1 // Random number extensions -*- C++ -*-
2 
3 // Copyright (C) 2012-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/random.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{ext/random}
28  */
29 
30 #ifndef _EXT_RANDOM_TCC
31 #define _EXT_RANDOM_TCC 1
32 
33 #pragma GCC system_header
34 
35 
36 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
37 {
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 
40 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
41 
42   template<typename _UIntType, size_t __m,
43 	   size_t __pos1, size_t __sl1, size_t __sl2,
44 	   size_t __sr1, size_t __sr2,
45 	   uint32_t __msk1, uint32_t __msk2,
46 	   uint32_t __msk3, uint32_t __msk4,
47 	   uint32_t __parity1, uint32_t __parity2,
48 	   uint32_t __parity3, uint32_t __parity4>
49     void simd_fast_mersenne_twister_engine<_UIntType, __m,
50 					   __pos1, __sl1, __sl2, __sr1, __sr2,
51 					   __msk1, __msk2, __msk3, __msk4,
52 					   __parity1, __parity2, __parity3,
53 					   __parity4>::
seed(_UIntType __seed)54     seed(_UIntType __seed)
55     {
56       _M_state32[0] = static_cast<uint32_t>(__seed);
57       for (size_t __i = 1; __i < _M_nstate32; ++__i)
58 	_M_state32[__i] = (1812433253UL
59 			   * (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30))
60 			   + __i);
61       _M_pos = state_size;
62       _M_period_certification();
63     }
64 
65 
66   namespace {
67 
_Func1(uint32_t __x)68     inline uint32_t _Func1(uint32_t __x)
69     {
70       return (__x ^ (__x >> 27)) * UINT32_C(1664525);
71     }
72 
_Func2(uint32_t __x)73     inline uint32_t _Func2(uint32_t __x)
74     {
75       return (__x ^ (__x >> 27)) * UINT32_C(1566083941);
76     }
77 
78   }
79 
80 
81   template<typename _UIntType, size_t __m,
82 	   size_t __pos1, size_t __sl1, size_t __sl2,
83 	   size_t __sr1, size_t __sr2,
84 	   uint32_t __msk1, uint32_t __msk2,
85 	   uint32_t __msk3, uint32_t __msk4,
86 	   uint32_t __parity1, uint32_t __parity2,
87 	   uint32_t __parity3, uint32_t __parity4>
88     template<typename _Sseq>
89       typename std::enable_if<std::is_class<_Sseq>::value>::type
90       simd_fast_mersenne_twister_engine<_UIntType, __m,
91 					__pos1, __sl1, __sl2, __sr1, __sr2,
92 					__msk1, __msk2, __msk3, __msk4,
93 					__parity1, __parity2, __parity3,
94 					__parity4>::
seed(_Sseq & __q)95       seed(_Sseq& __q)
96       {
97 	size_t __lag;
98 
99 	if (_M_nstate32 >= 623)
100 	  __lag = 11;
101 	else if (_M_nstate32 >= 68)
102 	  __lag = 7;
103 	else if (_M_nstate32 >= 39)
104 	  __lag = 5;
105 	else
106 	  __lag = 3;
107 	const size_t __mid = (_M_nstate32 - __lag) / 2;
108 
109 	std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b));
110 	uint32_t __arr[_M_nstate32];
111 	__q.generate(__arr + 0, __arr + _M_nstate32);
112 
113 	uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid]
114 			      ^ _M_state32[_M_nstate32  - 1]);
115 	_M_state32[__mid] += __r;
116 	__r += _M_nstate32;
117 	_M_state32[__mid + __lag] += __r;
118 	_M_state32[0] = __r;
119 
120 	for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j)
121 	  {
122 	    __r = _Func1(_M_state32[__i]
123 			 ^ _M_state32[(__i + __mid) % _M_nstate32]
124 			 ^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
125 	    _M_state32[(__i + __mid) % _M_nstate32] += __r;
126 	    __r += __arr[__j] + __i;
127 	    _M_state32[(__i + __mid + __lag) % _M_nstate32] += __r;
128 	    _M_state32[__i] = __r;
129 	    __i = (__i + 1) % _M_nstate32;
130 	  }
131 	for (size_t __j = 0; __j < _M_nstate32; ++__j)
132 	  {
133 	    const size_t __i = (__j + 1) % _M_nstate32;
134 	    __r = _Func2(_M_state32[__i]
135 			 + _M_state32[(__i + __mid) % _M_nstate32]
136 			 + _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
137 	    _M_state32[(__i + __mid) % _M_nstate32] ^= __r;
138 	    __r -= __i;
139 	    _M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r;
140 	    _M_state32[__i] = __r;
141 	  }
142 
143 	_M_pos = state_size;
144 	_M_period_certification();
145       }
146 
147 
148   template<typename _UIntType, size_t __m,
149 	   size_t __pos1, size_t __sl1, size_t __sl2,
150 	   size_t __sr1, size_t __sr2,
151 	   uint32_t __msk1, uint32_t __msk2,
152 	   uint32_t __msk3, uint32_t __msk4,
153 	   uint32_t __parity1, uint32_t __parity2,
154 	   uint32_t __parity3, uint32_t __parity4>
155     void simd_fast_mersenne_twister_engine<_UIntType, __m,
156 					   __pos1, __sl1, __sl2, __sr1, __sr2,
157 					   __msk1, __msk2, __msk3, __msk4,
158 					   __parity1, __parity2, __parity3,
159 					   __parity4>::
_M_period_certification(void)160     _M_period_certification(void)
161     {
162       static const uint32_t __parity[4] = { __parity1, __parity2,
163 					    __parity3, __parity4 };
164       uint32_t __inner = 0;
165       for (size_t __i = 0; __i < 4; ++__i)
166 	if (__parity[__i] != 0)
167 	  __inner ^= _M_state32[__i] & __parity[__i];
168 
169       if (__builtin_parity(__inner) & 1)
170 	return;
171       for (size_t __i = 0; __i < 4; ++__i)
172 	if (__parity[__i] != 0)
173 	  {
174 	    _M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1);
175 	    return;
176 	  }
177       __builtin_unreachable();
178     }
179 
180 
181   template<typename _UIntType, size_t __m,
182 	   size_t __pos1, size_t __sl1, size_t __sl2,
183 	   size_t __sr1, size_t __sr2,
184 	   uint32_t __msk1, uint32_t __msk2,
185 	   uint32_t __msk3, uint32_t __msk4,
186 	   uint32_t __parity1, uint32_t __parity2,
187 	   uint32_t __parity3, uint32_t __parity4>
188     void simd_fast_mersenne_twister_engine<_UIntType, __m,
189 					   __pos1, __sl1, __sl2, __sr1, __sr2,
190 					   __msk1, __msk2, __msk3, __msk4,
191 					   __parity1, __parity2, __parity3,
192 					   __parity4>::
discard(unsigned long long __z)193     discard(unsigned long long __z)
194     {
195       while (__z > state_size - _M_pos)
196 	{
197 	  __z -= state_size - _M_pos;
198 
199 	  _M_gen_rand();
200 	}
201 
202       _M_pos += __z;
203     }
204 
205 
206 #ifndef  _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ
207 
208   namespace {
209 
210     template<size_t __shift>
__rshift(uint32_t * __out,const uint32_t * __in)211       inline void __rshift(uint32_t *__out, const uint32_t *__in)
212       {
213 	uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
214 			 | static_cast<uint64_t>(__in[2]));
215 	uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
216 			 | static_cast<uint64_t>(__in[0]));
217 
218 	uint64_t __oh = __th >> (__shift * 8);
219 	uint64_t __ol = __tl >> (__shift * 8);
220 	__ol |= __th << (64 - __shift * 8);
221 	__out[1] = static_cast<uint32_t>(__ol >> 32);
222 	__out[0] = static_cast<uint32_t>(__ol);
223 	__out[3] = static_cast<uint32_t>(__oh >> 32);
224 	__out[2] = static_cast<uint32_t>(__oh);
225       }
226 
227 
228     template<size_t __shift>
__lshift(uint32_t * __out,const uint32_t * __in)229       inline void __lshift(uint32_t *__out, const uint32_t *__in)
230       {
231 	uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
232 			 | static_cast<uint64_t>(__in[2]));
233 	uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
234 			 | static_cast<uint64_t>(__in[0]));
235 
236 	uint64_t __oh = __th << (__shift * 8);
237 	uint64_t __ol = __tl << (__shift * 8);
238 	__oh |= __tl >> (64 - __shift * 8);
239 	__out[1] = static_cast<uint32_t>(__ol >> 32);
240 	__out[0] = static_cast<uint32_t>(__ol);
241 	__out[3] = static_cast<uint32_t>(__oh >> 32);
242 	__out[2] = static_cast<uint32_t>(__oh);
243       }
244 
245 
246     template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2,
247 	     uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4>
__recursion(uint32_t * __r,const uint32_t * __a,const uint32_t * __b,const uint32_t * __c,const uint32_t * __d)248       inline void __recursion(uint32_t *__r,
249 			      const uint32_t *__a, const uint32_t *__b,
250 			      const uint32_t *__c, const uint32_t *__d)
251       {
252 	uint32_t __x[4];
253 	uint32_t __y[4];
254 
255 	__lshift<__sl2>(__x, __a);
256 	__rshift<__sr2>(__y, __c);
257 	__r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1)
258 		  ^ __y[0] ^ (__d[0] << __sl1));
259 	__r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2)
260 		  ^ __y[1] ^ (__d[1] << __sl1));
261 	__r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3)
262 		  ^ __y[2] ^ (__d[2] << __sl1));
263 	__r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4)
264 		  ^ __y[3] ^ (__d[3] << __sl1));
265       }
266 
267   }
268 
269 
270   template<typename _UIntType, size_t __m,
271 	   size_t __pos1, size_t __sl1, size_t __sl2,
272 	   size_t __sr1, size_t __sr2,
273 	   uint32_t __msk1, uint32_t __msk2,
274 	   uint32_t __msk3, uint32_t __msk4,
275 	   uint32_t __parity1, uint32_t __parity2,
276 	   uint32_t __parity3, uint32_t __parity4>
277     void simd_fast_mersenne_twister_engine<_UIntType, __m,
278 					   __pos1, __sl1, __sl2, __sr1, __sr2,
279 					   __msk1, __msk2, __msk3, __msk4,
280 					   __parity1, __parity2, __parity3,
281 					   __parity4>::
_M_gen_rand(void)282     _M_gen_rand(void)
283     {
284       const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8];
285       const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4];
286       static constexpr size_t __pos1_32 = __pos1 * 4;
287 
288       size_t __i;
289       for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4)
290 	{
291 	  __recursion<__sl1, __sl2, __sr1, __sr2,
292 		      __msk1, __msk2, __msk3, __msk4>
293 	    (&_M_state32[__i], &_M_state32[__i],
294 	     &_M_state32[__i + __pos1_32], __r1, __r2);
295 	  __r1 = __r2;
296 	  __r2 = &_M_state32[__i];
297 	}
298 
299       for (; __i < _M_nstate32; __i += 4)
300 	{
301 	  __recursion<__sl1, __sl2, __sr1, __sr2,
302 		      __msk1, __msk2, __msk3, __msk4>
303 	    (&_M_state32[__i], &_M_state32[__i],
304 	     &_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2);
305 	  __r1 = __r2;
306 	  __r2 = &_M_state32[__i];
307 	}
308 
309       _M_pos = 0;
310     }
311 
312 #endif
313 
314 #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL
315   template<typename _UIntType, size_t __m,
316 	   size_t __pos1, size_t __sl1, size_t __sl2,
317 	   size_t __sr1, size_t __sr2,
318 	   uint32_t __msk1, uint32_t __msk2,
319 	   uint32_t __msk3, uint32_t __msk4,
320 	   uint32_t __parity1, uint32_t __parity2,
321 	   uint32_t __parity3, uint32_t __parity4>
322     bool
operator ==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __lhs,const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __rhs)323     operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
324 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
325 	       __msk1, __msk2, __msk3, __msk4,
326 	       __parity1, __parity2, __parity3, __parity4>& __lhs,
327 	       const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
328 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
329 	       __msk1, __msk2, __msk3, __msk4,
330 	       __parity1, __parity2, __parity3, __parity4>& __rhs)
331     {
332       typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
333 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
334 	       __msk1, __msk2, __msk3, __msk4,
335 	       __parity1, __parity2, __parity3, __parity4> __engine;
336       return (std::equal(__lhs._M_stateT,
337 			 __lhs._M_stateT + __engine::state_size,
338 			 __rhs._M_stateT)
339 	      && __lhs._M_pos == __rhs._M_pos);
340     }
341 #endif
342 
343   template<typename _UIntType, size_t __m,
344 	   size_t __pos1, size_t __sl1, size_t __sl2,
345 	   size_t __sr1, size_t __sr2,
346 	   uint32_t __msk1, uint32_t __msk2,
347 	   uint32_t __msk3, uint32_t __msk4,
348 	   uint32_t __parity1, uint32_t __parity2,
349 	   uint32_t __parity3, uint32_t __parity4,
350 	   typename _CharT, typename _Traits>
351     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __x)352     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
353 	       const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
354 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
355 	       __msk1, __msk2, __msk3, __msk4,
356 	       __parity1, __parity2, __parity3, __parity4>& __x)
357     {
358       typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
359       typedef typename __ostream_type::ios_base __ios_base;
360 
361       const typename __ios_base::fmtflags __flags = __os.flags();
362       const _CharT __fill = __os.fill();
363       const _CharT __space = __os.widen(' ');
364       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
365       __os.fill(__space);
366 
367       for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
368 	__os << __x._M_state32[__i] << __space;
369       __os << __x._M_pos;
370 
371       __os.flags(__flags);
372       __os.fill(__fill);
373       return __os;
374     }
375 
376 
377   template<typename _UIntType, size_t __m,
378 	   size_t __pos1, size_t __sl1, size_t __sl2,
379 	   size_t __sr1, size_t __sr2,
380 	   uint32_t __msk1, uint32_t __msk2,
381 	   uint32_t __msk3, uint32_t __msk4,
382 	   uint32_t __parity1, uint32_t __parity2,
383 	   uint32_t __parity3, uint32_t __parity4,
384 	   typename _CharT, typename _Traits>
385     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __x)386     operator>>(std::basic_istream<_CharT, _Traits>& __is,
387 	       __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
388 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
389 	       __msk1, __msk2, __msk3, __msk4,
390 	       __parity1, __parity2, __parity3, __parity4>& __x)
391     {
392       typedef std::basic_istream<_CharT, _Traits> __istream_type;
393       typedef typename __istream_type::ios_base __ios_base;
394 
395       const typename __ios_base::fmtflags __flags = __is.flags();
396       __is.flags(__ios_base::dec | __ios_base::skipws);
397 
398       for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
399 	__is >> __x._M_state32[__i];
400       __is >> __x._M_pos;
401 
402       __is.flags(__flags);
403       return __is;
404     }
405 
406 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
407 
408   /**
409    * Iteration method due to M.D. J<o:>hnk.
410    *
411    * M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten
412    * Zufallszahlen, Metrika, Volume 8, 1964
413    */
414   template<typename _RealType>
415     template<typename _UniformRandomNumberGenerator>
416       typename beta_distribution<_RealType>::result_type
417       beta_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)418       operator()(_UniformRandomNumberGenerator& __urng,
419 		 const param_type& __param)
420       {
421 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
422 	  __aurng(__urng);
423 
424 	result_type __x, __y;
425 	do
426 	  {
427 	    __x = std::exp(std::log(__aurng()) / __param.alpha());
428 	    __y = std::exp(std::log(__aurng()) / __param.beta());
429 	  }
430 	while (__x + __y > result_type(1));
431 
432 	return __x / (__x + __y);
433       }
434 
435   template<typename _RealType>
436     template<typename _OutputIterator,
437 	     typename _UniformRandomNumberGenerator>
438       void
439       beta_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)440       __generate_impl(_OutputIterator __f, _OutputIterator __t,
441 		      _UniformRandomNumberGenerator& __urng,
442 		      const param_type& __param)
443       {
444 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
445 
446 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
447 	  __aurng(__urng);
448 
449 	while (__f != __t)
450 	  {
451 	    result_type __x, __y;
452 	    do
453 	      {
454 		__x = std::exp(std::log(__aurng()) / __param.alpha());
455 		__y = std::exp(std::log(__aurng()) / __param.beta());
456 	      }
457 	    while (__x + __y > result_type(1));
458 
459 	    *__f++ = __x / (__x + __y);
460 	  }
461       }
462 
463   template<typename _RealType, typename _CharT, typename _Traits>
464     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::beta_distribution<_RealType> & __x)465     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
466 	       const __gnu_cxx::beta_distribution<_RealType>& __x)
467     {
468       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
469       typedef typename __ostream_type::ios_base    __ios_base;
470 
471       const typename __ios_base::fmtflags __flags = __os.flags();
472       const _CharT __fill = __os.fill();
473       const std::streamsize __precision = __os.precision();
474       const _CharT __space = __os.widen(' ');
475       __os.flags(__ios_base::scientific | __ios_base::left);
476       __os.fill(__space);
477       __os.precision(std::numeric_limits<_RealType>::max_digits10);
478 
479       __os << __x.alpha() << __space << __x.beta();
480 
481       __os.flags(__flags);
482       __os.fill(__fill);
483       __os.precision(__precision);
484       return __os;
485     }
486 
487   template<typename _RealType, typename _CharT, typename _Traits>
488     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::beta_distribution<_RealType> & __x)489     operator>>(std::basic_istream<_CharT, _Traits>& __is,
490 	       __gnu_cxx::beta_distribution<_RealType>& __x)
491     {
492       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
493       typedef typename __istream_type::ios_base    __ios_base;
494 
495       const typename __ios_base::fmtflags __flags = __is.flags();
496       __is.flags(__ios_base::dec | __ios_base::skipws);
497 
498       _RealType __alpha_val, __beta_val;
499       __is >> __alpha_val >> __beta_val;
500       __x.param(typename __gnu_cxx::beta_distribution<_RealType>::
501 		param_type(__alpha_val, __beta_val));
502 
503       __is.flags(__flags);
504       return __is;
505     }
506 
507 
508   template<std::size_t _Dimen, typename _RealType>
509     template<typename _InputIterator1, typename _InputIterator2>
510       void
511       normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_full(_InputIterator1 __meanbegin,_InputIterator1 __meanend,_InputIterator2 __varcovbegin,_InputIterator2 __varcovend)512       _M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
513 		   _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
514       {
515 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
516 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
517 	std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
518 		  _M_mean.end(), _RealType(0));
519 
520 	// Perform the Cholesky decomposition
521 	auto __w = _M_t.begin();
522 	for (size_t __j = 0; __j < _Dimen; ++__j)
523 	  {
524 	    _RealType __sum = _RealType(0);
525 
526 	    auto __slitbegin = __w;
527 	    auto __cit = _M_t.begin();
528 	    for (size_t __i = 0; __i < __j; ++__i)
529 	      {
530 		auto __slit = __slitbegin;
531 		_RealType __s = *__varcovbegin++;
532 		for (size_t __k = 0; __k < __i; ++__k)
533 		  __s -= *__slit++ * *__cit++;
534 
535 		*__w++ = __s /= *__cit++;
536 		__sum += __s * __s;
537 	      }
538 
539 	    __sum = *__varcovbegin - __sum;
540 	    if (__builtin_expect(__sum <= _RealType(0), 0))
541 	      std::__throw_runtime_error(__N("normal_mv_distribution::"
542 					     "param_type::_M_init_full"));
543 	    *__w++ = std::sqrt(__sum);
544 
545 	    std::advance(__varcovbegin, _Dimen - __j);
546 	  }
547       }
548 
549   template<std::size_t _Dimen, typename _RealType>
550     template<typename _InputIterator1, typename _InputIterator2>
551       void
552       normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_lower(_InputIterator1 __meanbegin,_InputIterator1 __meanend,_InputIterator2 __varcovbegin,_InputIterator2 __varcovend)553       _M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
554 		    _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
555       {
556 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
557 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
558 	std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
559 		  _M_mean.end(), _RealType(0));
560 
561 	// Perform the Cholesky decomposition
562 	auto __w = _M_t.begin();
563 	for (size_t __j = 0; __j < _Dimen; ++__j)
564 	  {
565 	    _RealType __sum = _RealType(0);
566 
567 	    auto __slitbegin = __w;
568 	    auto __cit = _M_t.begin();
569 	    for (size_t __i = 0; __i < __j; ++__i)
570 	      {
571 		auto __slit = __slitbegin;
572 		_RealType __s = *__varcovbegin++;
573 		for (size_t __k = 0; __k < __i; ++__k)
574 		  __s -= *__slit++ * *__cit++;
575 
576 		*__w++ = __s /= *__cit++;
577 		__sum += __s * __s;
578 	      }
579 
580 	    __sum = *__varcovbegin++ - __sum;
581 	    if (__builtin_expect(__sum <= _RealType(0), 0))
582 	      std::__throw_runtime_error(__N("normal_mv_distribution::"
583 					     "param_type::_M_init_full"));
584 	    *__w++ = std::sqrt(__sum);
585 	  }
586       }
587 
588   template<std::size_t _Dimen, typename _RealType>
589     template<typename _InputIterator1, typename _InputIterator2>
590       void
591       normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_diagonal(_InputIterator1 __meanbegin,_InputIterator1 __meanend,_InputIterator2 __varbegin,_InputIterator2 __varend)592       _M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
593 		       _InputIterator2 __varbegin, _InputIterator2 __varend)
594       {
595 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
596 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
597 	std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
598 		  _M_mean.end(), _RealType(0));
599 
600 	auto __w = _M_t.begin();
601 	size_t __step = 0;
602 	while (__varbegin != __varend)
603 	  {
604 	    std::fill_n(__w, __step, _RealType(0));
605 	    __w += __step++;
606 	    if (__builtin_expect(*__varbegin < _RealType(0), 0))
607 	      std::__throw_runtime_error(__N("normal_mv_distribution::"
608 					     "param_type::_M_init_diagonal"));
609 	    *__w++ = std::sqrt(*__varbegin++);
610 	  }
611       }
612 
613   template<std::size_t _Dimen, typename _RealType>
614     template<typename _UniformRandomNumberGenerator>
615       typename normal_mv_distribution<_Dimen, _RealType>::result_type
616       normal_mv_distribution<_Dimen, _RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)617       operator()(_UniformRandomNumberGenerator& __urng,
618 		 const param_type& __param)
619       {
620 	result_type __ret;
621 
622 	_M_nd.__generate(__ret.begin(), __ret.end(), __urng);
623 
624 	auto __t_it = __param._M_t.crbegin();
625 	for (size_t __i = _Dimen; __i > 0; --__i)
626 	  {
627 	    _RealType __sum = _RealType(0);
628 	    for (size_t __j = __i; __j > 0; --__j)
629 	      __sum += __ret[__j - 1] * *__t_it++;
630 	    __ret[__i - 1] = __sum;
631 	  }
632 
633 	return __ret;
634       }
635 
636   template<std::size_t _Dimen, typename _RealType>
637     template<typename _ForwardIterator, typename _UniformRandomNumberGenerator>
638       void
639       normal_mv_distribution<_Dimen, _RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)640       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
641 		      _UniformRandomNumberGenerator& __urng,
642 		      const param_type& __param)
643       {
644 	__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
645 				    _ForwardIterator>)
646 	while (__f != __t)
647 	  *__f++ = this->operator()(__urng, __param);
648       }
649 
650   template<size_t _Dimen, typename _RealType>
651     bool
operator ==(const __gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __d1,const __gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __d2)652     operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
653 	       __d1,
654 	       const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
655 	       __d2)
656     {
657       return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd;
658     }
659 
660   template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
661     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __x)662     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
663 	       const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
664     {
665       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
666       typedef typename __ostream_type::ios_base    __ios_base;
667 
668       const typename __ios_base::fmtflags __flags = __os.flags();
669       const _CharT __fill = __os.fill();
670       const std::streamsize __precision = __os.precision();
671       const _CharT __space = __os.widen(' ');
672       __os.flags(__ios_base::scientific | __ios_base::left);
673       __os.fill(__space);
674       __os.precision(std::numeric_limits<_RealType>::max_digits10);
675 
676       auto __mean = __x._M_param.mean();
677       for (auto __it : __mean)
678 	__os << __it << __space;
679       auto __t = __x._M_param.varcov();
680       for (auto __it : __t)
681 	__os << __it << __space;
682 
683       __os << __x._M_nd;
684 
685       __os.flags(__flags);
686       __os.fill(__fill);
687       __os.precision(__precision);
688       return __os;
689     }
690 
691   template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
692     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __x)693     operator>>(std::basic_istream<_CharT, _Traits>& __is,
694 	       __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
695     {
696       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
697       typedef typename __istream_type::ios_base    __ios_base;
698 
699       const typename __ios_base::fmtflags __flags = __is.flags();
700       __is.flags(__ios_base::dec | __ios_base::skipws);
701 
702       std::array<_RealType, _Dimen> __mean;
703       for (auto& __it : __mean)
704 	__is >> __it;
705       std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov;
706       for (auto& __it : __varcov)
707 	__is >> __it;
708 
709       __is >> __x._M_nd;
710 
711       __x.param(typename normal_mv_distribution<_Dimen, _RealType>::
712 		param_type(__mean.begin(), __mean.end(),
713 			   __varcov.begin(), __varcov.end()));
714 
715       __is.flags(__flags);
716       return __is;
717     }
718 
719 
720   template<typename _RealType>
721     template<typename _OutputIterator,
722 	     typename _UniformRandomNumberGenerator>
723       void
724       rice_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)725       __generate_impl(_OutputIterator __f, _OutputIterator __t,
726 		      _UniformRandomNumberGenerator& __urng,
727 		      const param_type& __p)
728       {
729 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
730 
731 	while (__f != __t)
732 	  {
733 	    typename std::normal_distribution<result_type>::param_type
734 	      __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
735 	    result_type __x = this->_M_ndx(__px, __urng);
736 	    result_type __y = this->_M_ndy(__py, __urng);
737 #if _GLIBCXX_USE_C99_MATH_TR1
738 	    *__f++ = std::hypot(__x, __y);
739 #else
740 	    *__f++ = std::sqrt(__x * __x + __y * __y);
741 #endif
742 	  }
743       }
744 
745   template<typename _RealType, typename _CharT, typename _Traits>
746     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const rice_distribution<_RealType> & __x)747     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
748 	       const rice_distribution<_RealType>& __x)
749     {
750       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
751       typedef typename __ostream_type::ios_base    __ios_base;
752 
753       const typename __ios_base::fmtflags __flags = __os.flags();
754       const _CharT __fill = __os.fill();
755       const std::streamsize __precision = __os.precision();
756       const _CharT __space = __os.widen(' ');
757       __os.flags(__ios_base::scientific | __ios_base::left);
758       __os.fill(__space);
759       __os.precision(std::numeric_limits<_RealType>::max_digits10);
760 
761       __os << __x.nu() << __space << __x.sigma();
762       __os << __space << __x._M_ndx;
763       __os << __space << __x._M_ndy;
764 
765       __os.flags(__flags);
766       __os.fill(__fill);
767       __os.precision(__precision);
768       return __os;
769     }
770 
771   template<typename _RealType, typename _CharT, typename _Traits>
772     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,rice_distribution<_RealType> & __x)773     operator>>(std::basic_istream<_CharT, _Traits>& __is,
774 	       rice_distribution<_RealType>& __x)
775     {
776       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
777       typedef typename __istream_type::ios_base    __ios_base;
778 
779       const typename __ios_base::fmtflags __flags = __is.flags();
780       __is.flags(__ios_base::dec | __ios_base::skipws);
781 
782       _RealType __nu_val, __sigma_val;
783       __is >> __nu_val >> __sigma_val;
784       __is >> __x._M_ndx;
785       __is >> __x._M_ndy;
786       __x.param(typename rice_distribution<_RealType>::
787 		param_type(__nu_val, __sigma_val));
788 
789       __is.flags(__flags);
790       return __is;
791     }
792 
793 
794   template<typename _RealType>
795     template<typename _OutputIterator,
796 	     typename _UniformRandomNumberGenerator>
797       void
798       nakagami_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)799       __generate_impl(_OutputIterator __f, _OutputIterator __t,
800 		      _UniformRandomNumberGenerator& __urng,
801 		      const param_type& __p)
802       {
803 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
804 
805 	typename std::gamma_distribution<result_type>::param_type
806 	  __pg(__p.mu(), __p.omega() / __p.mu());
807 	while (__f != __t)
808 	  *__f++ = std::sqrt(this->_M_gd(__pg, __urng));
809       }
810 
811   template<typename _RealType, typename _CharT, typename _Traits>
812     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const nakagami_distribution<_RealType> & __x)813     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
814 	       const nakagami_distribution<_RealType>& __x)
815     {
816       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
817       typedef typename __ostream_type::ios_base    __ios_base;
818 
819       const typename __ios_base::fmtflags __flags = __os.flags();
820       const _CharT __fill = __os.fill();
821       const std::streamsize __precision = __os.precision();
822       const _CharT __space = __os.widen(' ');
823       __os.flags(__ios_base::scientific | __ios_base::left);
824       __os.fill(__space);
825       __os.precision(std::numeric_limits<_RealType>::max_digits10);
826 
827       __os << __x.mu() << __space << __x.omega();
828       __os << __space << __x._M_gd;
829 
830       __os.flags(__flags);
831       __os.fill(__fill);
832       __os.precision(__precision);
833       return __os;
834     }
835 
836   template<typename _RealType, typename _CharT, typename _Traits>
837     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,nakagami_distribution<_RealType> & __x)838     operator>>(std::basic_istream<_CharT, _Traits>& __is,
839 	       nakagami_distribution<_RealType>& __x)
840     {
841       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
842       typedef typename __istream_type::ios_base    __ios_base;
843 
844       const typename __ios_base::fmtflags __flags = __is.flags();
845       __is.flags(__ios_base::dec | __ios_base::skipws);
846 
847       _RealType __mu_val, __omega_val;
848       __is >> __mu_val >> __omega_val;
849       __is >> __x._M_gd;
850       __x.param(typename nakagami_distribution<_RealType>::
851 		param_type(__mu_val, __omega_val));
852 
853       __is.flags(__flags);
854       return __is;
855     }
856 
857 
858   template<typename _RealType>
859     template<typename _OutputIterator,
860 	     typename _UniformRandomNumberGenerator>
861       void
862       pareto_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)863       __generate_impl(_OutputIterator __f, _OutputIterator __t,
864 		      _UniformRandomNumberGenerator& __urng,
865 		      const param_type& __p)
866       {
867 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
868 
869 	result_type __mu_val = __p.mu();
870 	result_type __malphinv = -result_type(1) / __p.alpha();
871 	while (__f != __t)
872 	  *__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv);
873       }
874 
875   template<typename _RealType, typename _CharT, typename _Traits>
876     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const pareto_distribution<_RealType> & __x)877     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
878 	       const pareto_distribution<_RealType>& __x)
879     {
880       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
881       typedef typename __ostream_type::ios_base    __ios_base;
882 
883       const typename __ios_base::fmtflags __flags = __os.flags();
884       const _CharT __fill = __os.fill();
885       const std::streamsize __precision = __os.precision();
886       const _CharT __space = __os.widen(' ');
887       __os.flags(__ios_base::scientific | __ios_base::left);
888       __os.fill(__space);
889       __os.precision(std::numeric_limits<_RealType>::max_digits10);
890 
891       __os << __x.alpha() << __space << __x.mu();
892       __os << __space << __x._M_ud;
893 
894       __os.flags(__flags);
895       __os.fill(__fill);
896       __os.precision(__precision);
897       return __os;
898     }
899 
900   template<typename _RealType, typename _CharT, typename _Traits>
901     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,pareto_distribution<_RealType> & __x)902     operator>>(std::basic_istream<_CharT, _Traits>& __is,
903 	       pareto_distribution<_RealType>& __x)
904     {
905       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
906       typedef typename __istream_type::ios_base    __ios_base;
907 
908       const typename __ios_base::fmtflags __flags = __is.flags();
909       __is.flags(__ios_base::dec | __ios_base::skipws);
910 
911       _RealType __alpha_val, __mu_val;
912       __is >> __alpha_val >> __mu_val;
913       __is >> __x._M_ud;
914       __x.param(typename pareto_distribution<_RealType>::
915 		param_type(__alpha_val, __mu_val));
916 
917       __is.flags(__flags);
918       return __is;
919     }
920 
921 
922   template<typename _RealType>
923     template<typename _UniformRandomNumberGenerator>
924       typename k_distribution<_RealType>::result_type
925       k_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng)926       operator()(_UniformRandomNumberGenerator& __urng)
927       {
928 	result_type __x = this->_M_gd1(__urng);
929 	result_type __y = this->_M_gd2(__urng);
930 	return std::sqrt(__x * __y);
931       }
932 
933   template<typename _RealType>
934     template<typename _UniformRandomNumberGenerator>
935       typename k_distribution<_RealType>::result_type
936       k_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)937       operator()(_UniformRandomNumberGenerator& __urng,
938 		 const param_type& __p)
939       {
940 	typename std::gamma_distribution<result_type>::param_type
941 	  __p1(__p.lambda(), result_type(1) / __p.lambda()),
942 	  __p2(__p.nu(), __p.mu() / __p.nu());
943 	result_type __x = this->_M_gd1(__p1, __urng);
944 	result_type __y = this->_M_gd2(__p2, __urng);
945 	return std::sqrt(__x * __y);
946       }
947 
948   template<typename _RealType>
949     template<typename _OutputIterator,
950 	     typename _UniformRandomNumberGenerator>
951       void
952       k_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)953       __generate_impl(_OutputIterator __f, _OutputIterator __t,
954 		      _UniformRandomNumberGenerator& __urng,
955 		      const param_type& __p)
956       {
957 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
958 
959 	typename std::gamma_distribution<result_type>::param_type
960 	  __p1(__p.lambda(), result_type(1) / __p.lambda()),
961 	  __p2(__p.nu(), __p.mu() / __p.nu());
962 	while (__f != __t)
963 	  {
964 	    result_type __x = this->_M_gd1(__p1, __urng);
965 	    result_type __y = this->_M_gd2(__p2, __urng);
966 	    *__f++ = std::sqrt(__x * __y);
967 	  }
968       }
969 
970   template<typename _RealType, typename _CharT, typename _Traits>
971     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const k_distribution<_RealType> & __x)972     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
973 	       const k_distribution<_RealType>& __x)
974     {
975       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
976       typedef typename __ostream_type::ios_base    __ios_base;
977 
978       const typename __ios_base::fmtflags __flags = __os.flags();
979       const _CharT __fill = __os.fill();
980       const std::streamsize __precision = __os.precision();
981       const _CharT __space = __os.widen(' ');
982       __os.flags(__ios_base::scientific | __ios_base::left);
983       __os.fill(__space);
984       __os.precision(std::numeric_limits<_RealType>::max_digits10);
985 
986       __os << __x.lambda() << __space << __x.mu() << __space << __x.nu();
987       __os << __space << __x._M_gd1;
988       __os << __space << __x._M_gd2;
989 
990       __os.flags(__flags);
991       __os.fill(__fill);
992       __os.precision(__precision);
993       return __os;
994     }
995 
996   template<typename _RealType, typename _CharT, typename _Traits>
997     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,k_distribution<_RealType> & __x)998     operator>>(std::basic_istream<_CharT, _Traits>& __is,
999 	       k_distribution<_RealType>& __x)
1000     {
1001       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1002       typedef typename __istream_type::ios_base    __ios_base;
1003 
1004       const typename __ios_base::fmtflags __flags = __is.flags();
1005       __is.flags(__ios_base::dec | __ios_base::skipws);
1006 
1007       _RealType __lambda_val, __mu_val, __nu_val;
1008       __is >> __lambda_val >> __mu_val >> __nu_val;
1009       __is >> __x._M_gd1;
1010       __is >> __x._M_gd2;
1011       __x.param(typename k_distribution<_RealType>::
1012 		param_type(__lambda_val, __mu_val, __nu_val));
1013 
1014       __is.flags(__flags);
1015       return __is;
1016     }
1017 
1018 
1019   template<typename _RealType>
1020     template<typename _OutputIterator,
1021 	     typename _UniformRandomNumberGenerator>
1022       void
1023       arcsine_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1024       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1025 		      _UniformRandomNumberGenerator& __urng,
1026 		      const param_type& __p)
1027       {
1028 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1029 
1030 	result_type __dif = __p.b() - __p.a();
1031 	result_type __sum = __p.a() + __p.b();
1032 	while (__f != __t)
1033 	  {
1034 	    result_type __x = std::sin(this->_M_ud(__urng));
1035 	    *__f++ = (__x * __dif + __sum) / result_type(2);
1036 	  }
1037       }
1038 
1039   template<typename _RealType, typename _CharT, typename _Traits>
1040     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const arcsine_distribution<_RealType> & __x)1041     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1042 	       const arcsine_distribution<_RealType>& __x)
1043     {
1044       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1045       typedef typename __ostream_type::ios_base    __ios_base;
1046 
1047       const typename __ios_base::fmtflags __flags = __os.flags();
1048       const _CharT __fill = __os.fill();
1049       const std::streamsize __precision = __os.precision();
1050       const _CharT __space = __os.widen(' ');
1051       __os.flags(__ios_base::scientific | __ios_base::left);
1052       __os.fill(__space);
1053       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1054 
1055       __os << __x.a() << __space << __x.b();
1056       __os << __space << __x._M_ud;
1057 
1058       __os.flags(__flags);
1059       __os.fill(__fill);
1060       __os.precision(__precision);
1061       return __os;
1062     }
1063 
1064   template<typename _RealType, typename _CharT, typename _Traits>
1065     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,arcsine_distribution<_RealType> & __x)1066     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1067 	       arcsine_distribution<_RealType>& __x)
1068     {
1069       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1070       typedef typename __istream_type::ios_base    __ios_base;
1071 
1072       const typename __ios_base::fmtflags __flags = __is.flags();
1073       __is.flags(__ios_base::dec | __ios_base::skipws);
1074 
1075       _RealType __a, __b;
1076       __is >> __a >> __b;
1077       __is >> __x._M_ud;
1078       __x.param(typename arcsine_distribution<_RealType>::
1079 		param_type(__a, __b));
1080 
1081       __is.flags(__flags);
1082       return __is;
1083     }
1084 
1085 
1086   template<typename _RealType>
1087     template<typename _UniformRandomNumberGenerator>
1088       typename hoyt_distribution<_RealType>::result_type
1089       hoyt_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng)1090       operator()(_UniformRandomNumberGenerator& __urng)
1091       {
1092 	result_type __x = this->_M_ad(__urng);
1093 	result_type __y = this->_M_ed(__urng);
1094 	return (result_type(2) * this->q()
1095 		  / (result_type(1) + this->q() * this->q()))
1096 	       * std::sqrt(this->omega() * __x * __y);
1097       }
1098 
1099   template<typename _RealType>
1100     template<typename _UniformRandomNumberGenerator>
1101       typename hoyt_distribution<_RealType>::result_type
1102       hoyt_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)1103       operator()(_UniformRandomNumberGenerator& __urng,
1104 		 const param_type& __p)
1105       {
1106 	result_type __q2 = __p.q() * __p.q();
1107 	result_type __num = result_type(0.5L) * (result_type(1) + __q2);
1108 	typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1109 	  __pa(__num, __num / __q2);
1110 	result_type __x = this->_M_ad(__pa, __urng);
1111 	result_type __y = this->_M_ed(__urng);
1112 	return (result_type(2) * __p.q() / (result_type(1) + __q2))
1113 	       * std::sqrt(__p.omega() * __x * __y);
1114       }
1115 
1116   template<typename _RealType>
1117     template<typename _OutputIterator,
1118 	     typename _UniformRandomNumberGenerator>
1119       void
1120       hoyt_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1121       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1122 		      _UniformRandomNumberGenerator& __urng,
1123 		      const param_type& __p)
1124       {
1125 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1126 
1127 	result_type __2q = result_type(2) * __p.q();
1128 	result_type __q2 = __p.q() * __p.q();
1129 	result_type __q2p1 = result_type(1) + __q2;
1130 	result_type __num = result_type(0.5L) * __q2p1;
1131 	result_type __omega = __p.omega();
1132 	typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1133 	  __pa(__num, __num / __q2);
1134 	while (__f != __t)
1135 	  {
1136 	    result_type __x = this->_M_ad(__pa, __urng);
1137 	    result_type __y = this->_M_ed(__urng);
1138 	    *__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y);
1139 	  }
1140       }
1141 
1142   template<typename _RealType, typename _CharT, typename _Traits>
1143     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const hoyt_distribution<_RealType> & __x)1144     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1145 	       const hoyt_distribution<_RealType>& __x)
1146     {
1147       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1148       typedef typename __ostream_type::ios_base    __ios_base;
1149 
1150       const typename __ios_base::fmtflags __flags = __os.flags();
1151       const _CharT __fill = __os.fill();
1152       const std::streamsize __precision = __os.precision();
1153       const _CharT __space = __os.widen(' ');
1154       __os.flags(__ios_base::scientific | __ios_base::left);
1155       __os.fill(__space);
1156       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1157 
1158       __os << __x.q() << __space << __x.omega();
1159       __os << __space << __x._M_ad;
1160       __os << __space << __x._M_ed;
1161 
1162       __os.flags(__flags);
1163       __os.fill(__fill);
1164       __os.precision(__precision);
1165       return __os;
1166     }
1167 
1168   template<typename _RealType, typename _CharT, typename _Traits>
1169     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,hoyt_distribution<_RealType> & __x)1170     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1171 	       hoyt_distribution<_RealType>& __x)
1172     {
1173       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1174       typedef typename __istream_type::ios_base    __ios_base;
1175 
1176       const typename __ios_base::fmtflags __flags = __is.flags();
1177       __is.flags(__ios_base::dec | __ios_base::skipws);
1178 
1179       _RealType __q, __omega;
1180       __is >> __q >> __omega;
1181       __is >> __x._M_ad;
1182       __is >> __x._M_ed;
1183       __x.param(typename hoyt_distribution<_RealType>::
1184 		param_type(__q, __omega));
1185 
1186       __is.flags(__flags);
1187       return __is;
1188     }
1189 
1190 
1191   template<typename _RealType>
1192     template<typename _OutputIterator,
1193 	     typename _UniformRandomNumberGenerator>
1194       void
1195       triangular_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1196       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1197 		      _UniformRandomNumberGenerator& __urng,
1198 		      const param_type& __param)
1199       {
1200 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1201 
1202 	while (__f != __t)
1203 	  *__f++ = this->operator()(__urng, __param);
1204       }
1205 
1206   template<typename _RealType, typename _CharT, typename _Traits>
1207     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::triangular_distribution<_RealType> & __x)1208     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1209 	       const __gnu_cxx::triangular_distribution<_RealType>& __x)
1210     {
1211       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1212       typedef typename __ostream_type::ios_base    __ios_base;
1213 
1214       const typename __ios_base::fmtflags __flags = __os.flags();
1215       const _CharT __fill = __os.fill();
1216       const std::streamsize __precision = __os.precision();
1217       const _CharT __space = __os.widen(' ');
1218       __os.flags(__ios_base::scientific | __ios_base::left);
1219       __os.fill(__space);
1220       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1221 
1222       __os << __x.a() << __space << __x.b() << __space << __x.c();
1223 
1224       __os.flags(__flags);
1225       __os.fill(__fill);
1226       __os.precision(__precision);
1227       return __os;
1228     }
1229 
1230   template<typename _RealType, typename _CharT, typename _Traits>
1231     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::triangular_distribution<_RealType> & __x)1232     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1233 	       __gnu_cxx::triangular_distribution<_RealType>& __x)
1234     {
1235       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1236       typedef typename __istream_type::ios_base    __ios_base;
1237 
1238       const typename __ios_base::fmtflags __flags = __is.flags();
1239       __is.flags(__ios_base::dec | __ios_base::skipws);
1240 
1241       _RealType __a, __b, __c;
1242       __is >> __a >> __b >> __c;
1243       __x.param(typename __gnu_cxx::triangular_distribution<_RealType>::
1244 		param_type(__a, __b, __c));
1245 
1246       __is.flags(__flags);
1247       return __is;
1248     }
1249 
1250 
1251   template<typename _RealType>
1252     template<typename _OutputIterator,
1253 	     typename _UniformRandomNumberGenerator>
1254       void
1255       von_mises_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1256       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1257 		      _UniformRandomNumberGenerator& __urng,
1258 		      const param_type& __param)
1259       {
1260 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1261 
1262 	while (__f != __t)
1263 	  *__f++ = this->operator()(__urng, __param);
1264       }
1265 
1266   template<typename _RealType, typename _CharT, typename _Traits>
1267     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::von_mises_distribution<_RealType> & __x)1268     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1269 	       const __gnu_cxx::von_mises_distribution<_RealType>& __x)
1270     {
1271       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1272       typedef typename __ostream_type::ios_base    __ios_base;
1273 
1274       const typename __ios_base::fmtflags __flags = __os.flags();
1275       const _CharT __fill = __os.fill();
1276       const std::streamsize __precision = __os.precision();
1277       const _CharT __space = __os.widen(' ');
1278       __os.flags(__ios_base::scientific | __ios_base::left);
1279       __os.fill(__space);
1280       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1281 
1282       __os << __x.mu() << __space << __x.kappa();
1283 
1284       __os.flags(__flags);
1285       __os.fill(__fill);
1286       __os.precision(__precision);
1287       return __os;
1288     }
1289 
1290   template<typename _RealType, typename _CharT, typename _Traits>
1291     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::von_mises_distribution<_RealType> & __x)1292     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1293 	       __gnu_cxx::von_mises_distribution<_RealType>& __x)
1294     {
1295       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1296       typedef typename __istream_type::ios_base    __ios_base;
1297 
1298       const typename __ios_base::fmtflags __flags = __is.flags();
1299       __is.flags(__ios_base::dec | __ios_base::skipws);
1300 
1301       _RealType __mu, __kappa;
1302       __is >> __mu >> __kappa;
1303       __x.param(typename __gnu_cxx::von_mises_distribution<_RealType>::
1304 		param_type(__mu, __kappa));
1305 
1306       __is.flags(__flags);
1307       return __is;
1308     }
1309 
1310 _GLIBCXX_END_NAMESPACE_VERSION
1311 } // namespace
1312 
1313 
1314 #endif // _EXT_RANDOM_TCC
1315