1 //! Source positions and related helper functions.
2 //!
3 //! Important concepts in this module include:
4 //!
5 //! - the *span*, represented by [`SpanData`] and related types;
6 //! - source code as represented by a [`SourceMap`]; and
7 //! - interned strings, represented by [`Symbol`]s, with some common symbols available statically in the [`sym`] module.
8 //!
9 //! Unlike most compilers, the span contains not only the position in the source code, but also various other metadata,
10 //! such as the edition and macro hygiene. This metadata is stored in [`SyntaxContext`] and [`ExpnData`].
11 //!
12 //! ## Note
13 //!
14 //! This API is completely unstable and subject to change.
15
16 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
17 #![feature(array_windows)]
18 #![feature(crate_visibility_modifier)]
19 #![feature(const_panic)]
20 #![feature(negative_impls)]
21 #![feature(nll)]
22 #![feature(min_specialization)]
23 #![feature(thread_local_const_init)]
24 #![feature(trusted_step)]
25
26 #[macro_use]
27 extern crate rustc_macros;
28
29 use rustc_data_structures::AtomicRef;
30 use rustc_macros::HashStable_Generic;
31 use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
32
33 mod caching_source_map_view;
34 pub mod source_map;
35 pub use self::caching_source_map_view::CachingSourceMapView;
36 use source_map::SourceMap;
37
38 pub mod edition;
39 use edition::Edition;
40 pub mod hygiene;
41 pub use hygiene::SyntaxContext;
42 use hygiene::Transparency;
43 pub use hygiene::{DesugaringKind, ExpnData, ExpnId, ExpnKind, ForLoopLoc, MacroKind};
44 pub mod def_id;
45 use def_id::{CrateNum, DefId, LOCAL_CRATE};
46 pub mod lev_distance;
47 mod span_encoding;
48 pub use span_encoding::{Span, DUMMY_SP};
49
50 pub mod symbol;
51 pub use symbol::{sym, Symbol};
52
53 mod analyze_source_file;
54 pub mod fatal_error;
55
56 use rustc_data_structures::fingerprint::Fingerprint;
57 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
58 use rustc_data_structures::sync::{Lock, Lrc};
59
60 use std::borrow::Cow;
61 use std::cell::RefCell;
62 use std::cmp::{self, Ordering};
63 use std::fmt;
64 use std::hash::Hash;
65 use std::ops::{Add, Range, Sub};
66 use std::path::{Path, PathBuf};
67 use std::str::FromStr;
68 use std::thread::LocalKey;
69
70 use md5::Md5;
71 use sha1::Digest;
72 use sha1::Sha1;
73 use sha2::Sha256;
74
75 use tracing::debug;
76
77 #[cfg(test)]
78 mod tests;
79
80 // Per-session global variables: this struct is stored in thread-local storage
81 // in such a way that it is accessible without any kind of handle to all
82 // threads within the compilation session, but is not accessible outside the
83 // session.
84 pub struct SessionGlobals {
85 symbol_interner: Lock<symbol::Interner>,
86 span_interner: Lock<span_encoding::SpanInterner>,
87 hygiene_data: Lock<hygiene::HygieneData>,
88 source_map: Lock<Option<Lrc<SourceMap>>>,
89 }
90
91 impl SessionGlobals {
new(edition: Edition) -> SessionGlobals92 pub fn new(edition: Edition) -> SessionGlobals {
93 SessionGlobals {
94 symbol_interner: Lock::new(symbol::Interner::fresh()),
95 span_interner: Lock::new(span_encoding::SpanInterner::default()),
96 hygiene_data: Lock::new(hygiene::HygieneData::new(edition)),
97 source_map: Lock::new(None),
98 }
99 }
100 }
101
with_session_globals<R>(edition: Edition, f: impl FnOnce() -> R) -> R102 pub fn with_session_globals<R>(edition: Edition, f: impl FnOnce() -> R) -> R {
103 let session_globals = SessionGlobals::new(edition);
104 SESSION_GLOBALS.set(&session_globals, f)
105 }
106
with_default_session_globals<R>(f: impl FnOnce() -> R) -> R107 pub fn with_default_session_globals<R>(f: impl FnOnce() -> R) -> R {
108 with_session_globals(edition::DEFAULT_EDITION, f)
109 }
110
111 // If this ever becomes non thread-local, `decode_syntax_context`
112 // and `decode_expn_id` will need to be updated to handle concurrent
113 // deserialization.
114 scoped_tls::scoped_thread_local!(pub static SESSION_GLOBALS: SessionGlobals);
115
116 // FIXME: We should use this enum or something like it to get rid of the
117 // use of magic `/rust/1.x/...` paths across the board.
118 #[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd)]
119 #[derive(HashStable_Generic, Decodable)]
120 pub enum RealFileName {
121 LocalPath(PathBuf),
122 /// For remapped paths (namely paths into libstd that have been mapped
123 /// to the appropriate spot on the local host's file system, and local file
124 /// system paths that have been remapped with `FilePathMapping`),
125 Remapped {
126 /// `local_path` is the (host-dependent) local path to the file. This is
127 /// None if the file was imported from another crate
128 local_path: Option<PathBuf>,
129 /// `virtual_name` is the stable path rustc will store internally within
130 /// build artifacts.
131 virtual_name: PathBuf,
132 },
133 }
134
135 impl Hash for RealFileName {
hash<H: std::hash::Hasher>(&self, state: &mut H)136 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
137 // To prevent #70924 from happening again we should only hash the
138 // remapped (virtualized) path if that exists. This is because
139 // virtualized paths to sysroot crates (/rust/$hash or /rust/$version)
140 // remain stable even if the corresponding local_path changes
141 self.remapped_path_if_available().hash(state)
142 }
143 }
144
145 // This is functionally identical to #[derive(Encodable)], with the exception of
146 // an added assert statement
147 impl<S: Encoder> Encodable<S> for RealFileName {
encode(&self, encoder: &mut S) -> Result<(), S::Error>148 fn encode(&self, encoder: &mut S) -> Result<(), S::Error> {
149 encoder.emit_enum("RealFileName", |encoder| match *self {
150 RealFileName::LocalPath(ref local_path) => {
151 encoder.emit_enum_variant("LocalPath", 0, 1, |encoder| {
152 Ok({
153 encoder.emit_enum_variant_arg(0, |encoder| local_path.encode(encoder))?;
154 })
155 })
156 }
157
158 RealFileName::Remapped { ref local_path, ref virtual_name } => encoder
159 .emit_enum_variant("Remapped", 1, 2, |encoder| {
160 // For privacy and build reproducibility, we must not embed host-dependant path in artifacts
161 // if they have been remapped by --remap-path-prefix
162 assert!(local_path.is_none());
163 Ok({
164 encoder.emit_enum_variant_arg(0, |encoder| local_path.encode(encoder))?;
165 encoder.emit_enum_variant_arg(1, |encoder| virtual_name.encode(encoder))?;
166 })
167 }),
168 })
169 }
170 }
171
172 impl RealFileName {
173 /// Returns the path suitable for reading from the file system on the local host,
174 /// if this information exists.
175 /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
local_path(&self) -> Option<&Path>176 pub fn local_path(&self) -> Option<&Path> {
177 match self {
178 RealFileName::LocalPath(p) => Some(p),
179 RealFileName::Remapped { local_path: p, virtual_name: _ } => {
180 p.as_ref().map(PathBuf::as_path)
181 }
182 }
183 }
184
185 /// Returns the path suitable for reading from the file system on the local host,
186 /// if this information exists.
187 /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
into_local_path(self) -> Option<PathBuf>188 pub fn into_local_path(self) -> Option<PathBuf> {
189 match self {
190 RealFileName::LocalPath(p) => Some(p),
191 RealFileName::Remapped { local_path: p, virtual_name: _ } => p,
192 }
193 }
194
195 /// Returns the path suitable for embedding into build artifacts. This would still
196 /// be a local path if it has not been remapped. A remapped path will not correspond
197 /// to a valid file system path: see `local_path_if_available()` for something that
198 /// is more likely to return paths into the local host file system.
remapped_path_if_available(&self) -> &Path199 pub fn remapped_path_if_available(&self) -> &Path {
200 match self {
201 RealFileName::LocalPath(p)
202 | RealFileName::Remapped { local_path: _, virtual_name: p } => &p,
203 }
204 }
205
206 /// Returns the path suitable for reading from the file system on the local host,
207 /// if this information exists. Otherwise returns the remapped name.
208 /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
local_path_if_available(&self) -> &Path209 pub fn local_path_if_available(&self) -> &Path {
210 match self {
211 RealFileName::LocalPath(path)
212 | RealFileName::Remapped { local_path: None, virtual_name: path }
213 | RealFileName::Remapped { local_path: Some(path), virtual_name: _ } => path,
214 }
215 }
216
to_string_lossy(&self, prefer_local: bool) -> Cow<'_, str>217 pub fn to_string_lossy(&self, prefer_local: bool) -> Cow<'_, str> {
218 if prefer_local {
219 self.local_path_if_available().to_string_lossy()
220 } else {
221 self.remapped_path_if_available().to_string_lossy()
222 }
223 }
224 }
225
226 /// Differentiates between real files and common virtual files.
227 #[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash)]
228 #[derive(HashStable_Generic, Decodable, Encodable)]
229 pub enum FileName {
230 Real(RealFileName),
231 /// Call to `quote!`.
232 QuoteExpansion(u64),
233 /// Command line.
234 Anon(u64),
235 /// Hack in `src/librustc_ast/parse.rs`.
236 // FIXME(jseyfried)
237 MacroExpansion(u64),
238 ProcMacroSourceCode(u64),
239 /// Strings provided as `--cfg [cfgspec]` stored in a `crate_cfg`.
240 CfgSpec(u64),
241 /// Strings provided as crate attributes in the CLI.
242 CliCrateAttr(u64),
243 /// Custom sources for explicit parser calls from plugins and drivers.
244 Custom(String),
245 DocTest(PathBuf, isize),
246 /// Post-substitution inline assembly from LLVM.
247 InlineAsm(u64),
248 }
249
250 impl From<PathBuf> for FileName {
from(p: PathBuf) -> Self251 fn from(p: PathBuf) -> Self {
252 assert!(!p.to_string_lossy().ends_with('>'));
253 FileName::Real(RealFileName::LocalPath(p))
254 }
255 }
256
257 pub struct FileNameDisplay<'a> {
258 inner: &'a FileName,
259 prefer_local: bool,
260 }
261
262 impl fmt::Display for FileNameDisplay<'_> {
fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result263 fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
264 use FileName::*;
265 match *self.inner {
266 Real(ref name) => {
267 write!(fmt, "{}", name.to_string_lossy(self.prefer_local))
268 }
269 QuoteExpansion(_) => write!(fmt, "<quote expansion>"),
270 MacroExpansion(_) => write!(fmt, "<macro expansion>"),
271 Anon(_) => write!(fmt, "<anon>"),
272 ProcMacroSourceCode(_) => write!(fmt, "<proc-macro source code>"),
273 CfgSpec(_) => write!(fmt, "<cfgspec>"),
274 CliCrateAttr(_) => write!(fmt, "<crate attribute>"),
275 Custom(ref s) => write!(fmt, "<{}>", s),
276 DocTest(ref path, _) => write!(fmt, "{}", path.display()),
277 InlineAsm(_) => write!(fmt, "<inline asm>"),
278 }
279 }
280 }
281
282 impl FileNameDisplay<'_> {
to_string_lossy(&self) -> Cow<'_, str>283 pub fn to_string_lossy(&self) -> Cow<'_, str> {
284 match self.inner {
285 FileName::Real(ref inner) => inner.to_string_lossy(self.prefer_local),
286 _ => Cow::from(format!("{}", self)),
287 }
288 }
289 }
290
291 impl FileName {
is_real(&self) -> bool292 pub fn is_real(&self) -> bool {
293 use FileName::*;
294 match *self {
295 Real(_) => true,
296 Anon(_)
297 | MacroExpansion(_)
298 | ProcMacroSourceCode(_)
299 | CfgSpec(_)
300 | CliCrateAttr(_)
301 | Custom(_)
302 | QuoteExpansion(_)
303 | DocTest(_, _)
304 | InlineAsm(_) => false,
305 }
306 }
307
prefer_remapped(&self) -> FileNameDisplay<'_>308 pub fn prefer_remapped(&self) -> FileNameDisplay<'_> {
309 FileNameDisplay { inner: self, prefer_local: false }
310 }
311
312 // This may include transient local filesystem information.
313 // Must not be embedded in build outputs.
prefer_local(&self) -> FileNameDisplay<'_>314 pub fn prefer_local(&self) -> FileNameDisplay<'_> {
315 FileNameDisplay { inner: self, prefer_local: true }
316 }
317
macro_expansion_source_code(src: &str) -> FileName318 pub fn macro_expansion_source_code(src: &str) -> FileName {
319 let mut hasher = StableHasher::new();
320 src.hash(&mut hasher);
321 FileName::MacroExpansion(hasher.finish())
322 }
323
anon_source_code(src: &str) -> FileName324 pub fn anon_source_code(src: &str) -> FileName {
325 let mut hasher = StableHasher::new();
326 src.hash(&mut hasher);
327 FileName::Anon(hasher.finish())
328 }
329
proc_macro_source_code(src: &str) -> FileName330 pub fn proc_macro_source_code(src: &str) -> FileName {
331 let mut hasher = StableHasher::new();
332 src.hash(&mut hasher);
333 FileName::ProcMacroSourceCode(hasher.finish())
334 }
335
cfg_spec_source_code(src: &str) -> FileName336 pub fn cfg_spec_source_code(src: &str) -> FileName {
337 let mut hasher = StableHasher::new();
338 src.hash(&mut hasher);
339 FileName::QuoteExpansion(hasher.finish())
340 }
341
cli_crate_attr_source_code(src: &str) -> FileName342 pub fn cli_crate_attr_source_code(src: &str) -> FileName {
343 let mut hasher = StableHasher::new();
344 src.hash(&mut hasher);
345 FileName::CliCrateAttr(hasher.finish())
346 }
347
doc_test_source_code(path: PathBuf, line: isize) -> FileName348 pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName {
349 FileName::DocTest(path, line)
350 }
351
inline_asm_source_code(src: &str) -> FileName352 pub fn inline_asm_source_code(src: &str) -> FileName {
353 let mut hasher = StableHasher::new();
354 src.hash(&mut hasher);
355 FileName::InlineAsm(hasher.finish())
356 }
357 }
358
359 /// Represents a span.
360 ///
361 /// Spans represent a region of code, used for error reporting. Positions in spans
362 /// are *absolute* positions from the beginning of the [`SourceMap`], not positions
363 /// relative to [`SourceFile`]s. Methods on the `SourceMap` can be used to relate spans back
364 /// to the original source.
365 ///
366 /// You must be careful if the span crosses more than one file, since you will not be
367 /// able to use many of the functions on spans in source_map and you cannot assume
368 /// that the length of the span is equal to `span.hi - span.lo`; there may be space in the
369 /// [`BytePos`] range between files.
370 ///
371 /// `SpanData` is public because `Span` uses a thread-local interner and can't be
372 /// sent to other threads, but some pieces of performance infra run in a separate thread.
373 /// Using `Span` is generally preferred.
374 #[derive(Clone, Copy, Hash, PartialEq, Eq, Ord, PartialOrd)]
375 pub struct SpanData {
376 pub lo: BytePos,
377 pub hi: BytePos,
378 /// Information about where the macro came from, if this piece of
379 /// code was created by a macro expansion.
380 pub ctxt: SyntaxContext,
381 }
382
383 impl SpanData {
384 #[inline]
span(&self) -> Span385 pub fn span(&self) -> Span {
386 Span::new(self.lo, self.hi, self.ctxt)
387 }
388 #[inline]
with_lo(&self, lo: BytePos) -> Span389 pub fn with_lo(&self, lo: BytePos) -> Span {
390 Span::new(lo, self.hi, self.ctxt)
391 }
392 #[inline]
with_hi(&self, hi: BytePos) -> Span393 pub fn with_hi(&self, hi: BytePos) -> Span {
394 Span::new(self.lo, hi, self.ctxt)
395 }
396 #[inline]
with_ctxt(&self, ctxt: SyntaxContext) -> Span397 pub fn with_ctxt(&self, ctxt: SyntaxContext) -> Span {
398 Span::new(self.lo, self.hi, ctxt)
399 }
400 }
401
402 // The interner is pointed to by a thread local value which is only set on the main thread
403 // with parallelization is disabled. So we don't allow `Span` to transfer between threads
404 // to avoid panics and other errors, even though it would be memory safe to do so.
405 #[cfg(not(parallel_compiler))]
406 impl !Send for Span {}
407 #[cfg(not(parallel_compiler))]
408 impl !Sync for Span {}
409
410 impl PartialOrd for Span {
partial_cmp(&self, rhs: &Self) -> Option<Ordering>411 fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
412 PartialOrd::partial_cmp(&self.data(), &rhs.data())
413 }
414 }
415 impl Ord for Span {
cmp(&self, rhs: &Self) -> Ordering416 fn cmp(&self, rhs: &Self) -> Ordering {
417 Ord::cmp(&self.data(), &rhs.data())
418 }
419 }
420
421 /// A collection of `Span`s.
422 ///
423 /// Spans have two orthogonal attributes:
424 ///
425 /// - They can be *primary spans*. In this case they are the locus of
426 /// the error, and would be rendered with `^^^`.
427 /// - They can have a *label*. In this case, the label is written next
428 /// to the mark in the snippet when we render.
429 #[derive(Clone, Debug, Hash, PartialEq, Eq, Encodable, Decodable)]
430 pub struct MultiSpan {
431 primary_spans: Vec<Span>,
432 span_labels: Vec<(Span, String)>,
433 }
434
435 impl Span {
436 #[inline]
lo(self) -> BytePos437 pub fn lo(self) -> BytePos {
438 self.data().lo
439 }
440 #[inline]
with_lo(self, lo: BytePos) -> Span441 pub fn with_lo(self, lo: BytePos) -> Span {
442 self.data().with_lo(lo)
443 }
444 #[inline]
hi(self) -> BytePos445 pub fn hi(self) -> BytePos {
446 self.data().hi
447 }
448 #[inline]
with_hi(self, hi: BytePos) -> Span449 pub fn with_hi(self, hi: BytePos) -> Span {
450 self.data().with_hi(hi)
451 }
452 #[inline]
ctxt(self) -> SyntaxContext453 pub fn ctxt(self) -> SyntaxContext {
454 self.data().ctxt
455 }
456 #[inline]
with_ctxt(self, ctxt: SyntaxContext) -> Span457 pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span {
458 self.data().with_ctxt(ctxt)
459 }
460
461 /// Returns `true` if this is a dummy span with any hygienic context.
462 #[inline]
is_dummy(self) -> bool463 pub fn is_dummy(self) -> bool {
464 let span = self.data();
465 span.lo.0 == 0 && span.hi.0 == 0
466 }
467
468 /// Returns `true` if this span comes from a macro or desugaring.
469 #[inline]
from_expansion(self) -> bool470 pub fn from_expansion(self) -> bool {
471 self.ctxt() != SyntaxContext::root()
472 }
473
474 /// Returns `true` if `span` originates in a derive-macro's expansion.
in_derive_expansion(self) -> bool475 pub fn in_derive_expansion(self) -> bool {
476 matches!(
477 self.ctxt().outer_expn_data().kind,
478 ExpnKind::Macro { kind: MacroKind::Derive, name: _, proc_macro: _ }
479 )
480 }
481
482 #[inline]
with_root_ctxt(lo: BytePos, hi: BytePos) -> Span483 pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span {
484 Span::new(lo, hi, SyntaxContext::root())
485 }
486
487 /// Returns a new span representing an empty span at the beginning of this span.
488 #[inline]
shrink_to_lo(self) -> Span489 pub fn shrink_to_lo(self) -> Span {
490 let span = self.data();
491 span.with_hi(span.lo)
492 }
493 /// Returns a new span representing an empty span at the end of this span.
494 #[inline]
shrink_to_hi(self) -> Span495 pub fn shrink_to_hi(self) -> Span {
496 let span = self.data();
497 span.with_lo(span.hi)
498 }
499
500 #[inline]
501 /// Returns `true` if `hi == lo`.
is_empty(&self) -> bool502 pub fn is_empty(&self) -> bool {
503 let span = self.data();
504 span.hi == span.lo
505 }
506
507 /// Returns `self` if `self` is not the dummy span, and `other` otherwise.
substitute_dummy(self, other: Span) -> Span508 pub fn substitute_dummy(self, other: Span) -> Span {
509 if self.is_dummy() { other } else { self }
510 }
511
512 /// Returns `true` if `self` fully encloses `other`.
contains(self, other: Span) -> bool513 pub fn contains(self, other: Span) -> bool {
514 let span = self.data();
515 let other = other.data();
516 span.lo <= other.lo && other.hi <= span.hi
517 }
518
519 /// Returns `true` if `self` touches `other`.
overlaps(self, other: Span) -> bool520 pub fn overlaps(self, other: Span) -> bool {
521 let span = self.data();
522 let other = other.data();
523 span.lo < other.hi && other.lo < span.hi
524 }
525
526 /// Returns `true` if the spans are equal with regards to the source text.
527 ///
528 /// Use this instead of `==` when either span could be generated code,
529 /// and you only care that they point to the same bytes of source text.
source_equal(&self, other: &Span) -> bool530 pub fn source_equal(&self, other: &Span) -> bool {
531 let span = self.data();
532 let other = other.data();
533 span.lo == other.lo && span.hi == other.hi
534 }
535
536 /// Returns `Some(span)`, where the start is trimmed by the end of `other`.
trim_start(self, other: Span) -> Option<Span>537 pub fn trim_start(self, other: Span) -> Option<Span> {
538 let span = self.data();
539 let other = other.data();
540 if span.hi > other.hi { Some(span.with_lo(cmp::max(span.lo, other.hi))) } else { None }
541 }
542
543 /// Returns the source span -- this is either the supplied span, or the span for
544 /// the macro callsite that expanded to it.
source_callsite(self) -> Span545 pub fn source_callsite(self) -> Span {
546 let expn_data = self.ctxt().outer_expn_data();
547 if !expn_data.is_root() { expn_data.call_site.source_callsite() } else { self }
548 }
549
550 /// The `Span` for the tokens in the previous macro expansion from which `self` was generated,
551 /// if any.
parent(self) -> Option<Span>552 pub fn parent(self) -> Option<Span> {
553 let expn_data = self.ctxt().outer_expn_data();
554 if !expn_data.is_root() { Some(expn_data.call_site) } else { None }
555 }
556
557 /// Edition of the crate from which this span came.
edition(self) -> edition::Edition558 pub fn edition(self) -> edition::Edition {
559 self.ctxt().edition()
560 }
561
562 #[inline]
rust_2015(&self) -> bool563 pub fn rust_2015(&self) -> bool {
564 self.edition() == edition::Edition::Edition2015
565 }
566
567 #[inline]
rust_2018(&self) -> bool568 pub fn rust_2018(&self) -> bool {
569 self.edition() >= edition::Edition::Edition2018
570 }
571
572 #[inline]
rust_2021(&self) -> bool573 pub fn rust_2021(&self) -> bool {
574 self.edition() >= edition::Edition::Edition2021
575 }
576
577 /// Returns the source callee.
578 ///
579 /// Returns `None` if the supplied span has no expansion trace,
580 /// else returns the `ExpnData` for the macro definition
581 /// corresponding to the source callsite.
source_callee(self) -> Option<ExpnData>582 pub fn source_callee(self) -> Option<ExpnData> {
583 fn source_callee(expn_data: ExpnData) -> ExpnData {
584 let next_expn_data = expn_data.call_site.ctxt().outer_expn_data();
585 if !next_expn_data.is_root() { source_callee(next_expn_data) } else { expn_data }
586 }
587 let expn_data = self.ctxt().outer_expn_data();
588 if !expn_data.is_root() { Some(source_callee(expn_data)) } else { None }
589 }
590
591 /// Checks if a span is "internal" to a macro in which `#[unstable]`
592 /// items can be used (that is, a macro marked with
593 /// `#[allow_internal_unstable]`).
allows_unstable(&self, feature: Symbol) -> bool594 pub fn allows_unstable(&self, feature: Symbol) -> bool {
595 self.ctxt()
596 .outer_expn_data()
597 .allow_internal_unstable
598 .map_or(false, |features| features.iter().any(|&f| f == feature))
599 }
600
601 /// Checks if this span arises from a compiler desugaring of kind `kind`.
is_desugaring(&self, kind: DesugaringKind) -> bool602 pub fn is_desugaring(&self, kind: DesugaringKind) -> bool {
603 match self.ctxt().outer_expn_data().kind {
604 ExpnKind::Desugaring(k) => k == kind,
605 _ => false,
606 }
607 }
608
609 /// Returns the compiler desugaring that created this span, or `None`
610 /// if this span is not from a desugaring.
desugaring_kind(&self) -> Option<DesugaringKind>611 pub fn desugaring_kind(&self) -> Option<DesugaringKind> {
612 match self.ctxt().outer_expn_data().kind {
613 ExpnKind::Desugaring(k) => Some(k),
614 _ => None,
615 }
616 }
617
618 /// Checks if a span is "internal" to a macro in which `unsafe`
619 /// can be used without triggering the `unsafe_code` lint.
620 // (that is, a macro marked with `#[allow_internal_unsafe]`).
allows_unsafe(&self) -> bool621 pub fn allows_unsafe(&self) -> bool {
622 self.ctxt().outer_expn_data().allow_internal_unsafe
623 }
624
macro_backtrace(mut self) -> impl Iterator<Item = ExpnData>625 pub fn macro_backtrace(mut self) -> impl Iterator<Item = ExpnData> {
626 let mut prev_span = DUMMY_SP;
627 std::iter::from_fn(move || {
628 loop {
629 let expn_data = self.ctxt().outer_expn_data();
630 if expn_data.is_root() {
631 return None;
632 }
633
634 let is_recursive = expn_data.call_site.source_equal(&prev_span);
635
636 prev_span = self;
637 self = expn_data.call_site;
638
639 // Don't print recursive invocations.
640 if !is_recursive {
641 return Some(expn_data);
642 }
643 }
644 })
645 }
646
647 /// Returns a `Span` that would enclose both `self` and `end`.
648 ///
649 /// ```text
650 /// ____ ___
651 /// self lorem ipsum end
652 /// ^^^^^^^^^^^^^^^^^^^^
653 /// ```
to(self, end: Span) -> Span654 pub fn to(self, end: Span) -> Span {
655 let span_data = self.data();
656 let end_data = end.data();
657 // FIXME(jseyfried): `self.ctxt` should always equal `end.ctxt` here (cf. issue #23480).
658 // Return the macro span on its own to avoid weird diagnostic output. It is preferable to
659 // have an incomplete span than a completely nonsensical one.
660 if span_data.ctxt != end_data.ctxt {
661 if span_data.ctxt == SyntaxContext::root() {
662 return end;
663 } else if end_data.ctxt == SyntaxContext::root() {
664 return self;
665 }
666 // Both spans fall within a macro.
667 // FIXME(estebank): check if it is the *same* macro.
668 }
669 Span::new(
670 cmp::min(span_data.lo, end_data.lo),
671 cmp::max(span_data.hi, end_data.hi),
672 if span_data.ctxt == SyntaxContext::root() { end_data.ctxt } else { span_data.ctxt },
673 )
674 }
675
676 /// Returns a `Span` between the end of `self` to the beginning of `end`.
677 ///
678 /// ```text
679 /// ____ ___
680 /// self lorem ipsum end
681 /// ^^^^^^^^^^^^^
682 /// ```
between(self, end: Span) -> Span683 pub fn between(self, end: Span) -> Span {
684 let span = self.data();
685 let end = end.data();
686 Span::new(
687 span.hi,
688 end.lo,
689 if end.ctxt == SyntaxContext::root() { end.ctxt } else { span.ctxt },
690 )
691 }
692
693 /// Returns a `Span` from the beginning of `self` until the beginning of `end`.
694 ///
695 /// ```text
696 /// ____ ___
697 /// self lorem ipsum end
698 /// ^^^^^^^^^^^^^^^^^
699 /// ```
until(self, end: Span) -> Span700 pub fn until(self, end: Span) -> Span {
701 let span = self.data();
702 let end = end.data();
703 Span::new(
704 span.lo,
705 end.lo,
706 if end.ctxt == SyntaxContext::root() { end.ctxt } else { span.ctxt },
707 )
708 }
709
from_inner(self, inner: InnerSpan) -> Span710 pub fn from_inner(self, inner: InnerSpan) -> Span {
711 let span = self.data();
712 Span::new(
713 span.lo + BytePos::from_usize(inner.start),
714 span.lo + BytePos::from_usize(inner.end),
715 span.ctxt,
716 )
717 }
718
719 /// Equivalent of `Span::def_site` from the proc macro API,
720 /// except that the location is taken from the `self` span.
with_def_site_ctxt(self, expn_id: ExpnId) -> Span721 pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span {
722 self.with_ctxt_from_mark(expn_id, Transparency::Opaque)
723 }
724
725 /// Equivalent of `Span::call_site` from the proc macro API,
726 /// except that the location is taken from the `self` span.
with_call_site_ctxt(&self, expn_id: ExpnId) -> Span727 pub fn with_call_site_ctxt(&self, expn_id: ExpnId) -> Span {
728 self.with_ctxt_from_mark(expn_id, Transparency::Transparent)
729 }
730
731 /// Equivalent of `Span::mixed_site` from the proc macro API,
732 /// except that the location is taken from the `self` span.
with_mixed_site_ctxt(&self, expn_id: ExpnId) -> Span733 pub fn with_mixed_site_ctxt(&self, expn_id: ExpnId) -> Span {
734 self.with_ctxt_from_mark(expn_id, Transparency::SemiTransparent)
735 }
736
737 /// Produces a span with the same location as `self` and context produced by a macro with the
738 /// given ID and transparency, assuming that macro was defined directly and not produced by
739 /// some other macro (which is the case for built-in and procedural macros).
with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span740 pub fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
741 self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency))
742 }
743
744 #[inline]
apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span745 pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
746 let span = self.data();
747 span.with_ctxt(span.ctxt.apply_mark(expn_id, transparency))
748 }
749
750 #[inline]
remove_mark(&mut self) -> ExpnId751 pub fn remove_mark(&mut self) -> ExpnId {
752 let mut span = self.data();
753 let mark = span.ctxt.remove_mark();
754 *self = Span::new(span.lo, span.hi, span.ctxt);
755 mark
756 }
757
758 #[inline]
adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId>759 pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
760 let mut span = self.data();
761 let mark = span.ctxt.adjust(expn_id);
762 *self = Span::new(span.lo, span.hi, span.ctxt);
763 mark
764 }
765
766 #[inline]
normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId>767 pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
768 let mut span = self.data();
769 let mark = span.ctxt.normalize_to_macros_2_0_and_adjust(expn_id);
770 *self = Span::new(span.lo, span.hi, span.ctxt);
771 mark
772 }
773
774 #[inline]
glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>>775 pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
776 let mut span = self.data();
777 let mark = span.ctxt.glob_adjust(expn_id, glob_span);
778 *self = Span::new(span.lo, span.hi, span.ctxt);
779 mark
780 }
781
782 #[inline]
reverse_glob_adjust( &mut self, expn_id: ExpnId, glob_span: Span, ) -> Option<Option<ExpnId>>783 pub fn reverse_glob_adjust(
784 &mut self,
785 expn_id: ExpnId,
786 glob_span: Span,
787 ) -> Option<Option<ExpnId>> {
788 let mut span = self.data();
789 let mark = span.ctxt.reverse_glob_adjust(expn_id, glob_span);
790 *self = Span::new(span.lo, span.hi, span.ctxt);
791 mark
792 }
793
794 #[inline]
normalize_to_macros_2_0(self) -> Span795 pub fn normalize_to_macros_2_0(self) -> Span {
796 let span = self.data();
797 span.with_ctxt(span.ctxt.normalize_to_macros_2_0())
798 }
799
800 #[inline]
normalize_to_macro_rules(self) -> Span801 pub fn normalize_to_macro_rules(self) -> Span {
802 let span = self.data();
803 span.with_ctxt(span.ctxt.normalize_to_macro_rules())
804 }
805 }
806
807 /// A span together with some additional data.
808 #[derive(Clone, Debug)]
809 pub struct SpanLabel {
810 /// The span we are going to include in the final snippet.
811 pub span: Span,
812
813 /// Is this a primary span? This is the "locus" of the message,
814 /// and is indicated with a `^^^^` underline, versus `----`.
815 pub is_primary: bool,
816
817 /// What label should we attach to this span (if any)?
818 pub label: Option<String>,
819 }
820
821 impl Default for Span {
default() -> Self822 fn default() -> Self {
823 DUMMY_SP
824 }
825 }
826
827 impl<E: Encoder> Encodable<E> for Span {
encode(&self, s: &mut E) -> Result<(), E::Error>828 default fn encode(&self, s: &mut E) -> Result<(), E::Error> {
829 let span = self.data();
830 s.emit_struct("Span", 2, |s| {
831 s.emit_struct_field("lo", 0, |s| span.lo.encode(s))?;
832 s.emit_struct_field("hi", 1, |s| span.hi.encode(s))
833 })
834 }
835 }
836 impl<D: Decoder> Decodable<D> for Span {
decode(s: &mut D) -> Result<Span, D::Error>837 default fn decode(s: &mut D) -> Result<Span, D::Error> {
838 s.read_struct("Span", 2, |d| {
839 let lo = d.read_struct_field("lo", 0, Decodable::decode)?;
840 let hi = d.read_struct_field("hi", 1, Decodable::decode)?;
841
842 Ok(Span::new(lo, hi, SyntaxContext::root()))
843 })
844 }
845 }
846
847 /// Calls the provided closure, using the provided `SourceMap` to format
848 /// any spans that are debug-printed during the closure's execution.
849 ///
850 /// Normally, the global `TyCtxt` is used to retrieve the `SourceMap`
851 /// (see `rustc_interface::callbacks::span_debug1`). However, some parts
852 /// of the compiler (e.g. `rustc_parse`) may debug-print `Span`s before
853 /// a `TyCtxt` is available. In this case, we fall back to
854 /// the `SourceMap` provided to this function. If that is not available,
855 /// we fall back to printing the raw `Span` field values.
with_source_map<T, F: FnOnce() -> T>(source_map: Lrc<SourceMap>, f: F) -> T856 pub fn with_source_map<T, F: FnOnce() -> T>(source_map: Lrc<SourceMap>, f: F) -> T {
857 SESSION_GLOBALS.with(|session_globals| {
858 *session_globals.source_map.borrow_mut() = Some(source_map);
859 });
860 struct ClearSourceMap;
861 impl Drop for ClearSourceMap {
862 fn drop(&mut self) {
863 SESSION_GLOBALS.with(|session_globals| {
864 session_globals.source_map.borrow_mut().take();
865 });
866 }
867 }
868
869 let _guard = ClearSourceMap;
870 f()
871 }
872
debug_with_source_map( span: Span, f: &mut fmt::Formatter<'_>, source_map: &SourceMap, ) -> fmt::Result873 pub fn debug_with_source_map(
874 span: Span,
875 f: &mut fmt::Formatter<'_>,
876 source_map: &SourceMap,
877 ) -> fmt::Result {
878 write!(f, "{} ({:?})", source_map.span_to_diagnostic_string(span), span.ctxt())
879 }
880
default_span_debug(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result881 pub fn default_span_debug(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result {
882 SESSION_GLOBALS.with(|session_globals| {
883 if let Some(source_map) = &*session_globals.source_map.borrow() {
884 debug_with_source_map(span, f, source_map)
885 } else {
886 f.debug_struct("Span")
887 .field("lo", &span.lo())
888 .field("hi", &span.hi())
889 .field("ctxt", &span.ctxt())
890 .finish()
891 }
892 })
893 }
894
895 impl fmt::Debug for Span {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result896 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
897 (*SPAN_DEBUG)(*self, f)
898 }
899 }
900
901 impl fmt::Debug for SpanData {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result902 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
903 (*SPAN_DEBUG)(Span::new(self.lo, self.hi, self.ctxt), f)
904 }
905 }
906
907 impl MultiSpan {
908 #[inline]
new() -> MultiSpan909 pub fn new() -> MultiSpan {
910 MultiSpan { primary_spans: vec![], span_labels: vec![] }
911 }
912
from_span(primary_span: Span) -> MultiSpan913 pub fn from_span(primary_span: Span) -> MultiSpan {
914 MultiSpan { primary_spans: vec![primary_span], span_labels: vec![] }
915 }
916
from_spans(mut vec: Vec<Span>) -> MultiSpan917 pub fn from_spans(mut vec: Vec<Span>) -> MultiSpan {
918 vec.sort();
919 MultiSpan { primary_spans: vec, span_labels: vec![] }
920 }
921
push_span_label(&mut self, span: Span, label: String)922 pub fn push_span_label(&mut self, span: Span, label: String) {
923 self.span_labels.push((span, label));
924 }
925
926 /// Selects the first primary span (if any).
primary_span(&self) -> Option<Span>927 pub fn primary_span(&self) -> Option<Span> {
928 self.primary_spans.first().cloned()
929 }
930
931 /// Returns all primary spans.
primary_spans(&self) -> &[Span]932 pub fn primary_spans(&self) -> &[Span] {
933 &self.primary_spans
934 }
935
936 /// Returns `true` if any of the primary spans are displayable.
has_primary_spans(&self) -> bool937 pub fn has_primary_spans(&self) -> bool {
938 self.primary_spans.iter().any(|sp| !sp.is_dummy())
939 }
940
941 /// Returns `true` if this contains only a dummy primary span with any hygienic context.
is_dummy(&self) -> bool942 pub fn is_dummy(&self) -> bool {
943 let mut is_dummy = true;
944 for span in &self.primary_spans {
945 if !span.is_dummy() {
946 is_dummy = false;
947 }
948 }
949 is_dummy
950 }
951
952 /// Replaces all occurrences of one Span with another. Used to move `Span`s in areas that don't
953 /// display well (like std macros). Returns whether replacements occurred.
replace(&mut self, before: Span, after: Span) -> bool954 pub fn replace(&mut self, before: Span, after: Span) -> bool {
955 let mut replacements_occurred = false;
956 for primary_span in &mut self.primary_spans {
957 if *primary_span == before {
958 *primary_span = after;
959 replacements_occurred = true;
960 }
961 }
962 for span_label in &mut self.span_labels {
963 if span_label.0 == before {
964 span_label.0 = after;
965 replacements_occurred = true;
966 }
967 }
968 replacements_occurred
969 }
970
971 /// Returns the strings to highlight. We always ensure that there
972 /// is an entry for each of the primary spans -- for each primary
973 /// span `P`, if there is at least one label with span `P`, we return
974 /// those labels (marked as primary). But otherwise we return
975 /// `SpanLabel` instances with empty labels.
span_labels(&self) -> Vec<SpanLabel>976 pub fn span_labels(&self) -> Vec<SpanLabel> {
977 let is_primary = |span| self.primary_spans.contains(&span);
978
979 let mut span_labels = self
980 .span_labels
981 .iter()
982 .map(|&(span, ref label)| SpanLabel {
983 span,
984 is_primary: is_primary(span),
985 label: Some(label.clone()),
986 })
987 .collect::<Vec<_>>();
988
989 for &span in &self.primary_spans {
990 if !span_labels.iter().any(|sl| sl.span == span) {
991 span_labels.push(SpanLabel { span, is_primary: true, label: None });
992 }
993 }
994
995 span_labels
996 }
997
998 /// Returns `true` if any of the span labels is displayable.
has_span_labels(&self) -> bool999 pub fn has_span_labels(&self) -> bool {
1000 self.span_labels.iter().any(|(sp, _)| !sp.is_dummy())
1001 }
1002 }
1003
1004 impl From<Span> for MultiSpan {
from(span: Span) -> MultiSpan1005 fn from(span: Span) -> MultiSpan {
1006 MultiSpan::from_span(span)
1007 }
1008 }
1009
1010 impl From<Vec<Span>> for MultiSpan {
from(spans: Vec<Span>) -> MultiSpan1011 fn from(spans: Vec<Span>) -> MultiSpan {
1012 MultiSpan::from_spans(spans)
1013 }
1014 }
1015
1016 /// Identifies an offset of a multi-byte character in a `SourceFile`.
1017 #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug)]
1018 pub struct MultiByteChar {
1019 /// The absolute offset of the character in the `SourceMap`.
1020 pub pos: BytePos,
1021 /// The number of bytes, `>= 2`.
1022 pub bytes: u8,
1023 }
1024
1025 /// Identifies an offset of a non-narrow character in a `SourceFile`.
1026 #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug)]
1027 pub enum NonNarrowChar {
1028 /// Represents a zero-width character.
1029 ZeroWidth(BytePos),
1030 /// Represents a wide (full-width) character.
1031 Wide(BytePos),
1032 /// Represents a tab character, represented visually with a width of 4 characters.
1033 Tab(BytePos),
1034 }
1035
1036 impl NonNarrowChar {
new(pos: BytePos, width: usize) -> Self1037 fn new(pos: BytePos, width: usize) -> Self {
1038 match width {
1039 0 => NonNarrowChar::ZeroWidth(pos),
1040 2 => NonNarrowChar::Wide(pos),
1041 4 => NonNarrowChar::Tab(pos),
1042 _ => panic!("width {} given for non-narrow character", width),
1043 }
1044 }
1045
1046 /// Returns the absolute offset of the character in the `SourceMap`.
pos(&self) -> BytePos1047 pub fn pos(&self) -> BytePos {
1048 match *self {
1049 NonNarrowChar::ZeroWidth(p) | NonNarrowChar::Wide(p) | NonNarrowChar::Tab(p) => p,
1050 }
1051 }
1052
1053 /// Returns the width of the character, 0 (zero-width) or 2 (wide).
width(&self) -> usize1054 pub fn width(&self) -> usize {
1055 match *self {
1056 NonNarrowChar::ZeroWidth(_) => 0,
1057 NonNarrowChar::Wide(_) => 2,
1058 NonNarrowChar::Tab(_) => 4,
1059 }
1060 }
1061 }
1062
1063 impl Add<BytePos> for NonNarrowChar {
1064 type Output = Self;
1065
add(self, rhs: BytePos) -> Self1066 fn add(self, rhs: BytePos) -> Self {
1067 match self {
1068 NonNarrowChar::ZeroWidth(pos) => NonNarrowChar::ZeroWidth(pos + rhs),
1069 NonNarrowChar::Wide(pos) => NonNarrowChar::Wide(pos + rhs),
1070 NonNarrowChar::Tab(pos) => NonNarrowChar::Tab(pos + rhs),
1071 }
1072 }
1073 }
1074
1075 impl Sub<BytePos> for NonNarrowChar {
1076 type Output = Self;
1077
sub(self, rhs: BytePos) -> Self1078 fn sub(self, rhs: BytePos) -> Self {
1079 match self {
1080 NonNarrowChar::ZeroWidth(pos) => NonNarrowChar::ZeroWidth(pos - rhs),
1081 NonNarrowChar::Wide(pos) => NonNarrowChar::Wide(pos - rhs),
1082 NonNarrowChar::Tab(pos) => NonNarrowChar::Tab(pos - rhs),
1083 }
1084 }
1085 }
1086
1087 /// Identifies an offset of a character that was normalized away from `SourceFile`.
1088 #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug)]
1089 pub struct NormalizedPos {
1090 /// The absolute offset of the character in the `SourceMap`.
1091 pub pos: BytePos,
1092 /// The difference between original and normalized string at position.
1093 pub diff: u32,
1094 }
1095
1096 #[derive(PartialEq, Eq, Clone, Debug)]
1097 pub enum ExternalSource {
1098 /// No external source has to be loaded, since the `SourceFile` represents a local crate.
1099 Unneeded,
1100 Foreign {
1101 kind: ExternalSourceKind,
1102 /// This SourceFile's byte-offset within the source_map of its original crate.
1103 original_start_pos: BytePos,
1104 /// The end of this SourceFile within the source_map of its original crate.
1105 original_end_pos: BytePos,
1106 },
1107 }
1108
1109 /// The state of the lazy external source loading mechanism of a `SourceFile`.
1110 #[derive(PartialEq, Eq, Clone, Debug)]
1111 pub enum ExternalSourceKind {
1112 /// The external source has been loaded already.
1113 Present(Lrc<String>),
1114 /// No attempt has been made to load the external source.
1115 AbsentOk,
1116 /// A failed attempt has been made to load the external source.
1117 AbsentErr,
1118 Unneeded,
1119 }
1120
1121 impl ExternalSource {
get_source(&self) -> Option<&Lrc<String>>1122 pub fn get_source(&self) -> Option<&Lrc<String>> {
1123 match self {
1124 ExternalSource::Foreign { kind: ExternalSourceKind::Present(ref src), .. } => Some(src),
1125 _ => None,
1126 }
1127 }
1128 }
1129
1130 #[derive(Debug)]
1131 pub struct OffsetOverflowError;
1132
1133 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
1134 pub enum SourceFileHashAlgorithm {
1135 Md5,
1136 Sha1,
1137 Sha256,
1138 }
1139
1140 impl FromStr for SourceFileHashAlgorithm {
1141 type Err = ();
1142
from_str(s: &str) -> Result<SourceFileHashAlgorithm, ()>1143 fn from_str(s: &str) -> Result<SourceFileHashAlgorithm, ()> {
1144 match s {
1145 "md5" => Ok(SourceFileHashAlgorithm::Md5),
1146 "sha1" => Ok(SourceFileHashAlgorithm::Sha1),
1147 "sha256" => Ok(SourceFileHashAlgorithm::Sha256),
1148 _ => Err(()),
1149 }
1150 }
1151 }
1152
1153 rustc_data_structures::impl_stable_hash_via_hash!(SourceFileHashAlgorithm);
1154
1155 /// The hash of the on-disk source file used for debug info.
1156 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
1157 #[derive(HashStable_Generic, Encodable, Decodable)]
1158 pub struct SourceFileHash {
1159 pub kind: SourceFileHashAlgorithm,
1160 value: [u8; 32],
1161 }
1162
1163 impl SourceFileHash {
new(kind: SourceFileHashAlgorithm, src: &str) -> SourceFileHash1164 pub fn new(kind: SourceFileHashAlgorithm, src: &str) -> SourceFileHash {
1165 let mut hash = SourceFileHash { kind, value: Default::default() };
1166 let len = hash.hash_len();
1167 let value = &mut hash.value[..len];
1168 let data = src.as_bytes();
1169 match kind {
1170 SourceFileHashAlgorithm::Md5 => {
1171 value.copy_from_slice(&Md5::digest(data));
1172 }
1173 SourceFileHashAlgorithm::Sha1 => {
1174 value.copy_from_slice(&Sha1::digest(data));
1175 }
1176 SourceFileHashAlgorithm::Sha256 => {
1177 value.copy_from_slice(&Sha256::digest(data));
1178 }
1179 }
1180 hash
1181 }
1182
1183 /// Check if the stored hash matches the hash of the string.
matches(&self, src: &str) -> bool1184 pub fn matches(&self, src: &str) -> bool {
1185 Self::new(self.kind, src) == *self
1186 }
1187
1188 /// The bytes of the hash.
hash_bytes(&self) -> &[u8]1189 pub fn hash_bytes(&self) -> &[u8] {
1190 let len = self.hash_len();
1191 &self.value[..len]
1192 }
1193
hash_len(&self) -> usize1194 fn hash_len(&self) -> usize {
1195 match self.kind {
1196 SourceFileHashAlgorithm::Md5 => 16,
1197 SourceFileHashAlgorithm::Sha1 => 20,
1198 SourceFileHashAlgorithm::Sha256 => 32,
1199 }
1200 }
1201 }
1202
1203 /// A single source in the [`SourceMap`].
1204 #[derive(Clone)]
1205 pub struct SourceFile {
1206 /// The name of the file that the source came from. Source that doesn't
1207 /// originate from files has names between angle brackets by convention
1208 /// (e.g., `<anon>`).
1209 pub name: FileName,
1210 /// The complete source code.
1211 pub src: Option<Lrc<String>>,
1212 /// The source code's hash.
1213 pub src_hash: SourceFileHash,
1214 /// The external source code (used for external crates, which will have a `None`
1215 /// value as `self.src`.
1216 pub external_src: Lock<ExternalSource>,
1217 /// The start position of this source in the `SourceMap`.
1218 pub start_pos: BytePos,
1219 /// The end position of this source in the `SourceMap`.
1220 pub end_pos: BytePos,
1221 /// Locations of lines beginnings in the source code.
1222 pub lines: Vec<BytePos>,
1223 /// Locations of multi-byte characters in the source code.
1224 pub multibyte_chars: Vec<MultiByteChar>,
1225 /// Width of characters that are not narrow in the source code.
1226 pub non_narrow_chars: Vec<NonNarrowChar>,
1227 /// Locations of characters removed during normalization.
1228 pub normalized_pos: Vec<NormalizedPos>,
1229 /// A hash of the filename, used for speeding up hashing in incremental compilation.
1230 pub name_hash: u128,
1231 /// Indicates which crate this `SourceFile` was imported from.
1232 pub cnum: CrateNum,
1233 }
1234
1235 impl<S: Encoder> Encodable<S> for SourceFile {
encode(&self, s: &mut S) -> Result<(), S::Error>1236 fn encode(&self, s: &mut S) -> Result<(), S::Error> {
1237 s.emit_struct("SourceFile", 8, |s| {
1238 s.emit_struct_field("name", 0, |s| self.name.encode(s))?;
1239 s.emit_struct_field("src_hash", 2, |s| self.src_hash.encode(s))?;
1240 s.emit_struct_field("start_pos", 3, |s| self.start_pos.encode(s))?;
1241 s.emit_struct_field("end_pos", 4, |s| self.end_pos.encode(s))?;
1242 s.emit_struct_field("lines", 5, |s| {
1243 let lines = &self.lines[..];
1244 // Store the length.
1245 s.emit_u32(lines.len() as u32)?;
1246
1247 if !lines.is_empty() {
1248 // In order to preserve some space, we exploit the fact that
1249 // the lines list is sorted and individual lines are
1250 // probably not that long. Because of that we can store lines
1251 // as a difference list, using as little space as possible
1252 // for the differences.
1253 let max_line_length = if lines.len() == 1 {
1254 0
1255 } else {
1256 lines
1257 .array_windows()
1258 .map(|&[fst, snd]| snd - fst)
1259 .map(|bp| bp.to_usize())
1260 .max()
1261 .unwrap()
1262 };
1263
1264 let bytes_per_diff: u8 = match max_line_length {
1265 0..=0xFF => 1,
1266 0x100..=0xFFFF => 2,
1267 _ => 4,
1268 };
1269
1270 // Encode the number of bytes used per diff.
1271 bytes_per_diff.encode(s)?;
1272
1273 // Encode the first element.
1274 lines[0].encode(s)?;
1275
1276 let diff_iter = lines[..].array_windows().map(|&[fst, snd]| snd - fst);
1277
1278 match bytes_per_diff {
1279 1 => {
1280 for diff in diff_iter {
1281 (diff.0 as u8).encode(s)?
1282 }
1283 }
1284 2 => {
1285 for diff in diff_iter {
1286 (diff.0 as u16).encode(s)?
1287 }
1288 }
1289 4 => {
1290 for diff in diff_iter {
1291 diff.0.encode(s)?
1292 }
1293 }
1294 _ => unreachable!(),
1295 }
1296 }
1297
1298 Ok(())
1299 })?;
1300 s.emit_struct_field("multibyte_chars", 6, |s| self.multibyte_chars.encode(s))?;
1301 s.emit_struct_field("non_narrow_chars", 7, |s| self.non_narrow_chars.encode(s))?;
1302 s.emit_struct_field("name_hash", 8, |s| self.name_hash.encode(s))?;
1303 s.emit_struct_field("normalized_pos", 9, |s| self.normalized_pos.encode(s))?;
1304 s.emit_struct_field("cnum", 10, |s| self.cnum.encode(s))
1305 })
1306 }
1307 }
1308
1309 impl<D: Decoder> Decodable<D> for SourceFile {
decode(d: &mut D) -> Result<SourceFile, D::Error>1310 fn decode(d: &mut D) -> Result<SourceFile, D::Error> {
1311 d.read_struct("SourceFile", 8, |d| {
1312 let name: FileName = d.read_struct_field("name", 0, |d| Decodable::decode(d))?;
1313 let src_hash: SourceFileHash =
1314 d.read_struct_field("src_hash", 2, |d| Decodable::decode(d))?;
1315 let start_pos: BytePos =
1316 d.read_struct_field("start_pos", 3, |d| Decodable::decode(d))?;
1317 let end_pos: BytePos = d.read_struct_field("end_pos", 4, |d| Decodable::decode(d))?;
1318 let lines: Vec<BytePos> = d.read_struct_field("lines", 5, |d| {
1319 let num_lines: u32 = Decodable::decode(d)?;
1320 let mut lines = Vec::with_capacity(num_lines as usize);
1321
1322 if num_lines > 0 {
1323 // Read the number of bytes used per diff.
1324 let bytes_per_diff: u8 = Decodable::decode(d)?;
1325
1326 // Read the first element.
1327 let mut line_start: BytePos = Decodable::decode(d)?;
1328 lines.push(line_start);
1329
1330 for _ in 1..num_lines {
1331 let diff = match bytes_per_diff {
1332 1 => d.read_u8()? as u32,
1333 2 => d.read_u16()? as u32,
1334 4 => d.read_u32()?,
1335 _ => unreachable!(),
1336 };
1337
1338 line_start = line_start + BytePos(diff);
1339
1340 lines.push(line_start);
1341 }
1342 }
1343
1344 Ok(lines)
1345 })?;
1346 let multibyte_chars: Vec<MultiByteChar> =
1347 d.read_struct_field("multibyte_chars", 6, |d| Decodable::decode(d))?;
1348 let non_narrow_chars: Vec<NonNarrowChar> =
1349 d.read_struct_field("non_narrow_chars", 7, |d| Decodable::decode(d))?;
1350 let name_hash: u128 = d.read_struct_field("name_hash", 8, |d| Decodable::decode(d))?;
1351 let normalized_pos: Vec<NormalizedPos> =
1352 d.read_struct_field("normalized_pos", 9, |d| Decodable::decode(d))?;
1353 let cnum: CrateNum = d.read_struct_field("cnum", 10, |d| Decodable::decode(d))?;
1354 Ok(SourceFile {
1355 name,
1356 start_pos,
1357 end_pos,
1358 src: None,
1359 src_hash,
1360 // Unused - the metadata decoder will construct
1361 // a new SourceFile, filling in `external_src` properly
1362 external_src: Lock::new(ExternalSource::Unneeded),
1363 lines,
1364 multibyte_chars,
1365 non_narrow_chars,
1366 normalized_pos,
1367 name_hash,
1368 cnum,
1369 })
1370 })
1371 }
1372 }
1373
1374 impl fmt::Debug for SourceFile {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1375 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1376 write!(fmt, "SourceFile({:?})", self.name)
1377 }
1378 }
1379
1380 impl SourceFile {
new( name: FileName, mut src: String, start_pos: BytePos, hash_kind: SourceFileHashAlgorithm, ) -> Self1381 pub fn new(
1382 name: FileName,
1383 mut src: String,
1384 start_pos: BytePos,
1385 hash_kind: SourceFileHashAlgorithm,
1386 ) -> Self {
1387 // Compute the file hash before any normalization.
1388 let src_hash = SourceFileHash::new(hash_kind, &src);
1389 let normalized_pos = normalize_src(&mut src, start_pos);
1390
1391 let name_hash = {
1392 let mut hasher: StableHasher = StableHasher::new();
1393 name.hash(&mut hasher);
1394 hasher.finish::<u128>()
1395 };
1396 let end_pos = start_pos.to_usize() + src.len();
1397 assert!(end_pos <= u32::MAX as usize);
1398
1399 let (lines, multibyte_chars, non_narrow_chars) =
1400 analyze_source_file::analyze_source_file(&src[..], start_pos);
1401
1402 SourceFile {
1403 name,
1404 src: Some(Lrc::new(src)),
1405 src_hash,
1406 external_src: Lock::new(ExternalSource::Unneeded),
1407 start_pos,
1408 end_pos: Pos::from_usize(end_pos),
1409 lines,
1410 multibyte_chars,
1411 non_narrow_chars,
1412 normalized_pos,
1413 name_hash,
1414 cnum: LOCAL_CRATE,
1415 }
1416 }
1417
1418 /// Returns the `BytePos` of the beginning of the current line.
line_begin_pos(&self, pos: BytePos) -> BytePos1419 pub fn line_begin_pos(&self, pos: BytePos) -> BytePos {
1420 let line_index = self.lookup_line(pos).unwrap();
1421 self.lines[line_index]
1422 }
1423
1424 /// Add externally loaded source.
1425 /// If the hash of the input doesn't match or no input is supplied via None,
1426 /// it is interpreted as an error and the corresponding enum variant is set.
1427 /// The return value signifies whether some kind of source is present.
add_external_src<F>(&self, get_src: F) -> bool where F: FnOnce() -> Option<String>,1428 pub fn add_external_src<F>(&self, get_src: F) -> bool
1429 where
1430 F: FnOnce() -> Option<String>,
1431 {
1432 if matches!(
1433 *self.external_src.borrow(),
1434 ExternalSource::Foreign { kind: ExternalSourceKind::AbsentOk, .. }
1435 ) {
1436 let src = get_src();
1437 let mut external_src = self.external_src.borrow_mut();
1438 // Check that no-one else have provided the source while we were getting it
1439 if let ExternalSource::Foreign {
1440 kind: src_kind @ ExternalSourceKind::AbsentOk, ..
1441 } = &mut *external_src
1442 {
1443 if let Some(mut src) = src {
1444 // The src_hash needs to be computed on the pre-normalized src.
1445 if self.src_hash.matches(&src) {
1446 normalize_src(&mut src, BytePos::from_usize(0));
1447 *src_kind = ExternalSourceKind::Present(Lrc::new(src));
1448 return true;
1449 }
1450 } else {
1451 *src_kind = ExternalSourceKind::AbsentErr;
1452 }
1453
1454 false
1455 } else {
1456 self.src.is_some() || external_src.get_source().is_some()
1457 }
1458 } else {
1459 self.src.is_some() || self.external_src.borrow().get_source().is_some()
1460 }
1461 }
1462
1463 /// Gets a line from the list of pre-computed line-beginnings.
1464 /// The line number here is 0-based.
get_line(&self, line_number: usize) -> Option<Cow<'_, str>>1465 pub fn get_line(&self, line_number: usize) -> Option<Cow<'_, str>> {
1466 fn get_until_newline(src: &str, begin: usize) -> &str {
1467 // We can't use `lines.get(line_number+1)` because we might
1468 // be parsing when we call this function and thus the current
1469 // line is the last one we have line info for.
1470 let slice = &src[begin..];
1471 match slice.find('\n') {
1472 Some(e) => &slice[..e],
1473 None => slice,
1474 }
1475 }
1476
1477 let begin = {
1478 let line = self.lines.get(line_number)?;
1479 let begin: BytePos = *line - self.start_pos;
1480 begin.to_usize()
1481 };
1482
1483 if let Some(ref src) = self.src {
1484 Some(Cow::from(get_until_newline(src, begin)))
1485 } else if let Some(src) = self.external_src.borrow().get_source() {
1486 Some(Cow::Owned(String::from(get_until_newline(src, begin))))
1487 } else {
1488 None
1489 }
1490 }
1491
is_real_file(&self) -> bool1492 pub fn is_real_file(&self) -> bool {
1493 self.name.is_real()
1494 }
1495
is_imported(&self) -> bool1496 pub fn is_imported(&self) -> bool {
1497 self.src.is_none()
1498 }
1499
count_lines(&self) -> usize1500 pub fn count_lines(&self) -> usize {
1501 self.lines.len()
1502 }
1503
1504 /// Finds the line containing the given position. The return value is the
1505 /// index into the `lines` array of this `SourceFile`, not the 1-based line
1506 /// number. If the source_file is empty or the position is located before the
1507 /// first line, `None` is returned.
lookup_line(&self, pos: BytePos) -> Option<usize>1508 pub fn lookup_line(&self, pos: BytePos) -> Option<usize> {
1509 if self.lines.is_empty() {
1510 return None;
1511 }
1512
1513 let line_index = lookup_line(&self.lines[..], pos);
1514 assert!(line_index < self.lines.len() as isize);
1515 if line_index >= 0 { Some(line_index as usize) } else { None }
1516 }
1517
line_bounds(&self, line_index: usize) -> Range<BytePos>1518 pub fn line_bounds(&self, line_index: usize) -> Range<BytePos> {
1519 if self.is_empty() {
1520 return self.start_pos..self.end_pos;
1521 }
1522
1523 assert!(line_index < self.lines.len());
1524 if line_index == (self.lines.len() - 1) {
1525 self.lines[line_index]..self.end_pos
1526 } else {
1527 self.lines[line_index]..self.lines[line_index + 1]
1528 }
1529 }
1530
1531 /// Returns whether or not the file contains the given `SourceMap` byte
1532 /// position. The position one past the end of the file is considered to be
1533 /// contained by the file. This implies that files for which `is_empty`
1534 /// returns true still contain one byte position according to this function.
1535 #[inline]
contains(&self, byte_pos: BytePos) -> bool1536 pub fn contains(&self, byte_pos: BytePos) -> bool {
1537 byte_pos >= self.start_pos && byte_pos <= self.end_pos
1538 }
1539
1540 #[inline]
is_empty(&self) -> bool1541 pub fn is_empty(&self) -> bool {
1542 self.start_pos == self.end_pos
1543 }
1544
1545 /// Calculates the original byte position relative to the start of the file
1546 /// based on the given byte position.
original_relative_byte_pos(&self, pos: BytePos) -> BytePos1547 pub fn original_relative_byte_pos(&self, pos: BytePos) -> BytePos {
1548 // Diff before any records is 0. Otherwise use the previously recorded
1549 // diff as that applies to the following characters until a new diff
1550 // is recorded.
1551 let diff = match self.normalized_pos.binary_search_by(|np| np.pos.cmp(&pos)) {
1552 Ok(i) => self.normalized_pos[i].diff,
1553 Err(i) if i == 0 => 0,
1554 Err(i) => self.normalized_pos[i - 1].diff,
1555 };
1556
1557 BytePos::from_u32(pos.0 - self.start_pos.0 + diff)
1558 }
1559
1560 /// Converts an absolute `BytePos` to a `CharPos` relative to the `SourceFile`.
bytepos_to_file_charpos(&self, bpos: BytePos) -> CharPos1561 pub fn bytepos_to_file_charpos(&self, bpos: BytePos) -> CharPos {
1562 // The number of extra bytes due to multibyte chars in the `SourceFile`.
1563 let mut total_extra_bytes = 0;
1564
1565 for mbc in self.multibyte_chars.iter() {
1566 debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos);
1567 if mbc.pos < bpos {
1568 // Every character is at least one byte, so we only
1569 // count the actual extra bytes.
1570 total_extra_bytes += mbc.bytes as u32 - 1;
1571 // We should never see a byte position in the middle of a
1572 // character.
1573 assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32);
1574 } else {
1575 break;
1576 }
1577 }
1578
1579 assert!(self.start_pos.to_u32() + total_extra_bytes <= bpos.to_u32());
1580 CharPos(bpos.to_usize() - self.start_pos.to_usize() - total_extra_bytes as usize)
1581 }
1582
1583 /// Looks up the file's (1-based) line number and (0-based `CharPos`) column offset, for a
1584 /// given `BytePos`.
lookup_file_pos(&self, pos: BytePos) -> (usize, CharPos)1585 pub fn lookup_file_pos(&self, pos: BytePos) -> (usize, CharPos) {
1586 let chpos = self.bytepos_to_file_charpos(pos);
1587 match self.lookup_line(pos) {
1588 Some(a) => {
1589 let line = a + 1; // Line numbers start at 1
1590 let linebpos = self.lines[a];
1591 let linechpos = self.bytepos_to_file_charpos(linebpos);
1592 let col = chpos - linechpos;
1593 debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos);
1594 debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos);
1595 debug!("byte is on line: {}", line);
1596 assert!(chpos >= linechpos);
1597 (line, col)
1598 }
1599 None => (0, chpos),
1600 }
1601 }
1602
1603 /// Looks up the file's (1-based) line number, (0-based `CharPos`) column offset, and (0-based)
1604 /// column offset when displayed, for a given `BytePos`.
lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize)1605 pub fn lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize) {
1606 let (line, col_or_chpos) = self.lookup_file_pos(pos);
1607 if line > 0 {
1608 let col = col_or_chpos;
1609 let linebpos = self.lines[line - 1];
1610 let col_display = {
1611 let start_width_idx = self
1612 .non_narrow_chars
1613 .binary_search_by_key(&linebpos, |x| x.pos())
1614 .unwrap_or_else(|x| x);
1615 let end_width_idx = self
1616 .non_narrow_chars
1617 .binary_search_by_key(&pos, |x| x.pos())
1618 .unwrap_or_else(|x| x);
1619 let special_chars = end_width_idx - start_width_idx;
1620 let non_narrow: usize = self.non_narrow_chars[start_width_idx..end_width_idx]
1621 .iter()
1622 .map(|x| x.width())
1623 .sum();
1624 col.0 - special_chars + non_narrow
1625 };
1626 (line, col, col_display)
1627 } else {
1628 let chpos = col_or_chpos;
1629 let col_display = {
1630 let end_width_idx = self
1631 .non_narrow_chars
1632 .binary_search_by_key(&pos, |x| x.pos())
1633 .unwrap_or_else(|x| x);
1634 let non_narrow: usize =
1635 self.non_narrow_chars[0..end_width_idx].iter().map(|x| x.width()).sum();
1636 chpos.0 - end_width_idx + non_narrow
1637 };
1638 (0, chpos, col_display)
1639 }
1640 }
1641 }
1642
1643 /// Normalizes the source code and records the normalizations.
normalize_src(src: &mut String, start_pos: BytePos) -> Vec<NormalizedPos>1644 fn normalize_src(src: &mut String, start_pos: BytePos) -> Vec<NormalizedPos> {
1645 let mut normalized_pos = vec![];
1646 remove_bom(src, &mut normalized_pos);
1647 normalize_newlines(src, &mut normalized_pos);
1648
1649 // Offset all the positions by start_pos to match the final file positions.
1650 for np in &mut normalized_pos {
1651 np.pos.0 += start_pos.0;
1652 }
1653
1654 normalized_pos
1655 }
1656
1657 /// Removes UTF-8 BOM, if any.
remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>)1658 fn remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
1659 if src.starts_with('\u{feff}') {
1660 src.drain(..3);
1661 normalized_pos.push(NormalizedPos { pos: BytePos(0), diff: 3 });
1662 }
1663 }
1664
1665 /// Replaces `\r\n` with `\n` in-place in `src`.
1666 ///
1667 /// Returns error if there's a lone `\r` in the string.
normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>)1668 fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
1669 if !src.as_bytes().contains(&b'\r') {
1670 return;
1671 }
1672
1673 // We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding.
1674 // While we *can* call `as_mut_vec` and do surgery on the live string
1675 // directly, let's rather steal the contents of `src`. This makes the code
1676 // safe even if a panic occurs.
1677
1678 let mut buf = std::mem::replace(src, String::new()).into_bytes();
1679 let mut gap_len = 0;
1680 let mut tail = buf.as_mut_slice();
1681 let mut cursor = 0;
1682 let original_gap = normalized_pos.last().map_or(0, |l| l.diff);
1683 loop {
1684 let idx = match find_crlf(&tail[gap_len..]) {
1685 None => tail.len(),
1686 Some(idx) => idx + gap_len,
1687 };
1688 tail.copy_within(gap_len..idx, 0);
1689 tail = &mut tail[idx - gap_len..];
1690 if tail.len() == gap_len {
1691 break;
1692 }
1693 cursor += idx - gap_len;
1694 gap_len += 1;
1695 normalized_pos.push(NormalizedPos {
1696 pos: BytePos::from_usize(cursor + 1),
1697 diff: original_gap + gap_len as u32,
1698 });
1699 }
1700
1701 // Account for removed `\r`.
1702 // After `set_len`, `buf` is guaranteed to contain utf-8 again.
1703 let new_len = buf.len() - gap_len;
1704 unsafe {
1705 buf.set_len(new_len);
1706 *src = String::from_utf8_unchecked(buf);
1707 }
1708
1709 fn find_crlf(src: &[u8]) -> Option<usize> {
1710 let mut search_idx = 0;
1711 while let Some(idx) = find_cr(&src[search_idx..]) {
1712 if src[search_idx..].get(idx + 1) != Some(&b'\n') {
1713 search_idx += idx + 1;
1714 continue;
1715 }
1716 return Some(search_idx + idx);
1717 }
1718 None
1719 }
1720
1721 fn find_cr(src: &[u8]) -> Option<usize> {
1722 src.iter().position(|&b| b == b'\r')
1723 }
1724 }
1725
1726 // _____________________________________________________________________________
1727 // Pos, BytePos, CharPos
1728 //
1729
1730 pub trait Pos {
from_usize(n: usize) -> Self1731 fn from_usize(n: usize) -> Self;
to_usize(&self) -> usize1732 fn to_usize(&self) -> usize;
from_u32(n: u32) -> Self1733 fn from_u32(n: u32) -> Self;
to_u32(&self) -> u321734 fn to_u32(&self) -> u32;
1735 }
1736
1737 macro_rules! impl_pos {
1738 (
1739 $(
1740 $(#[$attr:meta])*
1741 $vis:vis struct $ident:ident($inner_vis:vis $inner_ty:ty);
1742 )*
1743 ) => {
1744 $(
1745 $(#[$attr])*
1746 $vis struct $ident($inner_vis $inner_ty);
1747
1748 impl Pos for $ident {
1749 #[inline(always)]
1750 fn from_usize(n: usize) -> $ident {
1751 $ident(n as $inner_ty)
1752 }
1753
1754 #[inline(always)]
1755 fn to_usize(&self) -> usize {
1756 self.0 as usize
1757 }
1758
1759 #[inline(always)]
1760 fn from_u32(n: u32) -> $ident {
1761 $ident(n as $inner_ty)
1762 }
1763
1764 #[inline(always)]
1765 fn to_u32(&self) -> u32 {
1766 self.0 as u32
1767 }
1768 }
1769
1770 impl Add for $ident {
1771 type Output = $ident;
1772
1773 #[inline(always)]
1774 fn add(self, rhs: $ident) -> $ident {
1775 $ident(self.0 + rhs.0)
1776 }
1777 }
1778
1779 impl Sub for $ident {
1780 type Output = $ident;
1781
1782 #[inline(always)]
1783 fn sub(self, rhs: $ident) -> $ident {
1784 $ident(self.0 - rhs.0)
1785 }
1786 }
1787 )*
1788 };
1789 }
1790
1791 impl_pos! {
1792 /// A byte offset.
1793 ///
1794 /// Keep this small (currently 32-bits), as AST contains a lot of them.
1795 #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
1796 pub struct BytePos(pub u32);
1797
1798 /// A character offset.
1799 ///
1800 /// Because of multibyte UTF-8 characters, a byte offset
1801 /// is not equivalent to a character offset. The [`SourceMap`] will convert [`BytePos`]
1802 /// values to `CharPos` values as necessary.
1803 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
1804 pub struct CharPos(pub usize);
1805 }
1806
1807 impl<S: rustc_serialize::Encoder> Encodable<S> for BytePos {
encode(&self, s: &mut S) -> Result<(), S::Error>1808 fn encode(&self, s: &mut S) -> Result<(), S::Error> {
1809 s.emit_u32(self.0)
1810 }
1811 }
1812
1813 impl<D: rustc_serialize::Decoder> Decodable<D> for BytePos {
decode(d: &mut D) -> Result<BytePos, D::Error>1814 fn decode(d: &mut D) -> Result<BytePos, D::Error> {
1815 Ok(BytePos(d.read_u32()?))
1816 }
1817 }
1818
1819 // _____________________________________________________________________________
1820 // Loc, SourceFileAndLine, SourceFileAndBytePos
1821 //
1822
1823 /// A source code location used for error reporting.
1824 #[derive(Debug, Clone)]
1825 pub struct Loc {
1826 /// Information about the original source.
1827 pub file: Lrc<SourceFile>,
1828 /// The (1-based) line number.
1829 pub line: usize,
1830 /// The (0-based) column offset.
1831 pub col: CharPos,
1832 /// The (0-based) column offset when displayed.
1833 pub col_display: usize,
1834 }
1835
1836 // Used to be structural records.
1837 #[derive(Debug)]
1838 pub struct SourceFileAndLine {
1839 pub sf: Lrc<SourceFile>,
1840 pub line: usize,
1841 }
1842 #[derive(Debug)]
1843 pub struct SourceFileAndBytePos {
1844 pub sf: Lrc<SourceFile>,
1845 pub pos: BytePos,
1846 }
1847
1848 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
1849 pub struct LineInfo {
1850 /// Index of line, starting from 0.
1851 pub line_index: usize,
1852
1853 /// Column in line where span begins, starting from 0.
1854 pub start_col: CharPos,
1855
1856 /// Column in line where span ends, starting from 0, exclusive.
1857 pub end_col: CharPos,
1858 }
1859
1860 pub struct FileLines {
1861 pub file: Lrc<SourceFile>,
1862 pub lines: Vec<LineInfo>,
1863 }
1864
1865 pub static SPAN_DEBUG: AtomicRef<fn(Span, &mut fmt::Formatter<'_>) -> fmt::Result> =
1866 AtomicRef::new(&(default_span_debug as fn(_, &mut fmt::Formatter<'_>) -> _));
1867
1868 // _____________________________________________________________________________
1869 // SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions
1870 //
1871
1872 pub type FileLinesResult = Result<FileLines, SpanLinesError>;
1873
1874 #[derive(Clone, PartialEq, Eq, Debug)]
1875 pub enum SpanLinesError {
1876 DistinctSources(DistinctSources),
1877 }
1878
1879 #[derive(Clone, PartialEq, Eq, Debug)]
1880 pub enum SpanSnippetError {
1881 IllFormedSpan(Span),
1882 DistinctSources(DistinctSources),
1883 MalformedForSourcemap(MalformedSourceMapPositions),
1884 SourceNotAvailable { filename: FileName },
1885 }
1886
1887 #[derive(Clone, PartialEq, Eq, Debug)]
1888 pub struct DistinctSources {
1889 pub begin: (FileName, BytePos),
1890 pub end: (FileName, BytePos),
1891 }
1892
1893 #[derive(Clone, PartialEq, Eq, Debug)]
1894 pub struct MalformedSourceMapPositions {
1895 pub name: FileName,
1896 pub source_len: usize,
1897 pub begin_pos: BytePos,
1898 pub end_pos: BytePos,
1899 }
1900
1901 /// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
1902 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
1903 pub struct InnerSpan {
1904 pub start: usize,
1905 pub end: usize,
1906 }
1907
1908 impl InnerSpan {
new(start: usize, end: usize) -> InnerSpan1909 pub fn new(start: usize, end: usize) -> InnerSpan {
1910 InnerSpan { start, end }
1911 }
1912 }
1913
1914 // Given a slice of line start positions and a position, returns the index of
1915 // the line the position is on. Returns -1 if the position is located before
1916 // the first line.
lookup_line(lines: &[BytePos], pos: BytePos) -> isize1917 fn lookup_line(lines: &[BytePos], pos: BytePos) -> isize {
1918 match lines.binary_search(&pos) {
1919 Ok(line) => line as isize,
1920 Err(line) => line as isize - 1,
1921 }
1922 }
1923
1924 /// Requirements for a `StableHashingContext` to be used in this crate.
1925 ///
1926 /// This is a hack to allow using the [`HashStable_Generic`] derive macro
1927 /// instead of implementing everything in rustc_middle.
1928 pub trait HashStableContext {
hash_def_id(&mut self, _: DefId, hasher: &mut StableHasher)1929 fn hash_def_id(&mut self, _: DefId, hasher: &mut StableHasher);
1930 /// Obtains a cache for storing the `Fingerprint` of an `ExpnId`.
1931 /// This method allows us to have multiple `HashStableContext` implementations
1932 /// that hash things in a different way, without the results of one polluting
1933 /// the cache of the other.
expn_id_cache() -> &'static LocalKey<ExpnIdCache>1934 fn expn_id_cache() -> &'static LocalKey<ExpnIdCache>;
hash_crate_num(&mut self, _: CrateNum, hasher: &mut StableHasher)1935 fn hash_crate_num(&mut self, _: CrateNum, hasher: &mut StableHasher);
hash_spans(&self) -> bool1936 fn hash_spans(&self) -> bool;
span_data_to_lines_and_cols( &mut self, span: &SpanData, ) -> Option<(Lrc<SourceFile>, usize, BytePos, usize, BytePos)>1937 fn span_data_to_lines_and_cols(
1938 &mut self,
1939 span: &SpanData,
1940 ) -> Option<(Lrc<SourceFile>, usize, BytePos, usize, BytePos)>;
1941 }
1942
1943 impl<CTX> HashStable<CTX> for Span
1944 where
1945 CTX: HashStableContext,
1946 {
1947 /// Hashes a span in a stable way. We can't directly hash the span's `BytePos`
1948 /// fields (that would be similar to hashing pointers, since those are just
1949 /// offsets into the `SourceMap`). Instead, we hash the (file name, line, column)
1950 /// triple, which stays the same even if the containing `SourceFile` has moved
1951 /// within the `SourceMap`.
1952 ///
1953 /// Also note that we are hashing byte offsets for the column, not unicode
1954 /// codepoint offsets. For the purpose of the hash that's sufficient.
1955 /// Also, hashing filenames is expensive so we avoid doing it twice when the
1956 /// span starts and ends in the same file, which is almost always the case.
hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher)1957 fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
1958 const TAG_VALID_SPAN: u8 = 0;
1959 const TAG_INVALID_SPAN: u8 = 1;
1960
1961 if !ctx.hash_spans() {
1962 return;
1963 }
1964
1965 self.ctxt().hash_stable(ctx, hasher);
1966
1967 if self.is_dummy() {
1968 Hash::hash(&TAG_INVALID_SPAN, hasher);
1969 return;
1970 }
1971
1972 // If this is not an empty or invalid span, we want to hash the last
1973 // position that belongs to it, as opposed to hashing the first
1974 // position past it.
1975 let span = self.data();
1976 let (file, line_lo, col_lo, line_hi, col_hi) = match ctx.span_data_to_lines_and_cols(&span)
1977 {
1978 Some(pos) => pos,
1979 None => {
1980 Hash::hash(&TAG_INVALID_SPAN, hasher);
1981 return;
1982 }
1983 };
1984
1985 Hash::hash(&TAG_VALID_SPAN, hasher);
1986 // We truncate the stable ID hash and line and column numbers. The chances
1987 // of causing a collision this way should be minimal.
1988 Hash::hash(&(file.name_hash as u64), hasher);
1989
1990 // Hash both the length and the end location (line/column) of a span. If we
1991 // hash only the length, for example, then two otherwise equal spans with
1992 // different end locations will have the same hash. This can cause a problem
1993 // during incremental compilation wherein a previous result for a query that
1994 // depends on the end location of a span will be incorrectly reused when the
1995 // end location of the span it depends on has changed (see issue #74890). A
1996 // similar analysis applies if some query depends specifically on the length
1997 // of the span, but we only hash the end location. So hash both.
1998
1999 let col_lo_trunc = (col_lo.0 as u64) & 0xFF;
2000 let line_lo_trunc = ((line_lo as u64) & 0xFF_FF_FF) << 8;
2001 let col_hi_trunc = (col_hi.0 as u64) & 0xFF << 32;
2002 let line_hi_trunc = ((line_hi as u64) & 0xFF_FF_FF) << 40;
2003 let col_line = col_lo_trunc | line_lo_trunc | col_hi_trunc | line_hi_trunc;
2004 let len = (span.hi - span.lo).0;
2005 Hash::hash(&col_line, hasher);
2006 Hash::hash(&len, hasher);
2007 }
2008 }
2009
2010 impl<CTX: HashStableContext> HashStable<CTX> for SyntaxContext {
hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher)2011 fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
2012 const TAG_EXPANSION: u8 = 0;
2013 const TAG_NO_EXPANSION: u8 = 1;
2014
2015 if *self == SyntaxContext::root() {
2016 TAG_NO_EXPANSION.hash_stable(ctx, hasher);
2017 } else {
2018 TAG_EXPANSION.hash_stable(ctx, hasher);
2019 let (expn_id, transparency) = self.outer_mark();
2020 expn_id.hash_stable(ctx, hasher);
2021 transparency.hash_stable(ctx, hasher);
2022 }
2023 }
2024 }
2025
2026 pub type ExpnIdCache = RefCell<Vec<Option<Fingerprint>>>;
2027
2028 impl<CTX: HashStableContext> HashStable<CTX> for ExpnId {
hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher)2029 fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
2030 const TAG_ROOT: u8 = 0;
2031 const TAG_NOT_ROOT: u8 = 1;
2032
2033 if *self == ExpnId::root() {
2034 TAG_ROOT.hash_stable(ctx, hasher);
2035 return;
2036 }
2037
2038 // Since the same expansion context is usually referenced many
2039 // times, we cache a stable hash of it and hash that instead of
2040 // recursing every time.
2041 let index = self.as_u32() as usize;
2042 let res = CTX::expn_id_cache().with(|cache| cache.borrow().get(index).copied().flatten());
2043
2044 if let Some(res) = res {
2045 res.hash_stable(ctx, hasher);
2046 } else {
2047 let new_len = index + 1;
2048
2049 let mut sub_hasher = StableHasher::new();
2050 TAG_NOT_ROOT.hash_stable(ctx, &mut sub_hasher);
2051 self.expn_data().hash_stable(ctx, &mut sub_hasher);
2052 let sub_hash: Fingerprint = sub_hasher.finish();
2053
2054 CTX::expn_id_cache().with(|cache| {
2055 let mut cache = cache.borrow_mut();
2056 if cache.len() < new_len {
2057 cache.resize(new_len, None);
2058 }
2059 let prev = cache[index].replace(sub_hash);
2060 assert_eq!(prev, None, "Cache slot was filled");
2061 });
2062 sub_hash.hash_stable(ctx, hasher);
2063 }
2064 }
2065 }
2066