1package Paws::MachineLearning {
2  use Moose;
3  sub service { 'machinelearning' }
4  sub version { '2014-12-12' }
5  sub target_prefix { 'AmazonML_20141212' }
6  sub json_version { "1.1" }
7
8  with 'Paws::API::Caller', 'Paws::API::EndpointResolver', 'Paws::Net::V4Signature', 'Paws::Net::JsonCaller', 'Paws::Net::JsonResponse';
9
10
11  sub CreateBatchPrediction {
12    my $self = shift;
13    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateBatchPrediction', @_);
14    return $self->caller->do_call($self, $call_object);
15  }
16  sub CreateDataSourceFromRDS {
17    my $self = shift;
18    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRDS', @_);
19    return $self->caller->do_call($self, $call_object);
20  }
21  sub CreateDataSourceFromRedshift {
22    my $self = shift;
23    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRedshift', @_);
24    return $self->caller->do_call($self, $call_object);
25  }
26  sub CreateDataSourceFromS3 {
27    my $self = shift;
28    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromS3', @_);
29    return $self->caller->do_call($self, $call_object);
30  }
31  sub CreateEvaluation {
32    my $self = shift;
33    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateEvaluation', @_);
34    return $self->caller->do_call($self, $call_object);
35  }
36  sub CreateMLModel {
37    my $self = shift;
38    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateMLModel', @_);
39    return $self->caller->do_call($self, $call_object);
40  }
41  sub CreateRealtimeEndpoint {
42    my $self = shift;
43    my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateRealtimeEndpoint', @_);
44    return $self->caller->do_call($self, $call_object);
45  }
46  sub DeleteBatchPrediction {
47    my $self = shift;
48    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteBatchPrediction', @_);
49    return $self->caller->do_call($self, $call_object);
50  }
51  sub DeleteDataSource {
52    my $self = shift;
53    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteDataSource', @_);
54    return $self->caller->do_call($self, $call_object);
55  }
56  sub DeleteEvaluation {
57    my $self = shift;
58    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteEvaluation', @_);
59    return $self->caller->do_call($self, $call_object);
60  }
61  sub DeleteMLModel {
62    my $self = shift;
63    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteMLModel', @_);
64    return $self->caller->do_call($self, $call_object);
65  }
66  sub DeleteRealtimeEndpoint {
67    my $self = shift;
68    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteRealtimeEndpoint', @_);
69    return $self->caller->do_call($self, $call_object);
70  }
71  sub DescribeBatchPredictions {
72    my $self = shift;
73    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeBatchPredictions', @_);
74    return $self->caller->do_call($self, $call_object);
75  }
76  sub DescribeDataSources {
77    my $self = shift;
78    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeDataSources', @_);
79    return $self->caller->do_call($self, $call_object);
80  }
81  sub DescribeEvaluations {
82    my $self = shift;
83    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeEvaluations', @_);
84    return $self->caller->do_call($self, $call_object);
85  }
86  sub DescribeMLModels {
87    my $self = shift;
88    my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeMLModels', @_);
89    return $self->caller->do_call($self, $call_object);
90  }
91  sub GetBatchPrediction {
92    my $self = shift;
93    my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetBatchPrediction', @_);
94    return $self->caller->do_call($self, $call_object);
95  }
96  sub GetDataSource {
97    my $self = shift;
98    my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetDataSource', @_);
99    return $self->caller->do_call($self, $call_object);
100  }
101  sub GetEvaluation {
102    my $self = shift;
103    my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetEvaluation', @_);
104    return $self->caller->do_call($self, $call_object);
105  }
106  sub GetMLModel {
107    my $self = shift;
108    my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetMLModel', @_);
109    return $self->caller->do_call($self, $call_object);
110  }
111  sub Predict {
112    my $self = shift;
113    my $call_object = $self->new_with_coercions('Paws::MachineLearning::Predict', @_);
114    return $self->caller->do_call($self, $call_object);
115  }
116  sub UpdateBatchPrediction {
117    my $self = shift;
118    my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateBatchPrediction', @_);
119    return $self->caller->do_call($self, $call_object);
120  }
121  sub UpdateDataSource {
122    my $self = shift;
123    my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateDataSource', @_);
124    return $self->caller->do_call($self, $call_object);
125  }
126  sub UpdateEvaluation {
127    my $self = shift;
128    my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateEvaluation', @_);
129    return $self->caller->do_call($self, $call_object);
130  }
131  sub UpdateMLModel {
132    my $self = shift;
133    my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateMLModel', @_);
134    return $self->caller->do_call($self, $call_object);
135  }
136}
1371;
138
139### main pod documentation begin ###
140
141=head1 NAME
142
143Paws::MachineLearning - Perl Interface to AWS Amazon Machine Learning
144
145=head1 SYNOPSIS
146
147  use Paws;
148
149  my $obj = Paws->service('MachineLearning')->new;
150  my $res = $obj->Method(
151    Arg1 => $val1,
152    Arg2 => [ 'V1', 'V2' ],
153    # if Arg3 is an object, the HashRef will be used as arguments to the constructor
154    # of the arguments type
155    Arg3 => { Att1 => 'Val1' },
156    # if Arg4 is an array of objects, the HashRefs will be passed as arguments to
157    # the constructor of the arguments type
158    Arg4 => [ { Att1 => 'Val1'  }, { Att1 => 'Val2' } ],
159  );
160
161=head1 DESCRIPTION
162
163
164
165Definition of the public APIs exposed by Amazon Machine Learning
166
167
168
169
170
171
172
173
174
175
176=head1 METHODS
177
178=head2 CreateBatchPrediction(BatchPredictionDataSourceId => Str, BatchPredictionId => Str, MLModelId => Str, OutputUri => Str, [BatchPredictionName => Str])
179
180Each argument is described in detail in: L<Paws::MachineLearning::CreateBatchPrediction>
181
182Returns: a L<Paws::MachineLearning::CreateBatchPredictionOutput> instance
183
184
185
186Generates predictions for a group of observations. The observations to
187process exist in one or more data files referenced by a C<DataSource>.
188This operation creates a new C<BatchPrediction>, and uses an C<MLModel>
189and the data files referenced by the C<DataSource> as information
190sources.
191
192C<CreateBatchPrediction> is an asynchronous operation. In response to
193C<CreateBatchPrediction>, Amazon Machine Learning (Amazon ML)
194immediately returns and sets the C<BatchPrediction> status to
195C<PENDING>. After the C<BatchPrediction> completes, Amazon ML sets the
196status to C<COMPLETED>.
197
198You can poll for status updates by using the GetBatchPrediction
199operation and checking the C<Status> parameter of the result. After the
200C<COMPLETED> status appears, the results are available in the location
201specified by the C<OutputUri> parameter.
202
203
204
205
206
207
208
209
210
211
212
213=head2 CreateDataSourceFromRDS(DataSourceId => Str, RDSData => Paws::MachineLearning::RDSDataSpec, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str])
214
215Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRDS>
216
217Returns: a L<Paws::MachineLearning::CreateDataSourceFromRDSOutput> instance
218
219
220
221Creates a C<DataSource> object from an Amazon Relational Database
222Service (Amazon RDS). A C<DataSource> references data that can be used
223to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction
224operations.
225
226C<CreateDataSourceFromRDS> is an asynchronous operation. In response to
227C<CreateDataSourceFromRDS>, Amazon Machine Learning (Amazon ML)
228immediately returns and sets the C<DataSource> status to C<PENDING>.
229After the C<DataSource> is created and ready for use, Amazon ML sets
230the C<Status> parameter to C<COMPLETED>. C<DataSource> in C<COMPLETED>
231or C<PENDING> status can only be used to perform CreateMLModel,
232CreateEvaluation, or CreateBatchPrediction operations.
233
234If Amazon ML cannot accept the input source, it sets the C<Status>
235parameter to C<FAILED> and includes an error message in the C<Message>
236attribute of the GetDataSource operation response.
237
238
239
240
241
242
243
244
245
246
247
248=head2 CreateDataSourceFromRedshift(DataSourceId => Str, DataSpec => Paws::MachineLearning::RedshiftDataSpec, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str])
249
250Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRedshift>
251
252Returns: a L<Paws::MachineLearning::CreateDataSourceFromRedshiftOutput> instance
253
254
255
256Creates a C<DataSource> from Amazon Redshift. A C<DataSource>
257references data that can be used to perform either CreateMLModel,
258CreateEvaluation or CreateBatchPrediction operations.
259
260C<CreateDataSourceFromRedshift> is an asynchronous operation. In
261response to C<CreateDataSourceFromRedshift>, Amazon Machine Learning
262(Amazon ML) immediately returns and sets the C<DataSource> status to
263C<PENDING>. After the C<DataSource> is created and ready for use,
264Amazon ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource>
265in C<COMPLETED> or C<PENDING> status can only be used to perform
266CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
267
268If Amazon ML cannot accept the input source, it sets the C<Status>
269parameter to C<FAILED> and includes an error message in the C<Message>
270attribute of the GetDataSource operation response.
271
272The observations should exist in the database hosted on an Amazon
273Redshift cluster and should be specified by a C<SelectSqlQuery>. Amazon
274ML executes Unload command in Amazon Redshift to transfer the result
275set of C<SelectSqlQuery> to C<S3StagingLocation.>
276
277After the C<DataSource> is created, it's ready for use in evaluations
278and batch predictions. If you plan to use the C<DataSource> to train an
279C<MLModel>, the C<DataSource> requires another item -- a recipe. A
280recipe describes the observation variables that participate in training
281an C<MLModel>. A recipe describes how each input variable will be used
282in training. Will the variable be included or excluded from training?
283Will the variable be manipulated, for example, combined with another
284variable or split apart into word combinations? The recipe provides
285answers to these questions. For more information, see the Amazon
286Machine Learning Developer Guide.
287
288
289
290
291
292
293
294
295
296
297
298=head2 CreateDataSourceFromS3(DataSourceId => Str, DataSpec => Paws::MachineLearning::S3DataSpec, [ComputeStatistics => Bool, DataSourceName => Str])
299
300Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromS3>
301
302Returns: a L<Paws::MachineLearning::CreateDataSourceFromS3Output> instance
303
304
305
306Creates a C<DataSource> object. A C<DataSource> references data that
307can be used to perform CreateMLModel, CreateEvaluation, or
308CreateBatchPrediction operations.
309
310C<CreateDataSourceFromS3> is an asynchronous operation. In response to
311C<CreateDataSourceFromS3>, Amazon Machine Learning (Amazon ML)
312immediately returns and sets the C<DataSource> status to C<PENDING>.
313After the C<DataSource> is created and ready for use, Amazon ML sets
314the C<Status> parameter to C<COMPLETED>. C<DataSource> in C<COMPLETED>
315or C<PENDING> status can only be used to perform CreateMLModel,
316CreateEvaluation or CreateBatchPrediction operations.
317
318If Amazon ML cannot accept the input source, it sets the C<Status>
319parameter to C<FAILED> and includes an error message in the C<Message>
320attribute of the GetDataSource operation response.
321
322The observation data used in a C<DataSource> should be ready to use;
323that is, it should have a consistent structure, and missing data values
324should be kept to a minimum. The observation data must reside in one or
325more CSV files in an Amazon Simple Storage Service (Amazon S3) bucket,
326along with a schema that describes the data items by name and type. The
327same schema must be used for all of the data files referenced by the
328C<DataSource>.
329
330After the C<DataSource> has been created, it's ready to use in
331evaluations and batch predictions. If you plan to use the C<DataSource>
332to train an C<MLModel>, the C<DataSource> requires another item: a
333recipe. A recipe describes the observation variables that participate
334in training an C<MLModel>. A recipe describes how each input variable
335will be used in training. Will the variable be included or excluded
336from training? Will the variable be manipulated, for example, combined
337with another variable, or split apart into word combinations? The
338recipe provides answers to these questions. For more information, see
339the Amazon Machine Learning Developer Guide.
340
341
342
343
344
345
346
347
348
349
350
351=head2 CreateEvaluation(EvaluationDataSourceId => Str, EvaluationId => Str, MLModelId => Str, [EvaluationName => Str])
352
353Each argument is described in detail in: L<Paws::MachineLearning::CreateEvaluation>
354
355Returns: a L<Paws::MachineLearning::CreateEvaluationOutput> instance
356
357
358
359Creates a new C<Evaluation> of an C<MLModel>. An C<MLModel> is
360evaluated on a set of observations associated to a C<DataSource>. Like
361a C<DataSource> for an C<MLModel>, the C<DataSource> for an
362C<Evaluation> contains values for the Target Variable. The
363C<Evaluation> compares the predicted result for each observation to the
364actual outcome and provides a summary so that you know how effective
365the C<MLModel> functions on the test data. Evaluation generates a
366relevant performance metric such as BinaryAUC, RegressionRMSE or
367MulticlassAvgFScore based on the corresponding C<MLModelType>:
368C<BINARY>, C<REGRESSION> or C<MULTICLASS>.
369
370C<CreateEvaluation> is an asynchronous operation. In response to
371C<CreateEvaluation>, Amazon Machine Learning (Amazon ML) immediately
372returns and sets the evaluation status to C<PENDING>. After the
373C<Evaluation> is created and ready for use, Amazon ML sets the status
374to C<COMPLETED>.
375
376You can use the GetEvaluation operation to check progress of the
377evaluation during the creation operation.
378
379
380
381
382
383
384
385
386
387
388
389=head2 CreateMLModel(MLModelId => Str, MLModelType => Str, TrainingDataSourceId => Str, [MLModelName => Str, Parameters => Paws::MachineLearning::TrainingParameters, Recipe => Str, RecipeUri => Str])
390
391Each argument is described in detail in: L<Paws::MachineLearning::CreateMLModel>
392
393Returns: a L<Paws::MachineLearning::CreateMLModelOutput> instance
394
395
396
397Creates a new C<MLModel> using the data files and the recipe as
398information sources.
399
400An C<MLModel> is nearly immutable. Users can only update the
401C<MLModelName> and the C<ScoreThreshold> in an C<MLModel> without
402creating a new C<MLModel>.
403
404C<CreateMLModel> is an asynchronous operation. In response to
405C<CreateMLModel>, Amazon Machine Learning (Amazon ML) immediately
406returns and sets the C<MLModel> status to C<PENDING>. After the
407C<MLModel> is created and ready for use, Amazon ML sets the status to
408C<COMPLETED>.
409
410You can use the GetMLModel operation to check progress of the
411C<MLModel> during the creation operation.
412
413CreateMLModel requires a C<DataSource> with computed statistics, which
414can be created by setting C<ComputeStatistics> to C<true> in
415CreateDataSourceFromRDS, CreateDataSourceFromS3, or
416CreateDataSourceFromRedshift operations.
417
418
419
420
421
422
423
424
425
426
427
428=head2 CreateRealtimeEndpoint(MLModelId => Str)
429
430Each argument is described in detail in: L<Paws::MachineLearning::CreateRealtimeEndpoint>
431
432Returns: a L<Paws::MachineLearning::CreateRealtimeEndpointOutput> instance
433
434
435
436Creates a real-time endpoint for the C<MLModel>. The endpoint contains
437the URI of the C<MLModel>; that is, the location to send real-time
438prediction requests for the specified C<MLModel>.
439
440
441
442
443
444
445
446
447
448
449
450=head2 DeleteBatchPrediction(BatchPredictionId => Str)
451
452Each argument is described in detail in: L<Paws::MachineLearning::DeleteBatchPrediction>
453
454Returns: a L<Paws::MachineLearning::DeleteBatchPredictionOutput> instance
455
456
457
458Assigns the DELETED status to a C<BatchPrediction>, rendering it
459unusable.
460
461After using the C<DeleteBatchPrediction> operation, you can use the
462GetBatchPrediction operation to verify that the status of the
463C<BatchPrediction> changed to DELETED.
464
465The result of the C<DeleteBatchPrediction> operation is irreversible.
466
467
468
469
470
471
472
473
474
475
476
477=head2 DeleteDataSource(DataSourceId => Str)
478
479Each argument is described in detail in: L<Paws::MachineLearning::DeleteDataSource>
480
481Returns: a L<Paws::MachineLearning::DeleteDataSourceOutput> instance
482
483
484
485Assigns the DELETED status to a C<DataSource>, rendering it unusable.
486
487After using the C<DeleteDataSource> operation, you can use the
488GetDataSource operation to verify that the status of the C<DataSource>
489changed to DELETED.
490
491The results of the C<DeleteDataSource> operation are irreversible.
492
493
494
495
496
497
498
499
500
501
502
503=head2 DeleteEvaluation(EvaluationId => Str)
504
505Each argument is described in detail in: L<Paws::MachineLearning::DeleteEvaluation>
506
507Returns: a L<Paws::MachineLearning::DeleteEvaluationOutput> instance
508
509
510
511Assigns the C<DELETED> status to an C<Evaluation>, rendering it
512unusable.
513
514After invoking the C<DeleteEvaluation> operation, you can use the
515GetEvaluation operation to verify that the status of the C<Evaluation>
516changed to C<DELETED>.
517
518The results of the C<DeleteEvaluation> operation are irreversible.
519
520
521
522
523
524
525
526
527
528
529
530=head2 DeleteMLModel(MLModelId => Str)
531
532Each argument is described in detail in: L<Paws::MachineLearning::DeleteMLModel>
533
534Returns: a L<Paws::MachineLearning::DeleteMLModelOutput> instance
535
536
537
538Assigns the DELETED status to an C<MLModel>, rendering it unusable.
539
540After using the C<DeleteMLModel> operation, you can use the GetMLModel
541operation to verify that the status of the C<MLModel> changed to
542DELETED.
543
544The result of the C<DeleteMLModel> operation is irreversible.
545
546
547
548
549
550
551
552
553
554
555
556=head2 DeleteRealtimeEndpoint(MLModelId => Str)
557
558Each argument is described in detail in: L<Paws::MachineLearning::DeleteRealtimeEndpoint>
559
560Returns: a L<Paws::MachineLearning::DeleteRealtimeEndpointOutput> instance
561
562
563
564Deletes a real time endpoint of an C<MLModel>.
565
566
567
568
569
570
571
572
573
574
575
576=head2 DescribeBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
577
578Each argument is described in detail in: L<Paws::MachineLearning::DescribeBatchPredictions>
579
580Returns: a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance
581
582
583
584Returns a list of C<BatchPrediction> operations that match the search
585criteria in the request.
586
587
588
589
590
591
592
593
594
595
596
597=head2 DescribeDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
598
599Each argument is described in detail in: L<Paws::MachineLearning::DescribeDataSources>
600
601Returns: a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance
602
603
604
605Returns a list of C<DataSource> that match the search criteria in the
606request.
607
608
609
610
611
612
613
614
615
616
617
618=head2 DescribeEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
619
620Each argument is described in detail in: L<Paws::MachineLearning::DescribeEvaluations>
621
622Returns: a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance
623
624
625
626Returns a list of C<DescribeEvaluations> that match the search criteria
627in the request.
628
629
630
631
632
633
634
635
636
637
638
639=head2 DescribeMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
640
641Each argument is described in detail in: L<Paws::MachineLearning::DescribeMLModels>
642
643Returns: a L<Paws::MachineLearning::DescribeMLModelsOutput> instance
644
645
646
647Returns a list of C<MLModel> that match the search criteria in the
648request.
649
650
651
652
653
654
655
656
657
658
659
660=head2 GetBatchPrediction(BatchPredictionId => Str)
661
662Each argument is described in detail in: L<Paws::MachineLearning::GetBatchPrediction>
663
664Returns: a L<Paws::MachineLearning::GetBatchPredictionOutput> instance
665
666
667
668Returns a C<BatchPrediction> that includes detailed metadata, status,
669and data file information for a C<Batch Prediction> request.
670
671
672
673
674
675
676
677
678
679
680
681=head2 GetDataSource(DataSourceId => Str, [Verbose => Bool])
682
683Each argument is described in detail in: L<Paws::MachineLearning::GetDataSource>
684
685Returns: a L<Paws::MachineLearning::GetDataSourceOutput> instance
686
687
688
689Returns a C<DataSource> that includes metadata and data file
690information, as well as the current status of the C<DataSource>.
691
692C<GetDataSource> provides results in normal or verbose format. The
693verbose format adds the schema description and the list of files
694pointed to by the DataSource to the normal format.
695
696
697
698
699
700
701
702
703
704
705
706=head2 GetEvaluation(EvaluationId => Str)
707
708Each argument is described in detail in: L<Paws::MachineLearning::GetEvaluation>
709
710Returns: a L<Paws::MachineLearning::GetEvaluationOutput> instance
711
712
713
714Returns an C<Evaluation> that includes metadata as well as the current
715status of the C<Evaluation>.
716
717
718
719
720
721
722
723
724
725
726
727=head2 GetMLModel(MLModelId => Str, [Verbose => Bool])
728
729Each argument is described in detail in: L<Paws::MachineLearning::GetMLModel>
730
731Returns: a L<Paws::MachineLearning::GetMLModelOutput> instance
732
733
734
735Returns an C<MLModel> that includes detailed metadata, and data source
736information as well as the current status of the C<MLModel>.
737
738C<GetMLModel> provides results in normal or verbose format.
739
740
741
742
743
744
745
746
747
748
749
750=head2 Predict(MLModelId => Str, PredictEndpoint => Str, Record => Paws::MachineLearning::Record)
751
752Each argument is described in detail in: L<Paws::MachineLearning::Predict>
753
754Returns: a L<Paws::MachineLearning::PredictOutput> instance
755
756
757
758Generates a prediction for the observation using the specified
759C<MLModel>.
760
761Not all response parameters will be populated because this is dependent
762on the type of requested model.
763
764
765
766
767
768
769
770
771
772
773
774=head2 UpdateBatchPrediction(BatchPredictionId => Str, BatchPredictionName => Str)
775
776Each argument is described in detail in: L<Paws::MachineLearning::UpdateBatchPrediction>
777
778Returns: a L<Paws::MachineLearning::UpdateBatchPredictionOutput> instance
779
780
781
782Updates the C<BatchPredictionName> of a C<BatchPrediction>.
783
784You can use the GetBatchPrediction operation to view the contents of
785the updated data element.
786
787
788
789
790
791
792
793
794
795
796
797=head2 UpdateDataSource(DataSourceId => Str, DataSourceName => Str)
798
799Each argument is described in detail in: L<Paws::MachineLearning::UpdateDataSource>
800
801Returns: a L<Paws::MachineLearning::UpdateDataSourceOutput> instance
802
803
804
805Updates the C<DataSourceName> of a C<DataSource>.
806
807You can use the GetDataSource operation to view the contents of the
808updated data element.
809
810
811
812
813
814
815
816
817
818
819
820=head2 UpdateEvaluation(EvaluationId => Str, EvaluationName => Str)
821
822Each argument is described in detail in: L<Paws::MachineLearning::UpdateEvaluation>
823
824Returns: a L<Paws::MachineLearning::UpdateEvaluationOutput> instance
825
826
827
828Updates the C<EvaluationName> of an C<Evaluation>.
829
830You can use the GetEvaluation operation to view the contents of the
831updated data element.
832
833
834
835
836
837
838
839
840
841
842
843=head2 UpdateMLModel(MLModelId => Str, [MLModelName => Str, ScoreThreshold => Num])
844
845Each argument is described in detail in: L<Paws::MachineLearning::UpdateMLModel>
846
847Returns: a L<Paws::MachineLearning::UpdateMLModelOutput> instance
848
849
850
851Updates the C<MLModelName> and the C<ScoreThreshold> of an C<MLModel>.
852
853You can use the GetMLModel operation to view the contents of the
854updated data element.
855
856
857
858
859
860
861
862
863
864
865
866=head1 SEE ALSO
867
868This service class forms part of L<Paws>
869
870=head1 BUGS and CONTRIBUTIONS
871
872The source code is located here: https://github.com/pplu/aws-sdk-perl
873
874Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues
875
876=cut
877
878