1 /*
2  *  Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
3  *  Copyright (C) 2007 Eric Seidel <eric@webkit.org>
4  *
5  *  This library is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU Lesser General Public
7  *  License as published by the Free Software Foundation; either
8  *  version 2 of the License, or (at your option) any later version.
9  *
10  *  This library is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  *  Lesser General Public License for more details.
14  *
15  *  You should have received a copy of the GNU Lesser General Public
16  *  License along with this library; if not, write to the Free Software
17  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 #include "config.h"
22 #include "Collector.h"
23 
24 #include "ArgList.h"
25 #include "CallFrame.h"
26 #include "CodeBlock.h"
27 #include "CollectorHeapIterator.h"
28 #include "Interpreter.h"
29 #include "JSArray.h"
30 #include "JSGlobalObject.h"
31 #include "JSLock.h"
32 #include "JSONObject.h"
33 #include "JSString.h"
34 #include "JSValue.h"
35 #include "JSZombie.h"
36 #include "MarkStack.h"
37 #include "Nodes.h"
38 #include "Tracing.h"
39 #include <algorithm>
40 #include <limits.h>
41 #include <setjmp.h>
42 #include <stdlib.h>
43 #include <wtf/FastMalloc.h>
44 #include <wtf/HashCountedSet.h>
45 #include <wtf/UnusedParam.h>
46 #include <wtf/VMTags.h>
47 
48 #if OS(DARWIN)
49 
50 #include <mach/mach_init.h>
51 #include <mach/mach_port.h>
52 #include <mach/task.h>
53 #include <mach/thread_act.h>
54 #include <mach/vm_map.h>
55 // clang's libc++ headers does not pull in pthread.h (but libstdc++ does)
56 #include <pthread.h>
57 
58 #elif OS(WINDOWS)
59 
60 #include <windows.h>
61 #include <malloc.h>
62 
63 #elif OS(HAIKU)
64 
65 #include <OS.h>
66 
67 #elif OS(UNIX)
68 
69 #include <stdlib.h>
70 #if !OS(HAIKU)
71 #include <sys/mman.h>
72 #endif
73 #include <unistd.h>
74 
75 #if OS(SOLARIS)
76 #include <thread.h>
77 #else
78 #include <pthread.h>
79 #endif
80 
81 #if HAVE(PTHREAD_NP_H)
82 #include <pthread_np.h>
83 #endif
84 
85 #if OS(QNX)
86 #include <fcntl.h>
87 #include <sys/procfs.h>
88 #include <stdio.h>
89 #include <errno.h>
90 #endif
91 
92 #endif
93 
94 #define COLLECT_ON_EVERY_ALLOCATION 0
95 
96 using std::max;
97 
98 namespace JSC {
99 
100 // tunable parameters
101 
102 const size_t GROWTH_FACTOR = 2;
103 const size_t LOW_WATER_FACTOR = 4;
104 const size_t ALLOCATIONS_PER_COLLECTION = 3600;
105 // This value has to be a macro to be used in max() without introducing
106 // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
107 #define MIN_ARRAY_SIZE (static_cast<size_t>(14))
108 
109 #if ENABLE(JSC_MULTIPLE_THREADS)
110 
111 #if OS(DARWIN)
112 typedef mach_port_t PlatformThread;
113 #elif OS(WINDOWS)
114 typedef HANDLE PlatformThread;
115 #endif
116 
117 class Heap::Thread {
118 public:
Thread(pthread_t pthread,const PlatformThread & platThread,void * base)119     Thread(pthread_t pthread, const PlatformThread& platThread, void* base)
120         : posixThread(pthread)
121         , platformThread(platThread)
122         , stackBase(base)
123     {
124     }
125 
126     Thread* next;
127     pthread_t posixThread;
128     PlatformThread platformThread;
129     void* stackBase;
130 };
131 
132 #endif
133 
Heap(JSGlobalData * globalData)134 Heap::Heap(JSGlobalData* globalData)
135     : m_markListSet(0)
136 #if ENABLE(JSC_MULTIPLE_THREADS)
137     , m_registeredThreads(0)
138     , m_currentThreadRegistrar(0)
139 #endif
140     , m_globalData(globalData)
141 #if OS(SYMBIAN)
142     , m_blockallocator(JSCCOLLECTOR_VIRTUALMEM_RESERVATION, BLOCK_SIZE)
143 #endif
144 {
145     ASSERT(globalData);
146     memset(&m_heap, 0, sizeof(CollectorHeap));
147     allocateBlock();
148 }
149 
~Heap()150 Heap::~Heap()
151 {
152     // The destroy function must already have been called, so assert this.
153     ASSERT(!m_globalData);
154 }
155 
destroy()156 void Heap::destroy()
157 {
158     JSLock lock(SilenceAssertionsOnly);
159 
160     if (!m_globalData)
161         return;
162 
163     ASSERT(!m_globalData->dynamicGlobalObject);
164     ASSERT(!isBusy());
165 
166     // The global object is not GC protected at this point, so sweeping may delete it
167     // (and thus the global data) before other objects that may use the global data.
168     RefPtr<JSGlobalData> protect(m_globalData);
169 
170     delete m_markListSet;
171     m_markListSet = 0;
172 
173     freeBlocks();
174 
175 #if ENABLE(JSC_MULTIPLE_THREADS)
176     if (m_currentThreadRegistrar) {
177         int error = pthread_key_delete(m_currentThreadRegistrar);
178         ASSERT_UNUSED(error, !error);
179     }
180 
181     MutexLocker registeredThreadsLock(m_registeredThreadsMutex);
182     for (Heap::Thread* t = m_registeredThreads; t;) {
183         Heap::Thread* next = t->next;
184         delete t;
185         t = next;
186     }
187 #endif
188 #if OS(SYMBIAN)
189     m_blockallocator.destroy();
190 #endif
191     m_globalData = 0;
192 }
193 
allocateBlock()194 NEVER_INLINE CollectorBlock* Heap::allocateBlock()
195 {
196 #if OS(DARWIN)
197     vm_address_t address = 0;
198     vm_map(current_task(), &address, BLOCK_SIZE, BLOCK_OFFSET_MASK, VM_FLAGS_ANYWHERE | VM_TAG_FOR_COLLECTOR_MEMORY, MEMORY_OBJECT_NULL, 0, FALSE, VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);
199 #elif OS(SYMBIAN)
200     void* address = m_blockallocator.alloc();
201     if (!address)
202         CRASH();
203 #elif OS(WINCE)
204     void* address = VirtualAlloc(NULL, BLOCK_SIZE, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
205 #elif OS(WINDOWS)
206 #if COMPILER(MINGW) && !COMPILER(MINGW64)
207     void* address = __mingw_aligned_malloc(BLOCK_SIZE, BLOCK_SIZE);
208 #else
209     void* address = _aligned_malloc(BLOCK_SIZE, BLOCK_SIZE);
210 #endif
211     memset(address, 0, BLOCK_SIZE);
212 #elif HAVE(POSIX_MEMALIGN)
213     void* address;
214     posix_memalign(&address, BLOCK_SIZE, BLOCK_SIZE);
215 #else
216 
217 #if ENABLE(JSC_MULTIPLE_THREADS)
218 #error Need to initialize pagesize safely.
219 #endif
220     static size_t pagesize = getpagesize();
221 
222     size_t extra = 0;
223     if (BLOCK_SIZE > pagesize)
224         extra = BLOCK_SIZE - pagesize;
225 
226     void* mmapResult = mmap(NULL, BLOCK_SIZE + extra, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
227     uintptr_t address = reinterpret_cast<uintptr_t>(mmapResult);
228 
229     size_t adjust = 0;
230     if ((address & BLOCK_OFFSET_MASK) != 0)
231         adjust = BLOCK_SIZE - (address & BLOCK_OFFSET_MASK);
232 
233     if (adjust > 0)
234         munmap(reinterpret_cast<char*>(address), adjust);
235 
236     if (adjust < extra)
237         munmap(reinterpret_cast<char*>(address + adjust + BLOCK_SIZE), extra - adjust);
238 
239     address += adjust;
240 #endif
241 
242     // Initialize block.
243 
244     CollectorBlock* block = reinterpret_cast<CollectorBlock*>(address);
245     block->heap = this;
246     clearMarkBits(block);
247 
248     Structure* dummyMarkableCellStructure = m_globalData->dummyMarkableCellStructure.get();
249     for (size_t i = 0; i < HeapConstants::cellsPerBlock; ++i)
250         new (block->cells + i) JSCell(dummyMarkableCellStructure);
251 
252     // Add block to blocks vector.
253 
254     size_t numBlocks = m_heap.numBlocks;
255     if (m_heap.usedBlocks == numBlocks) {
256         static const size_t maxNumBlocks = ULONG_MAX / sizeof(CollectorBlock*) / GROWTH_FACTOR;
257         if (numBlocks > maxNumBlocks)
258             CRASH();
259         numBlocks = max(MIN_ARRAY_SIZE, numBlocks * GROWTH_FACTOR);
260         m_heap.numBlocks = numBlocks;
261         m_heap.blocks = static_cast<CollectorBlock**>(fastRealloc(m_heap.blocks, numBlocks * sizeof(CollectorBlock*)));
262     }
263     m_heap.blocks[m_heap.usedBlocks++] = block;
264 
265     return block;
266 }
267 
freeBlock(size_t block)268 NEVER_INLINE void Heap::freeBlock(size_t block)
269 {
270     m_heap.didShrink = true;
271 
272     ObjectIterator it(m_heap, block);
273     ObjectIterator end(m_heap, block + 1);
274     for ( ; it != end; ++it)
275         (*it)->~JSCell();
276     freeBlockPtr(m_heap.blocks[block]);
277 
278     // swap with the last block so we compact as we go
279     m_heap.blocks[block] = m_heap.blocks[m_heap.usedBlocks - 1];
280     m_heap.usedBlocks--;
281 
282     if (m_heap.numBlocks > MIN_ARRAY_SIZE && m_heap.usedBlocks < m_heap.numBlocks / LOW_WATER_FACTOR) {
283         m_heap.numBlocks = m_heap.numBlocks / GROWTH_FACTOR;
284         m_heap.blocks = static_cast<CollectorBlock**>(fastRealloc(m_heap.blocks, m_heap.numBlocks * sizeof(CollectorBlock*)));
285     }
286 }
287 
freeBlockPtr(CollectorBlock * block)288 NEVER_INLINE void Heap::freeBlockPtr(CollectorBlock* block)
289 {
290 #if OS(DARWIN)
291     vm_deallocate(current_task(), reinterpret_cast<vm_address_t>(block), BLOCK_SIZE);
292 #elif OS(SYMBIAN)
293     m_blockallocator.free(reinterpret_cast<void*>(block));
294 #elif OS(WINCE)
295     VirtualFree(block, 0, MEM_RELEASE);
296 #elif OS(WINDOWS)
297 #if COMPILER(MINGW) && !COMPILER(MINGW64)
298     __mingw_aligned_free(block);
299 #else
300     _aligned_free(block);
301 #endif
302 #elif HAVE(POSIX_MEMALIGN)
303     free(block);
304 #else
305     munmap(reinterpret_cast<char*>(block), BLOCK_SIZE);
306 #endif
307 }
308 
freeBlocks()309 void Heap::freeBlocks()
310 {
311     ProtectCountSet protectedValuesCopy = m_protectedValues;
312 
313     clearMarkBits();
314     ProtectCountSet::iterator protectedValuesEnd = protectedValuesCopy.end();
315     for (ProtectCountSet::iterator it = protectedValuesCopy.begin(); it != protectedValuesEnd; ++it)
316         markCell(it->first);
317 
318     m_heap.nextCell = 0;
319     m_heap.nextBlock = 0;
320     DeadObjectIterator it(m_heap, m_heap.nextBlock, m_heap.nextCell);
321     DeadObjectIterator end(m_heap, m_heap.usedBlocks);
322     for ( ; it != end; ++it)
323         (*it)->~JSCell();
324 
325     ASSERT(!protectedObjectCount());
326 
327     protectedValuesEnd = protectedValuesCopy.end();
328     for (ProtectCountSet::iterator it = protectedValuesCopy.begin(); it != protectedValuesEnd; ++it)
329         it->first->~JSCell();
330 
331     for (size_t block = 0; block < m_heap.usedBlocks; ++block)
332         freeBlockPtr(m_heap.blocks[block]);
333 
334     fastFree(m_heap.blocks);
335 
336     memset(&m_heap, 0, sizeof(CollectorHeap));
337 }
338 
recordExtraCost(size_t cost)339 void Heap::recordExtraCost(size_t cost)
340 {
341     // Our frequency of garbage collection tries to balance memory use against speed
342     // by collecting based on the number of newly created values. However, for values
343     // that hold on to a great deal of memory that's not in the form of other JS values,
344     // that is not good enough - in some cases a lot of those objects can pile up and
345     // use crazy amounts of memory without a GC happening. So we track these extra
346     // memory costs. Only unusually large objects are noted, and we only keep track
347     // of this extra cost until the next GC. In garbage collected languages, most values
348     // are either very short lived temporaries, or have extremely long lifetimes. So
349     // if a large value survives one garbage collection, there is not much point to
350     // collecting more frequently as long as it stays alive.
351 
352     if (m_heap.extraCost > maxExtraCost && m_heap.extraCost > m_heap.usedBlocks * BLOCK_SIZE / 2) {
353         // If the last iteration through the heap deallocated blocks, we need
354         // to clean up remaining garbage before marking. Otherwise, the conservative
355         // marking mechanism might follow a pointer to unmapped memory.
356         if (m_heap.didShrink)
357             sweep();
358         reset();
359     }
360     m_heap.extraCost += cost;
361 }
362 
allocate(size_t s)363 void* Heap::allocate(size_t s)
364 {
365     typedef HeapConstants::Block Block;
366     typedef HeapConstants::Cell Cell;
367 
368     ASSERT(JSLock::lockCount() > 0);
369     ASSERT(JSLock::currentThreadIsHoldingLock());
370     ASSERT_UNUSED(s, s <= HeapConstants::cellSize);
371 
372     ASSERT(m_heap.operationInProgress == NoOperation);
373 
374 #if COLLECT_ON_EVERY_ALLOCATION
375     collectAllGarbage();
376     ASSERT(m_heap.operationInProgress == NoOperation);
377 #endif
378 
379 allocate:
380 
381     // Fast case: find the next garbage cell and recycle it.
382 
383     do {
384         ASSERT(m_heap.nextBlock < m_heap.usedBlocks);
385         Block* block = reinterpret_cast<Block*>(m_heap.blocks[m_heap.nextBlock]);
386         do {
387             ASSERT(m_heap.nextCell < HeapConstants::cellsPerBlock);
388             if (!block->marked.get(m_heap.nextCell)) { // Always false for the last cell in the block
389                 Cell* cell = block->cells + m_heap.nextCell;
390 
391                 m_heap.operationInProgress = Allocation;
392                 JSCell* imp = reinterpret_cast<JSCell*>(cell);
393                 imp->~JSCell();
394                 m_heap.operationInProgress = NoOperation;
395 
396                 ++m_heap.nextCell;
397                 return cell;
398             }
399         } while (++m_heap.nextCell != HeapConstants::cellsPerBlock);
400         m_heap.nextCell = 0;
401     } while (++m_heap.nextBlock != m_heap.usedBlocks);
402 
403     // Slow case: reached the end of the heap. Mark live objects and start over.
404 
405     reset();
406     goto allocate;
407 }
408 
resizeBlocks()409 void Heap::resizeBlocks()
410 {
411     m_heap.didShrink = false;
412 
413     size_t usedCellCount = markedCells();
414     size_t minCellCount = usedCellCount + max(ALLOCATIONS_PER_COLLECTION, usedCellCount);
415     size_t minBlockCount = (minCellCount + HeapConstants::cellsPerBlock - 1) / HeapConstants::cellsPerBlock;
416 
417     size_t maxCellCount = 1.25f * minCellCount;
418     size_t maxBlockCount = (maxCellCount + HeapConstants::cellsPerBlock - 1) / HeapConstants::cellsPerBlock;
419 
420     if (m_heap.usedBlocks < minBlockCount)
421         growBlocks(minBlockCount);
422     else if (m_heap.usedBlocks > maxBlockCount)
423         shrinkBlocks(maxBlockCount);
424 }
425 
growBlocks(size_t neededBlocks)426 void Heap::growBlocks(size_t neededBlocks)
427 {
428     ASSERT(m_heap.usedBlocks < neededBlocks);
429     while (m_heap.usedBlocks < neededBlocks)
430         allocateBlock();
431 }
432 
shrinkBlocks(size_t neededBlocks)433 void Heap::shrinkBlocks(size_t neededBlocks)
434 {
435     ASSERT(m_heap.usedBlocks > neededBlocks);
436 
437     // Clear the always-on last bit, so isEmpty() isn't fooled by it.
438     for (size_t i = 0; i < m_heap.usedBlocks; ++i)
439         m_heap.blocks[i]->marked.clear(HeapConstants::cellsPerBlock - 1);
440 
441     for (size_t i = 0; i != m_heap.usedBlocks && m_heap.usedBlocks != neededBlocks; ) {
442         if (m_heap.blocks[i]->marked.isEmpty()) {
443             freeBlock(i);
444         } else
445             ++i;
446     }
447 
448     // Reset the always-on last bit.
449     for (size_t i = 0; i < m_heap.usedBlocks; ++i)
450         m_heap.blocks[i]->marked.set(HeapConstants::cellsPerBlock - 1);
451 }
452 
453 #if OS(WINCE)
454 void* g_stackBase = 0;
455 
isPageWritable(void * page)456 inline bool isPageWritable(void* page)
457 {
458     MEMORY_BASIC_INFORMATION memoryInformation;
459     DWORD result = VirtualQuery(page, &memoryInformation, sizeof(memoryInformation));
460 
461     // return false on error, including ptr outside memory
462     if (result != sizeof(memoryInformation))
463         return false;
464 
465     DWORD protect = memoryInformation.Protect & ~(PAGE_GUARD | PAGE_NOCACHE);
466     return protect == PAGE_READWRITE
467         || protect == PAGE_WRITECOPY
468         || protect == PAGE_EXECUTE_READWRITE
469         || protect == PAGE_EXECUTE_WRITECOPY;
470 }
471 
getStackBase(void * previousFrame)472 static void* getStackBase(void* previousFrame)
473 {
474     // find the address of this stack frame by taking the address of a local variable
475     bool isGrowingDownward;
476     void* thisFrame = (void*)(&isGrowingDownward);
477 
478     isGrowingDownward = previousFrame < &thisFrame;
479     static DWORD pageSize = 0;
480     if (!pageSize) {
481         SYSTEM_INFO systemInfo;
482         GetSystemInfo(&systemInfo);
483         pageSize = systemInfo.dwPageSize;
484     }
485 
486     // scan all of memory starting from this frame, and return the last writeable page found
487     register char* currentPage = (char*)((DWORD)thisFrame & ~(pageSize - 1));
488     if (isGrowingDownward) {
489         while (currentPage > 0) {
490             // check for underflow
491             if (currentPage >= (char*)pageSize)
492                 currentPage -= pageSize;
493             else
494                 currentPage = 0;
495             if (!isPageWritable(currentPage))
496                 return currentPage + pageSize;
497         }
498         return 0;
499     } else {
500         while (true) {
501             // guaranteed to complete because isPageWritable returns false at end of memory
502             currentPage += pageSize;
503             if (!isPageWritable(currentPage))
504                 return currentPage;
505         }
506     }
507 }
508 #endif
509 
510 #if OS(HPUX)
511 struct hpux_get_stack_base_data
512 {
513     pthread_t thread;
514     _pthread_stack_info info;
515 };
516 
hpux_get_stack_base_internal(void * d)517 static void *hpux_get_stack_base_internal(void *d)
518 {
519     hpux_get_stack_base_data *data = static_cast<hpux_get_stack_base_data *>(d);
520 
521     // _pthread_stack_info_np requires the target thread to be suspended
522     // in order to get information about it
523     pthread_suspend(data->thread);
524 
525     // _pthread_stack_info_np returns an errno code in case of failure
526     // or zero on success
527     if (_pthread_stack_info_np(data->thread, &data->info)) {
528         // failed
529         return 0;
530     }
531 
532     pthread_continue(data->thread);
533     return data;
534 }
535 
hpux_get_stack_base()536 static void *hpux_get_stack_base()
537 {
538     hpux_get_stack_base_data data;
539     data.thread = pthread_self();
540 
541     // We cannot get the stack information for the current thread
542     // So we start a new thread to get that information and return it to us
543     pthread_t other;
544     pthread_create(&other, 0, hpux_get_stack_base_internal, &data);
545 
546     void *result;
547     pthread_join(other, &result);
548     if (result)
549        return data.info.stk_stack_base;
550     return 0;
551 }
552 #endif
553 
554 #if OS(QNX)
currentThreadStackBaseQNX()555 static inline void *currentThreadStackBaseQNX()
556 {
557     static void* stackBase = 0;
558     static size_t stackSize = 0;
559     static pthread_t stackThread;
560     pthread_t thread = pthread_self();
561     if (stackBase == 0 || thread != stackThread) {
562         debug_thread_t threadInfo;
563         memset(&threadInfo, 0, sizeof(threadInfo));
564         threadInfo.tid = pthread_self();
565         int fd = open("/proc/self", O_RDONLY);
566         if (fd == -1) {
567             LOG_ERROR("Unable to open /proc/self (errno: %d)", errno);
568             return 0;
569         }
570         devctl(fd, DCMD_PROC_TIDSTATUS, &threadInfo, sizeof(threadInfo), 0);
571         close(fd);
572         stackBase = reinterpret_cast<void*>(threadInfo.stkbase);
573         stackSize = threadInfo.stksize;
574         ASSERT(stackBase);
575         stackThread = thread;
576     }
577     return static_cast<char*>(stackBase) + stackSize;
578 }
579 #endif
580 
currentThreadStackBase()581 static inline void* currentThreadStackBase()
582 {
583 #if OS(DARWIN)
584     pthread_t thread = pthread_self();
585     return pthread_get_stackaddr_np(thread);
586 #elif OS(WINCE)
587     AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
588     MutexLocker locker(mutex);
589     if (g_stackBase)
590         return g_stackBase;
591     else {
592         int dummy;
593         return getStackBase(&dummy);
594     }
595 #elif OS(WINDOWS) && CPU(X86) && COMPILER(MSVC)
596     // offset 0x18 from the FS segment register gives a pointer to
597     // the thread information block for the current thread
598     NT_TIB* pTib;
599     __asm {
600         MOV EAX, FS:[18h]
601         MOV pTib, EAX
602     }
603     return static_cast<void*>(pTib->StackBase);
604 #elif OS(WINDOWS) && (CPU(X86_64) || CPU(AARCH64)) && (COMPILER(MSVC) || COMPILER(GCC))
605     // FIXME: why only for MSVC?
606     PNT_TIB64 pTib = reinterpret_cast<PNT_TIB64>(NtCurrentTeb());
607     return reinterpret_cast<void*>(pTib->StackBase);
608 #elif OS(WINDOWS) && CPU(X86) && COMPILER(GCC)
609     // offset 0x18 from the FS segment register gives a pointer to
610     // the thread information block for the current thread
611     NT_TIB* pTib;
612     asm ( "movl %%fs:0x18, %0\n"
613           : "=r" (pTib)
614         );
615     return static_cast<void*>(pTib->StackBase);
616 #elif OS(HPUX)
617     return hpux_get_stack_base();
618 #elif OS(QNX)
619     AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
620     MutexLocker locker(mutex);
621     return currentThreadStackBaseQNX();
622 #elif OS(SOLARIS)
623     stack_t s;
624     thr_stksegment(&s);
625     return s.ss_sp;
626 #elif OS(AIX)
627     pthread_t thread = pthread_self();
628     struct __pthrdsinfo threadinfo;
629     char regbuf[256];
630     int regbufsize = sizeof regbuf;
631 
632     if (pthread_getthrds_np(&thread, PTHRDSINFO_QUERY_ALL,
633                             &threadinfo, sizeof threadinfo,
634                             &regbuf, &regbufsize) == 0)
635         return threadinfo.__pi_stackaddr;
636 
637     return 0;
638 #elif OS(OPENBSD)
639     pthread_t thread = pthread_self();
640     stack_t stack;
641     pthread_stackseg_np(thread, &stack);
642     return stack.ss_sp;
643 #elif OS(SYMBIAN)
644     TThreadStackInfo info;
645     RThread thread;
646     thread.StackInfo(info);
647     return (void*)info.iBase;
648 #elif OS(HAIKU)
649     thread_info threadInfo;
650     get_thread_info(find_thread(NULL), &threadInfo);
651     return threadInfo.stack_end;
652 #elif OS(UNIX)
653     AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
654     MutexLocker locker(mutex);
655     static void* stackBase = 0;
656     static size_t stackSize = 0;
657     static pthread_t stackThread;
658     pthread_t thread = pthread_self();
659     if (stackBase == 0 || thread != stackThread) {
660         pthread_attr_t sattr;
661         pthread_attr_init(&sattr);
662 #if HAVE(PTHREAD_NP_H) || OS(NETBSD)
663         // e.g. on FreeBSD 5.4, neundorf@kde.org
664         pthread_attr_get_np(thread, &sattr);
665 #else
666         // FIXME: this function is non-portable; other POSIX systems may have different np alternatives
667         pthread_getattr_np(thread, &sattr);
668 #endif
669         int rc = pthread_attr_getstack(&sattr, &stackBase, &stackSize);
670         (void)rc; // FIXME: Deal with error code somehow? Seems fatal.
671         ASSERT(stackBase);
672         pthread_attr_destroy(&sattr);
673         stackThread = thread;
674     }
675     return static_cast<char*>(stackBase) + stackSize;
676 #else
677 #error Need a way to get the stack base on this platform
678 #endif
679 }
680 
681 #if ENABLE(JSC_MULTIPLE_THREADS)
682 
getCurrentPlatformThread()683 static inline PlatformThread getCurrentPlatformThread()
684 {
685 #if OS(DARWIN)
686     return pthread_mach_thread_np(pthread_self());
687 #elif OS(WINDOWS)
688     return pthread_getw32threadhandle_np(pthread_self());
689 #endif
690 }
691 
makeUsableFromMultipleThreads()692 void Heap::makeUsableFromMultipleThreads()
693 {
694     if (m_currentThreadRegistrar)
695         return;
696 
697     int error = pthread_key_create(&m_currentThreadRegistrar, unregisterThread);
698     if (error)
699         CRASH();
700 }
701 
registerThread()702 void Heap::registerThread()
703 {
704     ASSERT(!m_globalData->mainThreadOnly || isMainThread());
705 
706     if (!m_currentThreadRegistrar || pthread_getspecific(m_currentThreadRegistrar))
707         return;
708 
709     pthread_setspecific(m_currentThreadRegistrar, this);
710     Heap::Thread* thread = new Heap::Thread(pthread_self(), getCurrentPlatformThread(), currentThreadStackBase());
711 
712     MutexLocker lock(m_registeredThreadsMutex);
713 
714     thread->next = m_registeredThreads;
715     m_registeredThreads = thread;
716 }
717 
unregisterThread(void * p)718 void Heap::unregisterThread(void* p)
719 {
720     if (p)
721         static_cast<Heap*>(p)->unregisterThread();
722 }
723 
unregisterThread()724 void Heap::unregisterThread()
725 {
726     pthread_t currentPosixThread = pthread_self();
727 
728     MutexLocker lock(m_registeredThreadsMutex);
729 
730     if (pthread_equal(currentPosixThread, m_registeredThreads->posixThread)) {
731         Thread* t = m_registeredThreads;
732         m_registeredThreads = m_registeredThreads->next;
733         delete t;
734     } else {
735         Heap::Thread* last = m_registeredThreads;
736         Heap::Thread* t;
737         for (t = m_registeredThreads->next; t; t = t->next) {
738             if (pthread_equal(t->posixThread, currentPosixThread)) {
739                 last->next = t->next;
740                 break;
741             }
742             last = t;
743         }
744         ASSERT(t); // If t is NULL, we never found ourselves in the list.
745         delete t;
746     }
747 }
748 
749 #else // ENABLE(JSC_MULTIPLE_THREADS)
750 
registerThread()751 void Heap::registerThread()
752 {
753 }
754 
755 #endif
756 
isPointerAligned(void * p)757 inline bool isPointerAligned(void* p)
758 {
759     return (((intptr_t)(p) & (sizeof(char*) - 1)) == 0);
760 }
761 
762 // Cell size needs to be a power of two for isPossibleCell to be valid.
763 COMPILE_ASSERT(sizeof(CollectorCell) % 2 == 0, Collector_cell_size_is_power_of_two);
764 
765 #if USE(JSVALUE32)
isHalfCellAligned(void * p)766 static bool isHalfCellAligned(void *p)
767 {
768     return (((intptr_t)(p) & (CELL_MASK >> 1)) == 0);
769 }
770 
isPossibleCell(void * p)771 static inline bool isPossibleCell(void* p)
772 {
773     return isHalfCellAligned(p) && p;
774 }
775 
776 #else
777 
isCellAligned(void * p)778 static inline bool isCellAligned(void *p)
779 {
780     return (((intptr_t)(p) & CELL_MASK) == 0);
781 }
782 
isPossibleCell(void * p)783 static inline bool isPossibleCell(void* p)
784 {
785     return isCellAligned(p) && p;
786 }
787 #endif // USE(JSVALUE32)
788 
markConservatively(MarkStack & markStack,void * start,void * end)789 void Heap::markConservatively(MarkStack& markStack, void* start, void* end)
790 {
791     if (start > end) {
792         void* tmp = start;
793         start = end;
794         end = tmp;
795     }
796 
797     ASSERT((static_cast<char*>(end) - static_cast<char*>(start)) < 0x1000000);
798     ASSERT(isPointerAligned(start));
799     ASSERT(isPointerAligned(end));
800 
801     char** p = static_cast<char**>(start);
802     char** e = static_cast<char**>(end);
803 
804     CollectorBlock** blocks = m_heap.blocks;
805     while (p != e) {
806         char* x = *p++;
807         if (isPossibleCell(x)) {
808             size_t usedBlocks;
809             uintptr_t xAsBits = reinterpret_cast<uintptr_t>(x);
810             xAsBits &= CELL_ALIGN_MASK;
811 
812             uintptr_t offset = xAsBits & BLOCK_OFFSET_MASK;
813             const size_t lastCellOffset = sizeof(CollectorCell) * (CELLS_PER_BLOCK - 1);
814             if (offset > lastCellOffset)
815                 continue;
816 
817             CollectorBlock* blockAddr = reinterpret_cast<CollectorBlock*>(xAsBits - offset);
818             usedBlocks = m_heap.usedBlocks;
819             for (size_t block = 0; block < usedBlocks; block++) {
820                 if (blocks[block] != blockAddr)
821                     continue;
822                 markStack.append(reinterpret_cast<JSCell*>(xAsBits));
823                 markStack.drain();
824             }
825         }
826     }
827 }
828 
markCurrentThreadConservativelyInternal(MarkStack & markStack)829 void NEVER_INLINE Heap::markCurrentThreadConservativelyInternal(MarkStack& markStack)
830 {
831     void* dummy;
832     void* stackPointer = &dummy;
833     void* stackBase = currentThreadStackBase();
834     markConservatively(markStack, stackPointer, stackBase);
835 }
836 
837 #if COMPILER(GCC)
838 #define REGISTER_BUFFER_ALIGNMENT __attribute__ ((aligned (sizeof(void*))))
839 #else
840 #define REGISTER_BUFFER_ALIGNMENT
841 #endif
842 
markCurrentThreadConservatively(MarkStack & markStack)843 void Heap::markCurrentThreadConservatively(MarkStack& markStack)
844 {
845     // setjmp forces volatile registers onto the stack
846     jmp_buf registers REGISTER_BUFFER_ALIGNMENT;
847 #if COMPILER(MSVC)
848 #pragma warning(push)
849 #pragma warning(disable: 4611)
850 #endif
851     setjmp(registers);
852 #if COMPILER(MSVC)
853 #pragma warning(pop)
854 #endif
855 
856     markCurrentThreadConservativelyInternal(markStack);
857 }
858 
859 #if ENABLE(JSC_MULTIPLE_THREADS)
860 
suspendThread(const PlatformThread & platformThread)861 static inline void suspendThread(const PlatformThread& platformThread)
862 {
863 #if OS(DARWIN)
864     thread_suspend(platformThread);
865 #elif OS(WINDOWS)
866     SuspendThread(platformThread);
867 #else
868 #error Need a way to suspend threads on this platform
869 #endif
870 }
871 
resumeThread(const PlatformThread & platformThread)872 static inline void resumeThread(const PlatformThread& platformThread)
873 {
874 #if OS(DARWIN)
875     thread_resume(platformThread);
876 #elif OS(WINDOWS)
877     ResumeThread(platformThread);
878 #else
879 #error Need a way to resume threads on this platform
880 #endif
881 }
882 
883 typedef unsigned long usword_t; // word size, assumed to be either 32 or 64 bit
884 
885 #if OS(DARWIN)
886 
887 #if CPU(X86)
888 typedef i386_thread_state_t PlatformThreadRegisters;
889 #elif CPU(X86_64)
890 typedef x86_thread_state64_t PlatformThreadRegisters;
891 #elif CPU(PPC)
892 typedef ppc_thread_state_t PlatformThreadRegisters;
893 #elif CPU(PPC64)
894 typedef ppc_thread_state64_t PlatformThreadRegisters;
895 #elif CPU(ARM)
896 typedef arm_thread_state_t PlatformThreadRegisters;
897 #else
898 #error Unknown Architecture
899 #endif
900 
901 #elif OS(WINDOWS) && CPU(X86)
902 typedef CONTEXT PlatformThreadRegisters;
903 #else
904 #error Need a thread register struct for this platform
905 #endif
906 
getPlatformThreadRegisters(const PlatformThread & platformThread,PlatformThreadRegisters & regs)907 static size_t getPlatformThreadRegisters(const PlatformThread& platformThread, PlatformThreadRegisters& regs)
908 {
909 #if OS(DARWIN)
910 
911 #if CPU(X86)
912     unsigned user_count = sizeof(regs)/sizeof(int);
913     thread_state_flavor_t flavor = i386_THREAD_STATE;
914 #elif CPU(X86_64)
915     unsigned user_count = x86_THREAD_STATE64_COUNT;
916     thread_state_flavor_t flavor = x86_THREAD_STATE64;
917 #elif CPU(PPC)
918     unsigned user_count = PPC_THREAD_STATE_COUNT;
919     thread_state_flavor_t flavor = PPC_THREAD_STATE;
920 #elif CPU(PPC64)
921     unsigned user_count = PPC_THREAD_STATE64_COUNT;
922     thread_state_flavor_t flavor = PPC_THREAD_STATE64;
923 #elif CPU(ARM)
924     unsigned user_count = ARM_THREAD_STATE_COUNT;
925     thread_state_flavor_t flavor = ARM_THREAD_STATE;
926 #else
927 #error Unknown Architecture
928 #endif
929 
930     kern_return_t result = thread_get_state(platformThread, flavor, (thread_state_t)&regs, &user_count);
931     if (result != KERN_SUCCESS) {
932         WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION,
933                             "JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported.", result);
934         CRASH();
935     }
936     return user_count * sizeof(usword_t);
937 // end OS(DARWIN)
938 
939 #elif OS(WINDOWS) && CPU(X86)
940     regs.ContextFlags = CONTEXT_INTEGER | CONTEXT_CONTROL | CONTEXT_SEGMENTS;
941     GetThreadContext(platformThread, &regs);
942     return sizeof(CONTEXT);
943 #else
944 #error Need a way to get thread registers on this platform
945 #endif
946 }
947 
otherThreadStackPointer(const PlatformThreadRegisters & regs)948 static inline void* otherThreadStackPointer(const PlatformThreadRegisters& regs)
949 {
950 #if OS(DARWIN)
951 
952 #if __DARWIN_UNIX03
953 
954 #if CPU(X86)
955     return reinterpret_cast<void*>(regs.__esp);
956 #elif CPU(X86_64)
957     return reinterpret_cast<void*>(regs.__rsp);
958 #elif CPU(PPC) || CPU(PPC64)
959     return reinterpret_cast<void*>(regs.__r1);
960 #elif CPU(ARM)
961     return reinterpret_cast<void*>(regs.__sp);
962 #else
963 #error Unknown Architecture
964 #endif
965 
966 #else // !__DARWIN_UNIX03
967 
968 #if CPU(X86)
969     return reinterpret_cast<void*>(regs.esp);
970 #elif CPU(X86_64)
971     return reinterpret_cast<void*>(regs.rsp);
972 #elif CPU(PPC) || CPU(PPC64)
973     return reinterpret_cast<void*>(regs.r1);
974 #else
975 #error Unknown Architecture
976 #endif
977 
978 #endif // __DARWIN_UNIX03
979 
980 // end OS(DARWIN)
981 #elif CPU(X86) && OS(WINDOWS)
982     return reinterpret_cast<void*>((uintptr_t) regs.Esp);
983 #else
984 #error Need a way to get the stack pointer for another thread on this platform
985 #endif
986 }
987 
markOtherThreadConservatively(MarkStack & markStack,Thread * thread)988 void Heap::markOtherThreadConservatively(MarkStack& markStack, Thread* thread)
989 {
990     suspendThread(thread->platformThread);
991 
992     PlatformThreadRegisters regs;
993     size_t regSize = getPlatformThreadRegisters(thread->platformThread, regs);
994 
995     // mark the thread's registers
996     markConservatively(markStack, static_cast<void*>(&regs), static_cast<void*>(reinterpret_cast<char*>(&regs) + regSize));
997 
998     void* stackPointer = otherThreadStackPointer(regs);
999     markConservatively(markStack, stackPointer, thread->stackBase);
1000 
1001     resumeThread(thread->platformThread);
1002 }
1003 
1004 #endif
1005 
markStackObjectsConservatively(MarkStack & markStack)1006 void Heap::markStackObjectsConservatively(MarkStack& markStack)
1007 {
1008     markCurrentThreadConservatively(markStack);
1009 
1010 #if ENABLE(JSC_MULTIPLE_THREADS)
1011 
1012     if (m_currentThreadRegistrar) {
1013 
1014         MutexLocker lock(m_registeredThreadsMutex);
1015 
1016 #ifndef NDEBUG
1017         // Forbid malloc during the mark phase. Marking a thread suspends it, so
1018         // a malloc inside markChildren() would risk a deadlock with a thread that had been
1019         // suspended while holding the malloc lock.
1020         fastMallocForbid();
1021 #endif
1022         // It is safe to access the registeredThreads list, because we earlier asserted that locks are being held,
1023         // and since this is a shared heap, they are real locks.
1024         for (Thread* thread = m_registeredThreads; thread; thread = thread->next) {
1025             if (!pthread_equal(thread->posixThread, pthread_self()))
1026                 markOtherThreadConservatively(markStack, thread);
1027         }
1028 #ifndef NDEBUG
1029         fastMallocAllow();
1030 #endif
1031     }
1032 #endif
1033 }
1034 
protect(JSValue k)1035 void Heap::protect(JSValue k)
1036 {
1037     ASSERT(k);
1038     ASSERT(JSLock::currentThreadIsHoldingLock() || !m_globalData->isSharedInstance);
1039 
1040     if (!k.isCell())
1041         return;
1042 
1043     m_protectedValues.add(k.asCell());
1044 }
1045 
unprotect(JSValue k)1046 void Heap::unprotect(JSValue k)
1047 {
1048     ASSERT(k);
1049     ASSERT(JSLock::currentThreadIsHoldingLock() || !m_globalData->isSharedInstance);
1050 
1051     if (!k.isCell())
1052         return;
1053 
1054     m_protectedValues.remove(k.asCell());
1055 }
1056 
markProtectedObjects(MarkStack & markStack)1057 void Heap::markProtectedObjects(MarkStack& markStack)
1058 {
1059     ProtectCountSet::iterator end = m_protectedValues.end();
1060     for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it) {
1061         markStack.append(it->first);
1062         markStack.drain();
1063     }
1064 }
1065 
clearMarkBits()1066 void Heap::clearMarkBits()
1067 {
1068     for (size_t i = 0; i < m_heap.usedBlocks; ++i)
1069         clearMarkBits(m_heap.blocks[i]);
1070 }
1071 
clearMarkBits(CollectorBlock * block)1072 void Heap::clearMarkBits(CollectorBlock* block)
1073 {
1074     // allocate assumes that the last cell in every block is marked.
1075     block->marked.clearAll();
1076     block->marked.set(HeapConstants::cellsPerBlock - 1);
1077 }
1078 
markedCells(size_t startBlock,size_t startCell) const1079 size_t Heap::markedCells(size_t startBlock, size_t startCell) const
1080 {
1081     ASSERT(startBlock <= m_heap.usedBlocks);
1082     ASSERT(startCell < HeapConstants::cellsPerBlock);
1083 
1084     if (startBlock >= m_heap.usedBlocks)
1085         return 0;
1086 
1087     size_t result = 0;
1088     result += m_heap.blocks[startBlock]->marked.count(startCell);
1089     for (size_t i = startBlock + 1; i < m_heap.usedBlocks; ++i)
1090         result += m_heap.blocks[i]->marked.count();
1091 
1092     return result;
1093 }
1094 
sweep()1095 void Heap::sweep()
1096 {
1097     ASSERT(m_heap.operationInProgress == NoOperation);
1098     if (m_heap.operationInProgress != NoOperation)
1099         CRASH();
1100     m_heap.operationInProgress = Collection;
1101 
1102 #if !ENABLE(JSC_ZOMBIES)
1103     Structure* dummyMarkableCellStructure = m_globalData->dummyMarkableCellStructure.get();
1104 #endif
1105 
1106     DeadObjectIterator it(m_heap, m_heap.nextBlock, m_heap.nextCell);
1107     DeadObjectIterator end(m_heap, m_heap.usedBlocks);
1108     for ( ; it != end; ++it) {
1109         JSCell* cell = *it;
1110 #if ENABLE(JSC_ZOMBIES)
1111         if (!cell->isZombie()) {
1112             const ClassInfo* info = cell->classInfo();
1113             cell->~JSCell();
1114             new (cell) JSZombie(info, JSZombie::leakedZombieStructure());
1115             Heap::markCell(cell);
1116         }
1117 #else
1118         cell->~JSCell();
1119         // Callers of sweep assume it's safe to mark any cell in the heap.
1120         new (cell) JSCell(dummyMarkableCellStructure);
1121 #endif
1122     }
1123 
1124     m_heap.operationInProgress = NoOperation;
1125 }
1126 
markRoots()1127 void Heap::markRoots()
1128 {
1129 #ifndef NDEBUG
1130     if (m_globalData->isSharedInstance) {
1131         ASSERT(JSLock::lockCount() > 0);
1132         ASSERT(JSLock::currentThreadIsHoldingLock());
1133     }
1134 #endif
1135 
1136     ASSERT(m_heap.operationInProgress == NoOperation);
1137     if (m_heap.operationInProgress != NoOperation)
1138         CRASH();
1139 
1140     m_heap.operationInProgress = Collection;
1141 
1142     MarkStack& markStack = m_globalData->markStack;
1143 
1144     // Reset mark bits.
1145     clearMarkBits();
1146 
1147     // Mark stack roots.
1148     markStackObjectsConservatively(markStack);
1149     m_globalData->interpreter->registerFile().markCallFrames(markStack, this);
1150 
1151     // Mark explicitly registered roots.
1152     markProtectedObjects(markStack);
1153 
1154     // Mark misc. other roots.
1155     if (m_markListSet && m_markListSet->size())
1156         MarkedArgumentBuffer::markLists(markStack, *m_markListSet);
1157     if (m_globalData->exception)
1158         markStack.append(m_globalData->exception);
1159     m_globalData->smallStrings.markChildren(markStack);
1160     if (m_globalData->functionCodeBlockBeingReparsed)
1161         m_globalData->functionCodeBlockBeingReparsed->markAggregate(markStack);
1162     if (m_globalData->firstStringifierToMark)
1163         JSONObject::markStringifiers(markStack, m_globalData->firstStringifierToMark);
1164 
1165 #if QT_BUILD_SCRIPT_LIB
1166     if (m_globalData->clientData)
1167         m_globalData->clientData->mark(markStack);
1168 #endif
1169 
1170     markStack.drain();
1171     markStack.compact();
1172 
1173     m_heap.operationInProgress = NoOperation;
1174 }
1175 
objectCount() const1176 size_t Heap::objectCount() const
1177 {
1178     return m_heap.nextBlock * HeapConstants::cellsPerBlock // allocated full blocks
1179            + m_heap.nextCell // allocated cells in current block
1180            + markedCells(m_heap.nextBlock, m_heap.nextCell) // marked cells in remainder of m_heap
1181            - m_heap.usedBlocks; // 1 cell per block is a dummy sentinel
1182 }
1183 
addToStatistics(Heap::Statistics & statistics) const1184 void Heap::addToStatistics(Heap::Statistics& statistics) const
1185 {
1186     statistics.size += m_heap.usedBlocks * BLOCK_SIZE;
1187     statistics.free += m_heap.usedBlocks * BLOCK_SIZE - (objectCount() * HeapConstants::cellSize);
1188 }
1189 
statistics() const1190 Heap::Statistics Heap::statistics() const
1191 {
1192     Statistics statistics = { 0, 0 };
1193     addToStatistics(statistics);
1194     return statistics;
1195 }
1196 
globalObjectCount()1197 size_t Heap::globalObjectCount()
1198 {
1199     size_t count = 0;
1200     if (JSGlobalObject* head = m_globalData->head) {
1201         JSGlobalObject* o = head;
1202         do {
1203             ++count;
1204             o = o->next();
1205         } while (o != head);
1206     }
1207     return count;
1208 }
1209 
protectedGlobalObjectCount()1210 size_t Heap::protectedGlobalObjectCount()
1211 {
1212     size_t count = 0;
1213     if (JSGlobalObject* head = m_globalData->head) {
1214         JSGlobalObject* o = head;
1215         do {
1216             if (m_protectedValues.contains(o))
1217                 ++count;
1218             o = o->next();
1219         } while (o != head);
1220     }
1221 
1222     return count;
1223 }
1224 
protectedObjectCount()1225 size_t Heap::protectedObjectCount()
1226 {
1227     return m_protectedValues.size();
1228 }
1229 
typeName(JSCell * cell)1230 static const char* typeName(JSCell* cell)
1231 {
1232     if (cell->isString())
1233         return "string";
1234 #if USE(JSVALUE32)
1235     if (cell->isNumber())
1236         return "number";
1237 #endif
1238     if (cell->isGetterSetter())
1239         return "gettersetter";
1240     if (cell->isAPIValueWrapper())
1241         return "value wrapper";
1242     if (cell->isPropertyNameIterator())
1243         return "for-in iterator";
1244     ASSERT(cell->isObject());
1245     const ClassInfo* info = cell->classInfo();
1246     return info ? info->className : "Object";
1247 }
1248 
protectedObjectTypeCounts()1249 HashCountedSet<const char*>* Heap::protectedObjectTypeCounts()
1250 {
1251     HashCountedSet<const char*>* counts = new HashCountedSet<const char*>;
1252 
1253     ProtectCountSet::iterator end = m_protectedValues.end();
1254     for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it)
1255         counts->add(typeName(it->first));
1256 
1257     return counts;
1258 }
1259 
isBusy()1260 bool Heap::isBusy()
1261 {
1262     return m_heap.operationInProgress != NoOperation;
1263 }
1264 
reset()1265 void Heap::reset()
1266 {
1267     JAVASCRIPTCORE_GC_BEGIN();
1268 
1269     markRoots();
1270 
1271     JAVASCRIPTCORE_GC_MARKED();
1272 
1273     m_heap.nextCell = 0;
1274     m_heap.nextBlock = 0;
1275     m_heap.nextNumber = 0;
1276     m_heap.extraCost = 0;
1277 #if ENABLE(JSC_ZOMBIES)
1278     sweep();
1279 #endif
1280     resizeBlocks();
1281 
1282     JAVASCRIPTCORE_GC_END();
1283 }
1284 
collectAllGarbage()1285 void Heap::collectAllGarbage()
1286 {
1287     JAVASCRIPTCORE_GC_BEGIN();
1288 
1289     // If the last iteration through the heap deallocated blocks, we need
1290     // to clean up remaining garbage before marking. Otherwise, the conservative
1291     // marking mechanism might follow a pointer to unmapped memory.
1292     if (m_heap.didShrink)
1293         sweep();
1294 
1295     markRoots();
1296 
1297     JAVASCRIPTCORE_GC_MARKED();
1298 
1299     m_heap.nextCell = 0;
1300     m_heap.nextBlock = 0;
1301     m_heap.nextNumber = 0;
1302     m_heap.extraCost = 0;
1303     sweep();
1304     resizeBlocks();
1305 
1306     JAVASCRIPTCORE_GC_END();
1307 }
1308 
primaryHeapBegin()1309 LiveObjectIterator Heap::primaryHeapBegin()
1310 {
1311     return LiveObjectIterator(m_heap, 0);
1312 }
1313 
primaryHeapEnd()1314 LiveObjectIterator Heap::primaryHeapEnd()
1315 {
1316     return LiveObjectIterator(m_heap, m_heap.usedBlocks);
1317 }
1318 
1319 } // namespace JSC
1320