1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3  * License, v. 2.0. If a copy of the MPL was not distributed with this
4  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 
6 /*
7  * This file is based on the third-party code dtoa.c.  We minimize our
8  * modifications to third-party code to make it easy to merge new versions.
9  * The author of dtoa.c was not willing to add the parentheses suggested by
10  * GCC, so we suppress these warnings.
11  */
12 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)
13 #pragma GCC diagnostic ignored "-Wparentheses"
14 #endif
15 
16 #include "primpl.h"
17 #include "prbit.h"
18 
19 #define MULTIPLE_THREADS
20 #define ACQUIRE_DTOA_LOCK(n)    PR_Lock(dtoa_lock[n])
21 #define FREE_DTOA_LOCK(n)   PR_Unlock(dtoa_lock[n])
22 
23 static PRLock *dtoa_lock[2];
24 
_PR_InitDtoa(void)25 void _PR_InitDtoa(void)
26 {
27     dtoa_lock[0] = PR_NewLock();
28     dtoa_lock[1] = PR_NewLock();
29 }
30 
_PR_CleanupDtoa(void)31 void _PR_CleanupDtoa(void)
32 {
33     PR_DestroyLock(dtoa_lock[0]);
34     dtoa_lock[0] = NULL;
35     PR_DestroyLock(dtoa_lock[1]);
36     dtoa_lock[1] = NULL;
37 
38     /* FIXME: deal with freelist and p5s. */
39 }
40 
41 #if !defined(__ARM_EABI__) \
42     && (defined(__arm) || defined(__arm__) || defined(__arm26__) \
43     || defined(__arm32__))
44 #define IEEE_ARM
45 #elif defined(IS_LITTLE_ENDIAN)
46 #define IEEE_8087
47 #else
48 #define IEEE_MC68k
49 #endif
50 
51 #define Long PRInt32
52 #define ULong PRUint32
53 #define NO_LONG_LONG
54 
55 #define No_Hex_NaN
56 
57 /****************************************************************
58  *
59  * The author of this software is David M. Gay.
60  *
61  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
62  *
63  * Permission to use, copy, modify, and distribute this software for any
64  * purpose without fee is hereby granted, provided that this entire notice
65  * is included in all copies of any software which is or includes a copy
66  * or modification of this software and in all copies of the supporting
67  * documentation for such software.
68  *
69  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
70  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
71  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
72  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
73  *
74  ***************************************************************/
75 
76 /* Please send bug reports to David M. Gay (dmg at acm dot org,
77  * with " at " changed at "@" and " dot " changed to ".").  */
78 
79 /* On a machine with IEEE extended-precision registers, it is
80  * necessary to specify double-precision (53-bit) rounding precision
81  * before invoking strtod or dtoa.  If the machine uses (the equivalent
82  * of) Intel 80x87 arithmetic, the call
83  *  _control87(PC_53, MCW_PC);
84  * does this with many compilers.  Whether this or another call is
85  * appropriate depends on the compiler; for this to work, it may be
86  * necessary to #include "float.h" or another system-dependent header
87  * file.
88  */
89 
90 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
91  *
92  * This strtod returns a nearest machine number to the input decimal
93  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
94  * broken by the IEEE round-even rule.  Otherwise ties are broken by
95  * biased rounding (add half and chop).
96  *
97  * Inspired loosely by William D. Clinger's paper "How to Read Floating
98  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
99  *
100  * Modifications:
101  *
102  *  1. We only require IEEE, IBM, or VAX double-precision
103  *      arithmetic (not IEEE double-extended).
104  *  2. We get by with floating-point arithmetic in a case that
105  *      Clinger missed -- when we're computing d * 10^n
106  *      for a small integer d and the integer n is not too
107  *      much larger than 22 (the maximum integer k for which
108  *      we can represent 10^k exactly), we may be able to
109  *      compute (d*10^k) * 10^(e-k) with just one roundoff.
110  *  3. Rather than a bit-at-a-time adjustment of the binary
111  *      result in the hard case, we use floating-point
112  *      arithmetic to determine the adjustment to within
113  *      one bit; only in really hard cases do we need to
114  *      compute a second residual.
115  *  4. Because of 3., we don't need a large table of powers of 10
116  *      for ten-to-e (just some small tables, e.g. of 10^k
117  *      for 0 <= k <= 22).
118  */
119 
120 /*
121  * #define IEEE_8087 for IEEE-arithmetic machines where the least
122  *  significant byte has the lowest address.
123  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
124  *  significant byte has the lowest address.
125  * #define IEEE_ARM for IEEE-arithmetic machines where the two words
126  *  in a double are stored in big endian order but the two shorts
127  *  in a word are still stored in little endian order.
128  * #define Long int on machines with 32-bit ints and 64-bit longs.
129  * #define IBM for IBM mainframe-style floating-point arithmetic.
130  * #define VAX for VAX-style floating-point arithmetic (D_floating).
131  * #define No_leftright to omit left-right logic in fast floating-point
132  *  computation of dtoa.
133  * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
134  *  and strtod and dtoa should round accordingly.
135  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
136  *  and Honor_FLT_ROUNDS is not #defined.
137  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
138  *  that use extended-precision instructions to compute rounded
139  *  products and quotients) with IBM.
140  * #define ROUND_BIASED for IEEE-format with biased rounding.
141  * #define Inaccurate_Divide for IEEE-format with correctly rounded
142  *  products but inaccurate quotients, e.g., for Intel i860.
143  * #define NO_LONG_LONG on machines that do not have a "long long"
144  *  integer type (of >= 64 bits).  On such machines, you can
145  *  #define Just_16 to store 16 bits per 32-bit Long when doing
146  *  high-precision integer arithmetic.  Whether this speeds things
147  *  up or slows things down depends on the machine and the number
148  *  being converted.  If long long is available and the name is
149  *  something other than "long long", #define Llong to be the name,
150  *  and if "unsigned Llong" does not work as an unsigned version of
151  *  Llong, #define #ULLong to be the corresponding unsigned type.
152  * #define KR_headers for old-style C function headers.
153  * #define Bad_float_h if your system lacks a float.h or if it does not
154  *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
155  *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
156  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
157  *  if memory is available and otherwise does something you deem
158  *  appropriate.  If MALLOC is undefined, malloc will be invoked
159  *  directly -- and assumed always to succeed.  Similarly, if you
160  *  want something other than the system's free() to be called to
161  *  recycle memory acquired from MALLOC, #define FREE to be the
162  *  name of the alternate routine.  (FREE or free is only called in
163  *  pathological cases, e.g., in a dtoa call after a dtoa return in
164  *  mode 3 with thousands of digits requested.)
165  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
166  *  memory allocations from a private pool of memory when possible.
167  *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
168  *  unless #defined to be a different length.  This default length
169  *  suffices to get rid of MALLOC calls except for unusual cases,
170  *  such as decimal-to-binary conversion of a very long string of
171  *  digits.  The longest string dtoa can return is about 751 bytes
172  *  long.  For conversions by strtod of strings of 800 digits and
173  *  all dtoa conversions in single-threaded executions with 8-byte
174  *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
175  *  pointers, PRIVATE_MEM >= 7112 appears adequate.
176  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
177  *  Infinity and NaN (case insensitively).  On some systems (e.g.,
178  *  some HP systems), it may be necessary to #define NAN_WORD0
179  *  appropriately -- to the most significant word of a quiet NaN.
180  *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
181  *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
182  *  strtod also accepts (case insensitively) strings of the form
183  *  NaN(x), where x is a string of hexadecimal digits and spaces;
184  *  if there is only one string of hexadecimal digits, it is taken
185  *  for the 52 fraction bits of the resulting NaN; if there are two
186  *  or more strings of hex digits, the first is for the high 20 bits,
187  *  the second and subsequent for the low 32 bits, with intervening
188  *  white space ignored; but if this results in none of the 52
189  *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
190  *  and NAN_WORD1 are used instead.
191  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
192  *  multiple threads.  In this case, you must provide (or suitably
193  *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
194  *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
195  *  in pow5mult, ensures lazy evaluation of only one copy of high
196  *  powers of 5; omitting this lock would introduce a small
197  *  probability of wasting memory, but would otherwise be harmless.)
198  *  You must also invoke freedtoa(s) to free the value s returned by
199  *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
200  * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
201  *  avoids underflows on inputs whose result does not underflow.
202  *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
203  *  floating-point numbers and flushes underflows to zero rather
204  *  than implementing gradual underflow, then you must also #define
205  *  Sudden_Underflow.
206  * #define USE_LOCALE to use the current locale's decimal_point value.
207  * #define SET_INEXACT if IEEE arithmetic is being used and extra
208  *  computation should be done to set the inexact flag when the
209  *  result is inexact and avoid setting inexact when the result
210  *  is exact.  In this case, dtoa.c must be compiled in
211  *  an environment, perhaps provided by #include "dtoa.c" in a
212  *  suitable wrapper, that defines two functions,
213  *      int get_inexact(void);
214  *      void clear_inexact(void);
215  *  such that get_inexact() returns a nonzero value if the
216  *  inexact bit is already set, and clear_inexact() sets the
217  *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
218  *  also does extra computations to set the underflow and overflow
219  *  flags when appropriate (i.e., when the result is tiny and
220  *  inexact or when it is a numeric value rounded to +-infinity).
221  * #define NO_ERRNO if strtod should not assign errno = ERANGE when
222  *  the result overflows to +-Infinity or underflows to 0.
223  */
224 
225 #ifndef Long
226 #define Long long
227 #endif
228 #ifndef ULong
229 typedef unsigned Long ULong;
230 #endif
231 
232 #ifdef DEBUG
233 #include "stdio.h"
234 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
235 #endif
236 
237 #include "stdlib.h"
238 #include "string.h"
239 
240 #ifdef USE_LOCALE
241 #include "locale.h"
242 #endif
243 
244 #ifdef MALLOC
245 #ifdef KR_headers
246 extern char *MALLOC();
247 #else
248 extern void *MALLOC(size_t);
249 #endif
250 #else
251 #define MALLOC malloc
252 #endif
253 
254 #ifndef Omit_Private_Memory
255 #ifndef PRIVATE_MEM
256 #define PRIVATE_MEM 2304
257 #endif
258 #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
259 static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
260 #endif
261 
262 #undef IEEE_Arith
263 #undef Avoid_Underflow
264 #ifdef IEEE_MC68k
265 #define IEEE_Arith
266 #endif
267 #ifdef IEEE_8087
268 #define IEEE_Arith
269 #endif
270 #ifdef IEEE_ARM
271 #define IEEE_Arith
272 #endif
273 
274 #include "errno.h"
275 
276 #ifdef Bad_float_h
277 
278 #ifdef IEEE_Arith
279 #define DBL_DIG 15
280 #define DBL_MAX_10_EXP 308
281 #define DBL_MAX_EXP 1024
282 #define FLT_RADIX 2
283 #endif /*IEEE_Arith*/
284 
285 #ifdef IBM
286 #define DBL_DIG 16
287 #define DBL_MAX_10_EXP 75
288 #define DBL_MAX_EXP 63
289 #define FLT_RADIX 16
290 #define DBL_MAX 7.2370055773322621e+75
291 #endif
292 
293 #ifdef VAX
294 #define DBL_DIG 16
295 #define DBL_MAX_10_EXP 38
296 #define DBL_MAX_EXP 127
297 #define FLT_RADIX 2
298 #define DBL_MAX 1.7014118346046923e+38
299 #endif
300 
301 #ifndef LONG_MAX
302 #define LONG_MAX 2147483647
303 #endif
304 
305 #else /* ifndef Bad_float_h */
306 #include "float.h"
307 #endif /* Bad_float_h */
308 
309 #ifndef __MATH_H__
310 #include "math.h"
311 #endif
312 
313 #ifdef __cplusplus
314 extern "C" {
315 #endif
316 
317 #ifndef CONST
318 #ifdef KR_headers
319 #define CONST /* blank */
320 #else
321 #define CONST const
322 #endif
323 #endif
324 
325 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) + defined(VAX) + defined(IBM) != 1
326 Exactly one of IEEE_8087, IEEE_MC68k, IEEE_ARM, VAX, or IBM should be defined.
327 #endif
328 
329 typedef union {
330     double d;
331     ULong L[2];
332 } U;
333 
334 #define dval(x) (x).d
335 #ifdef IEEE_8087
336 #define word0(x) (x).L[1]
337 #define word1(x) (x).L[0]
338 #else
339 #define word0(x) (x).L[0]
340 #define word1(x) (x).L[1]
341 #endif
342 
343 /* The following definition of Storeinc is appropriate for MIPS processors.
344  * An alternative that might be better on some machines is
345  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
346  */
347 #if defined(IEEE_8087) + defined(IEEE_ARM) + defined(VAX)
348 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
349 ((unsigned short *)a)[0] = (unsigned short)c, a++)
350 #else
351 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
352 ((unsigned short *)a)[1] = (unsigned short)c, a++)
353 #endif
354 
355 /* #define P DBL_MANT_DIG */
356 /* Ten_pmax = floor(P*log(2)/log(5)) */
357 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
358 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
359 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
360 
361 #ifdef IEEE_Arith
362 #define Exp_shift  20
363 #define Exp_shift1 20
364 #define Exp_msk1    0x100000
365 #define Exp_msk11   0x100000
366 #define Exp_mask  0x7ff00000
367 #define P 53
368 #define Bias 1023
369 #define Emin (-1022)
370 #define Exp_1  0x3ff00000
371 #define Exp_11 0x3ff00000
372 #define Ebits 11
373 #define Frac_mask  0xfffff
374 #define Frac_mask1 0xfffff
375 #define Ten_pmax 22
376 #define Bletch 0x10
377 #define Bndry_mask  0xfffff
378 #define Bndry_mask1 0xfffff
379 #define LSB 1
380 #define Sign_bit 0x80000000
381 #define Log2P 1
382 #define Tiny0 0
383 #define Tiny1 1
384 #define Quick_max 14
385 #define Int_max 14
386 #ifndef NO_IEEE_Scale
387 #define Avoid_Underflow
388 #ifdef Flush_Denorm /* debugging option */
389 #undef Sudden_Underflow
390 #endif
391 #endif
392 
393 #ifndef Flt_Rounds
394 #ifdef FLT_ROUNDS
395 #define Flt_Rounds FLT_ROUNDS
396 #else
397 #define Flt_Rounds 1
398 #endif
399 #endif /*Flt_Rounds*/
400 
401 #ifdef Honor_FLT_ROUNDS
402 #define Rounding rounding
403 #undef Check_FLT_ROUNDS
404 #define Check_FLT_ROUNDS
405 #else
406 #define Rounding Flt_Rounds
407 #endif
408 
409 #else /* ifndef IEEE_Arith */
410 #undef Check_FLT_ROUNDS
411 #undef Honor_FLT_ROUNDS
412 #undef SET_INEXACT
413 #undef  Sudden_Underflow
414 #define Sudden_Underflow
415 #ifdef IBM
416 #undef Flt_Rounds
417 #define Flt_Rounds 0
418 #define Exp_shift  24
419 #define Exp_shift1 24
420 #define Exp_msk1   0x1000000
421 #define Exp_msk11  0x1000000
422 #define Exp_mask  0x7f000000
423 #define P 14
424 #define Bias 65
425 #define Exp_1  0x41000000
426 #define Exp_11 0x41000000
427 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
428 #define Frac_mask  0xffffff
429 #define Frac_mask1 0xffffff
430 #define Bletch 4
431 #define Ten_pmax 22
432 #define Bndry_mask  0xefffff
433 #define Bndry_mask1 0xffffff
434 #define LSB 1
435 #define Sign_bit 0x80000000
436 #define Log2P 4
437 #define Tiny0 0x100000
438 #define Tiny1 0
439 #define Quick_max 14
440 #define Int_max 15
441 #else /* VAX */
442 #undef Flt_Rounds
443 #define Flt_Rounds 1
444 #define Exp_shift  23
445 #define Exp_shift1 7
446 #define Exp_msk1    0x80
447 #define Exp_msk11   0x800000
448 #define Exp_mask  0x7f80
449 #define P 56
450 #define Bias 129
451 #define Exp_1  0x40800000
452 #define Exp_11 0x4080
453 #define Ebits 8
454 #define Frac_mask  0x7fffff
455 #define Frac_mask1 0xffff007f
456 #define Ten_pmax 24
457 #define Bletch 2
458 #define Bndry_mask  0xffff007f
459 #define Bndry_mask1 0xffff007f
460 #define LSB 0x10000
461 #define Sign_bit 0x8000
462 #define Log2P 1
463 #define Tiny0 0x80
464 #define Tiny1 0
465 #define Quick_max 15
466 #define Int_max 15
467 #endif /* IBM, VAX */
468 #endif /* IEEE_Arith */
469 
470 #ifndef IEEE_Arith
471 #define ROUND_BIASED
472 #endif
473 
474 #ifdef RND_PRODQUOT
475 #define rounded_product(a,b) a = rnd_prod(a, b)
476 #define rounded_quotient(a,b) a = rnd_quot(a, b)
477 #ifdef KR_headers
478 extern double rnd_prod(), rnd_quot();
479 #else
480 extern double rnd_prod(double, double), rnd_quot(double, double);
481 #endif
482 #else
483 #define rounded_product(a,b) a *= b
484 #define rounded_quotient(a,b) a /= b
485 #endif
486 
487 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
488 #define Big1 0xffffffff
489 
490 #ifndef Pack_32
491 #define Pack_32
492 #endif
493 
494 #ifdef KR_headers
495 #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
496 #else
497 #define FFFFFFFF 0xffffffffUL
498 #endif
499 
500 #ifdef NO_LONG_LONG
501 #undef ULLong
502 #ifdef Just_16
503 #undef Pack_32
504 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
505  * This makes some inner loops simpler and sometimes saves work
506  * during multiplications, but it often seems to make things slightly
507  * slower.  Hence the default is now to store 32 bits per Long.
508  */
509 #endif
510 #else   /* long long available */
511 #ifndef Llong
512 #define Llong long long
513 #endif
514 #ifndef ULLong
515 #define ULLong unsigned Llong
516 #endif
517 #endif /* NO_LONG_LONG */
518 
519 #ifndef MULTIPLE_THREADS
520 #define ACQUIRE_DTOA_LOCK(n)    /*nothing*/
521 #define FREE_DTOA_LOCK(n)   /*nothing*/
522 #endif
523 
524 #define Kmax 7
525 
526 struct
527     Bigint {
528     struct Bigint *next;
529     int k, maxwds, sign, wds;
530     ULong x[1];
531 };
532 
533 typedef struct Bigint Bigint;
534 
535 static Bigint *freelist[Kmax+1];
536 
537 static Bigint *
Balloc(k)538 Balloc
539 #ifdef KR_headers
540 (k) int k;
541 #else
542 (int k)
543 #endif
544 {
545     int x;
546     Bigint *rv;
547 #ifndef Omit_Private_Memory
548     unsigned int len;
549 #endif
550 
551     ACQUIRE_DTOA_LOCK(0);
552     /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
553     /* but this case seems very unlikely. */
554     if (k <= Kmax && (rv = freelist[k])) {
555         freelist[k] = rv->next;
556     }
557     else {
558         x = 1 << k;
559 #ifdef Omit_Private_Memory
560         rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
561 #else
562         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
563               /sizeof(double);
564         if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
565             rv = (Bigint*)pmem_next;
566             pmem_next += len;
567         }
568         else {
569             rv = (Bigint*)MALLOC(len*sizeof(double));
570         }
571 #endif
572         rv->k = k;
573         rv->maxwds = x;
574     }
575     FREE_DTOA_LOCK(0);
576     rv->sign = rv->wds = 0;
577     return rv;
578 }
579 
580 static void
Bfree(v)581 Bfree
582 #ifdef KR_headers
583 (v) Bigint *v;
584 #else
585 (Bigint *v)
586 #endif
587 {
588     if (v) {
589         if (v->k > Kmax)
590 #ifdef FREE
591             FREE((void*)v);
592 #else
593             free((void*)v);
594 #endif
595         else {
596             ACQUIRE_DTOA_LOCK(0);
597             v->next = freelist[v->k];
598             freelist[v->k] = v;
599             FREE_DTOA_LOCK(0);
600         }
601     }
602 }
603 
604 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
605 y->wds*sizeof(Long) + 2*sizeof(int))
606 
607 static Bigint *
multadd(b,m,a)608 multadd
609 #ifdef KR_headers
610 (b, m, a) Bigint *b; int m, a;
611 #else
612 (Bigint *b, int m, int a)   /* multiply by m and add a */
613 #endif
614 {
615     int i, wds;
616 #ifdef ULLong
617     ULong *x;
618     ULLong carry, y;
619 #else
620     ULong carry, *x, y;
621 #ifdef Pack_32
622     ULong xi, z;
623 #endif
624 #endif
625     Bigint *b1;
626 
627     wds = b->wds;
628     x = b->x;
629     i = 0;
630     carry = a;
631     do {
632 #ifdef ULLong
633         y = *x * (ULLong)m + carry;
634         carry = y >> 32;
635         *x++ = y & FFFFFFFF;
636 #else
637 #ifdef Pack_32
638         xi = *x;
639         y = (xi & 0xffff) * m + carry;
640         z = (xi >> 16) * m + (y >> 16);
641         carry = z >> 16;
642         *x++ = (z << 16) + (y & 0xffff);
643 #else
644         y = *x * m + carry;
645         carry = y >> 16;
646         *x++ = y & 0xffff;
647 #endif
648 #endif
649     }
650     while(++i < wds);
651     if (carry) {
652         if (wds >= b->maxwds) {
653             b1 = Balloc(b->k+1);
654             Bcopy(b1, b);
655             Bfree(b);
656             b = b1;
657         }
658         b->x[wds++] = carry;
659         b->wds = wds;
660     }
661     return b;
662 }
663 
664 static Bigint *
s2b(s,nd0,nd,y9)665 s2b
666 #ifdef KR_headers
667 (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
668 #else
669 (CONST char *s, int nd0, int nd, ULong y9)
670 #endif
671 {
672     Bigint *b;
673     int i, k;
674     Long x, y;
675 
676     x = (nd + 8) / 9;
677     for(k = 0, y = 1; x > y; y <<= 1, k++) ;
678 #ifdef Pack_32
679     b = Balloc(k);
680     b->x[0] = y9;
681     b->wds = 1;
682 #else
683     b = Balloc(k+1);
684     b->x[0] = y9 & 0xffff;
685     b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
686 #endif
687 
688     i = 9;
689     if (9 < nd0) {
690         s += 9;
691         do {
692             b = multadd(b, 10, *s++ - '0');
693         }
694         while(++i < nd0);
695         s++;
696     }
697     else {
698         s += 10;
699     }
700     for(; i < nd; i++) {
701         b = multadd(b, 10, *s++ - '0');
702     }
703     return b;
704 }
705 
706 static int
hi0bits(x)707 hi0bits
708 #ifdef KR_headers
709 (x) register ULong x;
710 #else
711 (register ULong x)
712 #endif
713 {
714 #ifdef PR_HAVE_BUILTIN_BITSCAN32
715     return( (!x) ? 32 : pr_bitscan_clz32(x) );
716 #else
717     register int k = 0;
718 
719     if (!(x & 0xffff0000)) {
720         k = 16;
721         x <<= 16;
722     }
723     if (!(x & 0xff000000)) {
724         k += 8;
725         x <<= 8;
726     }
727     if (!(x & 0xf0000000)) {
728         k += 4;
729         x <<= 4;
730     }
731     if (!(x & 0xc0000000)) {
732         k += 2;
733         x <<= 2;
734     }
735     if (!(x & 0x80000000)) {
736         k++;
737         if (!(x & 0x40000000)) {
738             return 32;
739         }
740     }
741     return k;
742 #endif /* PR_HAVE_BUILTIN_BITSCAN32 */
743 }
744 
745 static int
lo0bits(y)746 lo0bits
747 #ifdef KR_headers
748 (y) ULong *y;
749 #else
750 (ULong *y)
751 #endif
752 {
753 #ifdef PR_HAVE_BUILTIN_BITSCAN32
754     int k;
755     ULong x = *y;
756 
757     if (x>1) {
758         *y = ( x >> (k = pr_bitscan_ctz32(x)) );
759     }
760     else {
761         k = ((x ^ 1) << 5);
762     }
763 #else
764     register int k;
765     register ULong x = *y;
766 
767     if (x & 7) {
768         if (x & 1) {
769             return 0;
770         }
771         if (x & 2) {
772             *y = x >> 1;
773             return 1;
774         }
775         *y = x >> 2;
776         return 2;
777     }
778     k = 0;
779     if (!(x & 0xffff)) {
780         k = 16;
781         x >>= 16;
782     }
783     if (!(x & 0xff)) {
784         k += 8;
785         x >>= 8;
786     }
787     if (!(x & 0xf)) {
788         k += 4;
789         x >>= 4;
790     }
791     if (!(x & 0x3)) {
792         k += 2;
793         x >>= 2;
794     }
795     if (!(x & 1)) {
796         k++;
797         x >>= 1;
798         if (!x) {
799             return 32;
800         }
801     }
802     *y = x;
803 #endif /* PR_HAVE_BUILTIN_BITSCAN32 */
804     return k;
805 }
806 
807 static Bigint *
i2b(i)808 i2b
809 #ifdef KR_headers
810 (i) int i;
811 #else
812 (int i)
813 #endif
814 {
815     Bigint *b;
816 
817     b = Balloc(1);
818     b->x[0] = i;
819     b->wds = 1;
820     return b;
821 }
822 
823 static Bigint *
mult(a,b)824 mult
825 #ifdef KR_headers
826 (a, b) Bigint *a, *b;
827 #else
828 (Bigint *a, Bigint *b)
829 #endif
830 {
831     Bigint *c;
832     int k, wa, wb, wc;
833     ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
834     ULong y;
835 #ifdef ULLong
836     ULLong carry, z;
837 #else
838     ULong carry, z;
839 #ifdef Pack_32
840     ULong z2;
841 #endif
842 #endif
843 
844     if (a->wds < b->wds) {
845         c = a;
846         a = b;
847         b = c;
848     }
849     k = a->k;
850     wa = a->wds;
851     wb = b->wds;
852     wc = wa + wb;
853     if (wc > a->maxwds) {
854         k++;
855     }
856     c = Balloc(k);
857     for(x = c->x, xa = x + wc; x < xa; x++) {
858         *x = 0;
859     }
860     xa = a->x;
861     xae = xa + wa;
862     xb = b->x;
863     xbe = xb + wb;
864     xc0 = c->x;
865 #ifdef ULLong
866     for(; xb < xbe; xc0++) {
867         if (y = *xb++) {
868             x = xa;
869             xc = xc0;
870             carry = 0;
871             do {
872                 z = *x++ * (ULLong)y + *xc + carry;
873                 carry = z >> 32;
874                 *xc++ = z & FFFFFFFF;
875             }
876             while(x < xae);
877             *xc = carry;
878         }
879     }
880 #else
881 #ifdef Pack_32
882     for(; xb < xbe; xb++, xc0++) {
883         if (y = *xb & 0xffff) {
884             x = xa;
885             xc = xc0;
886             carry = 0;
887             do {
888                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
889                 carry = z >> 16;
890                 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
891                 carry = z2 >> 16;
892                 Storeinc(xc, z2, z);
893             }
894             while(x < xae);
895             *xc = carry;
896         }
897         if (y = *xb >> 16) {
898             x = xa;
899             xc = xc0;
900             carry = 0;
901             z2 = *xc;
902             do {
903                 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
904                 carry = z >> 16;
905                 Storeinc(xc, z, z2);
906                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
907                 carry = z2 >> 16;
908             }
909             while(x < xae);
910             *xc = z2;
911         }
912     }
913 #else
914     for(; xb < xbe; xc0++) {
915         if (y = *xb++) {
916             x = xa;
917             xc = xc0;
918             carry = 0;
919             do {
920                 z = *x++ * y + *xc + carry;
921                 carry = z >> 16;
922                 *xc++ = z & 0xffff;
923             }
924             while(x < xae);
925             *xc = carry;
926         }
927     }
928 #endif
929 #endif
930     for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
931     c->wds = wc;
932     return c;
933 }
934 
935 static Bigint *p5s;
936 
937 static Bigint *
pow5mult(b,k)938 pow5mult
939 #ifdef KR_headers
940 (b, k) Bigint *b; int k;
941 #else
942 (Bigint *b, int k)
943 #endif
944 {
945     Bigint *b1, *p5, *p51;
946     int i;
947     static int p05[3] = { 5, 25, 125 };
948 
949     if (i = k & 3) {
950         b = multadd(b, p05[i-1], 0);
951     }
952 
953     if (!(k >>= 2)) {
954         return b;
955     }
956     if (!(p5 = p5s)) {
957         /* first time */
958 #ifdef MULTIPLE_THREADS
959         ACQUIRE_DTOA_LOCK(1);
960         if (!(p5 = p5s)) {
961             p5 = p5s = i2b(625);
962             p5->next = 0;
963         }
964         FREE_DTOA_LOCK(1);
965 #else
966         p5 = p5s = i2b(625);
967         p5->next = 0;
968 #endif
969     }
970     for(;;) {
971         if (k & 1) {
972             b1 = mult(b, p5);
973             Bfree(b);
974             b = b1;
975         }
976         if (!(k >>= 1)) {
977             break;
978         }
979         if (!(p51 = p5->next)) {
980 #ifdef MULTIPLE_THREADS
981             ACQUIRE_DTOA_LOCK(1);
982             if (!(p51 = p5->next)) {
983                 p51 = p5->next = mult(p5,p5);
984                 p51->next = 0;
985             }
986             FREE_DTOA_LOCK(1);
987 #else
988             p51 = p5->next = mult(p5,p5);
989             p51->next = 0;
990 #endif
991         }
992         p5 = p51;
993     }
994     return b;
995 }
996 
997 static Bigint *
lshift(b,k)998 lshift
999 #ifdef KR_headers
1000 (b, k) Bigint *b; int k;
1001 #else
1002 (Bigint *b, int k)
1003 #endif
1004 {
1005     int i, k1, n, n1;
1006     Bigint *b1;
1007     ULong *x, *x1, *xe, z;
1008 
1009 #ifdef Pack_32
1010     n = k >> 5;
1011 #else
1012     n = k >> 4;
1013 #endif
1014     k1 = b->k;
1015     n1 = n + b->wds + 1;
1016     for(i = b->maxwds; n1 > i; i <<= 1) {
1017         k1++;
1018     }
1019     b1 = Balloc(k1);
1020     x1 = b1->x;
1021     for(i = 0; i < n; i++) {
1022         *x1++ = 0;
1023     }
1024     x = b->x;
1025     xe = x + b->wds;
1026 #ifdef Pack_32
1027     if (k &= 0x1f) {
1028         k1 = 32 - k;
1029         z = 0;
1030         do {
1031             *x1++ = *x << k | z;
1032             z = *x++ >> k1;
1033         }
1034         while(x < xe);
1035         if (*x1 = z) {
1036             ++n1;
1037         }
1038     }
1039 #else
1040     if (k &= 0xf) {
1041         k1 = 16 - k;
1042         z = 0;
1043         do {
1044             *x1++ = *x << k  & 0xffff | z;
1045             z = *x++ >> k1;
1046         }
1047         while(x < xe);
1048         if (*x1 = z) {
1049             ++n1;
1050         }
1051     }
1052 #endif
1053     else do {
1054             *x1++ = *x++;
1055         }
1056         while(x < xe);
1057     b1->wds = n1 - 1;
1058     Bfree(b);
1059     return b1;
1060 }
1061 
1062 static int
cmp(a,b)1063 cmp
1064 #ifdef KR_headers
1065 (a, b) Bigint *a, *b;
1066 #else
1067 (Bigint *a, Bigint *b)
1068 #endif
1069 {
1070     ULong *xa, *xa0, *xb, *xb0;
1071     int i, j;
1072 
1073     i = a->wds;
1074     j = b->wds;
1075 #ifdef DEBUG
1076     if (i > 1 && !a->x[i-1]) {
1077         Bug("cmp called with a->x[a->wds-1] == 0");
1078     }
1079     if (j > 1 && !b->x[j-1]) {
1080         Bug("cmp called with b->x[b->wds-1] == 0");
1081     }
1082 #endif
1083     if (i -= j) {
1084         return i;
1085     }
1086     xa0 = a->x;
1087     xa = xa0 + j;
1088     xb0 = b->x;
1089     xb = xb0 + j;
1090     for(;;) {
1091         if (*--xa != *--xb) {
1092             return *xa < *xb ? -1 : 1;
1093         }
1094         if (xa <= xa0) {
1095             break;
1096         }
1097     }
1098     return 0;
1099 }
1100 
1101 static Bigint *
diff(a,b)1102 diff
1103 #ifdef KR_headers
1104 (a, b) Bigint *a, *b;
1105 #else
1106 (Bigint *a, Bigint *b)
1107 #endif
1108 {
1109     Bigint *c;
1110     int i, wa, wb;
1111     ULong *xa, *xae, *xb, *xbe, *xc;
1112 #ifdef ULLong
1113     ULLong borrow, y;
1114 #else
1115     ULong borrow, y;
1116 #ifdef Pack_32
1117     ULong z;
1118 #endif
1119 #endif
1120 
1121     i = cmp(a,b);
1122     if (!i) {
1123         c = Balloc(0);
1124         c->wds = 1;
1125         c->x[0] = 0;
1126         return c;
1127     }
1128     if (i < 0) {
1129         c = a;
1130         a = b;
1131         b = c;
1132         i = 1;
1133     }
1134     else {
1135         i = 0;
1136     }
1137     c = Balloc(a->k);
1138     c->sign = i;
1139     wa = a->wds;
1140     xa = a->x;
1141     xae = xa + wa;
1142     wb = b->wds;
1143     xb = b->x;
1144     xbe = xb + wb;
1145     xc = c->x;
1146     borrow = 0;
1147 #ifdef ULLong
1148     do {
1149         y = (ULLong)*xa++ - *xb++ - borrow;
1150         borrow = y >> 32 & (ULong)1;
1151         *xc++ = y & FFFFFFFF;
1152     }
1153     while(xb < xbe);
1154     while(xa < xae) {
1155         y = *xa++ - borrow;
1156         borrow = y >> 32 & (ULong)1;
1157         *xc++ = y & FFFFFFFF;
1158     }
1159 #else
1160 #ifdef Pack_32
1161     do {
1162         y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1163         borrow = (y & 0x10000) >> 16;
1164         z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1165         borrow = (z & 0x10000) >> 16;
1166         Storeinc(xc, z, y);
1167     }
1168     while(xb < xbe);
1169     while(xa < xae) {
1170         y = (*xa & 0xffff) - borrow;
1171         borrow = (y & 0x10000) >> 16;
1172         z = (*xa++ >> 16) - borrow;
1173         borrow = (z & 0x10000) >> 16;
1174         Storeinc(xc, z, y);
1175     }
1176 #else
1177     do {
1178         y = *xa++ - *xb++ - borrow;
1179         borrow = (y & 0x10000) >> 16;
1180         *xc++ = y & 0xffff;
1181     }
1182     while(xb < xbe);
1183     while(xa < xae) {
1184         y = *xa++ - borrow;
1185         borrow = (y & 0x10000) >> 16;
1186         *xc++ = y & 0xffff;
1187     }
1188 #endif
1189 #endif
1190     while(!*--xc) {
1191         wa--;
1192     }
1193     c->wds = wa;
1194     return c;
1195 }
1196 
1197 static double
ulp(dx)1198 ulp
1199 #ifdef KR_headers
1200 (dx) double dx;
1201 #else
1202 (double dx)
1203 #endif
1204 {
1205     register Long L;
1206     U x, a;
1207 
1208     dval(x) = dx;
1209     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1210 #ifndef Avoid_Underflow
1211 #ifndef Sudden_Underflow
1212     if (L > 0) {
1213 #endif
1214 #endif
1215 #ifdef IBM
1216         L |= Exp_msk1 >> 4;
1217 #endif
1218         word0(a) = L;
1219         word1(a) = 0;
1220 #ifndef Avoid_Underflow
1221 #ifndef Sudden_Underflow
1222     }
1223     else {
1224         L = -L >> Exp_shift;
1225         if (L < Exp_shift) {
1226             word0(a) = 0x80000 >> L;
1227             word1(a) = 0;
1228         }
1229         else {
1230             word0(a) = 0;
1231             L -= Exp_shift;
1232             word1(a) = L >= 31 ? 1 : 1 << 31 - L;
1233         }
1234     }
1235 #endif
1236 #endif
1237     return dval(a);
1238 }
1239 
1240 static double
b2d(a,e)1241 b2d
1242 #ifdef KR_headers
1243 (a, e) Bigint *a; int *e;
1244 #else
1245 (Bigint *a, int *e)
1246 #endif
1247 {
1248     ULong *xa, *xa0, w, y, z;
1249     int k;
1250     U d;
1251 #ifdef VAX
1252     ULong d0, d1;
1253 #else
1254 #define d0 word0(d)
1255 #define d1 word1(d)
1256 #endif
1257 
1258     xa0 = a->x;
1259     xa = xa0 + a->wds;
1260     y = *--xa;
1261 #ifdef DEBUG
1262     if (!y) {
1263         Bug("zero y in b2d");
1264     }
1265 #endif
1266     k = hi0bits(y);
1267     *e = 32 - k;
1268 #ifdef Pack_32
1269     if (k < Ebits) {
1270         d0 = Exp_1 | y >> Ebits - k;
1271         w = xa > xa0 ? *--xa : 0;
1272         d1 = y << (32-Ebits) + k | w >> Ebits - k;
1273         goto ret_d;
1274     }
1275     z = xa > xa0 ? *--xa : 0;
1276     if (k -= Ebits) {
1277         d0 = Exp_1 | y << k | z >> 32 - k;
1278         y = xa > xa0 ? *--xa : 0;
1279         d1 = z << k | y >> 32 - k;
1280     }
1281     else {
1282         d0 = Exp_1 | y;
1283         d1 = z;
1284     }
1285 #else
1286     if (k < Ebits + 16) {
1287         z = xa > xa0 ? *--xa : 0;
1288         d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1289         w = xa > xa0 ? *--xa : 0;
1290         y = xa > xa0 ? *--xa : 0;
1291         d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1292         goto ret_d;
1293     }
1294     z = xa > xa0 ? *--xa : 0;
1295     w = xa > xa0 ? *--xa : 0;
1296     k -= Ebits + 16;
1297     d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1298     y = xa > xa0 ? *--xa : 0;
1299     d1 = w << k + 16 | y << k;
1300 #endif
1301 ret_d:
1302 #ifdef VAX
1303     word0(d) = d0 >> 16 | d0 << 16;
1304     word1(d) = d1 >> 16 | d1 << 16;
1305 #else
1306 #undef d0
1307 #undef d1
1308 #endif
1309     return dval(d);
1310 }
1311 
1312 static Bigint *
d2b(dd,e,bits)1313 d2b
1314 #ifdef KR_headers
1315 (dd, e, bits) double dd; int *e, *bits;
1316 #else
1317 (double dd, int *e, int *bits)
1318 #endif
1319 {
1320     U d;
1321     Bigint *b;
1322     int de, k;
1323     ULong *x, y, z;
1324 #ifndef Sudden_Underflow
1325     int i;
1326 #endif
1327 #ifdef VAX
1328     ULong d0, d1;
1329 #endif
1330 
1331     dval(d) = dd;
1332 #ifdef VAX
1333     d0 = word0(d) >> 16 | word0(d) << 16;
1334     d1 = word1(d) >> 16 | word1(d) << 16;
1335 #else
1336 #define d0 word0(d)
1337 #define d1 word1(d)
1338 #endif
1339 
1340 #ifdef Pack_32
1341     b = Balloc(1);
1342 #else
1343     b = Balloc(2);
1344 #endif
1345     x = b->x;
1346 
1347     z = d0 & Frac_mask;
1348     d0 &= 0x7fffffff;   /* clear sign bit, which we ignore */
1349 #ifdef Sudden_Underflow
1350     de = (int)(d0 >> Exp_shift);
1351 #ifndef IBM
1352     z |= Exp_msk11;
1353 #endif
1354 #else
1355     if (de = (int)(d0 >> Exp_shift)) {
1356         z |= Exp_msk1;
1357     }
1358 #endif
1359 #ifdef Pack_32
1360     if (y = d1) {
1361         if (k = lo0bits(&y)) {
1362             x[0] = y | z << 32 - k;
1363             z >>= k;
1364         }
1365         else {
1366             x[0] = y;
1367         }
1368 #ifndef Sudden_Underflow
1369         i =
1370 #endif
1371             b->wds = (x[1] = z) ? 2 : 1;
1372     }
1373     else {
1374         k = lo0bits(&z);
1375         x[0] = z;
1376 #ifndef Sudden_Underflow
1377         i =
1378 #endif
1379             b->wds = 1;
1380         k += 32;
1381     }
1382 #else
1383     if (y = d1) {
1384         if (k = lo0bits(&y))
1385             if (k >= 16) {
1386                 x[0] = y | z << 32 - k & 0xffff;
1387                 x[1] = z >> k - 16 & 0xffff;
1388                 x[2] = z >> k;
1389                 i = 2;
1390             }
1391             else {
1392                 x[0] = y & 0xffff;
1393                 x[1] = y >> 16 | z << 16 - k & 0xffff;
1394                 x[2] = z >> k & 0xffff;
1395                 x[3] = z >> k+16;
1396                 i = 3;
1397             }
1398         else {
1399             x[0] = y & 0xffff;
1400             x[1] = y >> 16;
1401             x[2] = z & 0xffff;
1402             x[3] = z >> 16;
1403             i = 3;
1404         }
1405     }
1406     else {
1407 #ifdef DEBUG
1408         if (!z) {
1409             Bug("Zero passed to d2b");
1410         }
1411 #endif
1412         k = lo0bits(&z);
1413         if (k >= 16) {
1414             x[0] = z;
1415             i = 0;
1416         }
1417         else {
1418             x[0] = z & 0xffff;
1419             x[1] = z >> 16;
1420             i = 1;
1421         }
1422         k += 32;
1423     }
1424     while(!x[i]) {
1425         --i;
1426     }
1427     b->wds = i + 1;
1428 #endif
1429 #ifndef Sudden_Underflow
1430     if (de) {
1431 #endif
1432 #ifdef IBM
1433         *e = (de - Bias - (P-1) << 2) + k;
1434         *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1435 #else
1436         *e = de - Bias - (P-1) + k;
1437         *bits = P - k;
1438 #endif
1439 #ifndef Sudden_Underflow
1440     }
1441     else {
1442         *e = de - Bias - (P-1) + 1 + k;
1443 #ifdef Pack_32
1444         *bits = 32*i - hi0bits(x[i-1]);
1445 #else
1446         *bits = (i+2)*16 - hi0bits(x[i]);
1447 #endif
1448     }
1449 #endif
1450     return b;
1451 }
1452 #undef d0
1453 #undef d1
1454 
1455 static double
ratio(a,b)1456 ratio
1457 #ifdef KR_headers
1458 (a, b) Bigint *a, *b;
1459 #else
1460 (Bigint *a, Bigint *b)
1461 #endif
1462 {
1463     U da, db;
1464     int k, ka, kb;
1465 
1466     dval(da) = b2d(a, &ka);
1467     dval(db) = b2d(b, &kb);
1468 #ifdef Pack_32
1469     k = ka - kb + 32*(a->wds - b->wds);
1470 #else
1471     k = ka - kb + 16*(a->wds - b->wds);
1472 #endif
1473 #ifdef IBM
1474     if (k > 0) {
1475         word0(da) += (k >> 2)*Exp_msk1;
1476         if (k &= 3) {
1477             dval(da) *= 1 << k;
1478         }
1479     }
1480     else {
1481         k = -k;
1482         word0(db) += (k >> 2)*Exp_msk1;
1483         if (k &= 3) {
1484             dval(db) *= 1 << k;
1485         }
1486     }
1487 #else
1488     if (k > 0) {
1489         word0(da) += k*Exp_msk1;
1490     }
1491     else {
1492         k = -k;
1493         word0(db) += k*Exp_msk1;
1494     }
1495 #endif
1496     return dval(da) / dval(db);
1497 }
1498 
1499 static CONST double
1500 tens[] = {
1501     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1502     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1503     1e20, 1e21, 1e22
1504 #ifdef VAX
1505     , 1e23, 1e24
1506 #endif
1507 };
1508 
1509 static CONST double
1510 #ifdef IEEE_Arith
1511 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1512 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1513 #ifdef Avoid_Underflow
1514                                    9007199254740992.*9007199254740992.e-256
1515                                    /* = 2^106 * 1e-53 */
1516 #else
1517                                    1e-256
1518 #endif
1519                                  };
1520 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1521 /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1522 #define Scale_Bit 0x10
1523 #define n_bigtens 5
1524 #else
1525 #ifdef IBM
1526 bigtens[] = { 1e16, 1e32, 1e64 };
1527 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1528 #define n_bigtens 3
1529 #else
1530 bigtens[] = { 1e16, 1e32 };
1531 static CONST double tinytens[] = { 1e-16, 1e-32 };
1532 #define n_bigtens 2
1533 #endif
1534 #endif
1535 
1536 #ifndef IEEE_Arith
1537 #undef INFNAN_CHECK
1538 #endif
1539 
1540 #ifdef INFNAN_CHECK
1541 
1542 #ifndef NAN_WORD0
1543 #define NAN_WORD0 0x7ff80000
1544 #endif
1545 
1546 #ifndef NAN_WORD1
1547 #define NAN_WORD1 0
1548 #endif
1549 
1550 static int
match(sp,t)1551 match
1552 #ifdef KR_headers
1553 (sp, t) char **sp, *t;
1554 #else
1555 (CONST char **sp, char *t)
1556 #endif
1557 {
1558     int c, d;
1559     CONST char *s = *sp;
1560 
1561     while(d = *t++) {
1562         if ((c = *++s) >= 'A' && c <= 'Z') {
1563             c += 'a' - 'A';
1564         }
1565         if (c != d) {
1566             return 0;
1567         }
1568     }
1569     *sp = s + 1;
1570     return 1;
1571 }
1572 
1573 #ifndef No_Hex_NaN
1574 static void
hexnan(rvp,sp)1575 hexnan
1576 #ifdef KR_headers
1577 (rvp, sp) double *rvp; CONST char **sp;
1578 #else
1579 (double *rvp, CONST char **sp)
1580 #endif
1581 {
1582     ULong c, x[2];
1583     CONST char *s;
1584     int havedig, udx0, xshift;
1585 
1586     x[0] = x[1] = 0;
1587     havedig = xshift = 0;
1588     udx0 = 1;
1589     s = *sp;
1590     while(c = *(CONST unsigned char*)++s) {
1591         if (c >= '0' && c <= '9') {
1592             c -= '0';
1593         }
1594         else if (c >= 'a' && c <= 'f') {
1595             c += 10 - 'a';
1596         }
1597         else if (c >= 'A' && c <= 'F') {
1598             c += 10 - 'A';
1599         }
1600         else if (c <= ' ') {
1601             if (udx0 && havedig) {
1602                 udx0 = 0;
1603                 xshift = 1;
1604             }
1605             continue;
1606         }
1607         else if (/*(*/ c == ')' && havedig) {
1608             *sp = s + 1;
1609             break;
1610         }
1611         else {
1612             return;    /* invalid form: don't change *sp */
1613         }
1614         havedig = 1;
1615         if (xshift) {
1616             xshift = 0;
1617             x[0] = x[1];
1618             x[1] = 0;
1619         }
1620         if (udx0) {
1621             x[0] = (x[0] << 4) | (x[1] >> 28);
1622         }
1623         x[1] = (x[1] << 4) | c;
1624     }
1625     if ((x[0] &= 0xfffff) || x[1]) {
1626         word0(*rvp) = Exp_mask | x[0];
1627         word1(*rvp) = x[1];
1628     }
1629 }
1630 #endif /*No_Hex_NaN*/
1631 #endif /* INFNAN_CHECK */
1632 
1633 PR_IMPLEMENT(double)
1634 PR_strtod
1635 #ifdef KR_headers
1636 (s00, se) CONST char *s00; char **se;
1637 #else
1638 (CONST char *s00, char **se)
1639 #endif
1640 {
1641 #ifdef Avoid_Underflow
1642     int scale;
1643 #endif
1644     int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1645         e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1646     CONST char *s, *s0, *s1;
1647     double aadj, aadj1, adj;
1648     U aadj2, rv, rv0;
1649     Long L;
1650     ULong y, z;
1651     Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1652 #ifdef SET_INEXACT
1653     int inexact, oldinexact;
1654 #endif
1655 #ifdef Honor_FLT_ROUNDS
1656     int rounding;
1657 #endif
1658 #ifdef USE_LOCALE
1659     CONST char *s2;
1660 #endif
1661 
1662     if (!_pr_initialized) {
1663         _PR_ImplicitInitialization();
1664     }
1665 
1666     sign = nz0 = nz = 0;
1667     dval(rv) = 0.;
1668     for(s = s00;; s++) switch(*s) {
1669             case '-':
1670                 sign = 1;
1671             /* no break */
1672             case '+':
1673                 if (*++s) {
1674                     goto break2;
1675                 }
1676             /* no break */
1677             case 0:
1678                 goto ret0;
1679             case '\t':
1680             case '\n':
1681             case '\v':
1682             case '\f':
1683             case '\r':
1684             case ' ':
1685                 continue;
1686             default:
1687                 goto break2;
1688         }
1689 break2:
1690     if (*s == '0') {
1691         nz0 = 1;
1692         while(*++s == '0') ;
1693         if (!*s) {
1694             goto ret;
1695         }
1696     }
1697     s0 = s;
1698     y = z = 0;
1699     for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1700         if (nd < 9) {
1701             y = 10*y + c - '0';
1702         }
1703         else if (nd < 16) {
1704             z = 10*z + c - '0';
1705         }
1706     nd0 = nd;
1707 #ifdef USE_LOCALE
1708     s1 = localeconv()->decimal_point;
1709     if (c == *s1) {
1710         c = '.';
1711         if (*++s1) {
1712             s2 = s;
1713             for(;;) {
1714                 if (*++s2 != *s1) {
1715                     c = 0;
1716                     break;
1717                 }
1718                 if (!*++s1) {
1719                     s = s2;
1720                     break;
1721                 }
1722             }
1723         }
1724     }
1725 #endif
1726     if (c == '.') {
1727         c = *++s;
1728         if (!nd) {
1729             for(; c == '0'; c = *++s) {
1730                 nz++;
1731             }
1732             if (c > '0' && c <= '9') {
1733                 s0 = s;
1734                 nf += nz;
1735                 nz = 0;
1736                 goto have_dig;
1737             }
1738             goto dig_done;
1739         }
1740         for(; c >= '0' && c <= '9'; c = *++s) {
1741 have_dig:
1742             nz++;
1743             if (c -= '0') {
1744                 nf += nz;
1745                 for(i = 1; i < nz; i++)
1746                     if (nd++ < 9) {
1747                         y *= 10;
1748                     }
1749                     else if (nd <= DBL_DIG + 1) {
1750                         z *= 10;
1751                     }
1752                 if (nd++ < 9) {
1753                     y = 10*y + c;
1754                 }
1755                 else if (nd <= DBL_DIG + 1) {
1756                     z = 10*z + c;
1757                 }
1758                 nz = 0;
1759             }
1760         }
1761     }
1762 dig_done:
1763     if (nd > 64 * 1024) {
1764         goto ret0;
1765     }
1766     e = 0;
1767     if (c == 'e' || c == 'E') {
1768         if (!nd && !nz && !nz0) {
1769             goto ret0;
1770         }
1771         s00 = s;
1772         esign = 0;
1773         switch(c = *++s) {
1774             case '-':
1775                 esign = 1;
1776             case '+':
1777                 c = *++s;
1778         }
1779         if (c >= '0' && c <= '9') {
1780             while(c == '0') {
1781                 c = *++s;
1782             }
1783             if (c > '0' && c <= '9') {
1784                 L = c - '0';
1785                 s1 = s;
1786                 while((c = *++s) >= '0' && c <= '9') {
1787                     L = 10*L + c - '0';
1788                 }
1789                 if (s - s1 > 8 || L > 19999)
1790                     /* Avoid confusion from exponents
1791                      * so large that e might overflow.
1792                      */
1793                 {
1794                     e = 19999;    /* safe for 16 bit ints */
1795                 }
1796                 else {
1797                     e = (int)L;
1798                 }
1799                 if (esign) {
1800                     e = -e;
1801                 }
1802             }
1803             else {
1804                 e = 0;
1805             }
1806         }
1807         else {
1808             s = s00;
1809         }
1810     }
1811     if (!nd) {
1812         if (!nz && !nz0) {
1813 #ifdef INFNAN_CHECK
1814             /* Check for Nan and Infinity */
1815             switch(c) {
1816                 case 'i':
1817                 case 'I':
1818                     if (match(&s,"nf")) {
1819                         --s;
1820                         if (!match(&s,"inity")) {
1821                             ++s;
1822                         }
1823                         word0(rv) = 0x7ff00000;
1824                         word1(rv) = 0;
1825                         goto ret;
1826                     }
1827                     break;
1828                 case 'n':
1829                 case 'N':
1830                     if (match(&s, "an")) {
1831                         word0(rv) = NAN_WORD0;
1832                         word1(rv) = NAN_WORD1;
1833 #ifndef No_Hex_NaN
1834                         if (*s == '(') { /*)*/
1835                             hexnan(&rv, &s);
1836                         }
1837 #endif
1838                         goto ret;
1839                     }
1840             }
1841 #endif /* INFNAN_CHECK */
1842 ret0:
1843             s = s00;
1844             sign = 0;
1845         }
1846         goto ret;
1847     }
1848     e1 = e -= nf;
1849 
1850     /* Now we have nd0 digits, starting at s0, followed by a
1851      * decimal point, followed by nd-nd0 digits.  The number we're
1852      * after is the integer represented by those digits times
1853      * 10**e */
1854 
1855     if (!nd0) {
1856         nd0 = nd;
1857     }
1858     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1859     dval(rv) = y;
1860     if (k > 9) {
1861 #ifdef SET_INEXACT
1862         if (k > DBL_DIG) {
1863             oldinexact = get_inexact();
1864         }
1865 #endif
1866         dval(rv) = tens[k - 9] * dval(rv) + z;
1867     }
1868     bd0 = 0;
1869     if (nd <= DBL_DIG
1870 #ifndef RND_PRODQUOT
1871 #ifndef Honor_FLT_ROUNDS
1872         && Flt_Rounds == 1
1873 #endif
1874 #endif
1875        ) {
1876         if (!e) {
1877             goto ret;
1878         }
1879         if (e > 0) {
1880             if (e <= Ten_pmax) {
1881 #ifdef VAX
1882                 goto vax_ovfl_check;
1883 #else
1884 #ifdef Honor_FLT_ROUNDS
1885                 /* round correctly FLT_ROUNDS = 2 or 3 */
1886                 if (sign) {
1887                     rv = -rv;
1888                     sign = 0;
1889                 }
1890 #endif
1891                 /* rv = */ rounded_product(dval(rv), tens[e]);
1892                 goto ret;
1893 #endif
1894             }
1895             i = DBL_DIG - nd;
1896             if (e <= Ten_pmax + i) {
1897                 /* A fancier test would sometimes let us do
1898                  * this for larger i values.
1899                  */
1900 #ifdef Honor_FLT_ROUNDS
1901                 /* round correctly FLT_ROUNDS = 2 or 3 */
1902                 if (sign) {
1903                     rv = -rv;
1904                     sign = 0;
1905                 }
1906 #endif
1907                 e -= i;
1908                 dval(rv) *= tens[i];
1909 #ifdef VAX
1910                 /* VAX exponent range is so narrow we must
1911                  * worry about overflow here...
1912                  */
1913 vax_ovfl_check:
1914                 word0(rv) -= P*Exp_msk1;
1915                 /* rv = */ rounded_product(dval(rv), tens[e]);
1916                 if ((word0(rv) & Exp_mask)
1917                     > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1918                     goto ovfl;
1919                 }
1920                 word0(rv) += P*Exp_msk1;
1921 #else
1922                 /* rv = */ rounded_product(dval(rv), tens[e]);
1923 #endif
1924                 goto ret;
1925             }
1926         }
1927 #ifndef Inaccurate_Divide
1928         else if (e >= -Ten_pmax) {
1929 #ifdef Honor_FLT_ROUNDS
1930             /* round correctly FLT_ROUNDS = 2 or 3 */
1931             if (sign) {
1932                 rv = -rv;
1933                 sign = 0;
1934             }
1935 #endif
1936             /* rv = */ rounded_quotient(dval(rv), tens[-e]);
1937             goto ret;
1938         }
1939 #endif
1940     }
1941     e1 += nd - k;
1942 
1943 #ifdef IEEE_Arith
1944 #ifdef SET_INEXACT
1945     inexact = 1;
1946     if (k <= DBL_DIG) {
1947         oldinexact = get_inexact();
1948     }
1949 #endif
1950 #ifdef Avoid_Underflow
1951     scale = 0;
1952 #endif
1953 #ifdef Honor_FLT_ROUNDS
1954     if ((rounding = Flt_Rounds) >= 2) {
1955         if (sign) {
1956             rounding = rounding == 2 ? 0 : 2;
1957         }
1958         else if (rounding != 2) {
1959             rounding = 0;
1960         }
1961     }
1962 #endif
1963 #endif /*IEEE_Arith*/
1964 
1965     /* Get starting approximation = rv * 10**e1 */
1966 
1967     if (e1 > 0) {
1968         if (i = e1 & 15) {
1969             dval(rv) *= tens[i];
1970         }
1971         if (e1 &= ~15) {
1972             if (e1 > DBL_MAX_10_EXP) {
1973 ovfl:
1974 #ifndef NO_ERRNO
1975                 PR_SetError(PR_RANGE_ERROR, 0);
1976 #endif
1977                 /* Can't trust HUGE_VAL */
1978 #ifdef IEEE_Arith
1979 #ifdef Honor_FLT_ROUNDS
1980                 switch(rounding) {
1981                     case 0: /* toward 0 */
1982                     case 3: /* toward -infinity */
1983                         word0(rv) = Big0;
1984                         word1(rv) = Big1;
1985                         break;
1986                     default:
1987                         word0(rv) = Exp_mask;
1988                         word1(rv) = 0;
1989                 }
1990 #else /*Honor_FLT_ROUNDS*/
1991                 word0(rv) = Exp_mask;
1992                 word1(rv) = 0;
1993 #endif /*Honor_FLT_ROUNDS*/
1994 #ifdef SET_INEXACT
1995                 /* set overflow bit */
1996                 dval(rv0) = 1e300;
1997                 dval(rv0) *= dval(rv0);
1998 #endif
1999 #else /*IEEE_Arith*/
2000                 word0(rv) = Big0;
2001                 word1(rv) = Big1;
2002 #endif /*IEEE_Arith*/
2003                 if (bd0) {
2004                     goto retfree;
2005                 }
2006                 goto ret;
2007             }
2008             e1 >>= 4;
2009             for(j = 0; e1 > 1; j++, e1 >>= 1)
2010                 if (e1 & 1) {
2011                     dval(rv) *= bigtens[j];
2012                 }
2013             /* The last multiplication could overflow. */
2014             word0(rv) -= P*Exp_msk1;
2015             dval(rv) *= bigtens[j];
2016             if ((z = word0(rv) & Exp_mask)
2017                 > Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2018                 goto ovfl;
2019             }
2020             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2021                 /* set to largest number */
2022                 /* (Can't trust DBL_MAX) */
2023                 word0(rv) = Big0;
2024                 word1(rv) = Big1;
2025             }
2026             else {
2027                 word0(rv) += P*Exp_msk1;
2028             }
2029         }
2030     }
2031     else if (e1 < 0) {
2032         e1 = -e1;
2033         if (i = e1 & 15) {
2034             dval(rv) /= tens[i];
2035         }
2036         if (e1 >>= 4) {
2037             if (e1 >= 1 << n_bigtens) {
2038                 goto undfl;
2039             }
2040 #ifdef Avoid_Underflow
2041             if (e1 & Scale_Bit) {
2042                 scale = 2*P;
2043             }
2044             for(j = 0; e1 > 0; j++, e1 >>= 1)
2045                 if (e1 & 1) {
2046                     dval(rv) *= tinytens[j];
2047                 }
2048             if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
2049                                          >> Exp_shift)) > 0) {
2050                 /* scaled rv is denormal; zap j low bits */
2051                 if (j >= 32) {
2052                     word1(rv) = 0;
2053                     if (j >= 53) {
2054                         word0(rv) = (P+2)*Exp_msk1;
2055                     }
2056                     else {
2057                         word0(rv) &= 0xffffffff << j-32;
2058                     }
2059                 }
2060                 else {
2061                     word1(rv) &= 0xffffffff << j;
2062                 }
2063             }
2064 #else
2065             for(j = 0; e1 > 1; j++, e1 >>= 1)
2066                 if (e1 & 1) {
2067                     dval(rv) *= tinytens[j];
2068                 }
2069             /* The last multiplication could underflow. */
2070             dval(rv0) = dval(rv);
2071             dval(rv) *= tinytens[j];
2072             if (!dval(rv)) {
2073                 dval(rv) = 2.*dval(rv0);
2074                 dval(rv) *= tinytens[j];
2075 #endif
2076             if (!dval(rv)) {
2077 undfl:
2078                 dval(rv) = 0.;
2079 #ifndef NO_ERRNO
2080                 PR_SetError(PR_RANGE_ERROR, 0);
2081 #endif
2082                 if (bd0) {
2083                     goto retfree;
2084                 }
2085                 goto ret;
2086             }
2087 #ifndef Avoid_Underflow
2088             word0(rv) = Tiny0;
2089             word1(rv) = Tiny1;
2090             /* The refinement below will clean
2091              * this approximation up.
2092              */
2093         }
2094 #endif
2095     }
2096 }
2097 
2098 /* Now the hard part -- adjusting rv to the correct value.*/
2099 
2100 /* Put digits into bd: true value = bd * 10^e */
2101 
2102 bd0 = s2b(s0, nd0, nd, y);
2103 
2104 for(;;) {
2105     bd = Balloc(bd0->k);
2106     Bcopy(bd, bd0);
2107     bb = d2b(dval(rv), &bbe, &bbbits);  /* rv = bb * 2^bbe */
2108     bs = i2b(1);
2109 
2110     if (e >= 0) {
2111         bb2 = bb5 = 0;
2112         bd2 = bd5 = e;
2113     }
2114     else {
2115         bb2 = bb5 = -e;
2116         bd2 = bd5 = 0;
2117     }
2118     if (bbe >= 0) {
2119         bb2 += bbe;
2120     }
2121     else {
2122         bd2 -= bbe;
2123     }
2124     bs2 = bb2;
2125 #ifdef Honor_FLT_ROUNDS
2126     if (rounding != 1) {
2127         bs2++;
2128     }
2129 #endif
2130 #ifdef Avoid_Underflow
2131     j = bbe - scale;
2132     i = j + bbbits - 1; /* logb(rv) */
2133     if (i < Emin) { /* denormal */
2134         j += P - Emin;
2135     }
2136     else {
2137         j = P + 1 - bbbits;
2138     }
2139 #else /*Avoid_Underflow*/
2140 #ifdef Sudden_Underflow
2141 #ifdef IBM
2142     j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
2143 #else
2144     j = P + 1 - bbbits;
2145 #endif
2146 #else /*Sudden_Underflow*/
2147     j = bbe;
2148     i = j + bbbits - 1; /* logb(rv) */
2149     if (i < Emin) { /* denormal */
2150         j += P - Emin;
2151     }
2152     else {
2153         j = P + 1 - bbbits;
2154     }
2155 #endif /*Sudden_Underflow*/
2156 #endif /*Avoid_Underflow*/
2157     bb2 += j;
2158     bd2 += j;
2159 #ifdef Avoid_Underflow
2160     bd2 += scale;
2161 #endif
2162     i = bb2 < bd2 ? bb2 : bd2;
2163     if (i > bs2) {
2164         i = bs2;
2165     }
2166     if (i > 0) {
2167         bb2 -= i;
2168         bd2 -= i;
2169         bs2 -= i;
2170     }
2171     if (bb5 > 0) {
2172         bs = pow5mult(bs, bb5);
2173         bb1 = mult(bs, bb);
2174         Bfree(bb);
2175         bb = bb1;
2176     }
2177     if (bb2 > 0) {
2178         bb = lshift(bb, bb2);
2179     }
2180     if (bd5 > 0) {
2181         bd = pow5mult(bd, bd5);
2182     }
2183     if (bd2 > 0) {
2184         bd = lshift(bd, bd2);
2185     }
2186     if (bs2 > 0) {
2187         bs = lshift(bs, bs2);
2188     }
2189     delta = diff(bb, bd);
2190     dsign = delta->sign;
2191     delta->sign = 0;
2192     i = cmp(delta, bs);
2193 #ifdef Honor_FLT_ROUNDS
2194     if (rounding != 1) {
2195         if (i < 0) {
2196             /* Error is less than an ulp */
2197             if (!delta->x[0] && delta->wds <= 1) {
2198                 /* exact */
2199 #ifdef SET_INEXACT
2200                 inexact = 0;
2201 #endif
2202                 break;
2203             }
2204             if (rounding) {
2205                 if (dsign) {
2206                     adj = 1.;
2207                     goto apply_adj;
2208                 }
2209             }
2210             else if (!dsign) {
2211                 adj = -1.;
2212                 if (!word1(rv)
2213                     && !(word0(rv) & Frac_mask)) {
2214                     y = word0(rv) & Exp_mask;
2215 #ifdef Avoid_Underflow
2216                     if (!scale || y > 2*P*Exp_msk1)
2217 #else
2218                     if (y)
2219 #endif
2220                     {
2221                         delta = lshift(delta,Log2P);
2222                         if (cmp(delta, bs) <= 0) {
2223                             adj = -0.5;
2224                         }
2225                     }
2226                 }
2227 apply_adj:
2228 #ifdef Avoid_Underflow
2229                 if (scale && (y = word0(rv) & Exp_mask)
2230                     <= 2*P*Exp_msk1) {
2231                     word0(adj) += (2*P+1)*Exp_msk1 - y;
2232                 }
2233 #else
2234 #ifdef Sudden_Underflow
2235                 if ((word0(rv) & Exp_mask) <=
2236                     P*Exp_msk1) {
2237                     word0(rv) += P*Exp_msk1;
2238                     dval(rv) += adj*ulp(dval(rv));
2239                     word0(rv) -= P*Exp_msk1;
2240                 }
2241                 else
2242 #endif /*Sudden_Underflow*/
2243 #endif /*Avoid_Underflow*/
2244                 dval(rv) += adj*ulp(dval(rv));
2245             }
2246             break;
2247         }
2248         adj = ratio(delta, bs);
2249         if (adj < 1.) {
2250             adj = 1.;
2251         }
2252         if (adj <= 0x7ffffffe) {
2253             /* adj = rounding ? ceil(adj) : floor(adj); */
2254             y = adj;
2255             if (y != adj) {
2256                 if (!((rounding>>1) ^ dsign)) {
2257                     y++;
2258                 }
2259                 adj = y;
2260             }
2261         }
2262 #ifdef Avoid_Underflow
2263         if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) {
2264             word0(adj) += (2*P+1)*Exp_msk1 - y;
2265         }
2266 #else
2267 #ifdef Sudden_Underflow
2268         if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
2269             word0(rv) += P*Exp_msk1;
2270             adj *= ulp(dval(rv));
2271             if (dsign) {
2272                 dval(rv) += adj;
2273             }
2274             else {
2275                 dval(rv) -= adj;
2276             }
2277             word0(rv) -= P*Exp_msk1;
2278             goto cont;
2279         }
2280 #endif /*Sudden_Underflow*/
2281 #endif /*Avoid_Underflow*/
2282         adj *= ulp(dval(rv));
2283         if (dsign) {
2284             dval(rv) += adj;
2285         }
2286         else {
2287             dval(rv) -= adj;
2288         }
2289         goto cont;
2290     }
2291 #endif /*Honor_FLT_ROUNDS*/
2292 
2293     if (i < 0) {
2294         /* Error is less than half an ulp -- check for
2295          * special case of mantissa a power of two.
2296          */
2297         if (dsign || word1(rv) || word0(rv) & Bndry_mask
2298 #ifdef IEEE_Arith
2299 #ifdef Avoid_Underflow
2300             || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
2301 #else
2302             || (word0(rv) & Exp_mask) <= Exp_msk1
2303 #endif
2304 #endif
2305            ) {
2306 #ifdef SET_INEXACT
2307             if (!delta->x[0] && delta->wds <= 1) {
2308                 inexact = 0;
2309             }
2310 #endif
2311             break;
2312         }
2313         if (!delta->x[0] && delta->wds <= 1) {
2314             /* exact result */
2315 #ifdef SET_INEXACT
2316             inexact = 0;
2317 #endif
2318             break;
2319         }
2320         delta = lshift(delta,Log2P);
2321         if (cmp(delta, bs) > 0) {
2322             goto drop_down;
2323         }
2324         break;
2325     }
2326     if (i == 0) {
2327         /* exactly half-way between */
2328         if (dsign) {
2329             if ((word0(rv) & Bndry_mask1) == Bndry_mask1
2330                 &&  word1(rv) == (
2331 #ifdef Avoid_Underflow
2332                     (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
2333                     ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
2334 #endif
2335                     0xffffffff)) {
2336                 /*boundary case -- increment exponent*/
2337                 word0(rv) = (word0(rv) & Exp_mask)
2338                             + Exp_msk1
2339 #ifdef IBM
2340                             | Exp_msk1 >> 4
2341 #endif
2342                             ;
2343                 word1(rv) = 0;
2344 #ifdef Avoid_Underflow
2345                 dsign = 0;
2346 #endif
2347                 break;
2348             }
2349         }
2350         else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
2351 drop_down:
2352             /* boundary case -- decrement exponent */
2353 #ifdef Sudden_Underflow /*{{*/
2354             L = word0(rv) & Exp_mask;
2355 #ifdef IBM
2356             if (L <  Exp_msk1)
2357 #else
2358 #ifdef Avoid_Underflow
2359             if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
2360 #else
2361             if (L <= Exp_msk1)
2362 #endif /*Avoid_Underflow*/
2363 #endif /*IBM*/
2364                 goto undfl;
2365             L -= Exp_msk1;
2366 #else /*Sudden_Underflow}{*/
2367 #ifdef Avoid_Underflow
2368             if (scale) {
2369                 L = word0(rv) & Exp_mask;
2370                 if (L <= (2*P+1)*Exp_msk1) {
2371                     if (L > (P+2)*Exp_msk1)
2372                         /* round even ==> */
2373                         /* accept rv */
2374                     {
2375                         break;
2376                     }
2377                     /* rv = smallest denormal */
2378                     goto undfl;
2379                 }
2380             }
2381 #endif /*Avoid_Underflow*/
2382             L = (word0(rv) & Exp_mask) - Exp_msk1;
2383 #endif /*Sudden_Underflow}}*/
2384             word0(rv) = L | Bndry_mask1;
2385             word1(rv) = 0xffffffff;
2386 #ifdef IBM
2387             goto cont;
2388 #else
2389             break;
2390 #endif
2391         }
2392 #ifndef ROUND_BIASED
2393         if (!(word1(rv) & LSB)) {
2394             break;
2395         }
2396 #endif
2397         if (dsign) {
2398             dval(rv) += ulp(dval(rv));
2399         }
2400 #ifndef ROUND_BIASED
2401         else {
2402             dval(rv) -= ulp(dval(rv));
2403 #ifndef Sudden_Underflow
2404             if (!dval(rv)) {
2405                 goto undfl;
2406             }
2407 #endif
2408         }
2409 #ifdef Avoid_Underflow
2410         dsign = 1 - dsign;
2411 #endif
2412 #endif
2413         break;
2414     }
2415     if ((aadj = ratio(delta, bs)) <= 2.) {
2416         if (dsign) {
2417             aadj = aadj1 = 1.;
2418         }
2419         else if (word1(rv) || word0(rv) & Bndry_mask) {
2420 #ifndef Sudden_Underflow
2421             if (word1(rv) == Tiny1 && !word0(rv)) {
2422                 goto undfl;
2423             }
2424 #endif
2425             aadj = 1.;
2426             aadj1 = -1.;
2427         }
2428         else {
2429             /* special case -- power of FLT_RADIX to be */
2430             /* rounded down... */
2431 
2432             if (aadj < 2./FLT_RADIX) {
2433                 aadj = 1./FLT_RADIX;
2434             }
2435             else {
2436                 aadj *= 0.5;
2437             }
2438             aadj1 = -aadj;
2439         }
2440     }
2441     else {
2442         aadj *= 0.5;
2443         aadj1 = dsign ? aadj : -aadj;
2444 #ifdef Check_FLT_ROUNDS
2445         switch(Rounding) {
2446             case 2: /* towards +infinity */
2447                 aadj1 -= 0.5;
2448                 break;
2449             case 0: /* towards 0 */
2450             case 3: /* towards -infinity */
2451                 aadj1 += 0.5;
2452         }
2453 #else
2454         if (Flt_Rounds == 0) {
2455             aadj1 += 0.5;
2456         }
2457 #endif /*Check_FLT_ROUNDS*/
2458     }
2459     y = word0(rv) & Exp_mask;
2460 
2461     /* Check for overflow */
2462 
2463     if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2464         dval(rv0) = dval(rv);
2465         word0(rv) -= P*Exp_msk1;
2466         adj = aadj1 * ulp(dval(rv));
2467         dval(rv) += adj;
2468         if ((word0(rv) & Exp_mask) >=
2469             Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2470             if (word0(rv0) == Big0 && word1(rv0) == Big1) {
2471                 goto ovfl;
2472             }
2473             word0(rv) = Big0;
2474             word1(rv) = Big1;
2475             goto cont;
2476         }
2477         else {
2478             word0(rv) += P*Exp_msk1;
2479         }
2480     }
2481     else {
2482 #ifdef Avoid_Underflow
2483         if (scale && y <= 2*P*Exp_msk1) {
2484             if (aadj <= 0x7fffffff) {
2485                 if ((z = aadj) <= 0) {
2486                     z = 1;
2487                 }
2488                 aadj = z;
2489                 aadj1 = dsign ? aadj : -aadj;
2490             }
2491             dval(aadj2) = aadj1;
2492             word0(aadj2) += (2*P+1)*Exp_msk1 - y;
2493             aadj1 = dval(aadj2);
2494         }
2495         adj = aadj1 * ulp(dval(rv));
2496         dval(rv) += adj;
2497 #else
2498 #ifdef Sudden_Underflow
2499         if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
2500             dval(rv0) = dval(rv);
2501             word0(rv) += P*Exp_msk1;
2502             adj = aadj1 * ulp(dval(rv));
2503             dval(rv) += adj;
2504 #ifdef IBM
2505             if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
2506 #else
2507             if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
2508 #endif
2509             {
2510                 if (word0(rv0) == Tiny0
2511                     && word1(rv0) == Tiny1) {
2512                     goto undfl;
2513                 }
2514                 word0(rv) = Tiny0;
2515                 word1(rv) = Tiny1;
2516                 goto cont;
2517             }
2518             else {
2519                 word0(rv) -= P*Exp_msk1;
2520             }
2521         }
2522         else {
2523             adj = aadj1 * ulp(dval(rv));
2524             dval(rv) += adj;
2525         }
2526 #else /*Sudden_Underflow*/
2527         /* Compute adj so that the IEEE rounding rules will
2528          * correctly round rv + adj in some half-way cases.
2529          * If rv * ulp(rv) is denormalized (i.e.,
2530          * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
2531          * trouble from bits lost to denormalization;
2532          * example: 1.2e-307 .
2533          */
2534         if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
2535             aadj1 = (double)(int)(aadj + 0.5);
2536             if (!dsign) {
2537                 aadj1 = -aadj1;
2538             }
2539         }
2540         adj = aadj1 * ulp(dval(rv));
2541         dval(rv) += adj;
2542 #endif /*Sudden_Underflow*/
2543 #endif /*Avoid_Underflow*/
2544     }
2545     z = word0(rv) & Exp_mask;
2546 #ifndef SET_INEXACT
2547 #ifdef Avoid_Underflow
2548     if (!scale)
2549 #endif
2550         if (y == z) {
2551             /* Can we stop now? */
2552             L = (Long)aadj;
2553             aadj -= L;
2554             /* The tolerances below are conservative. */
2555             if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
2556                 if (aadj < .4999999 || aadj > .5000001) {
2557                     break;
2558                 }
2559             }
2560             else if (aadj < .4999999/FLT_RADIX) {
2561                 break;
2562             }
2563         }
2564 #endif
2565 cont:
2566     Bfree(bb);
2567     Bfree(bd);
2568     Bfree(bs);
2569     Bfree(delta);
2570 }
2571 #ifdef SET_INEXACT
2572 if (inexact) {
2573     if (!oldinexact) {
2574         word0(rv0) = Exp_1 + (70 << Exp_shift);
2575         word1(rv0) = 0;
2576         dval(rv0) += 1.;
2577     }
2578 }
2579 else if (!oldinexact) {
2580     clear_inexact();
2581 }
2582 #endif
2583 #ifdef Avoid_Underflow
2584 if (scale) {
2585     word0(rv0) = Exp_1 - 2*P*Exp_msk1;
2586     word1(rv0) = 0;
2587     dval(rv) *= dval(rv0);
2588 #ifndef NO_ERRNO
2589     /* try to avoid the bug of testing an 8087 register value */
2590     if (word0(rv) == 0 && word1(rv) == 0) {
2591         PR_SetError(PR_RANGE_ERROR, 0);
2592     }
2593 #endif
2594 }
2595 #endif /* Avoid_Underflow */
2596 #ifdef SET_INEXACT
2597 if (inexact && !(word0(rv) & Exp_mask)) {
2598     /* set underflow bit */
2599     dval(rv0) = 1e-300;
2600     dval(rv0) *= dval(rv0);
2601 }
2602 #endif
2603 retfree:
2604 Bfree(bb);
2605 Bfree(bd);
2606 Bfree(bs);
2607 Bfree(bd0);
2608 Bfree(delta);
2609 ret:
2610 if (se) {
2611     *se = (char *)s;
2612 }
2613 return sign ? -dval(rv) : dval(rv);
2614 }
2615 
2616 static int
quorem(b,S)2617 quorem
2618 #ifdef KR_headers
2619 (b, S) Bigint *b, *S;
2620 #else
2621 (Bigint *b, Bigint *S)
2622 #endif
2623 {
2624     int n;
2625     ULong *bx, *bxe, q, *sx, *sxe;
2626 #ifdef ULLong
2627     ULLong borrow, carry, y, ys;
2628 #else
2629     ULong borrow, carry, y, ys;
2630 #ifdef Pack_32
2631     ULong si, z, zs;
2632 #endif
2633 #endif
2634 
2635     n = S->wds;
2636 #ifdef DEBUG
2637     /*debug*/ if (b->wds > n)
2638         /*debug*/{
2639         Bug("oversize b in quorem");
2640     }
2641 #endif
2642     if (b->wds < n) {
2643         return 0;
2644     }
2645     sx = S->x;
2646     sxe = sx + --n;
2647     bx = b->x;
2648     bxe = bx + n;
2649     q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2650 #ifdef DEBUG
2651     /*debug*/ if (q > 9)
2652         /*debug*/{
2653         Bug("oversized quotient in quorem");
2654     }
2655 #endif
2656     if (q) {
2657         borrow = 0;
2658         carry = 0;
2659         do {
2660 #ifdef ULLong
2661             ys = *sx++ * (ULLong)q + carry;
2662             carry = ys >> 32;
2663             y = *bx - (ys & FFFFFFFF) - borrow;
2664             borrow = y >> 32 & (ULong)1;
2665             *bx++ = y & FFFFFFFF;
2666 #else
2667 #ifdef Pack_32
2668             si = *sx++;
2669             ys = (si & 0xffff) * q + carry;
2670             zs = (si >> 16) * q + (ys >> 16);
2671             carry = zs >> 16;
2672             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2673             borrow = (y & 0x10000) >> 16;
2674             z = (*bx >> 16) - (zs & 0xffff) - borrow;
2675             borrow = (z & 0x10000) >> 16;
2676             Storeinc(bx, z, y);
2677 #else
2678             ys = *sx++ * q + carry;
2679             carry = ys >> 16;
2680             y = *bx - (ys & 0xffff) - borrow;
2681             borrow = (y & 0x10000) >> 16;
2682             *bx++ = y & 0xffff;
2683 #endif
2684 #endif
2685         }
2686         while(sx <= sxe);
2687         if (!*bxe) {
2688             bx = b->x;
2689             while(--bxe > bx && !*bxe) {
2690                 --n;
2691             }
2692             b->wds = n;
2693         }
2694     }
2695     if (cmp(b, S) >= 0) {
2696         q++;
2697         borrow = 0;
2698         carry = 0;
2699         bx = b->x;
2700         sx = S->x;
2701         do {
2702 #ifdef ULLong
2703             ys = *sx++ + carry;
2704             carry = ys >> 32;
2705             y = *bx - (ys & FFFFFFFF) - borrow;
2706             borrow = y >> 32 & (ULong)1;
2707             *bx++ = y & FFFFFFFF;
2708 #else
2709 #ifdef Pack_32
2710             si = *sx++;
2711             ys = (si & 0xffff) + carry;
2712             zs = (si >> 16) + (ys >> 16);
2713             carry = zs >> 16;
2714             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2715             borrow = (y & 0x10000) >> 16;
2716             z = (*bx >> 16) - (zs & 0xffff) - borrow;
2717             borrow = (z & 0x10000) >> 16;
2718             Storeinc(bx, z, y);
2719 #else
2720             ys = *sx++ + carry;
2721             carry = ys >> 16;
2722             y = *bx - (ys & 0xffff) - borrow;
2723             borrow = (y & 0x10000) >> 16;
2724             *bx++ = y & 0xffff;
2725 #endif
2726 #endif
2727         }
2728         while(sx <= sxe);
2729         bx = b->x;
2730         bxe = bx + n;
2731         if (!*bxe) {
2732             while(--bxe > bx && !*bxe) {
2733                 --n;
2734             }
2735             b->wds = n;
2736         }
2737     }
2738     return q;
2739 }
2740 
2741 #ifndef MULTIPLE_THREADS
2742 static char *dtoa_result;
2743 #endif
2744 
2745 static char *
2746 #ifdef KR_headers
rv_alloc(i)2747 rv_alloc(i) int i;
2748 #else
2749 rv_alloc(int i)
2750 #endif
2751 {
2752     int j, k, *r;
2753 
2754     j = sizeof(ULong);
2755     for(k = 0;
2756         sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
2757         j <<= 1) {
2758         k++;
2759     }
2760     r = (int*)Balloc(k);
2761     *r = k;
2762     return
2763 #ifndef MULTIPLE_THREADS
2764         dtoa_result =
2765 #endif
2766             (char *)(r+1);
2767 }
2768 
2769 static char *
2770 #ifdef KR_headers
nrv_alloc(s,rve,n)2771 nrv_alloc(s, rve, n) char *s, **rve; int n;
2772 #else
2773 nrv_alloc(char *s, char **rve, int n)
2774 #endif
2775 {
2776     char *rv, *t;
2777 
2778     t = rv = rv_alloc(n);
2779     while(*t = *s++) {
2780         t++;
2781     }
2782     if (rve) {
2783         *rve = t;
2784     }
2785     return rv;
2786 }
2787 
2788 /* freedtoa(s) must be used to free values s returned by dtoa
2789  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2790  * but for consistency with earlier versions of dtoa, it is optional
2791  * when MULTIPLE_THREADS is not defined.
2792  */
2793 
2794 static void
2795 #ifdef KR_headers
freedtoa(s)2796 freedtoa(s) char *s;
2797 #else
2798 freedtoa(char *s)
2799 #endif
2800 {
2801     Bigint *b = (Bigint *)((int *)s - 1);
2802     b->maxwds = 1 << (b->k = *(int*)b);
2803     Bfree(b);
2804 #ifndef MULTIPLE_THREADS
2805     if (s == dtoa_result) {
2806         dtoa_result = 0;
2807     }
2808 #endif
2809 }
2810 
2811 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2812  *
2813  * Inspired by "How to Print Floating-Point Numbers Accurately" by
2814  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2815  *
2816  * Modifications:
2817  *  1. Rather than iterating, we use a simple numeric overestimate
2818  *     to determine k = floor(log10(d)).  We scale relevant
2819  *     quantities using O(log2(k)) rather than O(k) multiplications.
2820  *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2821  *     try to generate digits strictly left to right.  Instead, we
2822  *     compute with fewer bits and propagate the carry if necessary
2823  *     when rounding the final digit up.  This is often faster.
2824  *  3. Under the assumption that input will be rounded nearest,
2825  *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2826  *     That is, we allow equality in stopping tests when the
2827  *     round-nearest rule will give the same floating-point value
2828  *     as would satisfaction of the stopping test with strict
2829  *     inequality.
2830  *  4. We remove common factors of powers of 2 from relevant
2831  *     quantities.
2832  *  5. When converting floating-point integers less than 1e16,
2833  *     we use floating-point arithmetic rather than resorting
2834  *     to multiple-precision integers.
2835  *  6. When asked to produce fewer than 15 digits, we first try
2836  *     to get by with floating-point arithmetic; we resort to
2837  *     multiple-precision integer arithmetic only if we cannot
2838  *     guarantee that the floating-point calculation has given
2839  *     the correctly rounded result.  For k requested digits and
2840  *     "uniformly" distributed input, the probability is
2841  *     something like 10^(k-15) that we must resort to the Long
2842  *     calculation.
2843  */
2844 
2845 static char *
dtoa(dd,mode,ndigits,decpt,sign,rve)2846 dtoa
2847 #ifdef KR_headers
2848 (dd, mode, ndigits, decpt, sign, rve)
2849 double dd; int mode, ndigits, *decpt, *sign; char **rve;
2850 #else
2851 (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
2852 #endif
2853 {
2854     /* Arguments ndigits, decpt, sign are similar to those
2855     of ecvt and fcvt; trailing zeros are suppressed from
2856     the returned string.  If not null, *rve is set to point
2857     to the end of the return value.  If d is +-Infinity or NaN,
2858     then *decpt is set to 9999.
2859 
2860     mode:
2861        0 ==> shortest string that yields d when read in
2862            and rounded to nearest.
2863        1 ==> like 0, but with Steele & White stopping rule;
2864            e.g. with IEEE P754 arithmetic , mode 0 gives
2865            1e23 whereas mode 1 gives 9.999999999999999e22.
2866        2 ==> max(1,ndigits) significant digits.  This gives a
2867            return value similar to that of ecvt, except
2868            that trailing zeros are suppressed.
2869        3 ==> through ndigits past the decimal point.  This
2870            gives a return value similar to that from fcvt,
2871            except that trailing zeros are suppressed, and
2872            ndigits can be negative.
2873        4,5 ==> similar to 2 and 3, respectively, but (in
2874            round-nearest mode) with the tests of mode 0 to
2875            possibly return a shorter string that rounds to d.
2876            With IEEE arithmetic and compilation with
2877            -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2878            as modes 2 and 3 when FLT_ROUNDS != 1.
2879        6-9 ==> Debugging modes similar to mode - 4:  don't try
2880            fast floating-point estimate (if applicable).
2881 
2882        Values of mode other than 0-9 are treated as mode 0.
2883 
2884        Sufficient space is allocated to the return value
2885        to hold the suppressed trailing zeros.
2886     */
2887 
2888     int bbits, b2, b5, be, dig, i, ieps, ilim = -1, ilim0, ilim1 = -1,
2889                                          j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2890                                          spec_case, try_quick;
2891     Long L;
2892 #ifndef Sudden_Underflow
2893     int denorm;
2894     ULong x;
2895 #endif
2896     Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2897     U d, d2, eps;
2898     double ds;
2899     char *s, *s0;
2900 #ifdef Honor_FLT_ROUNDS
2901     int rounding;
2902 #endif
2903 #ifdef SET_INEXACT
2904     int inexact, oldinexact;
2905 #endif
2906 
2907 #ifndef MULTIPLE_THREADS
2908     if (dtoa_result) {
2909         freedtoa(dtoa_result);
2910         dtoa_result = 0;
2911     }
2912 #endif
2913 
2914     dval(d) = dd;
2915     if (word0(d) & Sign_bit) {
2916         /* set sign for everything, including 0's and NaNs */
2917         *sign = 1;
2918         word0(d) &= ~Sign_bit;  /* clear sign bit */
2919     }
2920     else {
2921         *sign = 0;
2922     }
2923 
2924 #if defined(IEEE_Arith) + defined(VAX)
2925 #ifdef IEEE_Arith
2926     if ((word0(d) & Exp_mask) == Exp_mask)
2927 #else
2928     if (word0(d)  == 0x8000)
2929 #endif
2930     {
2931         /* Infinity or NaN */
2932         *decpt = 9999;
2933 #ifdef IEEE_Arith
2934         if (!word1(d) && !(word0(d) & 0xfffff)) {
2935             return nrv_alloc("Infinity", rve, 8);
2936         }
2937 #endif
2938         return nrv_alloc("NaN", rve, 3);
2939     }
2940 #endif
2941 #ifdef IBM
2942     dval(d) += 0; /* normalize */
2943 #endif
2944     if (!dval(d)) {
2945         *decpt = 1;
2946         return nrv_alloc("0", rve, 1);
2947     }
2948 
2949 #ifdef SET_INEXACT
2950     try_quick = oldinexact = get_inexact();
2951     inexact = 1;
2952 #endif
2953 #ifdef Honor_FLT_ROUNDS
2954     if ((rounding = Flt_Rounds) >= 2) {
2955         if (*sign) {
2956             rounding = rounding == 2 ? 0 : 2;
2957         }
2958         else if (rounding != 2) {
2959             rounding = 0;
2960         }
2961     }
2962 #endif
2963 
2964     b = d2b(dval(d), &be, &bbits);
2965 #ifdef Sudden_Underflow
2966     i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
2967 #else
2968     if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
2969 #endif
2970     dval(d2) = dval(d);
2971     word0(d2) &= Frac_mask1;
2972     word0(d2) |= Exp_11;
2973 #ifdef IBM
2974     if (j = 11 - hi0bits(word0(d2) & Frac_mask)) {
2975         dval(d2) /= 1 << j;
2976     }
2977 #endif
2978 
2979     /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
2980      * log10(x)  =  log(x) / log(10)
2981      *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2982      * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2983      *
2984      * This suggests computing an approximation k to log10(d) by
2985      *
2986      * k = (i - Bias)*0.301029995663981
2987      *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2988      *
2989      * We want k to be too large rather than too small.
2990      * The error in the first-order Taylor series approximation
2991      * is in our favor, so we just round up the constant enough
2992      * to compensate for any error in the multiplication of
2993      * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2994      * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2995      * adding 1e-13 to the constant term more than suffices.
2996      * Hence we adjust the constant term to 0.1760912590558.
2997      * (We could get a more accurate k by invoking log10,
2998      *  but this is probably not worthwhile.)
2999      */
3000 
3001     i -= Bias;
3002 #ifdef IBM
3003     i <<= 2;
3004     i += j;
3005 #endif
3006 #ifndef Sudden_Underflow
3007     denorm = 0;
3008 }
3009 else {
3010     /* d is denormalized */
3011 
3012     i = bbits + be + (Bias + (P-1) - 1);
3013     x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
3014         : word1(d) << 32 - i;
3015     dval(d2) = x;
3016     word0(d2) -= 31*Exp_msk1; /* adjust exponent */
3017     i -= (Bias + (P-1) - 1) + 1;
3018     denorm = 1;
3019 }
3020 #endif
3021 ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3022 k = (int)ds;
3023 if (ds < 0. && ds != k) {
3024     k--;    /* want k = floor(ds) */
3025 }
3026 k_check = 1;
3027 if (k >= 0 && k <= Ten_pmax) {
3028     if (dval(d) < tens[k]) {
3029         k--;
3030     }
3031     k_check = 0;
3032 }
3033 j = bbits - i - 1;
3034 if (j >= 0) {
3035     b2 = 0;
3036     s2 = j;
3037 }
3038 else {
3039     b2 = -j;
3040     s2 = 0;
3041 }
3042 if (k >= 0) {
3043     b5 = 0;
3044     s5 = k;
3045     s2 += k;
3046 }
3047 else {
3048     b2 -= k;
3049     b5 = -k;
3050     s5 = 0;
3051 }
3052 if (mode < 0 || mode > 9) {
3053     mode = 0;
3054 }
3055 
3056 #ifndef SET_INEXACT
3057 #ifdef Check_FLT_ROUNDS
3058 try_quick = Rounding == 1;
3059 #else
3060 try_quick = 1;
3061 #endif
3062 #endif /*SET_INEXACT*/
3063 
3064 if (mode > 5) {
3065     mode -= 4;
3066     try_quick = 0;
3067 }
3068 leftright = 1;
3069 switch(mode) {
3070 case 0:
3071 case 1:
3072     ilim = ilim1 = -1;
3073     i = 18;
3074     ndigits = 0;
3075     break;
3076 case 2:
3077     leftright = 0;
3078 /* no break */
3079 case 4:
3080     if (ndigits <= 0) {
3081         ndigits = 1;
3082     }
3083     ilim = ilim1 = i = ndigits;
3084     break;
3085 case 3:
3086     leftright = 0;
3087 /* no break */
3088 case 5:
3089     i = ndigits + k + 1;
3090     ilim = i;
3091     ilim1 = i - 1;
3092     if (i <= 0) {
3093         i = 1;
3094     }
3095 }
3096 s = s0 = rv_alloc(i);
3097 
3098 #ifdef Honor_FLT_ROUNDS
3099 if (mode > 1 && rounding != 1) {
3100     leftright = 0;
3101 }
3102 #endif
3103 
3104 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3105 
3106     /* Try to get by with floating-point arithmetic. */
3107 
3108     i = 0;
3109     dval(d2) = dval(d);
3110     k0 = k;
3111     ilim0 = ilim;
3112     ieps = 2; /* conservative */
3113     if (k > 0) {
3114         ds = tens[k&0xf];
3115         j = k >> 4;
3116         if (j & Bletch) {
3117             /* prevent overflows */
3118             j &= Bletch - 1;
3119             dval(d) /= bigtens[n_bigtens-1];
3120             ieps++;
3121         }
3122         for(; j; j >>= 1, i++)
3123             if (j & 1) {
3124                 ieps++;
3125                 ds *= bigtens[i];
3126             }
3127         dval(d) /= ds;
3128     }
3129     else if (j1 = -k) {
3130         dval(d) *= tens[j1 & 0xf];
3131         for(j = j1 >> 4; j; j >>= 1, i++)
3132             if (j & 1) {
3133                 ieps++;
3134                 dval(d) *= bigtens[i];
3135             }
3136     }
3137     if (k_check && dval(d) < 1. && ilim > 0) {
3138         if (ilim1 <= 0) {
3139             goto fast_failed;
3140         }
3141         ilim = ilim1;
3142         k--;
3143         dval(d) *= 10.;
3144         ieps++;
3145     }
3146     dval(eps) = ieps*dval(d) + 7.;
3147     word0(eps) -= (P-1)*Exp_msk1;
3148     if (ilim == 0) {
3149         S = mhi = 0;
3150         dval(d) -= 5.;
3151         if (dval(d) > dval(eps)) {
3152             goto one_digit;
3153         }
3154         if (dval(d) < -dval(eps)) {
3155             goto no_digits;
3156         }
3157         goto fast_failed;
3158     }
3159 #ifndef No_leftright
3160     if (leftright) {
3161         /* Use Steele & White method of only
3162          * generating digits needed.
3163          */
3164         dval(eps) = 0.5/tens[ilim-1] - dval(eps);
3165         for(i = 0;;) {
3166             L = dval(d);
3167             dval(d) -= L;
3168             *s++ = '0' + (int)L;
3169             if (dval(d) < dval(eps)) {
3170                 goto ret1;
3171             }
3172             if (1. - dval(d) < dval(eps)) {
3173                 goto bump_up;
3174             }
3175             if (++i >= ilim) {
3176                 break;
3177             }
3178             dval(eps) *= 10.;
3179             dval(d) *= 10.;
3180         }
3181     }
3182     else {
3183 #endif
3184         /* Generate ilim digits, then fix them up. */
3185         dval(eps) *= tens[ilim-1];
3186         for(i = 1;; i++, dval(d) *= 10.) {
3187             L = (Long)(dval(d));
3188             if (!(dval(d) -= L)) {
3189                 ilim = i;
3190             }
3191             *s++ = '0' + (int)L;
3192             if (i == ilim) {
3193                 if (dval(d) > 0.5 + dval(eps)) {
3194                     goto bump_up;
3195                 }
3196                 else if (dval(d) < 0.5 - dval(eps)) {
3197                     while(*--s == '0');
3198                     s++;
3199                     goto ret1;
3200                 }
3201                 break;
3202             }
3203         }
3204 #ifndef No_leftright
3205     }
3206 #endif
3207 fast_failed:
3208     s = s0;
3209     dval(d) = dval(d2);
3210     k = k0;
3211     ilim = ilim0;
3212 }
3213 
3214 /* Do we have a "small" integer? */
3215 
3216 if (be >= 0 && k <= Int_max) {
3217     /* Yes. */
3218     ds = tens[k];
3219     if (ndigits < 0 && ilim <= 0) {
3220         S = mhi = 0;
3221         if (ilim < 0 || dval(d) <= 5*ds) {
3222             goto no_digits;
3223         }
3224         goto one_digit;
3225     }
3226     for(i = 1; i <= k+1; i++, dval(d) *= 10.) {
3227         L = (Long)(dval(d) / ds);
3228         dval(d) -= L*ds;
3229 #ifdef Check_FLT_ROUNDS
3230         /* If FLT_ROUNDS == 2, L will usually be high by 1 */
3231         if (dval(d) < 0) {
3232             L--;
3233             dval(d) += ds;
3234         }
3235 #endif
3236         *s++ = '0' + (int)L;
3237         if (!dval(d)) {
3238 #ifdef SET_INEXACT
3239             inexact = 0;
3240 #endif
3241             break;
3242         }
3243         if (i == ilim) {
3244 #ifdef Honor_FLT_ROUNDS
3245             if (mode > 1)
3246                 switch(rounding) {
3247                     case 0: goto ret1;
3248                     case 2: goto bump_up;
3249                 }
3250 #endif
3251             dval(d) += dval(d);
3252             if (dval(d) > ds || dval(d) == ds && L & 1) {
3253 bump_up:
3254                 while(*--s == '9')
3255                     if (s == s0) {
3256                         k++;
3257                         *s = '0';
3258                         break;
3259                     }
3260                 ++*s++;
3261             }
3262             break;
3263         }
3264     }
3265     goto ret1;
3266 }
3267 
3268 m2 = b2;
3269 m5 = b5;
3270 mhi = mlo = 0;
3271 if (leftright) {
3272     i =
3273 #ifndef Sudden_Underflow
3274         denorm ? be + (Bias + (P-1) - 1 + 1) :
3275 #endif
3276 #ifdef IBM
3277         1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
3278 #else
3279         1 + P - bbits;
3280 #endif
3281     b2 += i;
3282     s2 += i;
3283     mhi = i2b(1);
3284 }
3285 if (m2 > 0 && s2 > 0) {
3286     i = m2 < s2 ? m2 : s2;
3287     b2 -= i;
3288     m2 -= i;
3289     s2 -= i;
3290 }
3291 if (b5 > 0) {
3292     if (leftright) {
3293         if (m5 > 0) {
3294             mhi = pow5mult(mhi, m5);
3295             b1 = mult(mhi, b);
3296             Bfree(b);
3297             b = b1;
3298         }
3299         if (j = b5 - m5) {
3300             b = pow5mult(b, j);
3301         }
3302     }
3303     else {
3304         b = pow5mult(b, b5);
3305     }
3306 }
3307 S = i2b(1);
3308 if (s5 > 0) {
3309     S = pow5mult(S, s5);
3310 }
3311 
3312 /* Check for special case that d is a normalized power of 2. */
3313 
3314 spec_case = 0;
3315 if ((mode < 2 || leftright)
3316 #ifdef Honor_FLT_ROUNDS
3317     && rounding == 1
3318 #endif
3319    ) {
3320     if (!word1(d) && !(word0(d) & Bndry_mask)
3321 #ifndef Sudden_Underflow
3322         && word0(d) & (Exp_mask & ~Exp_msk1)
3323 #endif
3324        ) {
3325         /* The special case */
3326         b2 += Log2P;
3327         s2 += Log2P;
3328         spec_case = 1;
3329     }
3330 }
3331 
3332 /* Arrange for convenient computation of quotients:
3333  * shift left if necessary so divisor has 4 leading 0 bits.
3334  *
3335  * Perhaps we should just compute leading 28 bits of S once
3336  * and for all and pass them and a shift to quorem, so it
3337  * can do shifts and ors to compute the numerator for q.
3338  */
3339 #ifdef Pack_32
3340 if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) {
3341     i = 32 - i;
3342 }
3343 #else
3344 if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) {
3345     i = 16 - i;
3346 }
3347 #endif
3348 if (i > 4) {
3349     i -= 4;
3350     b2 += i;
3351     m2 += i;
3352     s2 += i;
3353 }
3354 else if (i < 4) {
3355     i += 28;
3356     b2 += i;
3357     m2 += i;
3358     s2 += i;
3359 }
3360 if (b2 > 0) {
3361     b = lshift(b, b2);
3362 }
3363 if (s2 > 0) {
3364     S = lshift(S, s2);
3365 }
3366 if (k_check) {
3367     if (cmp(b,S) < 0) {
3368         k--;
3369         b = multadd(b, 10, 0);  /* we botched the k estimate */
3370         if (leftright) {
3371             mhi = multadd(mhi, 10, 0);
3372         }
3373         ilim = ilim1;
3374     }
3375 }
3376 if (ilim <= 0 && (mode == 3 || mode == 5)) {
3377     if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
3378         /* no digits, fcvt style */
3379 no_digits:
3380         k = -1 - ndigits;
3381         goto ret;
3382     }
3383 one_digit:
3384     *s++ = '1';
3385     k++;
3386     goto ret;
3387 }
3388 if (leftright) {
3389     if (m2 > 0) {
3390         mhi = lshift(mhi, m2);
3391     }
3392 
3393     /* Compute mlo -- check for special case
3394      * that d is a normalized power of 2.
3395      */
3396 
3397     mlo = mhi;
3398     if (spec_case) {
3399         mhi = Balloc(mhi->k);
3400         Bcopy(mhi, mlo);
3401         mhi = lshift(mhi, Log2P);
3402     }
3403 
3404     for(i = 1;; i++) {
3405         dig = quorem(b,S) + '0';
3406         /* Do we yet have the shortest decimal string
3407          * that will round to d?
3408          */
3409         j = cmp(b, mlo);
3410         delta = diff(S, mhi);
3411         j1 = delta->sign ? 1 : cmp(b, delta);
3412         Bfree(delta);
3413 #ifndef ROUND_BIASED
3414         if (j1 == 0 && mode != 1 && !(word1(d) & 1)
3415 #ifdef Honor_FLT_ROUNDS
3416             && rounding >= 1
3417 #endif
3418            ) {
3419             if (dig == '9') {
3420                 goto round_9_up;
3421             }
3422             if (j > 0) {
3423                 dig++;
3424             }
3425 #ifdef SET_INEXACT
3426             else if (!b->x[0] && b->wds <= 1) {
3427                 inexact = 0;
3428             }
3429 #endif
3430             *s++ = dig;
3431             goto ret;
3432         }
3433 #endif
3434         if (j < 0 || j == 0 && mode != 1
3435 #ifndef ROUND_BIASED
3436             && !(word1(d) & 1)
3437 #endif
3438            ) {
3439             if (!b->x[0] && b->wds <= 1) {
3440 #ifdef SET_INEXACT
3441                 inexact = 0;
3442 #endif
3443                 goto accept_dig;
3444             }
3445 #ifdef Honor_FLT_ROUNDS
3446             if (mode > 1)
3447                 switch(rounding) {
3448                     case 0: goto accept_dig;
3449                     case 2: goto keep_dig;
3450                 }
3451 #endif /*Honor_FLT_ROUNDS*/
3452             if (j1 > 0) {
3453                 b = lshift(b, 1);
3454                 j1 = cmp(b, S);
3455                 if ((j1 > 0 || j1 == 0 && dig & 1)
3456                     && dig++ == '9') {
3457                     goto round_9_up;
3458                 }
3459             }
3460 accept_dig:
3461             *s++ = dig;
3462             goto ret;
3463         }
3464         if (j1 > 0) {
3465 #ifdef Honor_FLT_ROUNDS
3466             if (!rounding) {
3467                 goto accept_dig;
3468             }
3469 #endif
3470             if (dig == '9') { /* possible if i == 1 */
3471 round_9_up:
3472                 *s++ = '9';
3473                 goto roundoff;
3474             }
3475             *s++ = dig + 1;
3476             goto ret;
3477         }
3478 #ifdef Honor_FLT_ROUNDS
3479 keep_dig:
3480 #endif
3481         *s++ = dig;
3482         if (i == ilim) {
3483             break;
3484         }
3485         b = multadd(b, 10, 0);
3486         if (mlo == mhi) {
3487             mlo = mhi = multadd(mhi, 10, 0);
3488         }
3489         else {
3490             mlo = multadd(mlo, 10, 0);
3491             mhi = multadd(mhi, 10, 0);
3492         }
3493     }
3494 }
3495 else
3496     for(i = 1;; i++) {
3497         *s++ = dig = quorem(b,S) + '0';
3498         if (!b->x[0] && b->wds <= 1) {
3499 #ifdef SET_INEXACT
3500             inexact = 0;
3501 #endif
3502             goto ret;
3503         }
3504         if (i >= ilim) {
3505             break;
3506         }
3507         b = multadd(b, 10, 0);
3508     }
3509 
3510 /* Round off last digit */
3511 
3512 #ifdef Honor_FLT_ROUNDS
3513 switch(rounding) {
3514 case 0: goto trimzeros;
3515 case 2: goto roundoff;
3516 }
3517 #endif
3518 b = lshift(b, 1);
3519 j = cmp(b, S);
3520 if (j > 0 || j == 0 && dig & 1) {
3521 roundoff:
3522     while(*--s == '9')
3523         if (s == s0) {
3524             k++;
3525             *s++ = '1';
3526             goto ret;
3527         }
3528     ++*s++;
3529 }
3530 else {
3531 #ifdef Honor_FLT_ROUNDS
3532 trimzeros:
3533 #endif
3534     while(*--s == '0');
3535     s++;
3536 }
3537 ret:
3538 Bfree(S);
3539 if (mhi) {
3540     if (mlo && mlo != mhi) {
3541         Bfree(mlo);
3542     }
3543     Bfree(mhi);
3544 }
3545 ret1:
3546 #ifdef SET_INEXACT
3547 if (inexact) {
3548     if (!oldinexact) {
3549         word0(d) = Exp_1 + (70 << Exp_shift);
3550         word1(d) = 0;
3551         dval(d) += 1.;
3552     }
3553 }
3554 else if (!oldinexact) {
3555     clear_inexact();
3556 }
3557 #endif
3558 Bfree(b);
3559 *s = 0;
3560 *decpt = k + 1;
3561 if (rve) {
3562     *rve = s;
3563 }
3564 return s0;
3565 }
3566 #ifdef __cplusplus
3567 }
3568 #endif
3569 
3570 PR_IMPLEMENT(PRStatus)
PR_dtoa(PRFloat64 d,PRIntn mode,PRIntn ndigits,PRIntn * decpt,PRIntn * sign,char ** rve,char * buf,PRSize bufsize)3571 PR_dtoa(PRFloat64 d, PRIntn mode, PRIntn ndigits,
3572         PRIntn *decpt, PRIntn *sign, char **rve, char *buf, PRSize bufsize)
3573 {
3574     char *result;
3575     PRSize resultlen;
3576     PRStatus rv = PR_FAILURE;
3577 
3578     if (!_pr_initialized) {
3579         _PR_ImplicitInitialization();
3580     }
3581 
3582     if (mode < 0 || mode > 3) {
3583         PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0);
3584         return rv;
3585     }
3586     result = dtoa(d, mode, ndigits, decpt, sign, rve);
3587     if (!result) {
3588         PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0);
3589         return rv;
3590     }
3591     resultlen = strlen(result)+1;
3592     if (bufsize < resultlen) {
3593         PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0);
3594     } else {
3595         memcpy(buf, result, resultlen);
3596         if (rve) {
3597             *rve = buf + (*rve - result);
3598         }
3599         rv = PR_SUCCESS;
3600     }
3601     freedtoa(result);
3602     return rv;
3603 }
3604 
3605 /*
3606 ** conversion routines for floating point
3607 ** prcsn - number of digits of precision to generate floating
3608 ** point value.
3609 ** This should be reparameterized so that you can send in a
3610 **   prcn for the positive and negative ranges.  For now,
3611 **   conform to the ECMA JavaScript spec which says numbers
3612 **   less than 1e-6 are in scientific notation.
3613 ** Also, the ECMA spec says that there should always be a
3614 **   '+' or '-' after the 'e' in scientific notation
3615 */
3616 PR_IMPLEMENT(void)
PR_cnvtf(char * buf,int bufsz,int prcsn,double dfval)3617 PR_cnvtf(char *buf, int bufsz, int prcsn, double dfval)
3618 {
3619     PRIntn decpt, sign, numdigits;
3620     char *num, *nump;
3621     char *bufp = buf;
3622     char *endnum;
3623     U fval;
3624 
3625     dval(fval) = dfval;
3626     /* If anything fails, we store an empty string in 'buf' */
3627     num = (char*)PR_MALLOC(bufsz);
3628     if (num == NULL) {
3629         buf[0] = '\0';
3630         return;
3631     }
3632     /* XXX Why use mode 1? */
3633     if (PR_dtoa(dval(fval),1,prcsn,&decpt,&sign,&endnum,num,bufsz)
3634         == PR_FAILURE) {
3635         buf[0] = '\0';
3636         goto done;
3637     }
3638     numdigits = endnum - num;
3639     nump = num;
3640 
3641     if (sign &&
3642         !(word0(fval) == Sign_bit && word1(fval) == 0) &&
3643         !((word0(fval) & Exp_mask) == Exp_mask &&
3644           (word1(fval) || (word0(fval) & 0xfffff)))) {
3645         *bufp++ = '-';
3646     }
3647 
3648     if (decpt == 9999) {
3649         while ((*bufp++ = *nump++) != 0) {} /* nothing to execute */
3650         goto done;
3651     }
3652 
3653     if (decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5) {
3654         *bufp++ = *nump++;
3655         if (numdigits != 1) {
3656             *bufp++ = '.';
3657         }
3658 
3659         while (*nump != '\0') {
3660             *bufp++ = *nump++;
3661         }
3662         *bufp++ = 'e';
3663         PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt-1);
3664     } else if (decpt >= 0) {
3665         if (decpt == 0) {
3666             *bufp++ = '0';
3667         } else {
3668             while (decpt--) {
3669                 if (*nump != '\0') {
3670                     *bufp++ = *nump++;
3671                 } else {
3672                     *bufp++ = '0';
3673                 }
3674             }
3675         }
3676         if (*nump != '\0') {
3677             *bufp++ = '.';
3678             while (*nump != '\0') {
3679                 *bufp++ = *nump++;
3680             }
3681         }
3682         *bufp++ = '\0';
3683     } else if (decpt < 0) {
3684         *bufp++ = '0';
3685         *bufp++ = '.';
3686         while (decpt++) {
3687             *bufp++ = '0';
3688         }
3689 
3690         while (*nump != '\0') {
3691             *bufp++ = *nump++;
3692         }
3693         *bufp++ = '\0';
3694     }
3695 done:
3696     PR_DELETE(num);
3697 }
3698