1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15 #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
16
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22
23 namespace llvm {
24
25 /// AArch64_AM - AArch64 Addressing Mode Stuff
26 namespace AArch64_AM {
27
28 //===----------------------------------------------------------------------===//
29 // Shifts
30 //
31
32 enum ShiftExtendType {
33 InvalidShiftExtend = -1,
34 LSL = 0,
35 LSR,
36 ASR,
37 ROR,
38 MSL,
39
40 UXTB,
41 UXTH,
42 UXTW,
43 UXTX,
44
45 SXTB,
46 SXTH,
47 SXTW,
48 SXTX,
49 };
50
51 /// getShiftName - Get the string encoding for the shift type.
getShiftExtendName(AArch64_AM::ShiftExtendType ST)52 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53 switch (ST) {
54 default: llvm_unreachable("unhandled shift type!");
55 case AArch64_AM::LSL: return "lsl";
56 case AArch64_AM::LSR: return "lsr";
57 case AArch64_AM::ASR: return "asr";
58 case AArch64_AM::ROR: return "ror";
59 case AArch64_AM::MSL: return "msl";
60 case AArch64_AM::UXTB: return "uxtb";
61 case AArch64_AM::UXTH: return "uxth";
62 case AArch64_AM::UXTW: return "uxtw";
63 case AArch64_AM::UXTX: return "uxtx";
64 case AArch64_AM::SXTB: return "sxtb";
65 case AArch64_AM::SXTH: return "sxth";
66 case AArch64_AM::SXTW: return "sxtw";
67 case AArch64_AM::SXTX: return "sxtx";
68 }
69 return nullptr;
70 }
71
72 /// getShiftType - Extract the shift type.
getShiftType(unsigned Imm)73 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74 switch ((Imm >> 6) & 0x7) {
75 default: return AArch64_AM::InvalidShiftExtend;
76 case 0: return AArch64_AM::LSL;
77 case 1: return AArch64_AM::LSR;
78 case 2: return AArch64_AM::ASR;
79 case 3: return AArch64_AM::ROR;
80 case 4: return AArch64_AM::MSL;
81 }
82 }
83
84 /// getShiftValue - Extract the shift value.
getShiftValue(unsigned Imm)85 static inline unsigned getShiftValue(unsigned Imm) {
86 return Imm & 0x3f;
87 }
88
89 /// getShifterImm - Encode the shift type and amount:
90 /// imm: 6-bit shift amount
91 /// shifter: 000 ==> lsl
92 /// 001 ==> lsr
93 /// 010 ==> asr
94 /// 011 ==> ror
95 /// 100 ==> msl
96 /// {8-6} = shifter
97 /// {5-0} = imm
getShifterImm(AArch64_AM::ShiftExtendType ST,unsigned Imm)98 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99 unsigned Imm) {
100 assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101 unsigned STEnc = 0;
102 switch (ST) {
103 default: llvm_unreachable("Invalid shift requested");
104 case AArch64_AM::LSL: STEnc = 0; break;
105 case AArch64_AM::LSR: STEnc = 1; break;
106 case AArch64_AM::ASR: STEnc = 2; break;
107 case AArch64_AM::ROR: STEnc = 3; break;
108 case AArch64_AM::MSL: STEnc = 4; break;
109 }
110 return (STEnc << 6) | (Imm & 0x3f);
111 }
112
113 //===----------------------------------------------------------------------===//
114 // Extends
115 //
116
117 /// getArithShiftValue - get the arithmetic shift value.
getArithShiftValue(unsigned Imm)118 static inline unsigned getArithShiftValue(unsigned Imm) {
119 return Imm & 0x7;
120 }
121
122 /// getExtendType - Extract the extend type for operands of arithmetic ops.
getExtendType(unsigned Imm)123 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124 assert((Imm & 0x7) == Imm && "invalid immediate!");
125 switch (Imm) {
126 default: llvm_unreachable("Compiler bug!");
127 case 0: return AArch64_AM::UXTB;
128 case 1: return AArch64_AM::UXTH;
129 case 2: return AArch64_AM::UXTW;
130 case 3: return AArch64_AM::UXTX;
131 case 4: return AArch64_AM::SXTB;
132 case 5: return AArch64_AM::SXTH;
133 case 6: return AArch64_AM::SXTW;
134 case 7: return AArch64_AM::SXTX;
135 }
136 }
137
getArithExtendType(unsigned Imm)138 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139 return getExtendType((Imm >> 3) & 0x7);
140 }
141
142 /// Mapping from extend bits to required operation:
143 /// shifter: 000 ==> uxtb
144 /// 001 ==> uxth
145 /// 010 ==> uxtw
146 /// 011 ==> uxtx
147 /// 100 ==> sxtb
148 /// 101 ==> sxth
149 /// 110 ==> sxtw
150 /// 111 ==> sxtx
getExtendEncoding(AArch64_AM::ShiftExtendType ET)151 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152 switch (ET) {
153 default: llvm_unreachable("Invalid extend type requested");
154 case AArch64_AM::UXTB: return 0; break;
155 case AArch64_AM::UXTH: return 1; break;
156 case AArch64_AM::UXTW: return 2; break;
157 case AArch64_AM::UXTX: return 3; break;
158 case AArch64_AM::SXTB: return 4; break;
159 case AArch64_AM::SXTH: return 5; break;
160 case AArch64_AM::SXTW: return 6; break;
161 case AArch64_AM::SXTX: return 7; break;
162 }
163 }
164
165 /// getArithExtendImm - Encode the extend type and shift amount for an
166 /// arithmetic instruction:
167 /// imm: 3-bit extend amount
168 /// {5-3} = shifter
169 /// {2-0} = imm3
getArithExtendImm(AArch64_AM::ShiftExtendType ET,unsigned Imm)170 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171 unsigned Imm) {
172 assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173 return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174 }
175
176 /// getMemDoShift - Extract the "do shift" flag value for load/store
177 /// instructions.
getMemDoShift(unsigned Imm)178 static inline bool getMemDoShift(unsigned Imm) {
179 return (Imm & 0x1) != 0;
180 }
181
182 /// getExtendType - Extract the extend type for the offset operand of
183 /// loads/stores.
getMemExtendType(unsigned Imm)184 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185 return getExtendType((Imm >> 1) & 0x7);
186 }
187
188 /// getExtendImm - Encode the extend type and amount for a load/store inst:
189 /// doshift: should the offset be scaled by the access size
190 /// shifter: 000 ==> uxtb
191 /// 001 ==> uxth
192 /// 010 ==> uxtw
193 /// 011 ==> uxtx
194 /// 100 ==> sxtb
195 /// 101 ==> sxth
196 /// 110 ==> sxtw
197 /// 111 ==> sxtx
198 /// {3-1} = shifter
199 /// {0} = doshift
getMemExtendImm(AArch64_AM::ShiftExtendType ET,bool DoShift)200 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201 bool DoShift) {
202 return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203 }
204
ror(uint64_t elt,unsigned size)205 static inline uint64_t ror(uint64_t elt, unsigned size) {
206 return ((elt & 1) << (size-1)) | (elt >> 1);
207 }
208
209 /// processLogicalImmediate - Determine if an immediate value can be encoded
210 /// as the immediate operand of a logical instruction for the given register
211 /// size. If so, return true with "encoding" set to the encoded value in
212 /// the form N:immr:imms.
processLogicalImmediate(uint64_t Imm,unsigned RegSize,uint64_t & Encoding)213 static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214 uint64_t &Encoding) {
215 if (Imm == 0ULL || Imm == ~0ULL ||
216 (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U)))
217 return false;
218
219 // First, determine the element size.
220 unsigned Size = RegSize;
221
222 do {
223 Size /= 2;
224 uint64_t Mask = (1ULL << Size) - 1;
225
226 if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
227 Size *= 2;
228 break;
229 }
230 } while (Size > 2);
231
232 // Second, determine the rotation to make the element be: 0^m 1^n.
233 uint32_t CTO, I;
234 uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
235 Imm &= Mask;
236
237 if (isShiftedMask_64(Imm)) {
238 I = countTrailingZeros(Imm);
239 assert(I < 64 && "undefined behavior");
240 CTO = countTrailingOnes(Imm >> I);
241 } else {
242 Imm |= ~Mask;
243 if (!isShiftedMask_64(~Imm))
244 return false;
245
246 unsigned CLO = countLeadingOnes(Imm);
247 I = 64 - CLO;
248 CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
249 }
250
251 // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
252 // to our target value, where I is the number of RORs to go the opposite
253 // direction.
254 assert(Size > I && "I should be smaller than element size");
255 unsigned Immr = (Size - I) & (Size - 1);
256
257 // If size has a 1 in the n'th bit, create a value that has zeroes in
258 // bits [0, n] and ones above that.
259 uint64_t NImms = ~(Size-1) << 1;
260
261 // Or the CTO value into the low bits, which must be below the Nth bit
262 // bit mentioned above.
263 NImms |= (CTO-1);
264
265 // Extract the seventh bit and toggle it to create the N field.
266 unsigned N = ((NImms >> 6) & 1) ^ 1;
267
268 Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
269 return true;
270 }
271
272 /// isLogicalImmediate - Return true if the immediate is valid for a logical
273 /// immediate instruction of the given register size. Return false otherwise.
isLogicalImmediate(uint64_t imm,unsigned regSize)274 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
275 uint64_t encoding;
276 return processLogicalImmediate(imm, regSize, encoding);
277 }
278
279 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
280 /// immediate instruction of the given register size.
encodeLogicalImmediate(uint64_t imm,unsigned regSize)281 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
282 uint64_t encoding = 0;
283 bool res = processLogicalImmediate(imm, regSize, encoding);
284 assert(res && "invalid logical immediate");
285 (void)res;
286 return encoding;
287 }
288
289 /// decodeLogicalImmediate - Decode a logical immediate value in the form
290 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
291 /// integer value it represents with regSize bits.
decodeLogicalImmediate(uint64_t val,unsigned regSize)292 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
293 // Extract the N, imms, and immr fields.
294 unsigned N = (val >> 12) & 1;
295 unsigned immr = (val >> 6) & 0x3f;
296 unsigned imms = val & 0x3f;
297
298 assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
299 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
300 assert(len >= 0 && "undefined logical immediate encoding");
301 unsigned size = (1 << len);
302 unsigned R = immr & (size - 1);
303 unsigned S = imms & (size - 1);
304 assert(S != size - 1 && "undefined logical immediate encoding");
305 uint64_t pattern = (1ULL << (S + 1)) - 1;
306 for (unsigned i = 0; i < R; ++i)
307 pattern = ror(pattern, size);
308
309 // Replicate the pattern to fill the regSize.
310 while (size != regSize) {
311 pattern |= (pattern << size);
312 size *= 2;
313 }
314 return pattern;
315 }
316
317 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
318 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
319 /// is a valid encoding for an integer value with regSize bits.
isValidDecodeLogicalImmediate(uint64_t val,unsigned regSize)320 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
321 unsigned regSize) {
322 // Extract the N and imms fields needed for checking.
323 unsigned N = (val >> 12) & 1;
324 unsigned imms = val & 0x3f;
325
326 if (regSize == 32 && N != 0) // undefined logical immediate encoding
327 return false;
328 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
329 if (len < 0) // undefined logical immediate encoding
330 return false;
331 unsigned size = (1 << len);
332 unsigned S = imms & (size - 1);
333 if (S == size - 1) // undefined logical immediate encoding
334 return false;
335
336 return true;
337 }
338
339 //===----------------------------------------------------------------------===//
340 // Floating-point Immediates
341 //
getFPImmFloat(unsigned Imm)342 static inline float getFPImmFloat(unsigned Imm) {
343 // We expect an 8-bit binary encoding of a floating-point number here.
344 union {
345 uint32_t I;
346 float F;
347 } FPUnion;
348
349 uint8_t Sign = (Imm >> 7) & 0x1;
350 uint8_t Exp = (Imm >> 4) & 0x7;
351 uint8_t Mantissa = Imm & 0xf;
352
353 // 8-bit FP iEEEE Float Encoding
354 // abcd efgh aBbbbbbc defgh000 00000000 00000000
355 //
356 // where B = NOT(b);
357
358 FPUnion.I = 0;
359 FPUnion.I |= Sign << 31;
360 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
361 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
362 FPUnion.I |= (Exp & 0x3) << 23;
363 FPUnion.I |= Mantissa << 19;
364 return FPUnion.F;
365 }
366
367 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
368 /// floating-point value. If the value cannot be represented as an 8-bit
369 /// floating-point value, then return -1.
getFP16Imm(const APInt & Imm)370 static inline int getFP16Imm(const APInt &Imm) {
371 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
372 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
373 int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
374
375 // We can handle 4 bits of mantissa.
376 // mantissa = (16+UInt(e:f:g:h))/16.
377 if (Mantissa & 0x3f)
378 return -1;
379 Mantissa >>= 6;
380
381 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
382 if (Exp < -3 || Exp > 4)
383 return -1;
384 Exp = ((Exp+3) & 0x7) ^ 4;
385
386 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
387 }
388
getFP16Imm(const APFloat & FPImm)389 static inline int getFP16Imm(const APFloat &FPImm) {
390 return getFP16Imm(FPImm.bitcastToAPInt());
391 }
392
393 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
394 /// floating-point value. If the value cannot be represented as an 8-bit
395 /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)396 static inline int getFP32Imm(const APInt &Imm) {
397 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
398 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
399 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
400
401 // We can handle 4 bits of mantissa.
402 // mantissa = (16+UInt(e:f:g:h))/16.
403 if (Mantissa & 0x7ffff)
404 return -1;
405 Mantissa >>= 19;
406 if ((Mantissa & 0xf) != Mantissa)
407 return -1;
408
409 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
410 if (Exp < -3 || Exp > 4)
411 return -1;
412 Exp = ((Exp+3) & 0x7) ^ 4;
413
414 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
415 }
416
getFP32Imm(const APFloat & FPImm)417 static inline int getFP32Imm(const APFloat &FPImm) {
418 return getFP32Imm(FPImm.bitcastToAPInt());
419 }
420
421 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
422 /// floating-point value. If the value cannot be represented as an 8-bit
423 /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)424 static inline int getFP64Imm(const APInt &Imm) {
425 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
426 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
427 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
428
429 // We can handle 4 bits of mantissa.
430 // mantissa = (16+UInt(e:f:g:h))/16.
431 if (Mantissa & 0xffffffffffffULL)
432 return -1;
433 Mantissa >>= 48;
434 if ((Mantissa & 0xf) != Mantissa)
435 return -1;
436
437 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
438 if (Exp < -3 || Exp > 4)
439 return -1;
440 Exp = ((Exp+3) & 0x7) ^ 4;
441
442 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
443 }
444
getFP64Imm(const APFloat & FPImm)445 static inline int getFP64Imm(const APFloat &FPImm) {
446 return getFP64Imm(FPImm.bitcastToAPInt());
447 }
448
449 //===--------------------------------------------------------------------===//
450 // AdvSIMD Modified Immediates
451 //===--------------------------------------------------------------------===//
452
453 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
isAdvSIMDModImmType1(uint64_t Imm)454 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
455 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
456 ((Imm & 0xffffff00ffffff00ULL) == 0);
457 }
458
encodeAdvSIMDModImmType1(uint64_t Imm)459 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
460 return (Imm & 0xffULL);
461 }
462
decodeAdvSIMDModImmType1(uint8_t Imm)463 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
464 uint64_t EncVal = Imm;
465 return (EncVal << 32) | EncVal;
466 }
467
468 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
isAdvSIMDModImmType2(uint64_t Imm)469 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
470 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
471 ((Imm & 0xffff00ffffff00ffULL) == 0);
472 }
473
encodeAdvSIMDModImmType2(uint64_t Imm)474 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
475 return (Imm & 0xff00ULL) >> 8;
476 }
477
decodeAdvSIMDModImmType2(uint8_t Imm)478 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
479 uint64_t EncVal = Imm;
480 return (EncVal << 40) | (EncVal << 8);
481 }
482
483 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
isAdvSIMDModImmType3(uint64_t Imm)484 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
485 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
486 ((Imm & 0xff00ffffff00ffffULL) == 0);
487 }
488
encodeAdvSIMDModImmType3(uint64_t Imm)489 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
490 return (Imm & 0xff0000ULL) >> 16;
491 }
492
decodeAdvSIMDModImmType3(uint8_t Imm)493 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
494 uint64_t EncVal = Imm;
495 return (EncVal << 48) | (EncVal << 16);
496 }
497
498 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
isAdvSIMDModImmType4(uint64_t Imm)499 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
500 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
501 ((Imm & 0x00ffffff00ffffffULL) == 0);
502 }
503
encodeAdvSIMDModImmType4(uint64_t Imm)504 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
505 return (Imm & 0xff000000ULL) >> 24;
506 }
507
decodeAdvSIMDModImmType4(uint8_t Imm)508 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
509 uint64_t EncVal = Imm;
510 return (EncVal << 56) | (EncVal << 24);
511 }
512
513 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
isAdvSIMDModImmType5(uint64_t Imm)514 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
515 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
516 (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
517 ((Imm & 0xff00ff00ff00ff00ULL) == 0);
518 }
519
encodeAdvSIMDModImmType5(uint64_t Imm)520 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
521 return (Imm & 0xffULL);
522 }
523
decodeAdvSIMDModImmType5(uint8_t Imm)524 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
525 uint64_t EncVal = Imm;
526 return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
527 }
528
529 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
isAdvSIMDModImmType6(uint64_t Imm)530 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
531 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
532 (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
533 ((Imm & 0x00ff00ff00ff00ffULL) == 0);
534 }
535
encodeAdvSIMDModImmType6(uint64_t Imm)536 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
537 return (Imm & 0xff00ULL) >> 8;
538 }
539
decodeAdvSIMDModImmType6(uint8_t Imm)540 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
541 uint64_t EncVal = Imm;
542 return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
543 }
544
545 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
isAdvSIMDModImmType7(uint64_t Imm)546 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
547 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
548 ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
549 }
550
encodeAdvSIMDModImmType7(uint64_t Imm)551 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
552 return (Imm & 0xff00ULL) >> 8;
553 }
554
decodeAdvSIMDModImmType7(uint8_t Imm)555 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
556 uint64_t EncVal = Imm;
557 return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
558 }
559
560 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
isAdvSIMDModImmType8(uint64_t Imm)561 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
562 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
563 ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
564 }
565
decodeAdvSIMDModImmType8(uint8_t Imm)566 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
567 uint64_t EncVal = Imm;
568 return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
569 }
570
encodeAdvSIMDModImmType8(uint64_t Imm)571 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
572 return (Imm & 0x00ff0000ULL) >> 16;
573 }
574
575 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
isAdvSIMDModImmType9(uint64_t Imm)576 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
577 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
578 ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
579 ((Imm >> 56) == (Imm & 0x000000ffULL));
580 }
581
encodeAdvSIMDModImmType9(uint64_t Imm)582 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
583 return (Imm & 0xffULL);
584 }
585
decodeAdvSIMDModImmType9(uint8_t Imm)586 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
587 uint64_t EncVal = Imm;
588 EncVal |= (EncVal << 8);
589 EncVal |= (EncVal << 16);
590 EncVal |= (EncVal << 32);
591 return EncVal;
592 }
593
594 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
595 // cmode: 1110, op: 1
isAdvSIMDModImmType10(uint64_t Imm)596 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
597 uint64_t ByteA = Imm & 0xff00000000000000ULL;
598 uint64_t ByteB = Imm & 0x00ff000000000000ULL;
599 uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
600 uint64_t ByteD = Imm & 0x000000ff00000000ULL;
601 uint64_t ByteE = Imm & 0x00000000ff000000ULL;
602 uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
603 uint64_t ByteG = Imm & 0x000000000000ff00ULL;
604 uint64_t ByteH = Imm & 0x00000000000000ffULL;
605
606 return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
607 (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
608 (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
609 (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
610 (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
611 (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
612 (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
613 (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
614 }
615
encodeAdvSIMDModImmType10(uint64_t Imm)616 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
617 uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
618 uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
619 uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
620 uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
621 uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
622 uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
623 uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
624 uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
625
626 uint8_t EncVal = BitA;
627 EncVal <<= 1;
628 EncVal |= BitB;
629 EncVal <<= 1;
630 EncVal |= BitC;
631 EncVal <<= 1;
632 EncVal |= BitD;
633 EncVal <<= 1;
634 EncVal |= BitE;
635 EncVal <<= 1;
636 EncVal |= BitF;
637 EncVal <<= 1;
638 EncVal |= BitG;
639 EncVal <<= 1;
640 EncVal |= BitH;
641 return EncVal;
642 }
643
decodeAdvSIMDModImmType10(uint8_t Imm)644 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
645 uint64_t EncVal = 0;
646 if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
647 if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
648 if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
649 if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
650 if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
651 if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
652 if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
653 if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
654 return EncVal;
655 }
656
657 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
isAdvSIMDModImmType11(uint64_t Imm)658 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
659 uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
660 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
661 (BString == 0x1f || BString == 0x20) &&
662 ((Imm & 0x0007ffff0007ffffULL) == 0);
663 }
664
encodeAdvSIMDModImmType11(uint64_t Imm)665 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
666 uint8_t BitA = (Imm & 0x80000000ULL) != 0;
667 uint8_t BitB = (Imm & 0x20000000ULL) != 0;
668 uint8_t BitC = (Imm & 0x01000000ULL) != 0;
669 uint8_t BitD = (Imm & 0x00800000ULL) != 0;
670 uint8_t BitE = (Imm & 0x00400000ULL) != 0;
671 uint8_t BitF = (Imm & 0x00200000ULL) != 0;
672 uint8_t BitG = (Imm & 0x00100000ULL) != 0;
673 uint8_t BitH = (Imm & 0x00080000ULL) != 0;
674
675 uint8_t EncVal = BitA;
676 EncVal <<= 1;
677 EncVal |= BitB;
678 EncVal <<= 1;
679 EncVal |= BitC;
680 EncVal <<= 1;
681 EncVal |= BitD;
682 EncVal <<= 1;
683 EncVal |= BitE;
684 EncVal <<= 1;
685 EncVal |= BitF;
686 EncVal <<= 1;
687 EncVal |= BitG;
688 EncVal <<= 1;
689 EncVal |= BitH;
690 return EncVal;
691 }
692
decodeAdvSIMDModImmType11(uint8_t Imm)693 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
694 uint64_t EncVal = 0;
695 if (Imm & 0x80) EncVal |= 0x80000000ULL;
696 if (Imm & 0x40) EncVal |= 0x3e000000ULL;
697 else EncVal |= 0x40000000ULL;
698 if (Imm & 0x20) EncVal |= 0x01000000ULL;
699 if (Imm & 0x10) EncVal |= 0x00800000ULL;
700 if (Imm & 0x08) EncVal |= 0x00400000ULL;
701 if (Imm & 0x04) EncVal |= 0x00200000ULL;
702 if (Imm & 0x02) EncVal |= 0x00100000ULL;
703 if (Imm & 0x01) EncVal |= 0x00080000ULL;
704 return (EncVal << 32) | EncVal;
705 }
706
707 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
isAdvSIMDModImmType12(uint64_t Imm)708 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
709 uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
710 return ((BString == 0xff || BString == 0x100) &&
711 ((Imm & 0x0000ffffffffffffULL) == 0));
712 }
713
encodeAdvSIMDModImmType12(uint64_t Imm)714 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
715 uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
716 uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
717 uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
718 uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
719 uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
720 uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
721 uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
722 uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
723
724 uint8_t EncVal = BitA;
725 EncVal <<= 1;
726 EncVal |= BitB;
727 EncVal <<= 1;
728 EncVal |= BitC;
729 EncVal <<= 1;
730 EncVal |= BitD;
731 EncVal <<= 1;
732 EncVal |= BitE;
733 EncVal <<= 1;
734 EncVal |= BitF;
735 EncVal <<= 1;
736 EncVal |= BitG;
737 EncVal <<= 1;
738 EncVal |= BitH;
739 return EncVal;
740 }
741
decodeAdvSIMDModImmType12(uint8_t Imm)742 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
743 uint64_t EncVal = 0;
744 if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
745 if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
746 else EncVal |= 0x4000000000000000ULL;
747 if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
748 if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
749 if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
750 if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
751 if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
752 if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
753 return (EncVal << 32) | EncVal;
754 }
755
756 } // end namespace AArch64_AM
757
758 } // end namespace llvm
759
760 #endif
761