1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2    a jump table.
3    Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23    load, or a series of bit-test-and-branch expressions.  */
24 
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "line-map.h"
30 #include "params.h"
31 #include "flags.h"
32 #include "tree.h"
33 #include "basic-block.h"
34 #include "tree-flow.h"
35 #include "tree-flow-inline.h"
36 #include "tree-ssa-operands.h"
37 #include "tree-pass.h"
38 #include "gimple-pretty-print.h"
39 
40 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
41    type in the GIMPLE type system that is language-independent?  */
42 #include "langhooks.h"
43 
44 /* Need to include expr.h and optabs.h for lshift_cheap_p.  */
45 #include "expr.h"
46 #include "optabs.h"
47 
48 /* Maximum number of case bit tests.
49    FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
50 	  targetm.case_values_threshold(), or be its own param.  */
51 #define MAX_CASE_BIT_TESTS  3
52 
53 /* Split the basic block at the statement pointed to by GSIP, and insert
54    a branch to the target basic block of E_TRUE conditional on tree
55    expression COND.
56 
57    It is assumed that there is already an edge from the to-be-split
58    basic block to E_TRUE->dest block.  This edge is removed, and the
59    profile information on the edge is re-used for the new conditional
60    jump.
61 
62    The CFG is updated.  The dominator tree will not be valid after
63    this transformation, but the immediate dominators are updated if
64    UPDATE_DOMINATORS is true.
65 
66    Returns the newly created basic block.  */
67 
68 static basic_block
hoist_edge_and_branch_if_true(gimple_stmt_iterator * gsip,tree cond,edge e_true,bool update_dominators)69 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
70 			       tree cond, edge e_true,
71 			       bool update_dominators)
72 {
73   tree tmp;
74   gimple cond_stmt;
75   edge e_false;
76   basic_block new_bb, split_bb = gsi_bb (*gsip);
77   bool dominated_e_true = false;
78 
79   gcc_assert (e_true->src == split_bb);
80 
81   if (update_dominators
82       && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
83     dominated_e_true = true;
84 
85   tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
86 				  /*before=*/true, GSI_SAME_STMT);
87   cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
88   gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
89 
90   e_false = split_block (split_bb, cond_stmt);
91   new_bb = e_false->dest;
92   redirect_edge_pred (e_true, split_bb);
93 
94   e_true->flags &= ~EDGE_FALLTHRU;
95   e_true->flags |= EDGE_TRUE_VALUE;
96 
97   e_false->flags &= ~EDGE_FALLTHRU;
98   e_false->flags |= EDGE_FALSE_VALUE;
99   e_false->probability = REG_BR_PROB_BASE - e_true->probability;
100   e_false->count = split_bb->count - e_true->count;
101   new_bb->count = e_false->count;
102 
103   if (update_dominators)
104     {
105       if (dominated_e_true)
106 	set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
107       set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
108     }
109 
110   return new_bb;
111 }
112 
113 
114 /* Determine whether "1 << x" is relatively cheap in word_mode.  */
115 /* FIXME: This is the function that we need rtl.h and optabs.h for.
116    This function (and similar RTL-related cost code in e.g. IVOPTS) should
117    be moved to some kind of interface file for GIMPLE/RTL interactions.  */
118 static bool
lshift_cheap_p(void)119 lshift_cheap_p (void)
120 {
121   /* FIXME: This should be made target dependent via this "this_target"
122      mechanism, similar to e.g. can_copy_init_p in gcse.c.  */
123   static bool init[2] = {false, false};
124   static bool cheap[2] = {true, true};
125   bool speed_p;
126 
127   /* If the targer has no lshift in word_mode, the operation will most
128      probably not be cheap.  ??? Does GCC even work for such targets?  */
129   if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
130     return false;
131 
132   speed_p = optimize_insn_for_speed_p ();
133 
134   if (!init[speed_p])
135     {
136       rtx reg = gen_raw_REG (word_mode, 10000);
137       int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
138 			       speed_p);
139       cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
140       init[speed_p] = true;
141     }
142 
143   return cheap[speed_p];
144 }
145 
146 /* Return true if a switch should be expanded as a bit test.
147    RANGE is the difference between highest and lowest case.
148    UNIQ is number of unique case node targets, not counting the default case.
149    COUNT is the number of comparisons needed, not counting the default case.  */
150 
151 static bool
expand_switch_using_bit_tests_p(tree range,unsigned int uniq,unsigned int count)152 expand_switch_using_bit_tests_p (tree range,
153 				 unsigned int uniq,
154 				 unsigned int count)
155 {
156   return (((uniq == 1 && count >= 3)
157 	   || (uniq == 2 && count >= 5)
158 	   || (uniq == 3 && count >= 6))
159 	  && lshift_cheap_p ()
160 	  && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
161 	  && compare_tree_int (range, 0) > 0);
162 }
163 
164 /* Implement switch statements with bit tests
165 
166 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
167 comparisons.  "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
168 where CST and MINVAL are integer constants.  This is better than a series
169 of compare-and-banch insns in some cases,  e.g. we can implement:
170 
171 	if ((x==4) || (x==6) || (x==9) || (x==11))
172 
173 as a single bit test:
174 
175 	if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
176 
177 This transformation is only applied if the number of case targets is small,
178 if CST constains at least 3 bits, and "1 << x" is cheap.  The bit tests are
179 performed in "word_mode".
180 
181 The following example shows the code the transformation generates:
182 
183 	int bar(int x)
184 	{
185 		switch (x)
186 		{
187 		case '0':  case '1':  case '2':  case '3':  case '4':
188 		case '5':  case '6':  case '7':  case '8':  case '9':
189 		case 'A':  case 'B':  case 'C':  case 'D':  case 'E':
190 		case 'F':
191 			return 1;
192 		}
193 		return 0;
194 	}
195 
196 ==>
197 
198 	bar (int x)
199 	{
200 		tmp1 = x - 48;
201 		if (tmp1 > (70 - 48)) goto L2;
202 		tmp2 = 1 << tmp1;
203 		tmp3 = 0b11111100000001111111111;
204 		if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
205 	L1:
206 		return 1;
207 	L2:
208 		return 0;
209 	}
210 
211 TODO: There are still some improvements to this transformation that could
212 be implemented:
213 
214 * A narrower mode than word_mode could be used if that is cheaper, e.g.
215   for x86_64 where a narrower-mode shift may result in smaller code.
216 
217 * The compounded constant could be shifted rather than the one.  The
218   test would be either on the sign bit or on the least significant bit,
219   depending on the direction of the shift.  On some machines, the test
220   for the branch would be free if the bit to test is already set by the
221   shift operation.
222 
223 This transformation was contributed by Roger Sayle, see this e-mail:
224    http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
225 */
226 
227 /* A case_bit_test represents a set of case nodes that may be
228    selected from using a bit-wise comparison.  HI and LO hold
229    the integer to be tested against, TARGET_EDGE contains the
230    edge to the basic block to jump to upon success and BITS
231    counts the number of case nodes handled by this test,
232    typically the number of bits set in HI:LO.  The LABEL field
233    is used to quickly identify all cases in this set without
234    looking at label_to_block for every case label.  */
235 
236 struct case_bit_test
237 {
238   HOST_WIDE_INT hi;
239   HOST_WIDE_INT lo;
240   edge target_edge;
241   tree label;
242   int bits;
243 };
244 
245 /* Comparison function for qsort to order bit tests by decreasing
246    probability of execution.  Our best guess comes from a measured
247    profile.  If the profile counts are equal, break even on the
248    number of case nodes, i.e. the node with the most cases gets
249    tested first.
250 
251    TODO: Actually this currently runs before a profile is available.
252    Therefore the case-as-bit-tests transformation should be done
253    later in the pass pipeline, or something along the lines of
254    "Efficient and effective branch reordering using profile data"
255    (Yang et. al., 2002) should be implemented (although, how good
256    is a paper is called "Efficient and effective ..." when the
257    latter is implied by the former, but oh well...).  */
258 
259 static int
case_bit_test_cmp(const void * p1,const void * p2)260 case_bit_test_cmp (const void *p1, const void *p2)
261 {
262   const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
263   const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
264 
265   if (d2->target_edge->count != d1->target_edge->count)
266     return d2->target_edge->count - d1->target_edge->count;
267   if (d2->bits != d1->bits)
268     return d2->bits - d1->bits;
269 
270   /* Stabilize the sort.  */
271   return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
272 }
273 
274 /*  Expand a switch statement by a short sequence of bit-wise
275     comparisons.  "switch(x)" is effectively converted into
276     "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
277     integer constants.
278 
279     INDEX_EXPR is the value being switched on.
280 
281     MINVAL is the lowest case value of in the case nodes,
282     and RANGE is highest value minus MINVAL.  MINVAL and RANGE
283     are not guaranteed to be of the same type as INDEX_EXPR
284     (the gimplifier doesn't change the type of case label values,
285     and MINVAL and RANGE are derived from those values).
286 
287     There *MUST* be MAX_CASE_BIT_TESTS or less unique case
288     node targets.  */
289 
290 static void
emit_case_bit_tests(gimple swtch,tree index_expr,tree minval,tree range)291 emit_case_bit_tests (gimple swtch, tree index_expr,
292 		     tree minval, tree range)
293 {
294   struct case_bit_test test[MAX_CASE_BIT_TESTS];
295   unsigned int i, j, k;
296   unsigned int count;
297 
298   basic_block switch_bb = gimple_bb (swtch);
299   basic_block default_bb, new_default_bb, new_bb;
300   edge default_edge;
301   bool update_dom = dom_info_available_p (CDI_DOMINATORS);
302 
303   vec<basic_block> bbs_to_fix_dom = vNULL;
304 
305   tree index_type = TREE_TYPE (index_expr);
306   tree unsigned_index_type = unsigned_type_for (index_type);
307   unsigned int branch_num = gimple_switch_num_labels (swtch);
308 
309   gimple_stmt_iterator gsi;
310   gimple shift_stmt;
311 
312   tree idx, tmp, csui;
313   tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
314   tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
315   tree word_mode_one = fold_convert (word_type_node, integer_one_node);
316 
317   memset (&test, 0, sizeof (test));
318 
319   /* Get the edge for the default case.  */
320   tmp = gimple_switch_default_label (swtch);
321   default_bb = label_to_block (CASE_LABEL (tmp));
322   default_edge = find_edge (switch_bb, default_bb);
323 
324   /* Go through all case labels, and collect the case labels, profile
325      counts, and other information we need to build the branch tests.  */
326   count = 0;
327   for (i = 1; i < branch_num; i++)
328     {
329       unsigned int lo, hi;
330       tree cs = gimple_switch_label (swtch, i);
331       tree label = CASE_LABEL (cs);
332       edge e = find_edge (switch_bb, label_to_block (label));
333       for (k = 0; k < count; k++)
334 	if (e == test[k].target_edge)
335 	  break;
336 
337       if (k == count)
338 	{
339 	  gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
340 	  test[k].hi = 0;
341 	  test[k].lo = 0;
342 	  test[k].target_edge = e;
343 	  test[k].label = label;
344 	  test[k].bits = 1;
345 	  count++;
346 	}
347       else
348         test[k].bits++;
349 
350       lo = tree_low_cst (int_const_binop (MINUS_EXPR,
351 					  CASE_LOW (cs), minval),
352 			 1);
353       if (CASE_HIGH (cs) == NULL_TREE)
354 	hi = lo;
355       else
356 	hi = tree_low_cst (int_const_binop (MINUS_EXPR,
357 					    CASE_HIGH (cs), minval),
358 			   1);
359 
360       for (j = lo; j <= hi; j++)
361         if (j >= HOST_BITS_PER_WIDE_INT)
362 	  test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
363 	else
364 	  test[k].lo |= (HOST_WIDE_INT) 1 << j;
365     }
366 
367   qsort (test, count, sizeof(*test), case_bit_test_cmp);
368 
369   /* We generate two jumps to the default case label.
370      Split the default edge, so that we don't have to do any PHI node
371      updating.  */
372   new_default_bb = split_edge (default_edge);
373 
374   if (update_dom)
375     {
376       bbs_to_fix_dom.create (10);
377       bbs_to_fix_dom.quick_push (switch_bb);
378       bbs_to_fix_dom.quick_push (default_bb);
379       bbs_to_fix_dom.quick_push (new_default_bb);
380     }
381 
382   /* Now build the test-and-branch code.  */
383 
384   gsi = gsi_last_bb (switch_bb);
385 
386   /* idx = (unsigned)x - minval.  */
387   idx = fold_convert (unsigned_index_type, index_expr);
388   idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
389 		     fold_convert (unsigned_index_type, minval));
390   idx = force_gimple_operand_gsi (&gsi, idx,
391 				  /*simple=*/true, NULL_TREE,
392 				  /*before=*/true, GSI_SAME_STMT);
393 
394   /* if (idx > range) goto default */
395   range = force_gimple_operand_gsi (&gsi,
396 				    fold_convert (unsigned_index_type, range),
397 				    /*simple=*/true, NULL_TREE,
398 				    /*before=*/true, GSI_SAME_STMT);
399   tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
400   new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
401   if (update_dom)
402     bbs_to_fix_dom.quick_push (new_bb);
403   gcc_assert (gimple_bb (swtch) == new_bb);
404   gsi = gsi_last_bb (new_bb);
405 
406   /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
407      of NEW_BB, are still immediately dominated by SWITCH_BB.  Make it so.  */
408   if (update_dom)
409     {
410       vec<basic_block> dom_bbs;
411       basic_block dom_son;
412 
413       dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
414       FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
415 	{
416 	  edge e = find_edge (new_bb, dom_son);
417 	  if (e && single_pred_p (e->dest))
418 	    continue;
419 	  set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
420 	  bbs_to_fix_dom.safe_push (dom_son);
421 	}
422       dom_bbs.release ();
423     }
424 
425   /* csui = (1 << (word_mode) idx) */
426   csui = make_ssa_name (word_type_node, NULL);
427   tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
428 		     fold_convert (word_type_node, idx));
429   tmp = force_gimple_operand_gsi (&gsi, tmp,
430 				  /*simple=*/false, NULL_TREE,
431 				  /*before=*/true, GSI_SAME_STMT);
432   shift_stmt = gimple_build_assign (csui, tmp);
433   gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
434   update_stmt (shift_stmt);
435 
436   /* for each unique set of cases:
437         if (const & csui) goto target  */
438   for (k = 0; k < count; k++)
439     {
440       tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
441       tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
442       tmp = force_gimple_operand_gsi (&gsi, tmp,
443 				      /*simple=*/true, NULL_TREE,
444 				      /*before=*/true, GSI_SAME_STMT);
445       tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
446       new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
447 					      update_dom);
448       if (update_dom)
449 	bbs_to_fix_dom.safe_push (new_bb);
450       gcc_assert (gimple_bb (swtch) == new_bb);
451       gsi = gsi_last_bb (new_bb);
452     }
453 
454   /* We should have removed all edges now.  */
455   gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
456 
457   /* If nothing matched, go to the default label.  */
458   make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
459 
460   /* The GIMPLE_SWITCH is now redundant.  */
461   gsi_remove (&gsi, true);
462 
463   if (update_dom)
464     {
465       /* Fix up the dominator tree.  */
466       iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
467       bbs_to_fix_dom.release ();
468     }
469 }
470 
471 /*
472      Switch initialization conversion
473 
474 The following pass changes simple initializations of scalars in a switch
475 statement into initializations from a static array.  Obviously, the values
476 must be constant and known at compile time and a default branch must be
477 provided.  For example, the following code:
478 
479         int a,b;
480 
481         switch (argc)
482 	{
483          case 1:
484          case 2:
485                 a_1 = 8;
486                 b_1 = 6;
487                 break;
488          case 3:
489                 a_2 = 9;
490                 b_2 = 5;
491                 break;
492          case 12:
493                 a_3 = 10;
494                 b_3 = 4;
495                 break;
496          default:
497                 a_4 = 16;
498                 b_4 = 1;
499 		break;
500         }
501 	a_5 = PHI <a_1, a_2, a_3, a_4>
502 	b_5 = PHI <b_1, b_2, b_3, b_4>
503 
504 
505 is changed into:
506 
507         static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
508         static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
509                                  16, 16, 10};
510 
511         if (((unsigned) argc) - 1 < 11)
512           {
513 	    a_6 = CSWTCH02[argc - 1];
514             b_6 = CSWTCH01[argc - 1];
515 	  }
516 	else
517 	  {
518 	    a_7 = 16;
519 	    b_7 = 1;
520           }
521 	a_5 = PHI <a_6, a_7>
522 	b_b = PHI <b_6, b_7>
523 
524 There are further constraints.  Specifically, the range of values across all
525 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
526 eight) times the number of the actual switch branches.
527 
528 This transformation was contributed by Martin Jambor, see this e-mail:
529    http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html  */
530 
531 /* The main structure of the pass.  */
532 struct switch_conv_info
533 {
534   /* The expression used to decide the switch branch.  */
535   tree index_expr;
536 
537   /* The following integer constants store the minimum and maximum value
538      covered by the case labels.  */
539   tree range_min;
540   tree range_max;
541 
542   /* The difference between the above two numbers.  Stored here because it
543      is used in all the conversion heuristics, as well as for some of the
544      transformation, and it is expensive to re-compute it all the time.  */
545   tree range_size;
546 
547   /* Basic block that contains the actual GIMPLE_SWITCH.  */
548   basic_block switch_bb;
549 
550   /* Basic block that is the target of the default case.  */
551   basic_block default_bb;
552 
553   /* The single successor block of all branches out of the GIMPLE_SWITCH,
554      if such a block exists.  Otherwise NULL.  */
555   basic_block final_bb;
556 
557   /* The probability of the default edge in the replaced switch.  */
558   int default_prob;
559 
560   /* The count of the default edge in the replaced switch.  */
561   gcov_type default_count;
562 
563   /* Combined count of all other (non-default) edges in the replaced switch.  */
564   gcov_type other_count;
565 
566   /* Number of phi nodes in the final bb (that we'll be replacing).  */
567   int phi_count;
568 
569   /* Array of default values, in the same order as phi nodes.  */
570   tree *default_values;
571 
572   /* Constructors of new static arrays.  */
573   vec<constructor_elt, va_gc> **constructors;
574 
575   /* Array of ssa names that are initialized with a value from a new static
576      array.  */
577   tree *target_inbound_names;
578 
579   /* Array of ssa names that are initialized with the default value if the
580      switch expression is out of range.  */
581   tree *target_outbound_names;
582 
583   /* The first load statement that loads a temporary from a new static array.
584    */
585   gimple arr_ref_first;
586 
587   /* The last load statement that loads a temporary from a new static array.  */
588   gimple arr_ref_last;
589 
590   /* String reason why the case wasn't a good candidate that is written to the
591      dump file, if there is one.  */
592   const char *reason;
593 
594   /* Parameters for expand_switch_using_bit_tests.  Should be computed
595      the same way as in expand_case.  */
596   unsigned int uniq;
597   unsigned int count;
598 };
599 
600 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO.  */
601 
602 static void
collect_switch_conv_info(gimple swtch,struct switch_conv_info * info)603 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
604 {
605   unsigned int branch_num = gimple_switch_num_labels (swtch);
606   tree min_case, max_case;
607   unsigned int count, i;
608   edge e, e_default;
609   edge_iterator ei;
610 
611   memset (info, 0, sizeof (*info));
612 
613   /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
614      is a default label which is the first in the vector.
615      Collect the bits we can deduce from the CFG.  */
616   info->index_expr = gimple_switch_index (swtch);
617   info->switch_bb = gimple_bb (swtch);
618   info->default_bb =
619     label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
620   e_default = find_edge (info->switch_bb, info->default_bb);
621   info->default_prob = e_default->probability;
622   info->default_count = e_default->count;
623   FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
624     if (e != e_default)
625       info->other_count += e->count;
626 
627   /* See if there is one common successor block for all branch
628      targets.  If it exists, record it in FINAL_BB.  */
629   FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
630     {
631       if (! single_pred_p (e->dest))
632 	{
633 	  info->final_bb = e->dest;
634 	  break;
635 	}
636     }
637   if (info->final_bb)
638     FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
639       {
640 	if (e->dest == info->final_bb)
641 	  continue;
642 
643 	if (single_pred_p (e->dest)
644 	    && single_succ_p (e->dest)
645 	    && single_succ (e->dest) == info->final_bb)
646 	  continue;
647 
648 	info->final_bb = NULL;
649 	break;
650       }
651 
652   /* Get upper and lower bounds of case values, and the covered range.  */
653   min_case = gimple_switch_label (swtch, 1);
654   max_case = gimple_switch_label (swtch, branch_num - 1);
655 
656   info->range_min = CASE_LOW (min_case);
657   if (CASE_HIGH (max_case) != NULL_TREE)
658     info->range_max = CASE_HIGH (max_case);
659   else
660     info->range_max = CASE_LOW (max_case);
661 
662   info->range_size =
663     int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
664 
665   /* Get a count of the number of case labels.  Single-valued case labels
666      simply count as one, but a case range counts double, since it may
667      require two compares if it gets lowered as a branching tree.  */
668   count = 0;
669   for (i = 1; i < branch_num; i++)
670     {
671       tree elt = gimple_switch_label (swtch, i);
672       count++;
673       if (CASE_HIGH (elt)
674 	  && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
675 	count++;
676     }
677   info->count = count;
678 
679   /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
680      block.  Assume a CFG cleanup would have already removed degenerate
681      switch statements, this allows us to just use EDGE_COUNT.  */
682   info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
683 }
684 
685 /* Checks whether the range given by individual case statements of the SWTCH
686    switch statement isn't too big and whether the number of branches actually
687    satisfies the size of the new array.  */
688 
689 static bool
check_range(struct switch_conv_info * info)690 check_range (struct switch_conv_info *info)
691 {
692   gcc_assert (info->range_size);
693   if (!host_integerp (info->range_size, 1))
694     {
695       info->reason = "index range way too large or otherwise unusable";
696       return false;
697     }
698 
699   if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
700       > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
701     {
702       info->reason = "the maximum range-branch ratio exceeded";
703       return false;
704     }
705 
706   return true;
707 }
708 
709 /* Checks whether all but the FINAL_BB basic blocks are empty.  */
710 
711 static bool
check_all_empty_except_final(struct switch_conv_info * info)712 check_all_empty_except_final (struct switch_conv_info *info)
713 {
714   edge e;
715   edge_iterator ei;
716 
717   FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
718     {
719       if (e->dest == info->final_bb)
720 	continue;
721 
722       if (!empty_block_p (e->dest))
723 	{
724 	  info->reason = "bad case - a non-final BB not empty";
725 	  return false;
726 	}
727     }
728 
729   return true;
730 }
731 
732 /* This function checks whether all required values in phi nodes in final_bb
733    are constants.  Required values are those that correspond to a basic block
734    which is a part of the examined switch statement.  It returns true if the
735    phi nodes are OK, otherwise false.  */
736 
737 static bool
check_final_bb(struct switch_conv_info * info)738 check_final_bb (struct switch_conv_info *info)
739 {
740   gimple_stmt_iterator gsi;
741 
742   info->phi_count = 0;
743   for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
744     {
745       gimple phi = gsi_stmt (gsi);
746       unsigned int i;
747 
748       info->phi_count++;
749 
750       for (i = 0; i < gimple_phi_num_args (phi); i++)
751 	{
752 	  basic_block bb = gimple_phi_arg_edge (phi, i)->src;
753 
754 	  if (bb == info->switch_bb
755 	      || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
756 	    {
757 	      tree reloc, val;
758 
759 	      val = gimple_phi_arg_def (phi, i);
760 	      if (!is_gimple_ip_invariant (val))
761 		{
762 		  info->reason = "non-invariant value from a case";
763 		  return false; /* Non-invariant argument.  */
764 		}
765 	      reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
766 	      if ((flag_pic && reloc != null_pointer_node)
767 		  || (!flag_pic && reloc == NULL_TREE))
768 		{
769 		  if (reloc)
770 		    info->reason
771 		      = "value from a case would need runtime relocations";
772 		  else
773 		    info->reason
774 		      = "value from a case is not a valid initializer";
775 		  return false;
776 		}
777 	    }
778 	}
779     }
780 
781   return true;
782 }
783 
784 /* The following function allocates default_values, target_{in,out}_names and
785    constructors arrays.  The last one is also populated with pointers to
786    vectors that will become constructors of new arrays.  */
787 
788 static void
create_temp_arrays(struct switch_conv_info * info)789 create_temp_arrays (struct switch_conv_info *info)
790 {
791   int i;
792 
793   info->default_values = XCNEWVEC (tree, info->phi_count * 3);
794   /* ??? Macros do not support multi argument templates in their
795      argument list.  We create a typedef to work around that problem.  */
796   typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
797   info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
798   info->target_inbound_names = info->default_values + info->phi_count;
799   info->target_outbound_names = info->target_inbound_names + info->phi_count;
800   for (i = 0; i < info->phi_count; i++)
801     vec_alloc (info->constructors[i], tree_low_cst (info->range_size, 1) + 1);
802 }
803 
804 /* Free the arrays created by create_temp_arrays().  The vectors that are
805    created by that function are not freed here, however, because they have
806    already become constructors and must be preserved.  */
807 
808 static void
free_temp_arrays(struct switch_conv_info * info)809 free_temp_arrays (struct switch_conv_info *info)
810 {
811   XDELETEVEC (info->constructors);
812   XDELETEVEC (info->default_values);
813 }
814 
815 /* Populate the array of default values in the order of phi nodes.
816    DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch.  */
817 
818 static void
gather_default_values(tree default_case,struct switch_conv_info * info)819 gather_default_values (tree default_case, struct switch_conv_info *info)
820 {
821   gimple_stmt_iterator gsi;
822   basic_block bb = label_to_block (CASE_LABEL (default_case));
823   edge e;
824   int i = 0;
825 
826   gcc_assert (CASE_LOW (default_case) == NULL_TREE);
827 
828   if (bb == info->final_bb)
829     e = find_edge (info->switch_bb, bb);
830   else
831     e = single_succ_edge (bb);
832 
833   for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
834     {
835       gimple phi = gsi_stmt (gsi);
836       tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
837       gcc_assert (val);
838       info->default_values[i++] = val;
839     }
840 }
841 
842 /* The following function populates the vectors in the constructors array with
843    future contents of the static arrays.  The vectors are populated in the
844    order of phi nodes.  SWTCH is the switch statement being converted.  */
845 
846 static void
build_constructors(gimple swtch,struct switch_conv_info * info)847 build_constructors (gimple swtch, struct switch_conv_info *info)
848 {
849   unsigned i, branch_num = gimple_switch_num_labels (swtch);
850   tree pos = info->range_min;
851 
852   for (i = 1; i < branch_num; i++)
853     {
854       tree cs = gimple_switch_label (swtch, i);
855       basic_block bb = label_to_block (CASE_LABEL (cs));
856       edge e;
857       tree high;
858       gimple_stmt_iterator gsi;
859       int j;
860 
861       if (bb == info->final_bb)
862 	e = find_edge (info->switch_bb, bb);
863       else
864 	e = single_succ_edge (bb);
865       gcc_assert (e);
866 
867       while (tree_int_cst_lt (pos, CASE_LOW (cs)))
868 	{
869 	  int k;
870 	  for (k = 0; k < info->phi_count; k++)
871 	    {
872 	      constructor_elt elt;
873 
874 	      elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
875 	      elt.value
876 		= unshare_expr_without_location (info->default_values[k]);
877 	      info->constructors[k]->quick_push (elt);
878 	    }
879 
880 	  pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
881 	}
882       gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
883 
884       j = 0;
885       if (CASE_HIGH (cs))
886 	high = CASE_HIGH (cs);
887       else
888 	high = CASE_LOW (cs);
889       for (gsi = gsi_start_phis (info->final_bb);
890 	   !gsi_end_p (gsi); gsi_next (&gsi))
891 	{
892 	  gimple phi = gsi_stmt (gsi);
893 	  tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
894 	  tree low = CASE_LOW (cs);
895 	  pos = CASE_LOW (cs);
896 
897 	  do
898 	    {
899 	      constructor_elt elt;
900 
901 	      elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
902 	      elt.value = unshare_expr_without_location (val);
903 	      info->constructors[j]->quick_push (elt);
904 
905 	      pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
906 	    } while (!tree_int_cst_lt (high, pos)
907 		     && tree_int_cst_lt (low, pos));
908 	  j++;
909 	}
910     }
911 }
912 
913 /* If all values in the constructor vector are the same, return the value.
914    Otherwise return NULL_TREE.  Not supposed to be called for empty
915    vectors.  */
916 
917 static tree
constructor_contains_same_values_p(vec<constructor_elt,va_gc> * vec)918 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
919 {
920   unsigned int i;
921   tree prev = NULL_TREE;
922   constructor_elt *elt;
923 
924   FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
925     {
926       if (!prev)
927 	prev = elt->value;
928       else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
929 	return NULL_TREE;
930     }
931   return prev;
932 }
933 
934 /* Return type which should be used for array elements, either TYPE,
935    or for integral type some smaller integral type that can still hold
936    all the constants.  */
937 
938 static tree
array_value_type(gimple swtch,tree type,int num,struct switch_conv_info * info)939 array_value_type (gimple swtch, tree type, int num,
940 		  struct switch_conv_info *info)
941 {
942   unsigned int i, len = vec_safe_length (info->constructors[num]);
943   constructor_elt *elt;
944   enum machine_mode mode;
945   int sign = 0;
946   tree smaller_type;
947 
948   if (!INTEGRAL_TYPE_P (type))
949     return type;
950 
951   mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
952   if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
953     return type;
954 
955   if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
956     return type;
957 
958   FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
959     {
960       double_int cst;
961 
962       if (TREE_CODE (elt->value) != INTEGER_CST)
963 	return type;
964 
965       cst = TREE_INT_CST (elt->value);
966       while (1)
967 	{
968 	  unsigned int prec = GET_MODE_BITSIZE (mode);
969 	  if (prec > HOST_BITS_PER_WIDE_INT)
970 	    return type;
971 
972 	  if (sign >= 0 && cst == cst.zext (prec))
973 	    {
974 	      if (sign == 0 && cst == cst.sext (prec))
975 		break;
976 	      sign = 1;
977 	      break;
978 	    }
979 	  if (sign <= 0 && cst == cst.sext (prec))
980 	    {
981 	      sign = -1;
982 	      break;
983 	    }
984 
985 	  if (sign == 1)
986 	    sign = 0;
987 
988 	  mode = GET_MODE_WIDER_MODE (mode);
989 	  if (mode == VOIDmode
990 	      || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
991 	    return type;
992 	}
993     }
994 
995   if (sign == 0)
996     sign = TYPE_UNSIGNED (type) ? 1 : -1;
997   smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
998   if (GET_MODE_SIZE (TYPE_MODE (type))
999       <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1000     return type;
1001 
1002   return smaller_type;
1003 }
1004 
1005 /* Create an appropriate array type and declaration and assemble a static array
1006    variable.  Also create a load statement that initializes the variable in
1007    question with a value from the static array.  SWTCH is the switch statement
1008    being converted, NUM is the index to arrays of constructors, default values
1009    and target SSA names for this particular array.  ARR_INDEX_TYPE is the type
1010    of the index of the new array, PHI is the phi node of the final BB that
1011    corresponds to the value that will be loaded from the created array.  TIDX
1012    is an ssa name of a temporary variable holding the index for loads from the
1013    new array.  */
1014 
1015 static void
build_one_array(gimple swtch,int num,tree arr_index_type,gimple phi,tree tidx,struct switch_conv_info * info)1016 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1017 		 tree tidx, struct switch_conv_info *info)
1018 {
1019   tree name, cst;
1020   gimple load;
1021   gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1022   location_t loc = gimple_location (swtch);
1023 
1024   gcc_assert (info->default_values[num]);
1025 
1026   name = copy_ssa_name (PHI_RESULT (phi), NULL);
1027   info->target_inbound_names[num] = name;
1028 
1029   cst = constructor_contains_same_values_p (info->constructors[num]);
1030   if (cst)
1031     load = gimple_build_assign (name, cst);
1032   else
1033     {
1034       tree array_type, ctor, decl, value_type, fetch, default_type;
1035 
1036       default_type = TREE_TYPE (info->default_values[num]);
1037       value_type = array_value_type (swtch, default_type, num, info);
1038       array_type = build_array_type (value_type, arr_index_type);
1039       if (default_type != value_type)
1040 	{
1041 	  unsigned int i;
1042 	  constructor_elt *elt;
1043 
1044 	  FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1045 	    elt->value = fold_convert (value_type, elt->value);
1046 	}
1047       ctor = build_constructor (array_type, info->constructors[num]);
1048       TREE_CONSTANT (ctor) = true;
1049       TREE_STATIC (ctor) = true;
1050 
1051       decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1052       TREE_STATIC (decl) = 1;
1053       DECL_INITIAL (decl) = ctor;
1054 
1055       DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1056       DECL_ARTIFICIAL (decl) = 1;
1057       TREE_CONSTANT (decl) = 1;
1058       TREE_READONLY (decl) = 1;
1059       varpool_finalize_decl (decl);
1060 
1061       fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1062 		      NULL_TREE);
1063       if (default_type != value_type)
1064 	{
1065 	  fetch = fold_convert (default_type, fetch);
1066 	  fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1067 					    true, GSI_SAME_STMT);
1068 	}
1069       load = gimple_build_assign (name, fetch);
1070     }
1071 
1072   gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1073   update_stmt (load);
1074   info->arr_ref_last = load;
1075 }
1076 
1077 /* Builds and initializes static arrays initialized with values gathered from
1078    the SWTCH switch statement.  Also creates statements that load values from
1079    them.  */
1080 
1081 static void
build_arrays(gimple swtch,struct switch_conv_info * info)1082 build_arrays (gimple swtch, struct switch_conv_info *info)
1083 {
1084   tree arr_index_type;
1085   tree tidx, sub, utype;
1086   gimple stmt;
1087   gimple_stmt_iterator gsi;
1088   int i;
1089   location_t loc = gimple_location (swtch);
1090 
1091   gsi = gsi_for_stmt (swtch);
1092 
1093   /* Make sure we do not generate arithmetics in a subrange.  */
1094   utype = TREE_TYPE (info->index_expr);
1095   if (TREE_TYPE (utype))
1096     utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1097   else
1098     utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1099 
1100   arr_index_type = build_index_type (info->range_size);
1101   tidx = make_ssa_name (utype, NULL);
1102   sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1103 			 fold_convert_loc (loc, utype, info->index_expr),
1104 			 fold_convert_loc (loc, utype, info->range_min));
1105   sub = force_gimple_operand_gsi (&gsi, sub,
1106 				  false, NULL, true, GSI_SAME_STMT);
1107   stmt = gimple_build_assign (tidx, sub);
1108 
1109   gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1110   update_stmt (stmt);
1111   info->arr_ref_first = stmt;
1112 
1113   for (gsi = gsi_start_phis (info->final_bb), i = 0;
1114        !gsi_end_p (gsi); gsi_next (&gsi), i++)
1115     build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1116 }
1117 
1118 /* Generates and appropriately inserts loads of default values at the position
1119    given by BSI.  Returns the last inserted statement.  */
1120 
1121 static gimple
gen_def_assigns(gimple_stmt_iterator * gsi,struct switch_conv_info * info)1122 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1123 {
1124   int i;
1125   gimple assign = NULL;
1126 
1127   for (i = 0; i < info->phi_count; i++)
1128     {
1129       tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
1130       info->target_outbound_names[i] = name;
1131       assign = gimple_build_assign (name, info->default_values[i]);
1132       gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1133       update_stmt (assign);
1134     }
1135   return assign;
1136 }
1137 
1138 /* Deletes the unused bbs and edges that now contain the switch statement and
1139    its empty branch bbs.  BBD is the now dead BB containing the original switch
1140    statement, FINAL is the last BB of the converted switch statement (in terms
1141    of succession).  */
1142 
1143 static void
prune_bbs(basic_block bbd,basic_block final)1144 prune_bbs (basic_block bbd, basic_block final)
1145 {
1146   edge_iterator ei;
1147   edge e;
1148 
1149   for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1150     {
1151       basic_block bb;
1152       bb = e->dest;
1153       remove_edge (e);
1154       if (bb != final)
1155 	delete_basic_block (bb);
1156     }
1157   delete_basic_block (bbd);
1158 }
1159 
1160 /* Add values to phi nodes in final_bb for the two new edges.  E1F is the edge
1161    from the basic block loading values from an array and E2F from the basic
1162    block loading default values.  BBF is the last switch basic block (see the
1163    bbf description in the comment below).  */
1164 
1165 static void
fix_phi_nodes(edge e1f,edge e2f,basic_block bbf,struct switch_conv_info * info)1166 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1167 	       struct switch_conv_info *info)
1168 {
1169   gimple_stmt_iterator gsi;
1170   int i;
1171 
1172   for (gsi = gsi_start_phis (bbf), i = 0;
1173        !gsi_end_p (gsi); gsi_next (&gsi), i++)
1174     {
1175       gimple phi = gsi_stmt (gsi);
1176       add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1177       add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1178     }
1179 }
1180 
1181 /* Creates a check whether the switch expression value actually falls into the
1182    range given by all the cases.  If it does not, the temporaries are loaded
1183    with default values instead.  SWTCH is the switch statement being converted.
1184 
1185    bb0 is the bb with the switch statement, however, we'll end it with a
1186        condition instead.
1187 
1188    bb1 is the bb to be used when the range check went ok.  It is derived from
1189        the switch BB
1190 
1191    bb2 is the bb taken when the expression evaluated outside of the range
1192        covered by the created arrays.  It is populated by loads of default
1193        values.
1194 
1195    bbF is a fall through for both bb1 and bb2 and contains exactly what
1196        originally followed the switch statement.
1197 
1198    bbD contains the switch statement (in the end).  It is unreachable but we
1199        still need to strip off its edges.
1200 */
1201 
1202 static void
gen_inbound_check(gimple swtch,struct switch_conv_info * info)1203 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1204 {
1205   tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1206   tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1207   tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1208   gimple label1, label2, label3;
1209   tree utype, tidx;
1210   tree bound;
1211 
1212   gimple cond_stmt;
1213 
1214   gimple last_assign;
1215   gimple_stmt_iterator gsi;
1216   basic_block bb0, bb1, bb2, bbf, bbd;
1217   edge e01, e02, e21, e1d, e1f, e2f;
1218   location_t loc = gimple_location (swtch);
1219 
1220   gcc_assert (info->default_values);
1221 
1222   bb0 = gimple_bb (swtch);
1223 
1224   tidx = gimple_assign_lhs (info->arr_ref_first);
1225   utype = TREE_TYPE (tidx);
1226 
1227   /* (end of) block 0 */
1228   gsi = gsi_for_stmt (info->arr_ref_first);
1229   gsi_next (&gsi);
1230 
1231   bound = fold_convert_loc (loc, utype, info->range_size);
1232   cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1233   gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1234   update_stmt (cond_stmt);
1235 
1236   /* block 2 */
1237   label2 = gimple_build_label (label_decl2);
1238   gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1239   last_assign = gen_def_assigns (&gsi, info);
1240 
1241   /* block 1 */
1242   label1 = gimple_build_label (label_decl1);
1243   gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1244 
1245   /* block F */
1246   gsi = gsi_start_bb (info->final_bb);
1247   label3 = gimple_build_label (label_decl3);
1248   gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1249 
1250   /* cfg fix */
1251   e02 = split_block (bb0, cond_stmt);
1252   bb2 = e02->dest;
1253 
1254   e21 = split_block (bb2, last_assign);
1255   bb1 = e21->dest;
1256   remove_edge (e21);
1257 
1258   e1d = split_block (bb1, info->arr_ref_last);
1259   bbd = e1d->dest;
1260   remove_edge (e1d);
1261 
1262   /* flags and profiles of the edge for in-range values */
1263   e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1264   e01->probability = REG_BR_PROB_BASE - info->default_prob;
1265   e01->count = info->other_count;
1266 
1267   /* flags and profiles of the edge taking care of out-of-range values */
1268   e02->flags &= ~EDGE_FALLTHRU;
1269   e02->flags |= EDGE_FALSE_VALUE;
1270   e02->probability = info->default_prob;
1271   e02->count = info->default_count;
1272 
1273   bbf = info->final_bb;
1274 
1275   e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1276   e1f->probability = REG_BR_PROB_BASE;
1277   e1f->count = info->other_count;
1278 
1279   e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1280   e2f->probability = REG_BR_PROB_BASE;
1281   e2f->count = info->default_count;
1282 
1283   /* frequencies of the new BBs */
1284   bb1->frequency = EDGE_FREQUENCY (e01);
1285   bb2->frequency = EDGE_FREQUENCY (e02);
1286   bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1287 
1288   /* Tidy blocks that have become unreachable.  */
1289   prune_bbs (bbd, info->final_bb);
1290 
1291   /* Fixup the PHI nodes in bbF.  */
1292   fix_phi_nodes (e1f, e2f, bbf, info);
1293 
1294   /* Fix the dominator tree, if it is available.  */
1295   if (dom_info_available_p (CDI_DOMINATORS))
1296     {
1297       vec<basic_block> bbs_to_fix_dom;
1298 
1299       set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1300       set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1301       if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1302 	/* If bbD was the immediate dominator ...  */
1303 	set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1304 
1305       bbs_to_fix_dom.create (4);
1306       bbs_to_fix_dom.quick_push (bb0);
1307       bbs_to_fix_dom.quick_push (bb1);
1308       bbs_to_fix_dom.quick_push (bb2);
1309       bbs_to_fix_dom.quick_push (bbf);
1310 
1311       iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1312       bbs_to_fix_dom.release ();
1313     }
1314 }
1315 
1316 /* The following function is invoked on every switch statement (the current one
1317    is given in SWTCH) and runs the individual phases of switch conversion on it
1318    one after another until one fails or the conversion is completed.
1319    Returns NULL on success, or a pointer to a string with the reason why the
1320    conversion failed.  */
1321 
1322 static const char *
process_switch(gimple swtch)1323 process_switch (gimple swtch)
1324 {
1325   struct switch_conv_info info;
1326 
1327   /* Group case labels so that we get the right results from the heuristics
1328      that decide on the code generation approach for this switch.  */
1329   group_case_labels_stmt (swtch);
1330 
1331   /* If this switch is now a degenerate case with only a default label,
1332      there is nothing left for us to do.   */
1333   if (gimple_switch_num_labels (swtch) < 2)
1334     return "switch is a degenerate case";
1335 
1336   collect_switch_conv_info (swtch, &info);
1337 
1338   /* No error markers should reach here (they should be filtered out
1339      during gimplification).  */
1340   gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1341 
1342   /* A switch on a constant should have been optimized in tree-cfg-cleanup.  */
1343   gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1344 
1345   if (info.uniq <= MAX_CASE_BIT_TESTS)
1346     {
1347       if (expand_switch_using_bit_tests_p (info.range_size,
1348 					   info.uniq, info.count))
1349 	{
1350 	  if (dump_file)
1351 	    fputs ("  expanding as bit test is preferable\n", dump_file);
1352 	  emit_case_bit_tests (swtch, info.index_expr,
1353 			       info.range_min, info.range_size);
1354 	  return NULL;
1355 	}
1356 
1357       if (info.uniq <= 2)
1358 	/* This will be expanded as a decision tree in stmt.c:expand_case.  */
1359 	return "  expanding as jumps is preferable";
1360     }
1361 
1362   /* If there is no common successor, we cannot do the transformation.  */
1363   if (! info.final_bb)
1364     return "no common successor to all case label target blocks found";
1365 
1366   /* Check the case label values are within reasonable range:  */
1367   if (!check_range (&info))
1368     {
1369       gcc_assert (info.reason);
1370       return info.reason;
1371     }
1372 
1373   /* For all the cases, see whether they are empty, the assignments they
1374      represent constant and so on...  */
1375   if (! check_all_empty_except_final (&info))
1376     {
1377       gcc_assert (info.reason);
1378       return info.reason;
1379     }
1380   if (!check_final_bb (&info))
1381     {
1382       gcc_assert (info.reason);
1383       return info.reason;
1384     }
1385 
1386   /* At this point all checks have passed and we can proceed with the
1387      transformation.  */
1388 
1389   create_temp_arrays (&info);
1390   gather_default_values (gimple_switch_default_label (swtch), &info);
1391   build_constructors (swtch, &info);
1392 
1393   build_arrays (swtch, &info); /* Build the static arrays and assignments.   */
1394   gen_inbound_check (swtch, &info);	/* Build the bounds check.  */
1395 
1396   /* Cleanup:  */
1397   free_temp_arrays (&info);
1398   return NULL;
1399 }
1400 
1401 /* The main function of the pass scans statements for switches and invokes
1402    process_switch on them.  */
1403 
1404 static unsigned int
do_switchconv(void)1405 do_switchconv (void)
1406 {
1407   basic_block bb;
1408 
1409   FOR_EACH_BB (bb)
1410   {
1411     const char *failure_reason;
1412     gimple stmt = last_stmt (bb);
1413     if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1414       {
1415 	if (dump_file)
1416 	  {
1417 	    expanded_location loc = expand_location (gimple_location (stmt));
1418 
1419 	    fprintf (dump_file, "beginning to process the following "
1420 		     "SWITCH statement (%s:%d) : ------- \n",
1421 		     loc.file, loc.line);
1422 	    print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1423 	    putc ('\n', dump_file);
1424 	  }
1425 
1426 	failure_reason = process_switch (stmt);
1427 	if (! failure_reason)
1428 	  {
1429 	    if (dump_file)
1430 	      {
1431 		fputs ("Switch converted\n", dump_file);
1432 		fputs ("--------------------------------\n", dump_file);
1433 	      }
1434 
1435 	    /* Make no effort to update the post-dominator tree.  It is actually not
1436 	       that hard for the transformations we have performed, but it is not
1437 	       supported by iterate_fix_dominators.  */
1438 	    free_dominance_info (CDI_POST_DOMINATORS);
1439 	  }
1440 	else
1441 	  {
1442 	    if (dump_file)
1443 	      {
1444 		fputs ("Bailing out - ", dump_file);
1445 		fputs (failure_reason, dump_file);
1446 		fputs ("\n--------------------------------\n", dump_file);
1447 	      }
1448 	  }
1449       }
1450   }
1451 
1452   return 0;
1453 }
1454 
1455 /* The pass gate. */
1456 
1457 static bool
switchconv_gate(void)1458 switchconv_gate (void)
1459 {
1460   return flag_tree_switch_conversion != 0;
1461 }
1462 
1463 struct gimple_opt_pass pass_convert_switch =
1464 {
1465  {
1466   GIMPLE_PASS,
1467   "switchconv",				/* name */
1468   OPTGROUP_NONE,                        /* optinfo_flags */
1469   switchconv_gate,			/* gate */
1470   do_switchconv,			/* execute */
1471   NULL,					/* sub */
1472   NULL,					/* next */
1473   0,					/* static_pass_number */
1474   TV_TREE_SWITCH_CONVERSION,		/* tv_id */
1475   PROP_cfg | PROP_ssa,	                /* properties_required */
1476   0,					/* properties_provided */
1477   0,					/* properties_destroyed */
1478   0,					/* todo_flags_start */
1479   TODO_update_ssa
1480   | TODO_ggc_collect | TODO_verify_ssa
1481   | TODO_verify_stmts
1482   | TODO_verify_flow			/* todo_flags_finish */
1483  }
1484 };
1485