
compute_record_mode(tree type)1592 compute_record_mode (tree type)
1593 {
1594 tree field;
1595 enum machine_mode mode = VOIDmode;
1596
1597 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1598 However, if possible, we use a mode that fits in a register
1599 instead, in order to allow for better optimization down the
1600 line. */
1601 SET_TYPE_MODE (type, BLKmode);
1602
1603 if (! host_integerp (TYPE_SIZE (type), 1))
1604 return;
1605
1606 /* A record which has any BLKmode members must itself be
1607 BLKmode; it can't go in a register. Unless the member is
1608 BLKmode only because it isn't aligned. */
1609 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1610 {
1611 if (TREE_CODE (field) != FIELD_DECL)
1612 continue;
1613
1614 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1615 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1616 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1617 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1618 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1619 || ! host_integerp (bit_position (field), 1)
1620 || DECL_SIZE (field) == 0
1621 || ! host_integerp (DECL_SIZE (field), 1))
1622 return;
1623
1624 /* If this field is the whole struct, remember its mode so
1625 that, say, we can put a double in a class into a DF
1626 register instead of forcing it to live in the stack. */
1627 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1628 mode = DECL_MODE (field);
1629
1630 /* With some targets, it is sub-optimal to access an aligned
1631 BLKmode structure as a scalar. */
1632 if (targetm.member_type_forces_blk (field, mode))
1633 return;
1634 }
1635
1636 /* If we only have one real field; use its mode if that mode's size
1637 matches the type's size. This only applies to RECORD_TYPE. This
1638 does not apply to unions. */
1639 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1640 && host_integerp (TYPE_SIZE (type), 1)
1641 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1642 SET_TYPE_MODE (type, mode);
1643 else
1644 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1645
1646 /* If structure's known alignment is less than what the scalar
1647 mode would need, and it matters, then stick with BLKmode. */
1648 if (TYPE_MODE (type) != BLKmode
1649 && STRICT_ALIGNMENT
1650 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1651 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1652 {
1653 /* If this is the only reason this type is BLKmode, then
1654 don't force containing types to be BLKmode. */
1655 TYPE_NO_FORCE_BLK (type) = 1;
1656 SET_TYPE_MODE (type, BLKmode);
1657 }
1658 }
1659
1660 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1661 out. */
1662
1663 static void
finalize_type_size(tree type)1664 finalize_type_size (tree type)
1665 {
1666 /* Normally, use the alignment corresponding to the mode chosen.
1667 However, where strict alignment is not required, avoid
1668 over-aligning structures, since most compilers do not do this
1669 alignment. */
1670
1671 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1672 && (STRICT_ALIGNMENT
1673 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1674 && TREE_CODE (type) != QUAL_UNION_TYPE
1675 && TREE_CODE (type) != ARRAY_TYPE)))
1676 {
1677 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1678
1679 /* Don't override a larger alignment requirement coming from a user
1680 alignment of one of the fields. */
1681 if (mode_align >= TYPE_ALIGN (type))
1682 {
1683 TYPE_ALIGN (type) = mode_align;
1684 TYPE_USER_ALIGN (type) = 0;
1685 }
1686 }
1687
1688 /* Do machine-dependent extra alignment. */
1689 #ifdef ROUND_TYPE_ALIGN
1690 TYPE_ALIGN (type)
1691 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1692 #endif
1693
1694 /* If we failed to find a simple way to calculate the unit size
1695 of the type, find it by division. */
1696 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1697 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1698 result will fit in sizetype. We will get more efficient code using
1699 sizetype, so we force a conversion. */
1700 TYPE_SIZE_UNIT (type)
1701 = fold_convert (sizetype,
1702 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1703 bitsize_unit_node));
1704
1705 if (TYPE_SIZE (type) != 0)
1706 {
1707 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1708 TYPE_SIZE_UNIT (type)
1709 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1710 }
1711
1712 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1713 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1714 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1715 if (TYPE_SIZE_UNIT (type) != 0
1716 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1717 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1718
1719 /* Also layout any other variants of the type. */
1720 if (TYPE_NEXT_VARIANT (type)
1721 || type != TYPE_MAIN_VARIANT (type))
1722 {
1723 tree variant;
1724 /* Record layout info of this variant. */
1725 tree size = TYPE_SIZE (type);
1726 tree size_unit = TYPE_SIZE_UNIT (type);
1727 unsigned int align = TYPE_ALIGN (type);
1728 unsigned int user_align = TYPE_USER_ALIGN (type);
1729 enum machine_mode mode = TYPE_MODE (type);
1730
1731 /* Copy it into all variants. */
1732 for (variant = TYPE_MAIN_VARIANT (type);
1733 variant != 0;
1734 variant = TYPE_NEXT_VARIANT (variant))
1735 {
1736 TYPE_SIZE (variant) = size;
1737 TYPE_SIZE_UNIT (variant) = size_unit;
1738 TYPE_ALIGN (variant) = align;
1739 TYPE_USER_ALIGN (variant) = user_align;
1740 SET_TYPE_MODE (variant, mode);
1741 }
1742 }
1743 }
1744
1745 /* Return a new underlying object for a bitfield started with FIELD. */
1746
1747 static tree
start_bitfield_representative(tree field)1748 start_bitfield_representative (tree field)
1749 {
1750 tree repr = make_node (FIELD_DECL);
1751 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1752 /* Force the representative to begin at a BITS_PER_UNIT aligned
1753 boundary - C++ may use tail-padding of a base object to
1754 continue packing bits so the bitfield region does not start
1755 at bit zero (see g++.dg/abi/bitfield5.C for example).
1756 Unallocated bits may happen for other reasons as well,
1757 for example Ada which allows explicit bit-granular structure layout. */
1758 DECL_FIELD_BIT_OFFSET (repr)
1759 = size_binop (BIT_AND_EXPR,
1760 DECL_FIELD_BIT_OFFSET (field),
1761 bitsize_int (~(BITS_PER_UNIT - 1)));
1762 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1763 DECL_SIZE (repr) = DECL_SIZE (field);
1764 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1765 DECL_PACKED (repr) = DECL_PACKED (field);
1766 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1767 return repr;
1768 }
1769
1770 /* Finish up a bitfield group that was started by creating the underlying
1771 object REPR with the last field in the bitfield group FIELD. */
1772
1773 static void
finish_bitfield_representative(tree repr,tree field)1774 finish_bitfield_representative (tree repr, tree field)
1775 {
1776 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1777 enum machine_mode mode;
1778 tree nextf, size;
1779
1780 size = size_diffop (DECL_FIELD_OFFSET (field),
1781 DECL_FIELD_OFFSET (repr));
1782 gcc_assert (host_integerp (size, 1));
1783 bitsize = (tree_low_cst (size, 1) * BITS_PER_UNIT
1784 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1785 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1)
1786 + tree_low_cst (DECL_SIZE (field), 1));
1787
1788 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1789 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1790
1791 /* Now nothing tells us how to pad out bitsize ... */
1792 nextf = DECL_CHAIN (field);
1793 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1794 nextf = DECL_CHAIN (nextf);
1795 if (nextf)
1796 {
1797 tree maxsize;
1798 /* If there was an error, the field may be not laid out
1799 correctly. Don't bother to do anything. */
1800 if (TREE_TYPE (nextf) == error_mark_node)
1801 return;
1802 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1803 DECL_FIELD_OFFSET (repr));
1804 if (host_integerp (maxsize, 1))
1805 {
1806 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1807 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf), 1)
1808 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1809 /* If the group ends within a bitfield nextf does not need to be
1810 aligned to BITS_PER_UNIT. Thus round up. */
1811 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1812 }
1813 else
1814 maxbitsize = bitsize;
1815 }
1816 else
1817 {
1818 /* ??? If you consider that tail-padding of this struct might be
1819 re-used when deriving from it we cannot really do the following
1820 and thus need to set maxsize to bitsize? Also we cannot
1821 generally rely on maxsize to fold to an integer constant, so
1822 use bitsize as fallback for this case. */
1823 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1824 DECL_FIELD_OFFSET (repr));
1825 if (host_integerp (maxsize, 1))
1826 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1827 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1828 else
1829 maxbitsize = bitsize;
1830 }
1831
1832 /* Only if we don't artificially break up the representative in
1833 the middle of a large bitfield with different possibly
1834 overlapping representatives. And all representatives start
1835 at byte offset. */
1836 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1837
1838 /* Find the smallest nice mode to use. */
1839 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1840 mode = GET_MODE_WIDER_MODE (mode))
1841 if (GET_MODE_BITSIZE (mode) >= bitsize)
1842 break;
1843 if (mode != VOIDmode
1844 && (GET_MODE_BITSIZE (mode) > maxbitsize
1845 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1846 mode = VOIDmode;
1847
1848 if (mode == VOIDmode)
1849 {
1850 /* We really want a BLKmode representative only as a last resort,
1851 considering the member b in
1852 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1853 Otherwise we simply want to split the representative up
1854 allowing for overlaps within the bitfield region as required for
1855 struct { int a : 7; int b : 7;
1856 int c : 10; int d; } __attribute__((packed));
1857 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1858 DECL_SIZE (repr) = bitsize_int (bitsize);
1859 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1860 DECL_MODE (repr) = BLKmode;
1861 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1862 bitsize / BITS_PER_UNIT);
1863 }
1864 else
1865 {
1866 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1867 DECL_SIZE (repr) = bitsize_int (modesize);
1868 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1869 DECL_MODE (repr) = mode;
1870 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1871 }
1872
1873 /* Remember whether the bitfield group is at the end of the
1874 structure or not. */
1875 DECL_CHAIN (repr) = nextf;
1876 }
1877
1878 /* Compute and set FIELD_DECLs for the underlying objects we should
1879 use for bitfield access for the structure laid out with RLI. */
1880
1881 static void
finish_bitfield_layout(record_layout_info rli)1882 finish_bitfield_layout (record_layout_info rli)
1883 {
1884 tree field, prev;
1885 tree repr = NULL_TREE;
1886
1887 /* Unions would be special, for the ease of type-punning optimizations
1888 we could use the underlying type as hint for the representative
1889 if the bitfield would fit and the representative would not exceed
1890 the union in size. */
1891 if (TREE_CODE (rli->t) != RECORD_TYPE)
1892 return;
1893
1894 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1895 field; field = DECL_CHAIN (field))
1896 {
1897 if (TREE_CODE (field) != FIELD_DECL)
1898 continue;
1899
1900 /* In the C++ memory model, consecutive bit fields in a structure are
1901 considered one memory location and updating a memory location
1902 may not store into adjacent memory locations. */
1903 if (!repr
1904 && DECL_BIT_FIELD_TYPE (field))
1905 {
1906 /* Start new representative. */
1907 repr = start_bitfield_representative (field);
1908 }
1909 else if (repr
1910 && ! DECL_BIT_FIELD_TYPE (field))
1911 {
1912 /* Finish off new representative. */
1913 finish_bitfield_representative (repr, prev);
1914 repr = NULL_TREE;
1915 }
1916 else if (DECL_BIT_FIELD_TYPE (field))
1917 {
1918 gcc_assert (repr != NULL_TREE);
1919
1920 /* Zero-size bitfields finish off a representative and
1921 do not have a representative themselves. This is
1922 required by the C++ memory model. */
1923 if (integer_zerop (DECL_SIZE (field)))
1924 {
1925 finish_bitfield_representative (repr, prev);
1926 repr = NULL_TREE;
1927 }
1928
1929 /* We assume that either DECL_FIELD_OFFSET of the representative
1930 and each bitfield member is a constant or they are equal.
1931 This is because we need to be able to compute the bit-offset
1932 of each field relative to the representative in get_bit_range
1933 during RTL expansion.
1934 If these constraints are not met, simply force a new
1935 representative to be generated. That will at most
1936 generate worse code but still maintain correctness with
1937 respect to the C++ memory model. */
1938 else if (!((host_integerp (DECL_FIELD_OFFSET (repr), 1)
1939 && host_integerp (DECL_FIELD_OFFSET (field), 1))
1940 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1941 DECL_FIELD_OFFSET (field), 0)))
1942 {
1943 finish_bitfield_representative (repr, prev);
1944 repr = start_bitfield_representative (field);
1945 }
1946 }
1947 else
1948 continue;
1949
1950 if (repr)
1951 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1952
1953 prev = field;
1954 }
1955
1956 if (repr)
1957 finish_bitfield_representative (repr, prev);
1958 }
1959
1960 /* Do all of the work required to layout the type indicated by RLI,
1961 once the fields have been laid out. This function will call `free'
1962 for RLI, unless FREE_P is false. Passing a value other than false
1963 for FREE_P is bad practice; this option only exists to support the
1964 G++ 3.2 ABI. */
1965
1966 void
finish_record_layout(record_layout_info rli,int free_p)1967 finish_record_layout (record_layout_info rli, int free_p)
1968 {
1969 tree variant;
1970
1971 /* Compute the final size. */
1972 finalize_record_size (rli);
1973
1974 /* Compute the TYPE_MODE for the record. */
1975 compute_record_mode (rli->t);
1976
1977 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1978 finalize_type_size (rli->t);
1979
1980 /* Compute bitfield representatives. */
1981 finish_bitfield_layout (rli);
1982
1983 /* Propagate TYPE_PACKED to variants. With C++ templates,
1984 handle_packed_attribute is too early to do this. */
1985 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1986 variant = TYPE_NEXT_VARIANT (variant))
1987 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1988
1989 /* Lay out any static members. This is done now because their type
1990 may use the record's type. */
1991 while (!vec_safe_is_empty (rli->pending_statics))
1992 layout_decl (rli->pending_statics->pop (), 0);
1993
1994 /* Clean up. */
1995 if (free_p)
1996 {
1997 vec_free (rli->pending_statics);
1998 free (rli);
1999 }
2000 }
2001
2002
2003 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2004 NAME, its fields are chained in reverse on FIELDS.
2005
2006 If ALIGN_TYPE is non-null, it is given the same alignment as
2007 ALIGN_TYPE. */
2008
2009 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2010 finish_builtin_struct (tree type, const char *name, tree fields,
2011 tree align_type)
2012 {
2013 tree tail, next;
2014
2015 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2016 {
2017 DECL_FIELD_CONTEXT (fields) = type;
2018 next = DECL_CHAIN (fields);
2019 DECL_CHAIN (fields) = tail;
2020 }
2021 TYPE_FIELDS (type) = tail;
2022
2023 if (align_type)
2024 {
2025 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2026 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2027 }
2028
2029 layout_type (type);
2030 #if 0 /* not yet, should get fixed properly later */
2031 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2032 #else
2033 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2034 TYPE_DECL, get_identifier (name), type);
2035 #endif
2036 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2037 layout_decl (TYPE_NAME (type), 0);
2038 }
2039
2040 /* Calculate the mode, size, and alignment for TYPE.
2041 For an array type, calculate the element separation as well.
2042 Record TYPE on the chain of permanent or temporary types
2043 so that dbxout will find out about it.
2044
2045 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2046 layout_type does nothing on such a type.
2047
2048 If the type is incomplete, its TYPE_SIZE remains zero. */
2049
2050 void
layout_type(tree type)2051 layout_type (tree type)
2052 {
2053 gcc_assert (type);
2054
2055 if (type == error_mark_node)
2056 return;
2057
2058 /* Do nothing if type has been laid out before. */
2059 if (TYPE_SIZE (type))
2060 return;
2061
2062 switch (TREE_CODE (type))
2063 {
2064 case LANG_TYPE:
2065 /* This kind of type is the responsibility
2066 of the language-specific code. */
2067 gcc_unreachable ();
2068
2069 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
2070 if (TYPE_PRECISION (type) == 0)
2071 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
2072
2073 /* ... fall through ... */
2074
2075 case INTEGER_TYPE:
2076 case ENUMERAL_TYPE:
2077 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
2078 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
2079 TYPE_UNSIGNED (type) = 1;
2080
2081 SET_TYPE_MODE (type,
2082 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2083 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2084 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2085 break;
2086
2087 case REAL_TYPE:
2088 SET_TYPE_MODE (type,
2089 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2090 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2091 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2092 break;
2093
2094 case FIXED_POINT_TYPE:
2095 /* TYPE_MODE (type) has been set already. */
2096 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2097 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2098 break;
2099
2100 case COMPLEX_TYPE:
2101 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2102 SET_TYPE_MODE (type,
2103 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2104 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2105 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2106 0));
2107 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2108 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2109 break;
2110
2111 case VECTOR_TYPE:
2112 {
2113 int nunits = TYPE_VECTOR_SUBPARTS (type);
2114 tree innertype = TREE_TYPE (type);
2115
2116 gcc_assert (!(nunits & (nunits - 1)));
2117
2118 /* Find an appropriate mode for the vector type. */
2119 if (TYPE_MODE (type) == VOIDmode)
2120 SET_TYPE_MODE (type,
2121 mode_for_vector (TYPE_MODE (innertype), nunits));
2122
2123 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2124 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2125 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2126 TYPE_SIZE_UNIT (innertype),
2127 size_int (nunits));
2128 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2129 bitsize_int (nunits));
2130
2131 /* For vector types, we do not default to the mode's alignment.
2132 Instead, query a target hook, defaulting to natural alignment.
2133 This prevents ABI changes depending on whether or not native
2134 vector modes are supported. */
2135 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2136
2137 /* However, if the underlying mode requires a bigger alignment than
2138 what the target hook provides, we cannot use the mode. For now,
2139 simply reject that case. */
2140 gcc_assert (TYPE_ALIGN (type)
2141 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2142 break;
2143 }
2144
2145 case VOID_TYPE:
2146 /* This is an incomplete type and so doesn't have a size. */
2147 TYPE_ALIGN (type) = 1;
2148 TYPE_USER_ALIGN (type) = 0;
2149 SET_TYPE_MODE (type, VOIDmode);
2150 break;
2151
2152 case OFFSET_TYPE:
2153 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2154 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2155 /* A pointer might be MODE_PARTIAL_INT,
2156 but ptrdiff_t must be integral. */
2157 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2158 TYPE_PRECISION (type) = POINTER_SIZE;
2159 break;
2160
2161 case FUNCTION_TYPE:
2162 case METHOD_TYPE:
2163 /* It's hard to see what the mode and size of a function ought to
2164 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2165 make it consistent with that. */
2166 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2167 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2168 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2169 break;
2170
2171 case POINTER_TYPE:
2172 case REFERENCE_TYPE:
2173 {
2174 enum machine_mode mode = TYPE_MODE (type);
2175 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2176 {
2177 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2178 mode = targetm.addr_space.address_mode (as);
2179 }
2180
2181 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2182 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2183 TYPE_UNSIGNED (type) = 1;
2184 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2185 }
2186 break;
2187
2188 case ARRAY_TYPE:
2189 {
2190 tree index = TYPE_DOMAIN (type);
2191 tree element = TREE_TYPE (type);
2192
2193 build_pointer_type (element);
2194
2195 /* We need to know both bounds in order to compute the size. */
2196 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2197 && TYPE_SIZE (element))
2198 {
2199 tree ub = TYPE_MAX_VALUE (index);
2200 tree lb = TYPE_MIN_VALUE (index);
2201 tree element_size = TYPE_SIZE (element);
2202 tree length;
2203
2204 /* Make sure that an array of zero-sized element is zero-sized
2205 regardless of its extent. */
2206 if (integer_zerop (element_size))
2207 length = size_zero_node;
2208
2209 /* The computation should happen in the original signedness so
2210 that (possible) negative values are handled appropriately
2211 when determining overflow. */
2212 else
2213 {
2214 /* ??? When it is obvious that the range is signed
2215 represent it using ssizetype. */
2216 if (TREE_CODE (lb) == INTEGER_CST
2217 && TREE_CODE (ub) == INTEGER_CST
2218 && TYPE_UNSIGNED (TREE_TYPE (lb))
2219 && tree_int_cst_lt (ub, lb))
2220 {
2221 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2222 lb = double_int_to_tree
2223 (ssizetype,
2224 tree_to_double_int (lb).sext (prec));
2225 ub = double_int_to_tree
2226 (ssizetype,
2227 tree_to_double_int (ub).sext (prec));
2228 }
2229 length
2230 = fold_convert (sizetype,
2231 size_binop (PLUS_EXPR,
2232 build_int_cst (TREE_TYPE (lb), 1),
2233 size_binop (MINUS_EXPR, ub, lb)));
2234 }
2235
2236 /* ??? We have no way to distinguish a null-sized array from an
2237 array spanning the whole sizetype range, so we arbitrarily
2238 decide that [0, -1] is the only valid representation. */
2239 if (integer_zerop (length)
2240 && TREE_OVERFLOW (length)
2241 && integer_zerop (lb))
2242 length = size_zero_node;
2243
2244 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2245 fold_convert (bitsizetype,
2246 length));
2247
2248 /* If we know the size of the element, calculate the total size
2249 directly, rather than do some division thing below. This
2250 optimization helps Fortran assumed-size arrays (where the
2251 size of the array is determined at runtime) substantially. */
2252 if (TYPE_SIZE_UNIT (element))
2253 TYPE_SIZE_UNIT (type)
2254 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2255 }
2256
2257 /* Now round the alignment and size,
2258 using machine-dependent criteria if any. */
2259
2260 #ifdef ROUND_TYPE_ALIGN
2261 TYPE_ALIGN (type)
2262 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2263 #else
2264 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2265 #endif
2266 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2267 SET_TYPE_MODE (type, BLKmode);
2268 if (TYPE_SIZE (type) != 0
2269 && ! targetm.member_type_forces_blk (type, VOIDmode)
2270 /* BLKmode elements force BLKmode aggregate;
2271 else extract/store fields may lose. */
2272 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2273 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2274 {
2275 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2276 TYPE_SIZE (type)));
2277 if (TYPE_MODE (type) != BLKmode
2278 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2279 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2280 {
2281 TYPE_NO_FORCE_BLK (type) = 1;
2282 SET_TYPE_MODE (type, BLKmode);
2283 }
2284 }
2285 /* When the element size is constant, check that it is at least as
2286 large as the element alignment. */
2287 if (TYPE_SIZE_UNIT (element)
2288 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2289 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2290 TYPE_ALIGN_UNIT. */
2291 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2292 && !integer_zerop (TYPE_SIZE_UNIT (element))
2293 && compare_tree_int (TYPE_SIZE_UNIT (element),
2294 TYPE_ALIGN_UNIT (element)) < 0)
2295 error ("alignment of array elements is greater than element size");
2296 break;
2297 }
2298
2299 case RECORD_TYPE:
2300 case UNION_TYPE:
2301 case QUAL_UNION_TYPE:
2302 {
2303 tree field;
2304 record_layout_info rli;
2305
2306 /* Initialize the layout information. */
2307 rli = start_record_layout (type);
2308
2309 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2310 in the reverse order in building the COND_EXPR that denotes
2311 its size. We reverse them again later. */
2312 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2313 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2314
2315 /* Place all the fields. */
2316 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2317 place_field (rli, field);
2318
2319 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2320 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2321
2322 /* Finish laying out the record. */
2323 finish_record_layout (rli, /*free_p=*/true);
2324 }
2325 break;
2326
2327 default:
2328 gcc_unreachable ();
2329 }
2330
2331 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2332 records and unions, finish_record_layout already called this
2333 function. */
2334 if (TREE_CODE (type) != RECORD_TYPE
2335 && TREE_CODE (type) != UNION_TYPE
2336 && TREE_CODE (type) != QUAL_UNION_TYPE)
2337 finalize_type_size (type);
2338
2339 /* We should never see alias sets on incomplete aggregates. And we
2340 should not call layout_type on not incomplete aggregates. */
2341 if (AGGREGATE_TYPE_P (type))
2342 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2343 }
2344
2345 /* Vector types need to re-check the target flags each time we report
2346 the machine mode. We need to do this because attribute target can
2347 change the result of vector_mode_supported_p and have_regs_of_mode
2348 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2349 change on a per-function basis. */
2350 /* ??? Possibly a better solution is to run through all the types
2351 referenced by a function and re-compute the TYPE_MODE once, rather
2352 than make the TYPE_MODE macro call a function. */
2353
2354 enum machine_mode
vector_type_mode(const_tree t)2355 vector_type_mode (const_tree t)
2356 {
2357 enum machine_mode mode;
2358
2359 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2360
2361 mode = t->type_common.mode;
2362 if (VECTOR_MODE_P (mode)
2363 && (!targetm.vector_mode_supported_p (mode)
2364 || !have_regs_of_mode[mode]))
2365 {
2366 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2367
2368 /* For integers, try mapping it to a same-sized scalar mode. */
2369 if (GET_MODE_CLASS (innermode) == MODE_INT)
2370 {
2371 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2372 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2373
2374 if (mode != VOIDmode && have_regs_of_mode[mode])
2375 return mode;
2376 }
2377
2378 return BLKmode;
2379 }
2380
2381 return mode;
2382 }
2383
2384 /* Create and return a type for signed integers of PRECISION bits. */
2385
2386 tree
make_signed_type(int precision)2387 make_signed_type (int precision)
2388 {
2389 tree type = make_node (INTEGER_TYPE);
2390
2391 TYPE_PRECISION (type) = precision;
2392
2393 fixup_signed_type (type);
2394 return type;
2395 }
2396
2397 /* Create and return a type for unsigned integers of PRECISION bits. */
2398
2399 tree
make_unsigned_type(int precision)2400 make_unsigned_type (int precision)
2401 {
2402 tree type = make_node (INTEGER_TYPE);
2403
2404 TYPE_PRECISION (type) = precision;
2405
2406 fixup_unsigned_type (type);
2407 return type;
2408 }
2409
2410 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2411 and SATP. */
2412
2413 tree
make_fract_type(int precision,int unsignedp,int satp)2414 make_fract_type (int precision, int unsignedp, int satp)
2415 {
2416 tree type = make_node (FIXED_POINT_TYPE);
2417
2418 TYPE_PRECISION (type) = precision;
2419
2420 if (satp)
2421 TYPE_SATURATING (type) = 1;
2422
2423 /* Lay out the type: set its alignment, size, etc. */
2424 if (unsignedp)
2425 {
2426 TYPE_UNSIGNED (type) = 1;
2427 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2428 }
2429 else
2430 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2431 layout_type (type);
2432
2433 return type;
2434 }
2435
2436 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2437 and SATP. */
2438
2439 tree
make_accum_type(int precision,int unsignedp,int satp)2440 make_accum_type (int precision, int unsignedp, int satp)
2441 {
2442 tree type = make_node (FIXED_POINT_TYPE);
2443
2444 TYPE_PRECISION (type) = precision;
2445
2446 if (satp)
2447 TYPE_SATURATING (type) = 1;
2448
2449 /* Lay out the type: set its alignment, size, etc. */
2450 if (unsignedp)
2451 {
2452 TYPE_UNSIGNED (type) = 1;
2453 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2454 }
2455 else
2456 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2457 layout_type (type);
2458
2459 return type;
2460 }
2461
2462 /* Initialize sizetypes so layout_type can use them. */
2463
2464 void
initialize_sizetypes(void)2465 initialize_sizetypes (void)
2466 {
2467 int precision, bprecision;
2468
2469 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2470 if (strcmp (SIZETYPE, "unsigned int") == 0)
2471 precision = INT_TYPE_SIZE;
2472 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2473 precision = LONG_TYPE_SIZE;
2474 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2475 precision = LONG_LONG_TYPE_SIZE;
2476 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2477 precision = SHORT_TYPE_SIZE;
2478 else
2479 gcc_unreachable ();
2480
2481 bprecision
2482 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2483 bprecision
2484 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2485 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2486 bprecision = HOST_BITS_PER_DOUBLE_INT;
2487
2488 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2489 sizetype = make_node (INTEGER_TYPE);
2490 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2491 TYPE_PRECISION (sizetype) = precision;
2492 TYPE_UNSIGNED (sizetype) = 1;
2493 bitsizetype = make_node (INTEGER_TYPE);
2494 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2495 TYPE_PRECISION (bitsizetype) = bprecision;
2496 TYPE_UNSIGNED (bitsizetype) = 1;
2497
2498 /* Now layout both types manually. */
2499 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2500 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2501 TYPE_SIZE (sizetype) = bitsize_int (precision);
2502 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2503 set_min_and_max_values_for_integral_type (sizetype, precision,
2504 /*is_unsigned=*/true);
2505
2506 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2507 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2508 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2509 TYPE_SIZE_UNIT (bitsizetype)
2510 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2511 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2512 /*is_unsigned=*/true);
2513
2514 /* Create the signed variants of *sizetype. */
2515 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2516 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2517 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2518 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2519 }
2520
2521 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2522 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2523 for TYPE, based on the PRECISION and whether or not the TYPE
2524 IS_UNSIGNED. PRECISION need not correspond to a width supported
2525 natively by the hardware; for example, on a machine with 8-bit,
2526 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2527 61. */
2528
2529 void
set_min_and_max_values_for_integral_type(tree type,int precision,bool is_unsigned)2530 set_min_and_max_values_for_integral_type (tree type,
2531 int precision,
2532 bool is_unsigned)
2533 {
2534 tree min_value;
2535 tree max_value;
2536
2537 if (is_unsigned)
2538 {
2539 min_value = build_int_cst (type, 0);
2540 max_value
2541 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2542 ? -1
2543 : ((HOST_WIDE_INT) 1 << precision) - 1,
2544 precision - HOST_BITS_PER_WIDE_INT > 0
2545 ? ((unsigned HOST_WIDE_INT) ~0
2546 >> (HOST_BITS_PER_WIDE_INT
2547 - (precision - HOST_BITS_PER_WIDE_INT)))
2548 : 0);
2549 }
2550 else
2551 {
2552 min_value
2553 = build_int_cst_wide (type,
2554 (precision - HOST_BITS_PER_WIDE_INT > 0
2555 ? 0
2556 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2557 (((HOST_WIDE_INT) (-1)
2558 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2559 ? precision - HOST_BITS_PER_WIDE_INT - 1
2560 : 0))));
2561 max_value
2562 = build_int_cst_wide (type,
2563 (precision - HOST_BITS_PER_WIDE_INT > 0
2564 ? -1
2565 : (HOST_WIDE_INT)
2566 (((unsigned HOST_WIDE_INT) 1
2567 << (precision - 1)) - 1)),
2568 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2569 ? (HOST_WIDE_INT)
2570 ((((unsigned HOST_WIDE_INT) 1
2571 << (precision - HOST_BITS_PER_WIDE_INT
2572 - 1))) - 1)
2573 : 0));
2574 }
2575
2576 TYPE_MIN_VALUE (type) = min_value;
2577 TYPE_MAX_VALUE (type) = max_value;
2578 }
2579
2580 /* Set the extreme values of TYPE based on its precision in bits,
2581 then lay it out. Used when make_signed_type won't do
2582 because the tree code is not INTEGER_TYPE.
2583 E.g. for Pascal, when the -fsigned-char option is given. */
2584
2585 void
fixup_signed_type(tree type)2586 fixup_signed_type (tree type)
2587 {
2588 int precision = TYPE_PRECISION (type);
2589
2590 /* We can not represent properly constants greater then
2591 HOST_BITS_PER_DOUBLE_INT, still we need the types
2592 as they are used by i386 vector extensions and friends. */
2593 if (precision > HOST_BITS_PER_DOUBLE_INT)
2594 precision = HOST_BITS_PER_DOUBLE_INT;
2595
2596 set_min_and_max_values_for_integral_type (type, precision,
2597 /*is_unsigned=*/false);
2598
2599 /* Lay out the type: set its alignment, size, etc. */
2600 layout_type (type);
2601 }
2602
2603 /* Set the extreme values of TYPE based on its precision in bits,
2604 then lay it out. This is used both in `make_unsigned_type'
2605 and for enumeral types. */
2606
2607 void
fixup_unsigned_type(tree type)2608 fixup_unsigned_type (tree type)
2609 {
2610 int precision = TYPE_PRECISION (type);
2611
2612 /* We can not represent properly constants greater then
2613 HOST_BITS_PER_DOUBLE_INT, still we need the types
2614 as they are used by i386 vector extensions and friends. */
2615 if (precision > HOST_BITS_PER_DOUBLE_INT)
2616 precision = HOST_BITS_PER_DOUBLE_INT;
2617
2618 TYPE_UNSIGNED (type) = 1;
2619
2620 set_min_and_max_values_for_integral_type (type, precision,
2621 /*is_unsigned=*/true);
2622
2623 /* Lay out the type: set its alignment, size, etc. */
2624 layout_type (type);
2625 }
2626
2627 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2628 starting at BITPOS.
2629
2630 BITREGION_START is the bit position of the first bit in this
2631 sequence of bit fields. BITREGION_END is the last bit in this
2632 sequence. If these two fields are non-zero, we should restrict the
2633 memory access to that range. Otherwise, we are allowed to touch
2634 any adjacent non bit-fields.
2635
2636 ALIGN is the alignment of the underlying object in bits.
2637 VOLATILEP says whether the bitfield is volatile. */
2638
2639 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,HOST_WIDE_INT bitregion_start,HOST_WIDE_INT bitregion_end,unsigned int align,bool volatilep)2640 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2641 HOST_WIDE_INT bitregion_start,
2642 HOST_WIDE_INT bitregion_end,
2643 unsigned int align, bool volatilep)
2644 : mode_ (GET_CLASS_NARROWEST_MODE (MODE_INT)), bitsize_ (bitsize),
2645 bitpos_ (bitpos), bitregion_start_ (bitregion_start),
2646 bitregion_end_ (bitregion_end), align_ (align),
2647 volatilep_ (volatilep), count_ (0)
2648 {
2649 if (!bitregion_end_)
2650 {
2651 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2652 the bitfield is mapped and won't trap, provided that ALIGN isn't
2653 too large. The cap is the biggest required alignment for data,
2654 or at least the word size. And force one such chunk at least. */
2655 unsigned HOST_WIDE_INT units
2656 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2657 if (bitsize <= 0)
2658 bitsize = 1;
2659 bitregion_end_ = bitpos + bitsize + units - 1;
2660 bitregion_end_ -= bitregion_end_ % units + 1;
2661 }
2662 }
2663
2664 /* Calls to this function return successively larger modes that can be used
2665 to represent the bitfield. Return true if another bitfield mode is
2666 available, storing it in *OUT_MODE if so. */
2667
2668 bool
next_mode(enum machine_mode * out_mode)2669 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2670 {
2671 for (; mode_ != VOIDmode; mode_ = GET_MODE_WIDER_MODE (mode_))
2672 {
2673 unsigned int unit = GET_MODE_BITSIZE (mode_);
2674
2675 /* Skip modes that don't have full precision. */
2676 if (unit != GET_MODE_PRECISION (mode_))
2677 continue;
2678
2679 /* Stop if the mode is too wide to handle efficiently. */
2680 if (unit > MAX_FIXED_MODE_SIZE)
2681 break;
2682
2683 /* Don't deliver more than one multiword mode; the smallest one
2684 should be used. */
2685 if (count_ > 0 && unit > BITS_PER_WORD)
2686 break;
2687
2688 /* Skip modes that are too small. */
2689 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) bitpos_ % unit;
2690 unsigned HOST_WIDE_INT subend = substart + bitsize_;
2691 if (subend > unit)
2692 continue;
2693
2694 /* Stop if the mode goes outside the bitregion. */
2695 HOST_WIDE_INT start = bitpos_ - substart;
2696 if (bitregion_start_ && start < bitregion_start_)
2697 break;
2698 HOST_WIDE_INT end = start + unit;
2699 if (end > bitregion_end_ + 1)
2700 break;
2701
2702 /* Stop if the mode requires too much alignment. */
2703 if (GET_MODE_ALIGNMENT (mode_) > align_
2704 && SLOW_UNALIGNED_ACCESS (mode_, align_))
2705 break;
2706
2707 *out_mode = mode_;
2708 mode_ = GET_MODE_WIDER_MODE (mode_);
2709 count_++;
2710 return true;
2711 }
2712 return false;
2713 }
2714
2715 /* Return true if smaller modes are generally preferred for this kind
2716 of bitfield. */
2717
2718 bool
prefer_smaller_modes()2719 bit_field_mode_iterator::prefer_smaller_modes ()
2720 {
2721 return (volatilep_
2722 ? targetm.narrow_volatile_bitfield ()
2723 : !SLOW_BYTE_ACCESS);
2724 }
2725
2726 /* Find the best machine mode to use when referencing a bit field of length
2727 BITSIZE bits starting at BITPOS.
2728
2729 BITREGION_START is the bit position of the first bit in this
2730 sequence of bit fields. BITREGION_END is the last bit in this
2731 sequence. If these two fields are non-zero, we should restrict the
2732 memory access to that range. Otherwise, we are allowed to touch
2733 any adjacent non bit-fields.
2734
2735 The underlying object is known to be aligned to a boundary of ALIGN bits.
2736 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2737 larger than LARGEST_MODE (usually SImode).
2738
2739 If no mode meets all these conditions, we return VOIDmode.
2740
2741 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2742 smallest mode meeting these conditions.
2743
2744 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2745 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2746 all the conditions.
2747
2748 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2749 decide which of the above modes should be used. */
2750
2751 enum machine_mode
get_best_mode(int bitsize,int bitpos,unsigned HOST_WIDE_INT bitregion_start,unsigned HOST_WIDE_INT bitregion_end,unsigned int align,enum machine_mode largest_mode,bool volatilep)2752 get_best_mode (int bitsize, int bitpos,
2753 unsigned HOST_WIDE_INT bitregion_start,
2754 unsigned HOST_WIDE_INT bitregion_end,
2755 unsigned int align,
2756 enum machine_mode largest_mode, bool volatilep)
2757 {
2758 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2759 bitregion_end, align, volatilep);
2760 enum machine_mode widest_mode = VOIDmode;
2761 enum machine_mode mode;
2762 while (iter.next_mode (&mode)
2763 /* ??? For historical reasons, reject modes that would normally
2764 receive greater alignment, even if unaligned accesses are
2765 acceptable. This has both advantages and disadvantages.
2766 Removing this check means that something like:
2767
2768 struct s { unsigned int x; unsigned int y; };
2769 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2770
2771 can be implemented using a single load and compare on
2772 64-bit machines that have no alignment restrictions.
2773 For example, on powerpc64-linux-gnu, we would generate:
2774
2775 ld 3,0(3)
2776 cntlzd 3,3
2777 srdi 3,3,6
2778 blr
2779
2780 rather than:
2781
2782 lwz 9,0(3)
2783 cmpwi 7,9,0
2784 bne 7,.L3
2785 lwz 3,4(3)
2786 cntlzw 3,3
2787 srwi 3,3,5
2788 extsw 3,3
2789 blr
2790 .p2align 4,,15
2791 .L3:
2792 li 3,0
2793 blr
2794
2795 However, accessing more than one field can make life harder
2796 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2797 has a series of unsigned short copies followed by a series of
2798 unsigned short comparisons. With this check, both the copies
2799 and comparisons remain 16-bit accesses and FRE is able
2800 to eliminate the latter. Without the check, the comparisons
2801 can be done using 2 64-bit operations, which FRE isn't able
2802 to handle in the same way.
2803
2804 Either way, it would probably be worth disabling this check
2805 during expand. One particular example where removing the
2806 check would help is the get_best_mode call in store_bit_field.
2807 If we are given a memory bitregion of 128 bits that is aligned
2808 to a 64-bit boundary, and the bitfield we want to modify is
2809 in the second half of the bitregion, this check causes
2810 store_bitfield to turn the memory into a 64-bit reference
2811 to the _first_ half of the region. We later use
2812 adjust_bitfield_address to get a reference to the correct half,
2813 but doing so looks to adjust_bitfield_address as though we are
2814 moving past the end of the original object, so it drops the
2815 associated MEM_EXPR and MEM_OFFSET. Removing the check
2816 causes store_bit_field to keep a 128-bit memory reference,
2817 so that the final bitfield reference still has a MEM_EXPR
2818 and MEM_OFFSET. */
2819 && GET_MODE_ALIGNMENT (mode) <= align
2820 && (largest_mode == VOIDmode
2821 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2822 {
2823 widest_mode = mode;
2824 if (iter.prefer_smaller_modes ())
2825 break;
2826 }
2827 return widest_mode;
2828 }
2829
2830 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2831 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2832
2833 void
get_mode_bounds(enum machine_mode mode,int sign,enum machine_mode target_mode,rtx * mmin,rtx * mmax)2834 get_mode_bounds (enum machine_mode mode, int sign,
2835 enum machine_mode target_mode,
2836 rtx *mmin, rtx *mmax)
2837 {
2838 unsigned size = GET_MODE_BITSIZE (mode);
2839 unsigned HOST_WIDE_INT min_val, max_val;
2840
2841 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2842
2843 if (sign)
2844 {
2845 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2846 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2847 }
2848 else
2849 {
2850 min_val = 0;
2851 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2852 }
2853
2854 *mmin = gen_int_mode (min_val, target_mode);
2855 *mmax = gen_int_mode (max_val, target_mode);
2856 }
2857
2858 #include "gt-stor-layout.h"
2859