1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/md4.h>
58 
59 #include <stdlib.h>
60 #include <string.h>
61 
62 #include "../../internal.h"
63 #include "../digest/md32_common.h"
64 
65 
MD4(const uint8_t * data,size_t len,uint8_t out[MD4_DIGEST_LENGTH])66 uint8_t *MD4(const uint8_t *data, size_t len, uint8_t out[MD4_DIGEST_LENGTH]) {
67   MD4_CTX ctx;
68   MD4_Init(&ctx);
69   MD4_Update(&ctx, data, len);
70   MD4_Final(out, &ctx);
71 
72   return out;
73 }
74 
75 // Implemented from RFC 1186 The MD4 Message-Digest Algorithm.
76 
MD4_Init(MD4_CTX * md4)77 int MD4_Init(MD4_CTX *md4) {
78   OPENSSL_memset(md4, 0, sizeof(MD4_CTX));
79   md4->h[0] = 0x67452301UL;
80   md4->h[1] = 0xefcdab89UL;
81   md4->h[2] = 0x98badcfeUL;
82   md4->h[3] = 0x10325476UL;
83   return 1;
84 }
85 
86 void md4_block_data_order(uint32_t *state, const uint8_t *data, size_t num);
87 
MD4_Transform(MD4_CTX * c,const uint8_t data[MD4_CBLOCK])88 void MD4_Transform(MD4_CTX *c, const uint8_t data[MD4_CBLOCK]) {
89   md4_block_data_order(c->h, data, 1);
90 }
91 
MD4_Update(MD4_CTX * c,const void * data,size_t len)92 int MD4_Update(MD4_CTX *c, const void *data, size_t len) {
93   crypto_md32_update(&md4_block_data_order, c->h, c->data, MD4_CBLOCK, &c->num,
94                      &c->Nh, &c->Nl, data, len);
95   return 1;
96 }
97 
MD4_Final(uint8_t out[MD4_DIGEST_LENGTH],MD4_CTX * c)98 int MD4_Final(uint8_t out[MD4_DIGEST_LENGTH], MD4_CTX *c) {
99   crypto_md32_final(&md4_block_data_order, c->h, c->data, MD4_CBLOCK, &c->num,
100                     c->Nh, c->Nl, /*is_big_endian=*/0);
101 
102   CRYPTO_store_u32_le(out, c->h[0]);
103   CRYPTO_store_u32_le(out + 4, c->h[1]);
104   CRYPTO_store_u32_le(out + 8, c->h[2]);
105   CRYPTO_store_u32_le(out + 12, c->h[3]);
106   return 1;
107 }
108 
109 // As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
110 // simplified to the code below.  Wei attributes these optimizations
111 // to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
112 #define F(b, c, d) ((((c) ^ (d)) & (b)) ^ (d))
113 #define G(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
114 #define H(b, c, d) ((b) ^ (c) ^ (d))
115 
116 #define R0(a, b, c, d, k, s, t)            \
117   do {                                     \
118     (a) += ((k) + (t) + F((b), (c), (d))); \
119     (a) = CRYPTO_rotl_u32(a, s);           \
120   } while (0)
121 
122 #define R1(a, b, c, d, k, s, t)            \
123   do {                                     \
124     (a) += ((k) + (t) + G((b), (c), (d))); \
125     (a) = CRYPTO_rotl_u32(a, s);           \
126   } while (0)
127 
128 #define R2(a, b, c, d, k, s, t)            \
129   do {                                     \
130     (a) += ((k) + (t) + H((b), (c), (d))); \
131     (a) = CRYPTO_rotl_u32(a, s);           \
132   } while (0)
133 
md4_block_data_order(uint32_t * state,const uint8_t * data,size_t num)134 void md4_block_data_order(uint32_t *state, const uint8_t *data, size_t num) {
135   uint32_t A, B, C, D;
136   uint32_t X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15;
137 
138   A = state[0];
139   B = state[1];
140   C = state[2];
141   D = state[3];
142 
143   for (; num--;) {
144     X0 = CRYPTO_load_u32_le(data);
145     data += 4;
146     X1 = CRYPTO_load_u32_le(data);
147     data += 4;
148     // Round 0
149     R0(A, B, C, D, X0, 3, 0);
150     X2 = CRYPTO_load_u32_le(data);
151     data += 4;
152     R0(D, A, B, C, X1, 7, 0);
153     X3 = CRYPTO_load_u32_le(data);
154     data += 4;
155     R0(C, D, A, B, X2, 11, 0);
156     X4 = CRYPTO_load_u32_le(data);
157     data += 4;
158     R0(B, C, D, A, X3, 19, 0);
159     X5 = CRYPTO_load_u32_le(data);
160     data += 4;
161     R0(A, B, C, D, X4, 3, 0);
162     X6 = CRYPTO_load_u32_le(data);
163     data += 4;
164     R0(D, A, B, C, X5, 7, 0);
165     X7 = CRYPTO_load_u32_le(data);
166     data += 4;
167     R0(C, D, A, B, X6, 11, 0);
168     X8 = CRYPTO_load_u32_le(data);
169     data += 4;
170     R0(B, C, D, A, X7, 19, 0);
171     X9 = CRYPTO_load_u32_le(data);
172     data += 4;
173     R0(A, B, C, D, X8, 3, 0);
174     X10 = CRYPTO_load_u32_le(data);
175     data += 4;
176     R0(D, A, B, C, X9, 7, 0);
177     X11 = CRYPTO_load_u32_le(data);
178     data += 4;
179     R0(C, D, A, B, X10, 11, 0);
180     X12 = CRYPTO_load_u32_le(data);
181     data += 4;
182     R0(B, C, D, A, X11, 19, 0);
183     X13 = CRYPTO_load_u32_le(data);
184     data += 4;
185     R0(A, B, C, D, X12, 3, 0);
186     X14 = CRYPTO_load_u32_le(data);
187     data += 4;
188     R0(D, A, B, C, X13, 7, 0);
189     X15 = CRYPTO_load_u32_le(data);
190     data += 4;
191     R0(C, D, A, B, X14, 11, 0);
192     R0(B, C, D, A, X15, 19, 0);
193     // Round 1
194     R1(A, B, C, D, X0, 3, 0x5A827999L);
195     R1(D, A, B, C, X4, 5, 0x5A827999L);
196     R1(C, D, A, B, X8, 9, 0x5A827999L);
197     R1(B, C, D, A, X12, 13, 0x5A827999L);
198     R1(A, B, C, D, X1, 3, 0x5A827999L);
199     R1(D, A, B, C, X5, 5, 0x5A827999L);
200     R1(C, D, A, B, X9, 9, 0x5A827999L);
201     R1(B, C, D, A, X13, 13, 0x5A827999L);
202     R1(A, B, C, D, X2, 3, 0x5A827999L);
203     R1(D, A, B, C, X6, 5, 0x5A827999L);
204     R1(C, D, A, B, X10, 9, 0x5A827999L);
205     R1(B, C, D, A, X14, 13, 0x5A827999L);
206     R1(A, B, C, D, X3, 3, 0x5A827999L);
207     R1(D, A, B, C, X7, 5, 0x5A827999L);
208     R1(C, D, A, B, X11, 9, 0x5A827999L);
209     R1(B, C, D, A, X15, 13, 0x5A827999L);
210     // Round 2
211     R2(A, B, C, D, X0, 3, 0x6ED9EBA1L);
212     R2(D, A, B, C, X8, 9, 0x6ED9EBA1L);
213     R2(C, D, A, B, X4, 11, 0x6ED9EBA1L);
214     R2(B, C, D, A, X12, 15, 0x6ED9EBA1L);
215     R2(A, B, C, D, X2, 3, 0x6ED9EBA1L);
216     R2(D, A, B, C, X10, 9, 0x6ED9EBA1L);
217     R2(C, D, A, B, X6, 11, 0x6ED9EBA1L);
218     R2(B, C, D, A, X14, 15, 0x6ED9EBA1L);
219     R2(A, B, C, D, X1, 3, 0x6ED9EBA1L);
220     R2(D, A, B, C, X9, 9, 0x6ED9EBA1L);
221     R2(C, D, A, B, X5, 11, 0x6ED9EBA1L);
222     R2(B, C, D, A, X13, 15, 0x6ED9EBA1L);
223     R2(A, B, C, D, X3, 3, 0x6ED9EBA1L);
224     R2(D, A, B, C, X11, 9, 0x6ED9EBA1L);
225     R2(C, D, A, B, X7, 11, 0x6ED9EBA1L);
226     R2(B, C, D, A, X15, 15, 0x6ED9EBA1L);
227 
228     A = state[0] += A;
229     B = state[1] += B;
230     C = state[2] += C;
231     D = state[3] += D;
232   }
233 }
234 
235 #undef F
236 #undef G
237 #undef H
238 #undef R0
239 #undef R1
240 #undef R2
241