1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007 Julien Pommier
5 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
6 // Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 /* The exp and log functions of this file initially come from
13  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
14  */
15 
16 #ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
17 #define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
18 
19 namespace Eigen {
20 namespace internal {
21 
22 // Creates a Scalar integer type with same bit-width.
23 template<typename T> struct make_integer;
24 template<> struct make_integer<float>    { typedef numext::int32_t type; };
25 template<> struct make_integer<double>   { typedef numext::int64_t type; };
26 template<> struct make_integer<half>     { typedef numext::int16_t type; };
27 template<> struct make_integer<bfloat16> { typedef numext::int16_t type; };
28 
29 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
30 Packet pfrexp_generic_get_biased_exponent(const Packet& a) {
31   typedef typename unpacket_traits<Packet>::type Scalar;
32   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
33   enum { mantissa_bits = numext::numeric_limits<Scalar>::digits - 1};
34   return pcast<PacketI, Packet>(plogical_shift_right<mantissa_bits>(preinterpret<PacketI>(pabs(a))));
35 }
36 
37 // Safely applies frexp, correctly handles denormals.
38 // Assumes IEEE floating point format.
39 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
40 Packet pfrexp_generic(const Packet& a, Packet& exponent) {
41   typedef typename unpacket_traits<Packet>::type Scalar;
42   typedef typename make_unsigned<typename make_integer<Scalar>::type>::type ScalarUI;
43   enum {
44     TotalBits = sizeof(Scalar) * CHAR_BIT,
45     MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
46     ExponentBits = int(TotalBits) - int(MantissaBits) - 1
47   };
48 
49   EIGEN_CONSTEXPR ScalarUI scalar_sign_mantissa_mask =
50       ~(((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)) << int(MantissaBits)); // ~0x7f800000
51   const Packet sign_mantissa_mask = pset1frombits<Packet>(static_cast<ScalarUI>(scalar_sign_mantissa_mask));
52   const Packet half = pset1<Packet>(Scalar(0.5));
53   const Packet zero = pzero(a);
54   const Packet normal_min = pset1<Packet>((numext::numeric_limits<Scalar>::min)()); // Minimum normal value, 2^-126
55 
56   // To handle denormals, normalize by multiplying by 2^(int(MantissaBits)+1).
57   const Packet is_denormal = pcmp_lt(pabs(a), normal_min);
58   EIGEN_CONSTEXPR ScalarUI scalar_normalization_offset = ScalarUI(int(MantissaBits) + 1); // 24
59   // The following cannot be constexpr because bfloat16(uint16_t) is not constexpr.
60   const Scalar scalar_normalization_factor = Scalar(ScalarUI(1) << int(scalar_normalization_offset)); // 2^24
61   const Packet normalization_factor = pset1<Packet>(scalar_normalization_factor);
62   const Packet normalized_a = pselect(is_denormal, pmul(a, normalization_factor), a);
63 
64   // Determine exponent offset: -126 if normal, -126-24 if denormal
65   const Scalar scalar_exponent_offset = -Scalar((ScalarUI(1)<<(int(ExponentBits)-1)) - ScalarUI(2)); // -126
66   Packet exponent_offset = pset1<Packet>(scalar_exponent_offset);
67   const Packet normalization_offset = pset1<Packet>(-Scalar(scalar_normalization_offset)); // -24
68   exponent_offset = pselect(is_denormal, padd(exponent_offset, normalization_offset), exponent_offset);
69 
70   // Determine exponent and mantissa from normalized_a.
71   exponent = pfrexp_generic_get_biased_exponent(normalized_a);
72   // Zero, Inf and NaN return 'a' unmodified, exponent is zero
73   // (technically the exponent is unspecified for inf/NaN, but GCC/Clang set it to zero)
74   const Scalar scalar_non_finite_exponent = Scalar((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1));  // 255
75   const Packet non_finite_exponent = pset1<Packet>(scalar_non_finite_exponent);
76   const Packet is_zero_or_not_finite = por(pcmp_eq(a, zero), pcmp_eq(exponent, non_finite_exponent));
77   const Packet m = pselect(is_zero_or_not_finite, a, por(pand(normalized_a, sign_mantissa_mask), half));
78   exponent = pselect(is_zero_or_not_finite, zero, padd(exponent, exponent_offset));
79   return m;
80 }
81 
82 // Safely applies ldexp, correctly handles overflows, underflows and denormals.
83 // Assumes IEEE floating point format.
84 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
85 Packet pldexp_generic(const Packet& a, const Packet& exponent) {
86   // We want to return a * 2^exponent, allowing for all possible integer
87   // exponents without overflowing or underflowing in intermediate
88   // computations.
89   //
90   // Since 'a' and the output can be denormal, the maximum range of 'exponent'
91   // to consider for a float is:
92   //   -255-23 -> 255+23
93   // Below -278 any finite float 'a' will become zero, and above +278 any
94   // finite float will become inf, including when 'a' is the smallest possible
95   // denormal.
96   //
97   // Unfortunately, 2^(278) cannot be represented using either one or two
98   // finite normal floats, so we must split the scale factor into at least
99   // three parts. It turns out to be faster to split 'exponent' into four
100   // factors, since [exponent>>2] is much faster to compute that [exponent/3].
101   //
102   // Set e = min(max(exponent, -278), 278);
103   //     b = floor(e/4);
104   //   out = ((((a * 2^(b)) * 2^(b)) * 2^(b)) * 2^(e-3*b))
105   //
106   // This will avoid any intermediate overflows and correctly handle 0, inf,
107   // NaN cases.
108   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
109   typedef typename unpacket_traits<Packet>::type Scalar;
110   typedef typename unpacket_traits<PacketI>::type ScalarI;
111   enum {
112     TotalBits = sizeof(Scalar) * CHAR_BIT,
113     MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
114     ExponentBits = int(TotalBits) - int(MantissaBits) - 1
115   };
116 
117   const Packet max_exponent = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) + ScalarI(int(MantissaBits) - 1)));  // 278
118   const PacketI bias = pset1<PacketI>((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1));  // 127
119   const PacketI e = pcast<Packet, PacketI>(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
120   PacketI b = parithmetic_shift_right<2>(e); // floor(e/4);
121   Packet c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias)));  // 2^b
122   Packet out = pmul(pmul(pmul(a, c), c), c);  // a * 2^(3b)
123   b = psub(psub(psub(e, b), b), b); // e - 3b
124   c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias)));  // 2^(e-3*b)
125   out = pmul(out, c);
126   return out;
127 }
128 
129 // Explicitly multiplies
130 //    a * (2^e)
131 // clamping e to the range
132 // [NumTraits<Scalar>::min_exponent()-2, NumTraits<Scalar>::max_exponent()]
133 //
134 // This is approx 7x faster than pldexp_impl, but will prematurely over/underflow
135 // if 2^e doesn't fit into a normal floating-point Scalar.
136 //
137 // Assumes IEEE floating point format
138 template<typename Packet>
139 struct pldexp_fast_impl {
140   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
141   typedef typename unpacket_traits<Packet>::type Scalar;
142   typedef typename unpacket_traits<PacketI>::type ScalarI;
143   enum {
144     TotalBits = sizeof(Scalar) * CHAR_BIT,
145     MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
146     ExponentBits = int(TotalBits) - int(MantissaBits) - 1
147   };
148 
149   static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
150   Packet run(const Packet& a, const Packet& exponent) {
151     const Packet bias = pset1<Packet>(Scalar((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1)));  // 127
152     const Packet limit = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) - ScalarI(1)));     // 255
153     // restrict biased exponent between 0 and 255 for float.
154     const PacketI e = pcast<Packet, PacketI>(pmin(pmax(padd(exponent, bias), pzero(limit)), limit)); // exponent + 127
155     // return a * (2^e)
156     return pmul(a, preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(e)));
157   }
158 };
159 
160 // Natural or base 2 logarithm.
161 // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
162 // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
163 // be easily approximated by a polynomial centered on m=1 for stability.
164 // TODO(gonnet): Further reduce the interval allowing for lower-degree
165 //               polynomial interpolants -> ... -> profit!
166 template <typename Packet, bool base2>
167 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
168 EIGEN_UNUSED
169 Packet plog_impl_float(const Packet _x)
170 {
171   Packet x = _x;
172 
173   const Packet cst_1              = pset1<Packet>(1.0f);
174   const Packet cst_neg_half       = pset1<Packet>(-0.5f);
175   // The smallest non denormalized float number.
176   const Packet cst_min_norm_pos   = pset1frombits<Packet>( 0x00800000u);
177   const Packet cst_minus_inf      = pset1frombits<Packet>( 0xff800000u);
178   const Packet cst_pos_inf        = pset1frombits<Packet>( 0x7f800000u);
179 
180   // Polynomial coefficients.
181   const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
182   const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
183   const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
184   const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
185   const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
186   const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
187   const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
188   const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
189   const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
190   const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);
191 
192   // Truncate input values to the minimum positive normal.
193   x = pmax(x, cst_min_norm_pos);
194 
195   Packet e;
196   // extract significant in the range [0.5,1) and exponent
197   x = pfrexp(x,e);
198 
199   // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
200   // and shift by -1. The values are then centered around 0, which improves
201   // the stability of the polynomial evaluation.
202   //   if( x < SQRTHF ) {
203   //     e -= 1;
204   //     x = x + x - 1.0;
205   //   } else { x = x - 1.0; }
206   Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
207   Packet tmp = pand(x, mask);
208   x = psub(x, cst_1);
209   e = psub(e, pand(cst_1, mask));
210   x = padd(x, tmp);
211 
212   Packet x2 = pmul(x, x);
213   Packet x3 = pmul(x2, x);
214 
215   // Evaluate the polynomial approximant of degree 8 in three parts, probably
216   // to improve instruction-level parallelism.
217   Packet y, y1, y2;
218   y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
219   y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
220   y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
221   y  = pmadd(y, x, cst_cephes_log_p2);
222   y1 = pmadd(y1, x, cst_cephes_log_p5);
223   y2 = pmadd(y2, x, cst_cephes_log_p8);
224   y  = pmadd(y, x3, y1);
225   y  = pmadd(y, x3, y2);
226   y  = pmul(y, x3);
227 
228   y = pmadd(cst_neg_half, x2, y);
229   x = padd(x, y);
230 
231   // Add the logarithm of the exponent back to the result of the interpolation.
232   if (base2) {
233     const Packet cst_log2e = pset1<Packet>(static_cast<float>(EIGEN_LOG2E));
234     x = pmadd(x, cst_log2e, e);
235   } else {
236     const Packet cst_ln2 = pset1<Packet>(static_cast<float>(EIGEN_LN2));
237     x = pmadd(e, cst_ln2, x);
238   }
239 
240   Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
241   Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
242   Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
243   // Filter out invalid inputs, i.e.:
244   //  - negative arg will be NAN
245   //  - 0 will be -INF
246   //  - +INF will be +INF
247   return pselect(iszero_mask, cst_minus_inf,
248                               por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
249 }
250 
251 template <typename Packet>
252 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
253 EIGEN_UNUSED
254 Packet plog_float(const Packet _x)
255 {
256   return plog_impl_float<Packet, /* base2 */ false>(_x);
257 }
258 
259 template <typename Packet>
260 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
261 EIGEN_UNUSED
262 Packet plog2_float(const Packet _x)
263 {
264   return plog_impl_float<Packet, /* base2 */ true>(_x);
265 }
266 
267 /* Returns the base e (2.718...) or base 2 logarithm of x.
268  * The argument is separated into its exponent and fractional parts.
269  * The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)],
270  * is approximated by
271  *
272  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
273  *
274  * for more detail see: http://www.netlib.org/cephes/
275  */
276 template <typename Packet, bool base2>
277 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
278 EIGEN_UNUSED
279 Packet plog_impl_double(const Packet _x)
280 {
281   Packet x = _x;
282 
283   const Packet cst_1              = pset1<Packet>(1.0);
284   const Packet cst_neg_half       = pset1<Packet>(-0.5);
285   // The smallest non denormalized double.
286   const Packet cst_min_norm_pos   = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
287   const Packet cst_minus_inf      = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
288   const Packet cst_pos_inf        = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));
289 
290 
291  // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
292  //                             1/sqrt(2) <= x < sqrt(2)
293   const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0);
294   const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4);
295   const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1);
296   const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0);
297   const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1);
298   const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1);
299   const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0);
300 
301   const Packet cst_cephes_log_q0 = pset1<Packet>(1.0);
302   const Packet cst_cephes_log_q1 = pset1<Packet>(1.12873587189167450590E1);
303   const Packet cst_cephes_log_q2 = pset1<Packet>(4.52279145837532221105E1);
304   const Packet cst_cephes_log_q3 = pset1<Packet>(8.29875266912776603211E1);
305   const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
306   const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);
307 
308   // Truncate input values to the minimum positive normal.
309   x = pmax(x, cst_min_norm_pos);
310 
311   Packet e;
312   // extract significant in the range [0.5,1) and exponent
313   x = pfrexp(x,e);
314 
315   // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
316   // and shift by -1. The values are then centered around 0, which improves
317   // the stability of the polynomial evaluation.
318   //   if( x < SQRTHF ) {
319   //     e -= 1;
320   //     x = x + x - 1.0;
321   //   } else { x = x - 1.0; }
322   Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
323   Packet tmp = pand(x, mask);
324   x = psub(x, cst_1);
325   e = psub(e, pand(cst_1, mask));
326   x = padd(x, tmp);
327 
328   Packet x2 = pmul(x, x);
329   Packet x3 = pmul(x2, x);
330 
331   // Evaluate the polynomial approximant , probably to improve instruction-level parallelism.
332   // y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) );
333   Packet y, y1, y_;
334   y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
335   y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
336   y  = pmadd(y, x, cst_cephes_log_p2);
337   y1 = pmadd(y1, x, cst_cephes_log_p5);
338   y_ = pmadd(y, x3, y1);
339 
340   y  = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1);
341   y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4);
342   y  = pmadd(y, x, cst_cephes_log_q2);
343   y1 = pmadd(y1, x, cst_cephes_log_q5);
344   y  = pmadd(y, x3, y1);
345 
346   y_ = pmul(y_, x3);
347   y  = pdiv(y_, y);
348 
349   y = pmadd(cst_neg_half, x2, y);
350   x = padd(x, y);
351 
352   // Add the logarithm of the exponent back to the result of the interpolation.
353   if (base2) {
354     const Packet cst_log2e = pset1<Packet>(static_cast<double>(EIGEN_LOG2E));
355     x = pmadd(x, cst_log2e, e);
356   } else {
357     const Packet cst_ln2 = pset1<Packet>(static_cast<double>(EIGEN_LN2));
358     x = pmadd(e, cst_ln2, x);
359   }
360 
361   Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
362   Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
363   Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
364   // Filter out invalid inputs, i.e.:
365   //  - negative arg will be NAN
366   //  - 0 will be -INF
367   //  - +INF will be +INF
368   return pselect(iszero_mask, cst_minus_inf,
369                               por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
370 }
371 
372 template <typename Packet>
373 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
374 EIGEN_UNUSED
375 Packet plog_double(const Packet _x)
376 {
377   return plog_impl_double<Packet, /* base2 */ false>(_x);
378 }
379 
380 template <typename Packet>
381 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
382 EIGEN_UNUSED
383 Packet plog2_double(const Packet _x)
384 {
385   return plog_impl_double<Packet, /* base2 */ true>(_x);
386 }
387 
388 /** \internal \returns log(1 + x) computed using W. Kahan's formula.
389     See: http://www.plunk.org/~hatch/rightway.php
390  */
391 template<typename Packet>
392 Packet generic_plog1p(const Packet& x)
393 {
394   typedef typename unpacket_traits<Packet>::type ScalarType;
395   const Packet one = pset1<Packet>(ScalarType(1));
396   Packet xp1 = padd(x, one);
397   Packet small_mask = pcmp_eq(xp1, one);
398   Packet log1 = plog(xp1);
399   Packet inf_mask = pcmp_eq(xp1, log1);
400   Packet log_large = pmul(x, pdiv(log1, psub(xp1, one)));
401   return pselect(por(small_mask, inf_mask), x, log_large);
402 }
403 
404 /** \internal \returns exp(x)-1 computed using W. Kahan's formula.
405     See: http://www.plunk.org/~hatch/rightway.php
406  */
407 template<typename Packet>
408 Packet generic_expm1(const Packet& x)
409 {
410   typedef typename unpacket_traits<Packet>::type ScalarType;
411   const Packet one = pset1<Packet>(ScalarType(1));
412   const Packet neg_one = pset1<Packet>(ScalarType(-1));
413   Packet u = pexp(x);
414   Packet one_mask = pcmp_eq(u, one);
415   Packet u_minus_one = psub(u, one);
416   Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one);
417   Packet logu = plog(u);
418   // The following comparison is to catch the case where
419   // exp(x) = +inf. It is written in this way to avoid having
420   // to form the constant +inf, which depends on the packet
421   // type.
422   Packet pos_inf_mask = pcmp_eq(logu, u);
423   Packet expm1 = pmul(u_minus_one, pdiv(x, logu));
424   expm1 = pselect(pos_inf_mask, u, expm1);
425   return pselect(one_mask,
426                  x,
427                  pselect(neg_one_mask,
428                          neg_one,
429                          expm1));
430 }
431 
432 
433 // Exponential function. Works by writing "x = m*log(2) + r" where
434 // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
435 // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
436 template <typename Packet>
437 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
438 EIGEN_UNUSED
439 Packet pexp_float(const Packet _x)
440 {
441   const Packet cst_1      = pset1<Packet>(1.0f);
442   const Packet cst_half   = pset1<Packet>(0.5f);
443   const Packet cst_exp_hi = pset1<Packet>( 88.723f);
444   const Packet cst_exp_lo = pset1<Packet>(-88.723f);
445 
446   const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
447   const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
448   const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
449   const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
450   const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
451   const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
452   const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);
453 
454   // Clamp x.
455   Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);
456 
457   // Express exp(x) as exp(m*ln(2) + r), start by extracting
458   // m = floor(x/ln(2) + 0.5).
459   Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));
460 
461   // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
462   // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
463   // truncation errors.
464   const Packet cst_cephes_exp_C1 = pset1<Packet>(-0.693359375f);
465   const Packet cst_cephes_exp_C2 = pset1<Packet>(2.12194440e-4f);
466   Packet r = pmadd(m, cst_cephes_exp_C1, x);
467   r = pmadd(m, cst_cephes_exp_C2, r);
468 
469   Packet r2 = pmul(r, r);
470   Packet r3 = pmul(r2, r);
471 
472   // Evaluate the polynomial approximant,improved by instruction-level parallelism.
473   Packet y, y1, y2;
474   y  = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1);
475   y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4);
476   y2 = padd(r, cst_1);
477   y  = pmadd(y, r, cst_cephes_exp_p2);
478   y1 = pmadd(y1, r, cst_cephes_exp_p5);
479   y  = pmadd(y, r3, y1);
480   y  = pmadd(y, r2, y2);
481 
482   // Return 2^m * exp(r).
483   // TODO: replace pldexp with faster implementation since y in [-1, 1).
484   return pmax(pldexp(y,m), _x);
485 }
486 
487 template <typename Packet>
488 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
489 EIGEN_UNUSED
490 Packet pexp_double(const Packet _x)
491 {
492   Packet x = _x;
493 
494   const Packet cst_1 = pset1<Packet>(1.0);
495   const Packet cst_2 = pset1<Packet>(2.0);
496   const Packet cst_half = pset1<Packet>(0.5);
497 
498   const Packet cst_exp_hi = pset1<Packet>(709.784);
499   const Packet cst_exp_lo = pset1<Packet>(-709.784);
500 
501   const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
502   const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
503   const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
504   const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
505   const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
506   const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
507   const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
508   const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
509   const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
510   const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);
511 
512   Packet tmp, fx;
513 
514   // clamp x
515   x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
516   // Express exp(x) as exp(g + n*log(2)).
517   fx = pmadd(cst_cephes_LOG2EF, x, cst_half);
518 
519   // Get the integer modulus of log(2), i.e. the "n" described above.
520   fx = pfloor(fx);
521 
522   // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
523   // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
524   // digits right.
525   tmp = pmul(fx, cst_cephes_exp_C1);
526   Packet z = pmul(fx, cst_cephes_exp_C2);
527   x = psub(x, tmp);
528   x = psub(x, z);
529 
530   Packet x2 = pmul(x, x);
531 
532   // Evaluate the numerator polynomial of the rational interpolant.
533   Packet px = cst_cephes_exp_p0;
534   px = pmadd(px, x2, cst_cephes_exp_p1);
535   px = pmadd(px, x2, cst_cephes_exp_p2);
536   px = pmul(px, x);
537 
538   // Evaluate the denominator polynomial of the rational interpolant.
539   Packet qx = cst_cephes_exp_q0;
540   qx = pmadd(qx, x2, cst_cephes_exp_q1);
541   qx = pmadd(qx, x2, cst_cephes_exp_q2);
542   qx = pmadd(qx, x2, cst_cephes_exp_q3);
543 
544   // I don't really get this bit, copied from the SSE2 routines, so...
545   // TODO(gonnet): Figure out what is going on here, perhaps find a better
546   // rational interpolant?
547   x = pdiv(px, psub(qx, px));
548   x = pmadd(cst_2, x, cst_1);
549 
550   // Construct the result 2^n * exp(g) = e * x. The max is used to catch
551   // non-finite values in the input.
552   // TODO: replace pldexp with faster implementation since x in [-1, 1).
553   return pmax(pldexp(x,fx), _x);
554 }
555 
556 // The following code is inspired by the following stack-overflow answer:
557 //   https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
558 // It has been largely optimized:
559 //  - By-pass calls to frexp.
560 //  - Aligned loads of required 96 bits of 2/pi. This is accomplished by
561 //    (1) balancing the mantissa and exponent to the required bits of 2/pi are
562 //    aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
563 //  - Avoid a branch in rounding and extraction of the remaining fractional part.
564 // Overall, I measured a speed up higher than x2 on x86-64.
565 inline float trig_reduce_huge (float xf, int *quadrant)
566 {
567   using Eigen::numext::int32_t;
568   using Eigen::numext::uint32_t;
569   using Eigen::numext::int64_t;
570   using Eigen::numext::uint64_t;
571 
572   const double pio2_62 = 3.4061215800865545e-19;    // pi/2 * 2^-62
573   const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt
574 
575   // 192 bits of 2/pi for Payne-Hanek reduction
576   // Bits are introduced by packet of 8 to enable aligned reads.
577   static const uint32_t two_over_pi [] =
578   {
579     0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
580     0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
581     0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
582     0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
583     0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
584     0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
585     0x10e41000, 0xe4100000
586   };
587 
588   uint32_t xi = numext::bit_cast<uint32_t>(xf);
589   // Below, -118 = -126 + 8.
590   //   -126 is to get the exponent,
591   //   +8 is to enable alignment of 2/pi's bits on 8 bits.
592   // This is possible because the fractional part of x as only 24 meaningful bits.
593   uint32_t e = (xi >> 23) - 118;
594   // Extract the mantissa and shift it to align it wrt the exponent
595   xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);
596 
597   uint32_t i = e >> 3;
598   uint32_t twoopi_1  = two_over_pi[i-1];
599   uint32_t twoopi_2  = two_over_pi[i+3];
600   uint32_t twoopi_3  = two_over_pi[i+7];
601 
602   // Compute x * 2/pi in 2.62-bit fixed-point format.
603   uint64_t p;
604   p = uint64_t(xi) * twoopi_3;
605   p = uint64_t(xi) * twoopi_2 + (p >> 32);
606   p = (uint64_t(xi * twoopi_1) << 32) + p;
607 
608   // Round to nearest: add 0.5 and extract integral part.
609   uint64_t q = (p + zero_dot_five) >> 62;
610   *quadrant = int(q);
611   // Now it remains to compute "r = x - q*pi/2" with high accuracy,
612   // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
613   //   r = (p-q)*pi/2,
614   // where the product can be be carried out with sufficient accuracy using double precision.
615   p -= q<<62;
616   return float(double(int64_t(p)) * pio2_62);
617 }
618 
619 template<bool ComputeSine,typename Packet>
620 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
621 EIGEN_UNUSED
622 #if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT
623 __attribute__((optimize("-fno-unsafe-math-optimizations")))
624 #endif
625 Packet psincos_float(const Packet& _x)
626 {
627   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
628 
629   const Packet  cst_2oPI            = pset1<Packet>(0.636619746685028076171875f); // 2/PI
630   const Packet  cst_rounding_magic  = pset1<Packet>(12582912); // 2^23 for rounding
631   const PacketI csti_1              = pset1<PacketI>(1);
632   const Packet  cst_sign_mask       = pset1frombits<Packet>(0x80000000u);
633 
634   Packet x = pabs(_x);
635 
636   // Scale x by 2/Pi to find x's octant.
637   Packet y = pmul(x, cst_2oPI);
638 
639   // Rounding trick:
640   Packet y_round = padd(y, cst_rounding_magic);
641   EIGEN_OPTIMIZATION_BARRIER(y_round)
642   PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
643   y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
644 
645   // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
646   // using "Extended precision modular arithmetic"
647   #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
648   // This version requires true FMA for high accuracy
649   // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
650   const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
651   x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
652   x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
653   x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
654   #else
655   // Without true FMA, the previous set of coefficients maintain 1ULP accuracy
656   // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
657   // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.
658 
659   // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
660   // and 2 ULP up to:
661   const float huge_th = ComputeSine ? 25966.f : 18838.f;
662   x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
663   EIGEN_OPTIMIZATION_BARRIER(x)
664   x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
665   EIGEN_OPTIMIZATION_BARRIER(x)
666   x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
667   x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee
668 
669   // For the record, the following set of coefficients maintain 2ULP up
670   // to a slightly larger range:
671   // const float huge_th = ComputeSine ? 51981.f : 39086.125f;
672   // but it slightly fails to maintain 1ULP for two values of sin below pi.
673   // x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
674   // x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
675   // x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
676   // x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);
677 
678   // For the record, with only 3 iterations it is possible to maintain
679   // 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
680   // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
681   #endif
682 
683   if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
684   {
685     const int PacketSize = unpacket_traits<Packet>::size;
686     EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
687     EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
688     EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
689     pstoreu(vals, pabs(_x));
690     pstoreu(x_cpy, x);
691     pstoreu(y_int2, y_int);
692     for(int k=0; k<PacketSize;++k)
693     {
694       float val = vals[k];
695       if(val>=huge_th && (numext::isfinite)(val))
696         x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
697     }
698     x = ploadu<Packet>(x_cpy);
699     y_int = ploadu<PacketI>(y_int2);
700   }
701 
702   // Compute the sign to apply to the polynomial.
703   // sin: sign = second_bit(y_int) xor signbit(_x)
704   // cos: sign = second_bit(y_int+1)
705   Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int)))
706                                 : preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1)));
707   sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
708 
709   // Get the polynomial selection mask from the second bit of y_int
710   // We'll calculate both (sin and cos) polynomials and then select from the two.
711   Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
712 
713   Packet x2 = pmul(x,x);
714 
715   // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
716   Packet y1 =        pset1<Packet>(2.4372266125283204019069671630859375e-05f);
717   y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f     ));
718   y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f           ));
719   y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
720   y1 = pmadd(y1, x2, pset1<Packet>(1.f));
721 
722   // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
723   // octave/matlab code to compute those coefficients:
724   //    x = (0:0.0001:pi/4)';
725   //    A = [x.^3 x.^5 x.^7];
726   //    w = ((1.-(x/(pi/4)).^2).^5)*2000+1;         # weights trading relative accuracy
727   //    c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
728   //    printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
729   //
730   Packet y2 =        pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
731   y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
732   y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
733   y2 = pmul(y2, x2);
734   y2 = pmadd(y2, x, x);
735 
736   // Select the correct result from the two polynomials.
737   y = ComputeSine ? pselect(poly_mask,y2,y1)
738                   : pselect(poly_mask,y1,y2);
739 
740   // Update the sign and filter huge inputs
741   return pxor(y, sign_bit);
742 }
743 
744 template<typename Packet>
745 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
746 EIGEN_UNUSED
747 Packet psin_float(const Packet& x)
748 {
749   return psincos_float<true>(x);
750 }
751 
752 template<typename Packet>
753 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
754 EIGEN_UNUSED
755 Packet pcos_float(const Packet& x)
756 {
757   return psincos_float<false>(x);
758 }
759 
760 
761 template<typename Packet>
762 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
763 EIGEN_UNUSED
764 Packet psqrt_complex(const Packet& a) {
765   typedef typename unpacket_traits<Packet>::type Scalar;
766   typedef typename Scalar::value_type RealScalar;
767   typedef typename unpacket_traits<Packet>::as_real RealPacket;
768 
769   // Computes the principal sqrt of the complex numbers in the input.
770   //
771   // For example, for packets containing 2 complex numbers stored in interleaved format
772   //    a = [a0, a1] = [x0, y0, x1, y1],
773   // where x0 = real(a0), y0 = imag(a0) etc., this function returns
774   //    b = [b0, b1] = [u0, v0, u1, v1],
775   // such that b0^2 = a0, b1^2 = a1.
776   //
777   // To derive the formula for the complex square roots, let's consider the equation for
778   // a single complex square root of the number x + i*y. We want to find real numbers
779   // u and v such that
780   //    (u + i*v)^2 = x + i*y  <=>
781   //    u^2 - v^2 + i*2*u*v = x + i*v.
782   // By equating the real and imaginary parts we get:
783   //    u^2 - v^2 = x
784   //    2*u*v = y.
785   //
786   // For x >= 0, this has the numerically stable solution
787   //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
788   //    v = 0.5 * (y / u)
789   // and for x < 0,
790   //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
791   //    u = 0.5 * (y / v)
792   //
793   //  To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as
794   //     l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) ,
795 
796   // In the following, without lack of generality, we have annotated the code, assuming
797   // that the input is a packet of 2 complex numbers.
798   //
799   // Step 1. Compute l = [l0, l0, l1, l1], where
800   //    l0 = sqrt(x0^2 + y0^2),  l1 = sqrt(x1^2 + y1^2)
801   // To avoid over- and underflow, we use the stable formula for each hypotenuse
802   //    l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)),
803   // where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1.
804 
805   RealPacket a_abs = pabs(a.v);           // [|x0|, |y0|, |x1|, |y1|]
806   RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; // [|y0|, |x0|, |y1|, |x1|]
807   RealPacket a_max = pmax(a_abs, a_abs_flip);
808   RealPacket a_min = pmin(a_abs, a_abs_flip);
809   RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min));
810   RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max));
811   RealPacket r = pdiv(a_min, a_max);
812   const RealPacket cst_one  = pset1<RealPacket>(RealScalar(1));
813   RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r))));  // [l0, l0, l1, l1]
814   // Set l to a_max if a_min is zero.
815   l = pselect(a_min_zero_mask, a_max, l);
816 
817   // Step 2. Compute [rho0, *, rho1, *], where
818   // rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 =  sqrt(0.5 * (l1 + |x1|))
819   // We don't care about the imaginary parts computed here. They will be overwritten later.
820   const RealPacket cst_half = pset1<RealPacket>(RealScalar(0.5));
821   Packet rho;
822   rho.v = psqrt(pmul(cst_half, padd(a_abs, l)));
823 
824   // Step 3. Compute [rho0, eta0, rho1, eta1], where
825   // eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2.
826   // set eta = 0 of input is 0 + i0.
827   RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask);
828   RealPacket real_mask = peven_mask(a.v);
829   Packet positive_real_result;
830   // Compute result for inputs with positive real part.
831   positive_real_result.v = pselect(real_mask, rho.v, eta);
832 
833   // Step 4. Compute solution for inputs with negative real part:
834   //         [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1]
835   const RealScalar neg_zero = RealScalar(numext::bit_cast<float>(0x80000000u));
836   const RealPacket cst_imag_sign_mask = pset1<Packet>(Scalar(RealScalar(0.0), neg_zero)).v;
837   RealPacket imag_signs = pand(a.v, cst_imag_sign_mask);
838   Packet negative_real_result;
839   // Notice that rho is positive, so taking it's absolute value is a noop.
840   negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs);
841 
842   // Step 5. Select solution branch based on the sign of the real parts.
843   Packet negative_real_mask;
844   negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v));
845   negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v);
846   Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result);
847 
848   // Step 6. Handle special cases for infinities:
849   // * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN
850   // * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN
851   // * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y
852   // * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y
853   const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
854   Packet is_inf;
855   is_inf.v = pcmp_eq(a_abs, cst_pos_inf);
856   Packet is_real_inf;
857   is_real_inf.v = pand(is_inf.v, real_mask);
858   is_real_inf = por(is_real_inf, pcplxflip(is_real_inf));
859   // prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part.
860   Packet real_inf_result;
861   real_inf_result.v = pmul(a_abs, pset1<Packet>(Scalar(RealScalar(1.0), RealScalar(0.0))).v);
862   real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v);
863   // prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part.
864   Packet is_imag_inf;
865   is_imag_inf.v = pandnot(is_inf.v, real_mask);
866   is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf));
867   Packet imag_inf_result;
868   imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask));
869 
870   return  pselect(is_imag_inf, imag_inf_result,
871                   pselect(is_real_inf, real_inf_result,result));
872 }
873 
874 // TODO(rmlarsen): The following set of utilities for double word arithmetic
875 // should perhaps be refactored as a separate file, since it would be generally
876 // useful for special function implementation etc. Writing the algorithms in
877 // terms if a double word type would also make the code more readable.
878 
879 // This function splits x into the nearest integer n and fractional part r,
880 // such that x = n + r holds exactly.
881 template<typename Packet>
882 EIGEN_STRONG_INLINE
883 void absolute_split(const Packet& x, Packet& n, Packet& r) {
884   n = pround(x);
885   r = psub(x, n);
886 }
887 
888 // This function computes the sum {s, r}, such that x + y = s_hi + s_lo
889 // holds exactly, and s_hi = fl(x+y), if |x| >= |y|.
890 template<typename Packet>
891 EIGEN_STRONG_INLINE
892 void fast_twosum(const Packet& x, const Packet& y, Packet& s_hi, Packet& s_lo) {
893   s_hi = padd(x, y);
894   const Packet t = psub(s_hi, x);
895   s_lo = psub(y, t);
896 }
897 
898 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
899 // This function implements the extended precision product of
900 // a pair of floating point numbers. Given {x, y}, it computes the pair
901 // {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
902 // p_hi = fl(x * y).
903 template<typename Packet>
904 EIGEN_STRONG_INLINE
905 void twoprod(const Packet& x, const Packet& y,
906              Packet& p_hi, Packet& p_lo) {
907   p_hi = pmul(x, y);
908   p_lo = pmadd(x, y, pnegate(p_hi));
909 }
910 
911 #else
912 
913 // This function implements the Veltkamp splitting. Given a floating point
914 // number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds
915 // exactly and that half of the significant of x fits in x_hi.
916 // This is Algorithm 3 from Jean-Michel Muller, "Elementary Functions",
917 // 3rd edition, Birkh\"auser, 2016.
918 template<typename Packet>
919 EIGEN_STRONG_INLINE
920 void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
921   typedef typename unpacket_traits<Packet>::type Scalar;
922   EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
923   const Scalar shift_scale = Scalar(uint64_t(1) << shift);  // Scalar constructor not necessarily constexpr.
924   const Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
925   Packet rho = psub(x, gamma);
926   x_hi = padd(rho, gamma);
927   x_lo = psub(x, x_hi);
928 }
929 
930 // This function implements Dekker's algorithm for products x * y.
931 // Given floating point numbers {x, y} computes the pair
932 // {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
933 // p_hi = fl(x * y).
934 template<typename Packet>
935 EIGEN_STRONG_INLINE
936 void twoprod(const Packet& x, const Packet& y,
937              Packet& p_hi, Packet& p_lo) {
938   Packet x_hi, x_lo, y_hi, y_lo;
939   veltkamp_splitting(x, x_hi, x_lo);
940   veltkamp_splitting(y, y_hi, y_lo);
941 
942   p_hi = pmul(x, y);
943   p_lo = pmadd(x_hi, y_hi, pnegate(p_hi));
944   p_lo = pmadd(x_hi, y_lo, p_lo);
945   p_lo = pmadd(x_lo, y_hi, p_lo);
946   p_lo = pmadd(x_lo, y_lo, p_lo);
947 }
948 
949 #endif  // EIGEN_HAS_SINGLE_INSTRUCTION_MADD
950 
951 
952 // This function implements Dekker's algorithm for the addition
953 // of two double word numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
954 // It returns the result as a pair {s_hi, s_lo} such that
955 // x_hi + x_lo + y_hi + y_lo = s_hi + s_lo holds exactly.
956 // This is Algorithm 5 from Jean-Michel Muller, "Elementary Functions",
957 // 3rd edition, Birkh\"auser, 2016.
958 template<typename Packet>
959 EIGEN_STRONG_INLINE
960   void twosum(const Packet& x_hi, const Packet& x_lo,
961               const Packet& y_hi, const Packet& y_lo,
962               Packet& s_hi, Packet& s_lo) {
963   const Packet x_greater_mask = pcmp_lt(pabs(y_hi), pabs(x_hi));
964   Packet r_hi_1, r_lo_1;
965   fast_twosum(x_hi, y_hi,r_hi_1, r_lo_1);
966   Packet r_hi_2, r_lo_2;
967   fast_twosum(y_hi, x_hi,r_hi_2, r_lo_2);
968   const Packet r_hi = pselect(x_greater_mask, r_hi_1, r_hi_2);
969 
970   const Packet s1 = padd(padd(y_lo, r_lo_1), x_lo);
971   const Packet s2 = padd(padd(x_lo, r_lo_2), y_lo);
972   const Packet s = pselect(x_greater_mask, s1, s2);
973 
974   fast_twosum(r_hi, s, s_hi, s_lo);
975 }
976 
977 // This is a version of twosum for double word numbers,
978 // which assumes that |x_hi| >= |y_hi|.
979 template<typename Packet>
980 EIGEN_STRONG_INLINE
981   void fast_twosum(const Packet& x_hi, const Packet& x_lo,
982               const Packet& y_hi, const Packet& y_lo,
983               Packet& s_hi, Packet& s_lo) {
984   Packet r_hi, r_lo;
985   fast_twosum(x_hi, y_hi, r_hi, r_lo);
986   const Packet s = padd(padd(y_lo, r_lo), x_lo);
987   fast_twosum(r_hi, s, s_hi, s_lo);
988 }
989 
990 // This is a version of twosum for adding a floating point number x to
991 // double word number {y_hi, y_lo} number, with the assumption
992 // that |x| >= |y_hi|.
993 template<typename Packet>
994 EIGEN_STRONG_INLINE
995 void fast_twosum(const Packet& x,
996                  const Packet& y_hi, const Packet& y_lo,
997                  Packet& s_hi, Packet& s_lo) {
998   Packet r_hi, r_lo;
999   fast_twosum(x, y_hi, r_hi, r_lo);
1000   const Packet s = padd(y_lo, r_lo);
1001   fast_twosum(r_hi, s, s_hi, s_lo);
1002 }
1003 
1004 // This function implements the multiplication of a double word
1005 // number represented by {x_hi, x_lo} by a floating point number y.
1006 // It returns the result as a pair {p_hi, p_lo} such that
1007 // (x_hi + x_lo) * y = p_hi + p_lo hold with a relative error
1008 // of less than 2*2^{-2p}, where p is the number of significand bit
1009 // in the floating point type.
1010 // This is Algorithm 7 from Jean-Michel Muller, "Elementary Functions",
1011 // 3rd edition, Birkh\"auser, 2016.
1012 template<typename Packet>
1013 EIGEN_STRONG_INLINE
1014 void twoprod(const Packet& x_hi, const Packet& x_lo, const Packet& y,
1015              Packet& p_hi, Packet& p_lo) {
1016   Packet c_hi, c_lo1;
1017   twoprod(x_hi, y, c_hi, c_lo1);
1018   const Packet c_lo2 = pmul(x_lo, y);
1019   Packet t_hi, t_lo1;
1020   fast_twosum(c_hi, c_lo2, t_hi, t_lo1);
1021   const Packet t_lo2 = padd(t_lo1, c_lo1);
1022   fast_twosum(t_hi, t_lo2, p_hi, p_lo);
1023 }
1024 
1025 // This function implements the multiplication of two double word
1026 // numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
1027 // It returns the result as a pair {p_hi, p_lo} such that
1028 // (x_hi + x_lo) * (y_hi + y_lo) = p_hi + p_lo holds with a relative error
1029 // of less than 2*2^{-2p}, where p is the number of significand bit
1030 // in the floating point type.
1031 template<typename Packet>
1032 EIGEN_STRONG_INLINE
1033 void twoprod(const Packet& x_hi, const Packet& x_lo,
1034              const Packet& y_hi, const Packet& y_lo,
1035              Packet& p_hi, Packet& p_lo) {
1036   Packet p_hi_hi, p_hi_lo;
1037   twoprod(x_hi, x_lo, y_hi, p_hi_hi, p_hi_lo);
1038   Packet p_lo_hi, p_lo_lo;
1039   twoprod(x_hi, x_lo, y_lo, p_lo_hi, p_lo_lo);
1040   fast_twosum(p_hi_hi, p_hi_lo, p_lo_hi, p_lo_lo, p_hi, p_lo);
1041 }
1042 
1043 // This function computes the reciprocal of a floating point number
1044 // with extra precision and returns the result as a double word.
1045 template <typename Packet>
1046 void doubleword_reciprocal(const Packet& x, Packet& recip_hi, Packet& recip_lo) {
1047   typedef typename unpacket_traits<Packet>::type Scalar;
1048   // 1. Approximate the reciprocal as the reciprocal of the high order element.
1049   Packet approx_recip = prsqrt(x);
1050   approx_recip = pmul(approx_recip, approx_recip);
1051 
1052   // 2. Run one step of Newton-Raphson iteration in double word arithmetic
1053   // to get the bottom half. The NR iteration for reciprocal of 'a' is
1054   //    x_{i+1} = x_i * (2 - a * x_i)
1055 
1056   // -a*x_i
1057   Packet t1_hi, t1_lo;
1058   twoprod(pnegate(x), approx_recip, t1_hi, t1_lo);
1059   // 2 - a*x_i
1060   Packet t2_hi, t2_lo;
1061   fast_twosum(pset1<Packet>(Scalar(2)), t1_hi, t2_hi, t2_lo);
1062   Packet t3_hi, t3_lo;
1063   fast_twosum(t2_hi, padd(t2_lo, t1_lo), t3_hi, t3_lo);
1064   // x_i * (2 - a * x_i)
1065   twoprod(t3_hi, t3_lo, approx_recip, recip_hi, recip_lo);
1066 }
1067 
1068 
1069 // This function computes log2(x) and returns the result as a double word.
1070 template <typename Scalar>
1071 struct accurate_log2 {
1072   template <typename Packet>
1073   EIGEN_STRONG_INLINE
1074   void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
1075     log2_x_hi = plog2(x);
1076     log2_x_lo = pzero(x);
1077   }
1078 };
1079 
1080 // This specialization uses a more accurate algorithm to compute log2(x) for
1081 // floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~6.42e-10.
1082 // This additional accuracy is needed to counter the error-magnification
1083 // inherent in multiplying by a potentially large exponent in pow(x,y).
1084 // The minimax polynomial used was calculated using the Sollya tool.
1085 // See sollya.org.
1086 template <>
1087 struct accurate_log2<float> {
1088   template <typename Packet>
1089   EIGEN_STRONG_INLINE
1090   void operator()(const Packet& z, Packet& log2_x_hi, Packet& log2_x_lo) {
1091     // The function log(1+x)/x is approximated in the interval
1092     // [1/sqrt(2)-1;sqrt(2)-1] by a degree 10 polynomial of the form
1093     //  Q(x) = (C0 + x * (C1 + x * (C2 + x * (C3 + x * P(x))))),
1094     // where the degree 6 polynomial P(x) is evaluated in single precision,
1095     // while the remaining 4 terms of Q(x), as well as the final multiplication by x
1096     // to reconstruct log(1+x) are evaluated in extra precision using
1097     // double word arithmetic. C0 through C3 are extra precise constants
1098     // stored as double words.
1099     //
1100     // The polynomial coefficients were calculated using Sollya commands:
1101     // > n = 10;
1102     // > f = log2(1+x)/x;
1103     // > interval = [sqrt(0.5)-1;sqrt(2)-1];
1104     // > p = fpminimax(f,n,[|double,double,double,double,single...|],interval,relative,floating);
1105 
1106     const Packet p6 = pset1<Packet>( 9.703654795885e-2f);
1107     const Packet p5 = pset1<Packet>(-0.1690667718648f);
1108     const Packet p4 = pset1<Packet>( 0.1720575392246f);
1109     const Packet p3 = pset1<Packet>(-0.1789081543684f);
1110     const Packet p2 = pset1<Packet>( 0.2050433009862f);
1111     const Packet p1 = pset1<Packet>(-0.2404672354459f);
1112     const Packet p0 = pset1<Packet>( 0.2885761857032f);
1113 
1114     const Packet C3_hi = pset1<Packet>(-0.360674142838f);
1115     const Packet C3_lo = pset1<Packet>(-6.13283912543e-09f);
1116     const Packet C2_hi = pset1<Packet>(0.480897903442f);
1117     const Packet C2_lo = pset1<Packet>(-1.44861207474e-08f);
1118     const Packet C1_hi = pset1<Packet>(-0.721347510815f);
1119     const Packet C1_lo = pset1<Packet>(-4.84483164698e-09f);
1120     const Packet C0_hi = pset1<Packet>(1.44269502163f);
1121     const Packet C0_lo = pset1<Packet>(2.01711713999e-08f);
1122     const Packet one = pset1<Packet>(1.0f);
1123 
1124     const Packet x = psub(z, one);
1125     // Evaluate P(x) in working precision.
1126     // We evaluate it in multiple parts to improve instruction level
1127     // parallelism.
1128     Packet x2 = pmul(x,x);
1129     Packet p_even = pmadd(p6, x2, p4);
1130     p_even = pmadd(p_even, x2, p2);
1131     p_even = pmadd(p_even, x2, p0);
1132     Packet p_odd = pmadd(p5, x2, p3);
1133     p_odd = pmadd(p_odd, x2, p1);
1134     Packet p = pmadd(p_odd, x, p_even);
1135 
1136     // Now evaluate the low-order tems of Q(x) in double word precision.
1137     // In the following, due to the alternating signs and the fact that
1138     // |x| < sqrt(2)-1, we can assume that |C*_hi| >= q_i, and use
1139     // fast_twosum instead of the slower twosum.
1140     Packet q_hi, q_lo;
1141     Packet t_hi, t_lo;
1142     // C3 + x * p(x)
1143     twoprod(p, x, t_hi, t_lo);
1144     fast_twosum(C3_hi, C3_lo, t_hi, t_lo, q_hi, q_lo);
1145     // C2 + x * p(x)
1146     twoprod(q_hi, q_lo, x, t_hi, t_lo);
1147     fast_twosum(C2_hi, C2_lo, t_hi, t_lo, q_hi, q_lo);
1148     // C1 + x * p(x)
1149     twoprod(q_hi, q_lo, x, t_hi, t_lo);
1150     fast_twosum(C1_hi, C1_lo, t_hi, t_lo, q_hi, q_lo);
1151     // C0 + x * p(x)
1152     twoprod(q_hi, q_lo, x, t_hi, t_lo);
1153     fast_twosum(C0_hi, C0_lo, t_hi, t_lo, q_hi, q_lo);
1154 
1155     // log(z) ~= x * Q(x)
1156     twoprod(q_hi, q_lo, x, log2_x_hi, log2_x_lo);
1157   }
1158 };
1159 
1160 // This specialization uses a more accurate algorithm to compute log2(x) for
1161 // floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~1.27e-18.
1162 // This additional accuracy is needed to counter the error-magnification
1163 // inherent in multiplying by a potentially large exponent in pow(x,y).
1164 // The minimax polynomial used was calculated using the Sollya tool.
1165 // See sollya.org.
1166 
1167 template <>
1168 struct accurate_log2<double> {
1169   template <typename Packet>
1170   EIGEN_STRONG_INLINE
1171   void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
1172     // We use a transformation of variables:
1173     //    r = c * (x-1) / (x+1),
1174     // such that
1175     //    log2(x) = log2((1 + r/c) / (1 - r/c)) = f(r).
1176     // The function f(r) can be approximated well using an odd polynomial
1177     // of the form
1178     //   P(r) = ((Q(r^2) * r^2 + C) * r^2 + 1) * r,
1179     // For the implementation of log2<double> here, Q is of degree 6 with
1180     // coefficient represented in working precision (double), while C is a
1181     // constant represented in extra precision as a double word to achieve
1182     // full accuracy.
1183     //
1184     // The polynomial coefficients were computed by the Sollya script:
1185     //
1186     // c = 2 / log(2);
1187     // trans = c * (x-1)/(x+1);
1188     // itrans = (1+x/c)/(1-x/c);
1189     // interval=[trans(sqrt(0.5)); trans(sqrt(2))];
1190     // print(interval);
1191     // f = log2(itrans(x));
1192     // p=fpminimax(f,[|1,3,5,7,9,11,13,15,17|],[|1,DD,double...|],interval,relative,floating);
1193     const Packet q12 = pset1<Packet>(2.87074255468000586e-9);
1194     const Packet q10 = pset1<Packet>(2.38957980901884082e-8);
1195     const Packet q8 = pset1<Packet>(2.31032094540014656e-7);
1196     const Packet q6 = pset1<Packet>(2.27279857398537278e-6);
1197     const Packet q4 = pset1<Packet>(2.31271023278625638e-5);
1198     const Packet q2 = pset1<Packet>(2.47556738444535513e-4);
1199     const Packet q0 = pset1<Packet>(2.88543873228900172e-3);
1200     const Packet C_hi = pset1<Packet>(0.0400377511598501157);
1201     const Packet C_lo = pset1<Packet>(-4.77726582251425391e-19);
1202     const Packet one = pset1<Packet>(1.0);
1203 
1204     const Packet cst_2_log2e_hi = pset1<Packet>(2.88539008177792677);
1205     const Packet cst_2_log2e_lo = pset1<Packet>(4.07660016854549667e-17);
1206     // c * (x - 1)
1207     Packet num_hi, num_lo;
1208     twoprod(cst_2_log2e_hi, cst_2_log2e_lo, psub(x, one), num_hi, num_lo);
1209     // TODO(rmlarsen): Investigate if using the division algorithm by
1210     // Muller et al. is faster/more accurate.
1211     // 1 / (x + 1)
1212     Packet denom_hi, denom_lo;
1213     doubleword_reciprocal(padd(x, one), denom_hi, denom_lo);
1214     // r =  c * (x-1) / (x+1),
1215     Packet r_hi, r_lo;
1216     twoprod(num_hi, num_lo, denom_hi, denom_lo, r_hi, r_lo);
1217     // r2 = r * r
1218     Packet r2_hi, r2_lo;
1219     twoprod(r_hi, r_lo, r_hi, r_lo, r2_hi, r2_lo);
1220     // r4 = r2 * r2
1221     Packet r4_hi, r4_lo;
1222     twoprod(r2_hi, r2_lo, r2_hi, r2_lo, r4_hi, r4_lo);
1223 
1224     // Evaluate Q(r^2) in working precision. We evaluate it in two parts
1225     // (even and odd in r^2) to improve instruction level parallelism.
1226     Packet q_even = pmadd(q12, r4_hi, q8);
1227     Packet q_odd = pmadd(q10, r4_hi, q6);
1228     q_even = pmadd(q_even, r4_hi, q4);
1229     q_odd = pmadd(q_odd, r4_hi, q2);
1230     q_even = pmadd(q_even, r4_hi, q0);
1231     Packet q = pmadd(q_odd, r2_hi, q_even);
1232 
1233     // Now evaluate the low order terms of P(x) in double word precision.
1234     // In the following, due to the increasing magnitude of the coefficients
1235     // and r being constrained to [-0.5, 0.5] we can use fast_twosum instead
1236     // of the slower twosum.
1237     // Q(r^2) * r^2
1238     Packet p_hi, p_lo;
1239     twoprod(r2_hi, r2_lo, q, p_hi, p_lo);
1240     // Q(r^2) * r^2 + C
1241     Packet p1_hi, p1_lo;
1242     fast_twosum(C_hi, C_lo, p_hi, p_lo, p1_hi, p1_lo);
1243     // (Q(r^2) * r^2 + C) * r^2
1244     Packet p2_hi, p2_lo;
1245     twoprod(r2_hi, r2_lo, p1_hi, p1_lo, p2_hi, p2_lo);
1246     // ((Q(r^2) * r^2 + C) * r^2 + 1)
1247     Packet p3_hi, p3_lo;
1248     fast_twosum(one, p2_hi, p2_lo, p3_hi, p3_lo);
1249 
1250     // log(z) ~= ((Q(r^2) * r^2 + C) * r^2 + 1) * r
1251     twoprod(p3_hi, p3_lo, r_hi, r_lo, log2_x_hi, log2_x_lo);
1252   }
1253 };
1254 
1255 // This function computes exp2(x) (i.e. 2**x).
1256 template <typename Scalar>
1257 struct fast_accurate_exp2 {
1258   template <typename Packet>
1259   EIGEN_STRONG_INLINE
1260   Packet operator()(const Packet& x) {
1261     // TODO(rmlarsen): Add a pexp2 packetop.
1262     return pexp(pmul(pset1<Packet>(Scalar(EIGEN_LN2)), x));
1263   }
1264 };
1265 
1266 // This specialization uses a faster algorithm to compute exp2(x) for floats
1267 // in [-0.5;0.5] with a relative accuracy of 1 ulp.
1268 // The minimax polynomial used was calculated using the Sollya tool.
1269 // See sollya.org.
1270 template <>
1271 struct fast_accurate_exp2<float> {
1272   template <typename Packet>
1273   EIGEN_STRONG_INLINE
1274   Packet operator()(const Packet& x) {
1275     // This function approximates exp2(x) by a degree 6 polynomial of the form
1276     // Q(x) = 1 + x * (C + x * P(x)), where the degree 4 polynomial P(x) is evaluated in
1277     // single precision, and the remaining steps are evaluated with extra precision using
1278     // double word arithmetic. C is an extra precise constant stored as a double word.
1279     //
1280     // The polynomial coefficients were calculated using Sollya commands:
1281     // > n = 6;
1282     // > f = 2^x;
1283     // > interval = [-0.5;0.5];
1284     // > p = fpminimax(f,n,[|1,double,single...|],interval,relative,floating);
1285 
1286     const Packet p4 = pset1<Packet>(1.539513905e-4f);
1287     const Packet p3 = pset1<Packet>(1.340007293e-3f);
1288     const Packet p2 = pset1<Packet>(9.618283249e-3f);
1289     const Packet p1 = pset1<Packet>(5.550328270e-2f);
1290     const Packet p0 = pset1<Packet>(0.2402264923f);
1291 
1292     const Packet C_hi = pset1<Packet>(0.6931471825f);
1293     const Packet C_lo = pset1<Packet>(2.36836577e-08f);
1294     const Packet one = pset1<Packet>(1.0f);
1295 
1296     // Evaluate P(x) in working precision.
1297     // We evaluate even and odd parts of the polynomial separately
1298     // to gain some instruction level parallelism.
1299     Packet x2 = pmul(x,x);
1300     Packet p_even = pmadd(p4, x2, p2);
1301     Packet p_odd = pmadd(p3, x2, p1);
1302     p_even = pmadd(p_even, x2, p0);
1303     Packet p = pmadd(p_odd, x, p_even);
1304 
1305     // Evaluate the remaining terms of Q(x) with extra precision using
1306     // double word arithmetic.
1307     Packet p_hi, p_lo;
1308     // x * p(x)
1309     twoprod(p, x, p_hi, p_lo);
1310     // C + x * p(x)
1311     Packet q1_hi, q1_lo;
1312     twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
1313     // x * (C + x * p(x))
1314     Packet q2_hi, q2_lo;
1315     twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
1316     // 1 + x * (C + x * p(x))
1317     Packet q3_hi, q3_lo;
1318     // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
1319     // for adding it to unity here.
1320     fast_twosum(one, q2_hi, q3_hi, q3_lo);
1321     return padd(q3_hi, padd(q2_lo, q3_lo));
1322   }
1323 };
1324 
1325 // in [-0.5;0.5] with a relative accuracy of 1 ulp.
1326 // The minimax polynomial used was calculated using the Sollya tool.
1327 // See sollya.org.
1328 template <>
1329 struct fast_accurate_exp2<double> {
1330   template <typename Packet>
1331   EIGEN_STRONG_INLINE
1332   Packet operator()(const Packet& x) {
1333     // This function approximates exp2(x) by a degree 10 polynomial of the form
1334     // Q(x) = 1 + x * (C + x * P(x)), where the degree 8 polynomial P(x) is evaluated in
1335     // single precision, and the remaining steps are evaluated with extra precision using
1336     // double word arithmetic. C is an extra precise constant stored as a double word.
1337     //
1338     // The polynomial coefficients were calculated using Sollya commands:
1339     // > n = 11;
1340     // > f = 2^x;
1341     // > interval = [-0.5;0.5];
1342     // > p = fpminimax(f,n,[|1,DD,double...|],interval,relative,floating);
1343 
1344     const Packet p9 = pset1<Packet>(4.431642109085495276e-10);
1345     const Packet p8 = pset1<Packet>(7.073829923303358410e-9);
1346     const Packet p7 = pset1<Packet>(1.017822306737031311e-7);
1347     const Packet p6 = pset1<Packet>(1.321543498017646657e-6);
1348     const Packet p5 = pset1<Packet>(1.525273342728892877e-5);
1349     const Packet p4 = pset1<Packet>(1.540353045780084423e-4);
1350     const Packet p3 = pset1<Packet>(1.333355814685869807e-3);
1351     const Packet p2 = pset1<Packet>(9.618129107593478832e-3);
1352     const Packet p1 = pset1<Packet>(5.550410866481961247e-2);
1353     const Packet p0 = pset1<Packet>(0.240226506959101332);
1354     const Packet C_hi = pset1<Packet>(0.693147180559945286);
1355     const Packet C_lo = pset1<Packet>(4.81927865669806721e-17);
1356     const Packet one = pset1<Packet>(1.0);
1357 
1358     // Evaluate P(x) in working precision.
1359     // We evaluate even and odd parts of the polynomial separately
1360     // to gain some instruction level parallelism.
1361     Packet x2 = pmul(x,x);
1362     Packet p_even = pmadd(p8, x2, p6);
1363     Packet p_odd = pmadd(p9, x2, p7);
1364     p_even = pmadd(p_even, x2, p4);
1365     p_odd = pmadd(p_odd, x2, p5);
1366     p_even = pmadd(p_even, x2, p2);
1367     p_odd = pmadd(p_odd, x2, p3);
1368     p_even = pmadd(p_even, x2, p0);
1369     p_odd = pmadd(p_odd, x2, p1);
1370     Packet p = pmadd(p_odd, x, p_even);
1371 
1372     // Evaluate the remaining terms of Q(x) with extra precision using
1373     // double word arithmetic.
1374     Packet p_hi, p_lo;
1375     // x * p(x)
1376     twoprod(p, x, p_hi, p_lo);
1377     // C + x * p(x)
1378     Packet q1_hi, q1_lo;
1379     twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
1380     // x * (C + x * p(x))
1381     Packet q2_hi, q2_lo;
1382     twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
1383     // 1 + x * (C + x * p(x))
1384     Packet q3_hi, q3_lo;
1385     // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
1386     // for adding it to unity here.
1387     fast_twosum(one, q2_hi, q3_hi, q3_lo);
1388     return padd(q3_hi, padd(q2_lo, q3_lo));
1389   }
1390 };
1391 
1392 // This function implements the non-trivial case of pow(x,y) where x is
1393 // positive and y is (possibly) non-integer.
1394 // Formally, pow(x,y) = exp2(y * log2(x)), where exp2(x) is shorthand for 2^x.
1395 // TODO(rmlarsen): We should probably add this as a packet up 'ppow', to make it
1396 // easier to specialize or turn off for specific types and/or backends.x
1397 template <typename Packet>
1398 EIGEN_STRONG_INLINE Packet generic_pow_impl(const Packet& x, const Packet& y) {
1399   typedef typename unpacket_traits<Packet>::type Scalar;
1400   // Split x into exponent e_x and mantissa m_x.
1401   Packet e_x;
1402   Packet m_x = pfrexp(x, e_x);
1403 
1404   // Adjust m_x to lie in [1/sqrt(2):sqrt(2)] to minimize absolute error in log2(m_x).
1405   EIGEN_CONSTEXPR Scalar sqrt_half = Scalar(0.70710678118654752440);
1406   const Packet m_x_scale_mask = pcmp_lt(m_x, pset1<Packet>(sqrt_half));
1407   m_x = pselect(m_x_scale_mask, pmul(pset1<Packet>(Scalar(2)), m_x), m_x);
1408   e_x = pselect(m_x_scale_mask, psub(e_x, pset1<Packet>(Scalar(1))), e_x);
1409 
1410   // Compute log2(m_x) with 6 extra bits of accuracy.
1411   Packet rx_hi, rx_lo;
1412   accurate_log2<Scalar>()(m_x, rx_hi, rx_lo);
1413 
1414   // Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled
1415   // precision using double word arithmetic.
1416   Packet f1_hi, f1_lo, f2_hi, f2_lo;
1417   twoprod(e_x, y, f1_hi, f1_lo);
1418   twoprod(rx_hi, rx_lo, y, f2_hi, f2_lo);
1419   // Sum the two terms in f using double word arithmetic. We know
1420   // that |e_x| > |log2(m_x)|, except for the case where e_x==0.
1421   // This means that we can use fast_twosum(f1,f2).
1422   // In the case e_x == 0, e_x * y = f1 = 0, so we don't lose any
1423   // accuracy by violating the assumption of fast_twosum, because
1424   // it's a no-op.
1425   Packet f_hi, f_lo;
1426   fast_twosum(f1_hi, f1_lo, f2_hi, f2_lo, f_hi, f_lo);
1427 
1428   // Split f into integer and fractional parts.
1429   Packet n_z, r_z;
1430   absolute_split(f_hi, n_z, r_z);
1431   r_z = padd(r_z, f_lo);
1432   Packet n_r;
1433   absolute_split(r_z, n_r, r_z);
1434   n_z = padd(n_z, n_r);
1435 
1436   // We now have an accurate split of f = n_z + r_z and can compute
1437   //   x^y = 2**{n_z + r_z) = exp2(r_z) * 2**{n_z}.
1438   // Since r_z is in [-0.5;0.5], we compute the first factor to high accuracy
1439   // using a specialized algorithm. Multiplication by the second factor can
1440   // be done exactly using pldexp(), since it is an integer power of 2.
1441   const Packet e_r = fast_accurate_exp2<Scalar>()(r_z);
1442   return pldexp(e_r, n_z);
1443 }
1444 
1445 // Generic implementation of pow(x,y).
1446 template<typename Packet>
1447 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
1448 EIGEN_UNUSED
1449 Packet generic_pow(const Packet& x, const Packet& y) {
1450   typedef typename unpacket_traits<Packet>::type Scalar;
1451 
1452   const Packet cst_pos_inf = pset1<Packet>(NumTraits<Scalar>::infinity());
1453   const Packet cst_zero = pset1<Packet>(Scalar(0));
1454   const Packet cst_one = pset1<Packet>(Scalar(1));
1455   const Packet cst_nan = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());
1456 
1457   const Packet abs_x = pabs(x);
1458   // Predicates for sign and magnitude of x.
1459   const Packet x_is_zero = pcmp_eq(x, cst_zero);
1460   const Packet x_is_neg = pcmp_lt(x, cst_zero);
1461   const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf);
1462   const Packet abs_x_is_one =  pcmp_eq(abs_x, cst_one);
1463   const Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x);
1464   const Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one);
1465   const Packet x_is_one =  pandnot(abs_x_is_one, x_is_neg);
1466   const Packet x_is_neg_one =  pand(abs_x_is_one, x_is_neg);
1467   const Packet x_is_nan = pandnot(ptrue(x), pcmp_eq(x, x));
1468 
1469   // Predicates for sign and magnitude of y.
1470   const Packet y_is_one = pcmp_eq(y, cst_one);
1471   const Packet y_is_zero = pcmp_eq(y, cst_zero);
1472   const Packet y_is_neg = pcmp_lt(y, cst_zero);
1473   const Packet y_is_pos = pandnot(ptrue(y), por(y_is_zero, y_is_neg));
1474   const Packet y_is_nan = pandnot(ptrue(y), pcmp_eq(y, y));
1475   const Packet abs_y_is_inf = pcmp_eq(pabs(y), cst_pos_inf);
1476   EIGEN_CONSTEXPR Scalar huge_exponent =
1477       (NumTraits<Scalar>::max_exponent() * Scalar(EIGEN_LN2)) /
1478        NumTraits<Scalar>::epsilon();
1479   const Packet abs_y_is_huge = pcmp_le(pset1<Packet>(huge_exponent), pabs(y));
1480 
1481   // Predicates for whether y is integer and/or even.
1482   const Packet y_is_int = pcmp_eq(pfloor(y), y);
1483   const Packet y_div_2 = pmul(y, pset1<Packet>(Scalar(0.5)));
1484   const Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2);
1485 
1486   // Predicates encoding special cases for the value of pow(x,y)
1487   const Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf),
1488                                                     y_is_int),
1489                                             abs_y_is_inf);
1490   const Packet pow_is_one = por(por(x_is_one, y_is_zero),
1491                                 pand(x_is_neg_one,
1492                                      por(abs_y_is_inf, pandnot(y_is_even, invalid_negative_x))));
1493   const Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan));
1494   const Packet pow_is_zero = por(por(por(pand(x_is_zero, y_is_pos),
1495                                          pand(abs_x_is_inf, y_is_neg)),
1496                                      pand(pand(abs_x_is_lt_one, abs_y_is_huge),
1497                                           y_is_pos)),
1498                                  pand(pand(abs_x_is_gt_one, abs_y_is_huge),
1499                                       y_is_neg));
1500   const Packet pow_is_inf = por(por(por(pand(x_is_zero, y_is_neg),
1501                                         pand(abs_x_is_inf, y_is_pos)),
1502                                     pand(pand(abs_x_is_lt_one, abs_y_is_huge),
1503                                          y_is_neg)),
1504                                 pand(pand(abs_x_is_gt_one, abs_y_is_huge),
1505                                      y_is_pos));
1506 
1507   // General computation of pow(x,y) for positive x or negative x and integer y.
1508   const Packet negate_pow_abs = pandnot(x_is_neg, y_is_even);
1509   const Packet pow_abs = generic_pow_impl(abs_x, y);
1510   return pselect(y_is_one, x,
1511                  pselect(pow_is_one, cst_one,
1512                          pselect(pow_is_nan, cst_nan,
1513                                  pselect(pow_is_inf, cst_pos_inf,
1514                                          pselect(pow_is_zero, cst_zero,
1515                                                  pselect(negate_pow_abs, pnegate(pow_abs), pow_abs))))));
1516 }
1517 
1518 
1519 
1520 /* polevl (modified for Eigen)
1521  *
1522  *      Evaluate polynomial
1523  *
1524  *
1525  *
1526  * SYNOPSIS:
1527  *
1528  * int N;
1529  * Scalar x, y, coef[N+1];
1530  *
1531  * y = polevl<decltype(x), N>( x, coef);
1532  *
1533  *
1534  *
1535  * DESCRIPTION:
1536  *
1537  * Evaluates polynomial of degree N:
1538  *
1539  *                     2          N
1540  * y  =  C  + C x + C x  +...+ C x
1541  *        0    1     2          N
1542  *
1543  * Coefficients are stored in reverse order:
1544  *
1545  * coef[0] = C  , ..., coef[N] = C  .
1546  *            N                   0
1547  *
1548  *  The function p1evl() assumes that coef[N] = 1.0 and is
1549  * omitted from the array.  Its calling arguments are
1550  * otherwise the same as polevl().
1551  *
1552  *
1553  * The Eigen implementation is templatized.  For best speed, store
1554  * coef as a const array (constexpr), e.g.
1555  *
1556  * const double coef[] = {1.0, 2.0, 3.0, ...};
1557  *
1558  */
1559 template <typename Packet, int N>
1560 struct ppolevl {
1561   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
1562     EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
1563     return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N]));
1564   }
1565 };
1566 
1567 template <typename Packet>
1568 struct ppolevl<Packet, 0> {
1569   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
1570     EIGEN_UNUSED_VARIABLE(x);
1571     return pset1<Packet>(coeff[0]);
1572   }
1573 };
1574 
1575 /* chbevl (modified for Eigen)
1576  *
1577  *     Evaluate Chebyshev series
1578  *
1579  *
1580  *
1581  * SYNOPSIS:
1582  *
1583  * int N;
1584  * Scalar x, y, coef[N], chebevl();
1585  *
1586  * y = chbevl( x, coef, N );
1587  *
1588  *
1589  *
1590  * DESCRIPTION:
1591  *
1592  * Evaluates the series
1593  *
1594  *        N-1
1595  *         - '
1596  *  y  =   >   coef[i] T (x/2)
1597  *         -            i
1598  *        i=0
1599  *
1600  * of Chebyshev polynomials Ti at argument x/2.
1601  *
1602  * Coefficients are stored in reverse order, i.e. the zero
1603  * order term is last in the array.  Note N is the number of
1604  * coefficients, not the order.
1605  *
1606  * If coefficients are for the interval a to b, x must
1607  * have been transformed to x -> 2(2x - b - a)/(b-a) before
1608  * entering the routine.  This maps x from (a, b) to (-1, 1),
1609  * over which the Chebyshev polynomials are defined.
1610  *
1611  * If the coefficients are for the inverted interval, in
1612  * which (a, b) is mapped to (1/b, 1/a), the transformation
1613  * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity,
1614  * this becomes x -> 4a/x - 1.
1615  *
1616  *
1617  *
1618  * SPEED:
1619  *
1620  * Taking advantage of the recurrence properties of the
1621  * Chebyshev polynomials, the routine requires one more
1622  * addition per loop than evaluating a nested polynomial of
1623  * the same degree.
1624  *
1625  */
1626 
1627 template <typename Packet, int N>
1628 struct pchebevl {
1629   EIGEN_DEVICE_FUNC
1630   static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits<Packet>::type coef[]) {
1631     typedef typename unpacket_traits<Packet>::type Scalar;
1632     Packet b0 = pset1<Packet>(coef[0]);
1633     Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f));
1634     Packet b2;
1635 
1636     for (int i = 1; i < N; i++) {
1637       b2 = b1;
1638       b1 = b0;
1639       b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2);
1640     }
1641 
1642     return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2));
1643   }
1644 };
1645 
1646 } // end namespace internal
1647 } // end namespace Eigen
1648 
1649 #endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
1650