1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/obj.h>
58 
59 #include <inttypes.h>
60 #include <limits.h>
61 #include <string.h>
62 
63 #include <openssl/asn1.h>
64 #include <openssl/bytestring.h>
65 #include <openssl/err.h>
66 #include <openssl/lhash.h>
67 #include <openssl/mem.h>
68 #include <openssl/thread.h>
69 
70 #include "../asn1/internal.h"
71 #include "../internal.h"
72 #include "../lhash/internal.h"
73 
74 // obj_data.h must be included after the definition of |ASN1_OBJECT|.
75 #include "obj_dat.h"
76 
77 
78 DEFINE_LHASH_OF(ASN1_OBJECT)
79 
80 static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
81 // These globals are protected by |global_added_lock|.
82 static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
83 static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
84 static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
85 static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
86 
87 static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
88     CRYPTO_STATIC_MUTEX_INIT;
89 static unsigned global_next_nid = NUM_NID;
90 
obj_next_nid(void)91 static int obj_next_nid(void) {
92   int ret;
93 
94   CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
95   ret = global_next_nid++;
96   CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
97 
98   return ret;
99 }
100 
OBJ_dup(const ASN1_OBJECT * o)101 ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
102   ASN1_OBJECT *r;
103   unsigned char *data = NULL;
104   char *sn = NULL, *ln = NULL;
105 
106   if (o == NULL) {
107     return NULL;
108   }
109 
110   if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
111     // TODO(fork): this is a little dangerous.
112     return (ASN1_OBJECT *)o;
113   }
114 
115   r = ASN1_OBJECT_new();
116   if (r == NULL) {
117     OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
118     return NULL;
119   }
120   r->ln = r->sn = NULL;
121 
122   data = OPENSSL_malloc(o->length);
123   if (data == NULL) {
124     goto err;
125   }
126   if (o->data != NULL) {
127     OPENSSL_memcpy(data, o->data, o->length);
128   }
129 
130   // once data is attached to an object, it remains const
131   r->data = data;
132   r->length = o->length;
133   r->nid = o->nid;
134 
135   if (o->ln != NULL) {
136     ln = OPENSSL_strdup(o->ln);
137     if (ln == NULL) {
138       goto err;
139     }
140   }
141 
142   if (o->sn != NULL) {
143     sn = OPENSSL_strdup(o->sn);
144     if (sn == NULL) {
145       goto err;
146     }
147   }
148 
149   r->sn = sn;
150   r->ln = ln;
151 
152   r->flags =
153       o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
154                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
155   return r;
156 
157 err:
158   OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
159   OPENSSL_free(ln);
160   OPENSSL_free(sn);
161   OPENSSL_free(data);
162   OPENSSL_free(r);
163   return NULL;
164 }
165 
OBJ_cmp(const ASN1_OBJECT * a,const ASN1_OBJECT * b)166 int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
167   int ret;
168 
169   ret = a->length - b->length;
170   if (ret) {
171     return ret;
172   }
173   return OPENSSL_memcmp(a->data, b->data, a->length);
174 }
175 
OBJ_get0_data(const ASN1_OBJECT * obj)176 const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) {
177   if (obj == NULL) {
178     return NULL;
179   }
180 
181   return obj->data;
182 }
183 
OBJ_length(const ASN1_OBJECT * obj)184 size_t OBJ_length(const ASN1_OBJECT *obj) {
185   if (obj == NULL || obj->length < 0) {
186     return 0;
187   }
188 
189   return (size_t)obj->length;
190 }
191 
192 // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
193 // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
194 // unsigned int in the array.
obj_cmp(const void * key,const void * element)195 static int obj_cmp(const void *key, const void *element) {
196   uint16_t nid = *((const uint16_t *)element);
197   const ASN1_OBJECT *a = key;
198   const ASN1_OBJECT *b = &kObjects[nid];
199 
200   if (a->length < b->length) {
201     return -1;
202   } else if (a->length > b->length) {
203     return 1;
204   }
205   return OPENSSL_memcmp(a->data, b->data, a->length);
206 }
207 
OBJ_obj2nid(const ASN1_OBJECT * obj)208 int OBJ_obj2nid(const ASN1_OBJECT *obj) {
209   if (obj == NULL) {
210     return NID_undef;
211   }
212 
213   if (obj->nid != 0) {
214     return obj->nid;
215   }
216 
217   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
218   if (global_added_by_data != NULL) {
219     ASN1_OBJECT *match;
220 
221     match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
222     if (match != NULL) {
223       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
224       return match->nid;
225     }
226   }
227   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
228 
229   const uint16_t *nid_ptr =
230       bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
231               sizeof(kNIDsInOIDOrder[0]), obj_cmp);
232   if (nid_ptr == NULL) {
233     return NID_undef;
234   }
235 
236   return kObjects[*nid_ptr].nid;
237 }
238 
OBJ_cbs2nid(const CBS * cbs)239 int OBJ_cbs2nid(const CBS *cbs) {
240   if (CBS_len(cbs) > INT_MAX) {
241     return NID_undef;
242   }
243 
244   ASN1_OBJECT obj;
245   OPENSSL_memset(&obj, 0, sizeof(obj));
246   obj.data = CBS_data(cbs);
247   obj.length = (int)CBS_len(cbs);
248 
249   return OBJ_obj2nid(&obj);
250 }
251 
252 // short_name_cmp is called to search the kNIDsInShortNameOrder array. The
253 // |key| argument is name that we're looking for and |element| is a pointer to
254 // an unsigned int in the array.
short_name_cmp(const void * key,const void * element)255 static int short_name_cmp(const void *key, const void *element) {
256   const char *name = (const char *)key;
257   uint16_t nid = *((const uint16_t *)element);
258 
259   return strcmp(name, kObjects[nid].sn);
260 }
261 
OBJ_sn2nid(const char * short_name)262 int OBJ_sn2nid(const char *short_name) {
263   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
264   if (global_added_by_short_name != NULL) {
265     ASN1_OBJECT *match, template;
266 
267     template.sn = short_name;
268     match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
269     if (match != NULL) {
270       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
271       return match->nid;
272     }
273   }
274   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
275 
276   const uint16_t *nid_ptr =
277       bsearch(short_name, kNIDsInShortNameOrder,
278               OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
279               sizeof(kNIDsInShortNameOrder[0]), short_name_cmp);
280   if (nid_ptr == NULL) {
281     return NID_undef;
282   }
283 
284   return kObjects[*nid_ptr].nid;
285 }
286 
287 // long_name_cmp is called to search the kNIDsInLongNameOrder array. The
288 // |key| argument is name that we're looking for and |element| is a pointer to
289 // an unsigned int in the array.
long_name_cmp(const void * key,const void * element)290 static int long_name_cmp(const void *key, const void *element) {
291   const char *name = (const char *)key;
292   uint16_t nid = *((const uint16_t *)element);
293 
294   return strcmp(name, kObjects[nid].ln);
295 }
296 
OBJ_ln2nid(const char * long_name)297 int OBJ_ln2nid(const char *long_name) {
298   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
299   if (global_added_by_long_name != NULL) {
300     ASN1_OBJECT *match, template;
301 
302     template.ln = long_name;
303     match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
304     if (match != NULL) {
305       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
306       return match->nid;
307     }
308   }
309   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
310 
311   const uint16_t *nid_ptr = bsearch(
312       long_name, kNIDsInLongNameOrder, OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
313       sizeof(kNIDsInLongNameOrder[0]), long_name_cmp);
314   if (nid_ptr == NULL) {
315     return NID_undef;
316   }
317 
318   return kObjects[*nid_ptr].nid;
319 }
320 
OBJ_txt2nid(const char * s)321 int OBJ_txt2nid(const char *s) {
322   ASN1_OBJECT *obj;
323   int nid;
324 
325   obj = OBJ_txt2obj(s, 0 /* search names */);
326   nid = OBJ_obj2nid(obj);
327   ASN1_OBJECT_free(obj);
328   return nid;
329 }
330 
OBJ_nid2cbb(CBB * out,int nid)331 OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
332   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
333   CBB oid;
334 
335   if (obj == NULL ||
336       !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
337       !CBB_add_bytes(&oid, obj->data, obj->length) ||
338       !CBB_flush(out)) {
339     return 0;
340   }
341 
342   return 1;
343 }
344 
OBJ_nid2obj(int nid)345 ASN1_OBJECT *OBJ_nid2obj(int nid) {
346   if (nid >= 0 && nid < NUM_NID) {
347     if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
348       goto err;
349     }
350     return (ASN1_OBJECT *)&kObjects[nid];
351   }
352 
353   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
354   if (global_added_by_nid != NULL) {
355     ASN1_OBJECT *match, template;
356 
357     template.nid = nid;
358     match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
359     if (match != NULL) {
360       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
361       return match;
362     }
363   }
364   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
365 
366 err:
367   OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
368   return NULL;
369 }
370 
OBJ_nid2sn(int nid)371 const char *OBJ_nid2sn(int nid) {
372   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
373   if (obj == NULL) {
374     return NULL;
375   }
376 
377   return obj->sn;
378 }
379 
OBJ_nid2ln(int nid)380 const char *OBJ_nid2ln(int nid) {
381   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
382   if (obj == NULL) {
383     return NULL;
384   }
385 
386   return obj->ln;
387 }
388 
create_object_with_text_oid(int (* get_nid)(void),const char * oid,const char * short_name,const char * long_name)389 static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void),
390                                                 const char *oid,
391                                                 const char *short_name,
392                                                 const char *long_name) {
393   uint8_t *buf;
394   size_t len;
395   CBB cbb;
396   if (!CBB_init(&cbb, 32) ||
397       !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) ||
398       !CBB_finish(&cbb, &buf, &len)) {
399     OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING);
400     CBB_cleanup(&cbb);
401     return NULL;
402   }
403 
404   ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf,
405                                         len, short_name, long_name);
406   OPENSSL_free(buf);
407   return ret;
408 }
409 
OBJ_txt2obj(const char * s,int dont_search_names)410 ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
411   if (!dont_search_names) {
412     int nid = OBJ_sn2nid(s);
413     if (nid == NID_undef) {
414       nid = OBJ_ln2nid(s);
415     }
416 
417     if (nid != NID_undef) {
418       return OBJ_nid2obj(nid);
419     }
420   }
421 
422   return create_object_with_text_oid(NULL, s, NULL, NULL);
423 }
424 
strlcpy_int(char * dst,const char * src,int dst_size)425 static int strlcpy_int(char *dst, const char *src, int dst_size) {
426   size_t ret = OPENSSL_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
427   if (ret > INT_MAX) {
428     OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
429     return -1;
430   }
431   return (int)ret;
432 }
433 
OBJ_obj2txt(char * out,int out_len,const ASN1_OBJECT * obj,int always_return_oid)434 int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
435                 int always_return_oid) {
436   // Python depends on the empty OID successfully encoding as the empty
437   // string.
438   if (obj == NULL || obj->length == 0) {
439     return strlcpy_int(out, "", out_len);
440   }
441 
442   if (!always_return_oid) {
443     int nid = OBJ_obj2nid(obj);
444     if (nid != NID_undef) {
445       const char *name = OBJ_nid2ln(nid);
446       if (name == NULL) {
447         name = OBJ_nid2sn(nid);
448       }
449       if (name != NULL) {
450         return strlcpy_int(out, name, out_len);
451       }
452     }
453   }
454 
455   CBS cbs;
456   CBS_init(&cbs, obj->data, obj->length);
457   char *txt = CBS_asn1_oid_to_text(&cbs);
458   if (txt == NULL) {
459     if (out_len > 0) {
460       out[0] = '\0';
461     }
462     return -1;
463   }
464 
465   int ret = strlcpy_int(out, txt, out_len);
466   OPENSSL_free(txt);
467   return ret;
468 }
469 
hash_nid(const ASN1_OBJECT * obj)470 static uint32_t hash_nid(const ASN1_OBJECT *obj) {
471   return obj->nid;
472 }
473 
cmp_nid(const ASN1_OBJECT * a,const ASN1_OBJECT * b)474 static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
475   return a->nid - b->nid;
476 }
477 
hash_data(const ASN1_OBJECT * obj)478 static uint32_t hash_data(const ASN1_OBJECT *obj) {
479   return OPENSSL_hash32(obj->data, obj->length);
480 }
481 
cmp_data(const ASN1_OBJECT * a,const ASN1_OBJECT * b)482 static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
483   int i = a->length - b->length;
484   if (i) {
485     return i;
486   }
487   return OPENSSL_memcmp(a->data, b->data, a->length);
488 }
489 
hash_short_name(const ASN1_OBJECT * obj)490 static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
491   return OPENSSL_strhash(obj->sn);
492 }
493 
cmp_short_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)494 static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
495   return strcmp(a->sn, b->sn);
496 }
497 
hash_long_name(const ASN1_OBJECT * obj)498 static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
499   return OPENSSL_strhash(obj->ln);
500 }
501 
cmp_long_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)502 static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
503   return strcmp(a->ln, b->ln);
504 }
505 
506 // obj_add_object inserts |obj| into the various global hashes for run-time
507 // added objects. It returns one on success or zero otherwise.
obj_add_object(ASN1_OBJECT * obj)508 static int obj_add_object(ASN1_OBJECT *obj) {
509   int ok;
510   ASN1_OBJECT *old_object;
511 
512   obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
513                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
514 
515   CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
516   if (global_added_by_nid == NULL) {
517     global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
518     global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
519     global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
520     global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
521   }
522 
523   // We don't pay attention to |old_object| (which contains any previous object
524   // that was evicted from the hashes) because we don't have a reference count
525   // on ASN1_OBJECT values. Also, we should never have duplicates nids and so
526   // should always have objects in |global_added_by_nid|.
527 
528   ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
529   if (obj->length != 0 && obj->data != NULL) {
530     ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
531   }
532   if (obj->sn != NULL) {
533     ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
534   }
535   if (obj->ln != NULL) {
536     ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
537   }
538   CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
539 
540   return ok;
541 }
542 
OBJ_create(const char * oid,const char * short_name,const char * long_name)543 int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
544   ASN1_OBJECT *op =
545       create_object_with_text_oid(obj_next_nid, oid, short_name, long_name);
546   if (op == NULL ||
547       !obj_add_object(op)) {
548     return NID_undef;
549   }
550   return op->nid;
551 }
552 
OBJ_cleanup(void)553 void OBJ_cleanup(void) {}
554