1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 5                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Debug;    use Debug;
30with Einfo;    use Einfo;
31with Elists;   use Elists;
32with Errout;   use Errout;
33with Exp_Aggr; use Exp_Aggr;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch7;  use Exp_Ch7;
36with Exp_Ch11; use Exp_Ch11;
37with Exp_Dbug; use Exp_Dbug;
38with Exp_Pakd; use Exp_Pakd;
39with Exp_Tss;  use Exp_Tss;
40with Exp_Util; use Exp_Util;
41with Inline;   use Inline;
42with Namet;    use Namet;
43with Nlists;   use Nlists;
44with Nmake;    use Nmake;
45with Opt;      use Opt;
46with Restrict; use Restrict;
47with Rident;   use Rident;
48with Rtsfind;  use Rtsfind;
49with Sinfo;    use Sinfo;
50with Sem;      use Sem;
51with Sem_Aux;  use Sem_Aux;
52with Sem_Ch3;  use Sem_Ch3;
53with Sem_Ch8;  use Sem_Ch8;
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res;  use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Snames;   use Snames;
59with Stand;    use Stand;
60with Stringt;  use Stringt;
61with Tbuild;   use Tbuild;
62with Uintp;    use Uintp;
63with Validsw;  use Validsw;
64
65package body Exp_Ch5 is
66
67   procedure Build_Formal_Container_Iteration
68     (N         : Node_Id;
69      Container : Entity_Id;
70      Cursor    : Entity_Id;
71      Init      : out Node_Id;
72      Advance   : out Node_Id;
73      New_Loop  : out Node_Id);
74   --  Utility to create declarations and loop statement for both forms
75   --  of formal container iterators.
76
77   function Convert_To_Iterable_Type
78     (Container : Entity_Id;
79      Loc       : Source_Ptr) return Node_Id;
80   --  Returns New_Occurrence_Of (Container), possibly converted to an ancestor
81   --  type, if the type of Container inherited the Iterable aspect from that
82   --  ancestor.
83
84   function Change_Of_Representation (N : Node_Id) return Boolean;
85   --  Determine if the right-hand side of assignment N is a type conversion
86   --  which requires a change of representation. Called only for the array
87   --  and record cases.
88
89   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
90   --  N is an assignment which assigns an array value. This routine process
91   --  the various special cases and checks required for such assignments,
92   --  including change of representation. Rhs is normally simply the right-
93   --  hand side of the assignment, except that if the right-hand side is a
94   --  type conversion or a qualified expression, then the RHS is the actual
95   --  expression inside any such type conversions or qualifications.
96
97   function Expand_Assign_Array_Loop
98     (N      : Node_Id;
99      Larray : Entity_Id;
100      Rarray : Entity_Id;
101      L_Type : Entity_Id;
102      R_Type : Entity_Id;
103      Ndim   : Pos;
104      Rev    : Boolean) return Node_Id;
105   --  N is an assignment statement which assigns an array value. This routine
106   --  expands the assignment into a loop (or nested loops for the case of a
107   --  multi-dimensional array) to do the assignment component by component.
108   --  Larray and Rarray are the entities of the actual arrays on the left-hand
109   --  and right-hand sides. L_Type and R_Type are the types of these arrays
110   --  (which may not be the same, due to either sliding, or to a change of
111   --  representation case). Ndim is the number of dimensions and the parameter
112   --  Rev indicates if the loops run normally (Rev = False), or reversed
113   --  (Rev = True). The value returned is the constructed loop statement.
114   --  Auxiliary declarations are inserted before node N using the standard
115   --  Insert_Actions mechanism.
116
117   procedure Expand_Assign_Record (N : Node_Id);
118   --  N is an assignment of an untagged record value. This routine handles
119   --  the case where the assignment must be made component by component,
120   --  either because the target is not byte aligned, or there is a change
121   --  of representation, or when we have a tagged type with a representation
122   --  clause (this last case is required because holes in the tagged type
123   --  might be filled with components from child types).
124
125   procedure Expand_Assign_With_Target_Names (N : Node_Id);
126   --  (AI12-0125): N is an assignment statement whose RHS contains occurrences
127   --  of @ that designate the value of the LHS of the assignment. If the LHS
128   --  is side-effect free the target names can be replaced with a copy of the
129   --  LHS; otherwise the semantics of the assignment is described in terms of
130   --  a procedure with an in-out parameter, and expanded as such.
131
132   procedure Expand_Formal_Container_Loop (N : Node_Id);
133   --  Use the primitives specified in an Iterable aspect to expand a loop
134   --  over a so-called formal container, primarily for SPARK usage.
135
136   procedure Expand_Formal_Container_Element_Loop (N : Node_Id);
137   --  Same, for an iterator of the form " For E of C". In this case the
138   --  iterator provides the name of the element, and the cursor is generated
139   --  internally.
140
141   procedure Expand_Iterator_Loop (N : Node_Id);
142   --  Expand loop over arrays and containers that uses the form "for X of C"
143   --  with an optional subtype mark, or "for Y in C".
144
145   procedure Expand_Iterator_Loop_Over_Container
146     (N             : Node_Id;
147      Isc           : Node_Id;
148      I_Spec        : Node_Id;
149      Container     : Node_Id;
150      Container_Typ : Entity_Id);
151   --  Expand loop over containers that uses the form "for X of C" with an
152   --  optional subtype mark, or "for Y in C". Isc is the iteration scheme.
153   --  I_Spec is the iterator specification and Container is either the
154   --  Container (for OF) or the iterator (for IN).
155
156   procedure Expand_Predicated_Loop (N : Node_Id);
157   --  Expand for loop over predicated subtype
158
159   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
160   --  Generate the necessary code for controlled and tagged assignment, that
161   --  is to say, finalization of the target before, adjustment of the target
162   --  after and save and restore of the tag and finalization pointers which
163   --  are not 'part of the value' and must not be changed upon assignment. N
164   --  is the original Assignment node.
165
166   --------------------------------------
167   -- Build_Formal_Container_iteration --
168   --------------------------------------
169
170   procedure Build_Formal_Container_Iteration
171     (N         : Node_Id;
172      Container : Entity_Id;
173      Cursor    : Entity_Id;
174      Init      : out Node_Id;
175      Advance   : out Node_Id;
176      New_Loop  : out Node_Id)
177   is
178      Loc   : constant Source_Ptr := Sloc (N);
179      Stats : constant List_Id    := Statements (N);
180      Typ   : constant Entity_Id  := Base_Type (Etype (Container));
181
182      Has_Element_Op : constant Entity_Id :=
183                         Get_Iterable_Type_Primitive (Typ, Name_Has_Element);
184
185      First_Op : Entity_Id;
186      Next_Op  : Entity_Id;
187
188   begin
189      --  Use the proper set of primitives depending on the direction of
190      --  iteration. The legality of a reverse iteration has been checked
191      --  during analysis.
192
193      if Reverse_Present (Iterator_Specification (Iteration_Scheme (N))) then
194         First_Op := Get_Iterable_Type_Primitive (Typ, Name_Last);
195         Next_Op  := Get_Iterable_Type_Primitive (Typ, Name_Previous);
196
197      else
198         First_Op := Get_Iterable_Type_Primitive (Typ, Name_First);
199         Next_Op  := Get_Iterable_Type_Primitive (Typ, Name_Next);
200      end if;
201
202      --  Declaration for Cursor
203
204      Init :=
205        Make_Object_Declaration (Loc,
206          Defining_Identifier => Cursor,
207          Object_Definition   => New_Occurrence_Of (Etype (First_Op),  Loc),
208          Expression          =>
209            Make_Function_Call (Loc,
210              Name                   => New_Occurrence_Of (First_Op, Loc),
211              Parameter_Associations => New_List (
212                Convert_To_Iterable_Type (Container, Loc))));
213
214      --  Statement that advances (in the right direction) cursor in loop
215
216      Advance :=
217        Make_Assignment_Statement (Loc,
218          Name       => New_Occurrence_Of (Cursor, Loc),
219          Expression =>
220            Make_Function_Call (Loc,
221              Name                   => New_Occurrence_Of (Next_Op, Loc),
222              Parameter_Associations => New_List (
223                Convert_To_Iterable_Type (Container, Loc),
224                New_Occurrence_Of (Cursor, Loc))));
225
226      --  Iterator is rewritten as a while_loop
227
228      New_Loop :=
229        Make_Loop_Statement (Loc,
230          Iteration_Scheme =>
231            Make_Iteration_Scheme (Loc,
232              Condition =>
233                Make_Function_Call (Loc,
234                  Name => New_Occurrence_Of (Has_Element_Op, Loc),
235                  Parameter_Associations => New_List (
236                    Convert_To_Iterable_Type (Container, Loc),
237                    New_Occurrence_Of (Cursor, Loc)))),
238          Statements => Stats,
239          End_Label  => Empty);
240   end Build_Formal_Container_Iteration;
241
242   ------------------------------
243   -- Change_Of_Representation --
244   ------------------------------
245
246   function Change_Of_Representation (N : Node_Id) return Boolean is
247      Rhs : constant Node_Id := Expression (N);
248   begin
249      return
250        Nkind (Rhs) = N_Type_Conversion
251          and then
252            not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
253   end Change_Of_Representation;
254
255   ------------------------------
256   -- Convert_To_Iterable_Type --
257   ------------------------------
258
259   function Convert_To_Iterable_Type
260     (Container : Entity_Id;
261      Loc       : Source_Ptr) return Node_Id
262   is
263      Typ    : constant Entity_Id := Base_Type (Etype (Container));
264      Aspect : constant Node_Id   := Find_Aspect (Typ, Aspect_Iterable);
265      Result : Node_Id;
266
267   begin
268      Result := New_Occurrence_Of (Container, Loc);
269
270      if Entity (Aspect) /= Typ then
271         Result :=
272           Make_Type_Conversion (Loc,
273             Subtype_Mark => New_Occurrence_Of (Entity (Aspect), Loc),
274             Expression   => Result);
275      end if;
276
277      return Result;
278   end Convert_To_Iterable_Type;
279
280   -------------------------
281   -- Expand_Assign_Array --
282   -------------------------
283
284   --  There are two issues here. First, do we let Gigi do a block move, or
285   --  do we expand out into a loop? Second, we need to set the two flags
286   --  Forwards_OK and Backwards_OK which show whether the block move (or
287   --  corresponding loops) can be legitimately done in a forwards (low to
288   --  high) or backwards (high to low) manner.
289
290   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
291      Loc : constant Source_Ptr := Sloc (N);
292
293      Lhs : constant Node_Id := Name (N);
294
295      Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
296      Act_Rhs : Node_Id          := Get_Referenced_Object (Rhs);
297
298      L_Type : constant Entity_Id :=
299                 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
300      R_Type : Entity_Id :=
301                 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
302
303      L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
304      R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
305
306      Crep : constant Boolean := Change_Of_Representation (N);
307
308      Larray  : Node_Id;
309      Rarray  : Node_Id;
310
311      Ndim : constant Pos := Number_Dimensions (L_Type);
312
313      Loop_Required : Boolean := False;
314      --  This switch is set to True if the array move must be done using
315      --  an explicit front end generated loop.
316
317      procedure Apply_Dereference (Arg : Node_Id);
318      --  If the argument is an access to an array, and the assignment is
319      --  converted into a procedure call, apply explicit dereference.
320
321      function Has_Address_Clause (Exp : Node_Id) return Boolean;
322      --  Test if Exp is a reference to an array whose declaration has
323      --  an address clause, or it is a slice of such an array.
324
325      function Is_Formal_Array (Exp : Node_Id) return Boolean;
326      --  Test if Exp is a reference to an array which is either a formal
327      --  parameter or a slice of a formal parameter. These are the cases
328      --  where hidden aliasing can occur.
329
330      function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
331      --  Determine if Exp is a reference to an array variable which is other
332      --  than an object defined in the current scope, or a component or a
333      --  slice of such an object. Such objects can be aliased to parameters
334      --  (unlike local array references).
335
336      -----------------------
337      -- Apply_Dereference --
338      -----------------------
339
340      procedure Apply_Dereference (Arg : Node_Id) is
341         Typ : constant Entity_Id := Etype (Arg);
342      begin
343         if Is_Access_Type (Typ) then
344            Rewrite (Arg, Make_Explicit_Dereference (Loc,
345              Prefix => Relocate_Node (Arg)));
346            Analyze_And_Resolve (Arg, Designated_Type (Typ));
347         end if;
348      end Apply_Dereference;
349
350      ------------------------
351      -- Has_Address_Clause --
352      ------------------------
353
354      function Has_Address_Clause (Exp : Node_Id) return Boolean is
355      begin
356         return
357           (Is_Entity_Name (Exp) and then
358                              Present (Address_Clause (Entity (Exp))))
359             or else
360           (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
361      end Has_Address_Clause;
362
363      ---------------------
364      -- Is_Formal_Array --
365      ---------------------
366
367      function Is_Formal_Array (Exp : Node_Id) return Boolean is
368      begin
369         return
370           (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
371             or else
372           (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
373      end Is_Formal_Array;
374
375      ------------------------
376      -- Is_Non_Local_Array --
377      ------------------------
378
379      function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
380      begin
381         case Nkind (Exp) is
382            when N_Indexed_Component
383               | N_Selected_Component
384               | N_Slice
385            =>
386               return Is_Non_Local_Array (Prefix (Exp));
387
388            when others =>
389               return
390                 not (Is_Entity_Name (Exp)
391                       and then Scope (Entity (Exp)) = Current_Scope);
392         end case;
393      end Is_Non_Local_Array;
394
395      --  Determine if Lhs, Rhs are formal arrays or nonlocal arrays
396
397      Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
398      Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
399
400      Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
401      Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
402
403   --  Start of processing for Expand_Assign_Array
404
405   begin
406      --  Deal with length check. Note that the length check is done with
407      --  respect to the right-hand side as given, not a possible underlying
408      --  renamed object, since this would generate incorrect extra checks.
409
410      Apply_Length_Check (Rhs, L_Type);
411
412      --  We start by assuming that the move can be done in either direction,
413      --  i.e. that the two sides are completely disjoint.
414
415      Set_Forwards_OK  (N, True);
416      Set_Backwards_OK (N, True);
417
418      --  Normally it is only the slice case that can lead to overlap, and
419      --  explicit checks for slices are made below. But there is one case
420      --  where the slice can be implicit and invisible to us: when we have a
421      --  one dimensional array, and either both operands are parameters, or
422      --  one is a parameter (which can be a slice passed by reference) and the
423      --  other is a non-local variable. In this case the parameter could be a
424      --  slice that overlaps with the other operand.
425
426      --  However, if the array subtype is a constrained first subtype in the
427      --  parameter case, then we don't have to worry about overlap, since
428      --  slice assignments aren't possible (other than for a slice denoting
429      --  the whole array).
430
431      --  Note: No overlap is possible if there is a change of representation,
432      --  so we can exclude this case.
433
434      if Ndim = 1
435        and then not Crep
436        and then
437           ((Lhs_Formal and Rhs_Formal)
438              or else
439            (Lhs_Formal and Rhs_Non_Local_Var)
440              or else
441            (Rhs_Formal and Lhs_Non_Local_Var))
442        and then
443           (not Is_Constrained (Etype (Lhs))
444             or else not Is_First_Subtype (Etype (Lhs)))
445      then
446         Set_Forwards_OK  (N, False);
447         Set_Backwards_OK (N, False);
448
449         --  Note: the bit-packed case is not worrisome here, since if we have
450         --  a slice passed as a parameter, it is always aligned on a byte
451         --  boundary, and if there are no explicit slices, the assignment
452         --  can be performed directly.
453      end if;
454
455      --  If either operand has an address clause clear Backwards_OK and
456      --  Forwards_OK, since we cannot tell if the operands overlap. We
457      --  exclude this treatment when Rhs is an aggregate, since we know
458      --  that overlap can't occur.
459
460      if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
461        or else Has_Address_Clause (Rhs)
462      then
463         Set_Forwards_OK  (N, False);
464         Set_Backwards_OK (N, False);
465      end if;
466
467      --  We certainly must use a loop for change of representation and also
468      --  we use the operand of the conversion on the right-hand side as the
469      --  effective right-hand side (the component types must match in this
470      --  situation).
471
472      if Crep then
473         Act_Rhs := Get_Referenced_Object (Rhs);
474         R_Type  := Get_Actual_Subtype (Act_Rhs);
475         Loop_Required := True;
476
477      --  We require a loop if the left side is possibly bit unaligned
478
479      elsif Possible_Bit_Aligned_Component (Lhs)
480              or else
481            Possible_Bit_Aligned_Component (Rhs)
482      then
483         Loop_Required := True;
484
485      --  Arrays with controlled components are expanded into a loop to force
486      --  calls to Adjust at the component level.
487
488      elsif Has_Controlled_Component (L_Type) then
489         Loop_Required := True;
490
491      --  If object is atomic/VFA, we cannot tolerate a loop
492
493      elsif Is_Atomic_Or_VFA_Object (Act_Lhs)
494              or else
495            Is_Atomic_Or_VFA_Object (Act_Rhs)
496      then
497         return;
498
499      --  Loop is required if we have atomic components since we have to
500      --  be sure to do any accesses on an element by element basis.
501
502      elsif Has_Atomic_Components (L_Type)
503        or else Has_Atomic_Components (R_Type)
504        or else Is_Atomic_Or_VFA (Component_Type (L_Type))
505        or else Is_Atomic_Or_VFA (Component_Type (R_Type))
506      then
507         Loop_Required := True;
508
509      --  Case where no slice is involved
510
511      elsif not L_Slice and not R_Slice then
512
513         --  The following code deals with the case of unconstrained bit packed
514         --  arrays. The problem is that the template for such arrays contains
515         --  the bounds of the actual source level array, but the copy of an
516         --  entire array requires the bounds of the underlying array. It would
517         --  be nice if the back end could take care of this, but right now it
518         --  does not know how, so if we have such a type, then we expand out
519         --  into a loop, which is inefficient but works correctly. If we don't
520         --  do this, we get the wrong length computed for the array to be
521         --  moved. The two cases we need to worry about are:
522
523         --  Explicit dereference of an unconstrained packed array type as in
524         --  the following example:
525
526         --    procedure C52 is
527         --       type BITS is array(INTEGER range <>) of BOOLEAN;
528         --       pragma PACK(BITS);
529         --       type A is access BITS;
530         --       P1,P2 : A;
531         --    begin
532         --       P1 := new BITS (1 .. 65_535);
533         --       P2 := new BITS (1 .. 65_535);
534         --       P2.ALL := P1.ALL;
535         --    end C52;
536
537         --  A formal parameter reference with an unconstrained bit array type
538         --  is the other case we need to worry about (here we assume the same
539         --  BITS type declared above):
540
541         --    procedure Write_All (File : out BITS; Contents : BITS);
542         --    begin
543         --       File.Storage := Contents;
544         --    end Write_All;
545
546         --  We expand to a loop in either of these two cases
547
548         --  Question for future thought. Another potentially more efficient
549         --  approach would be to create the actual subtype, and then do an
550         --  unchecked conversion to this actual subtype ???
551
552         Check_Unconstrained_Bit_Packed_Array : declare
553
554            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
555            --  Function to perform required test for the first case, above
556            --  (dereference of an unconstrained bit packed array).
557
558            -----------------------
559            -- Is_UBPA_Reference --
560            -----------------------
561
562            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
563               Typ      : constant Entity_Id := Underlying_Type (Etype (Opnd));
564               P_Type   : Entity_Id;
565               Des_Type : Entity_Id;
566
567            begin
568               if Present (Packed_Array_Impl_Type (Typ))
569                 and then Is_Array_Type (Packed_Array_Impl_Type (Typ))
570                 and then not Is_Constrained (Packed_Array_Impl_Type (Typ))
571               then
572                  return True;
573
574               elsif Nkind (Opnd) = N_Explicit_Dereference then
575                  P_Type := Underlying_Type (Etype (Prefix (Opnd)));
576
577                  if not Is_Access_Type (P_Type) then
578                     return False;
579
580                  else
581                     Des_Type := Designated_Type (P_Type);
582                     return
583                       Is_Bit_Packed_Array (Des_Type)
584                         and then not Is_Constrained (Des_Type);
585                  end if;
586
587               else
588                  return False;
589               end if;
590            end Is_UBPA_Reference;
591
592         --  Start of processing for Check_Unconstrained_Bit_Packed_Array
593
594         begin
595            if Is_UBPA_Reference (Lhs)
596                 or else
597               Is_UBPA_Reference (Rhs)
598            then
599               Loop_Required := True;
600
601            --  Here if we do not have the case of a reference to a bit packed
602            --  unconstrained array case. In this case gigi can most certainly
603            --  handle the assignment if a forwards move is allowed.
604
605            --  (could it handle the backwards case also???)
606
607            elsif Forwards_OK (N) then
608               return;
609            end if;
610         end Check_Unconstrained_Bit_Packed_Array;
611
612      --  The back end can always handle the assignment if the right side is a
613      --  string literal (note that overlap is definitely impossible in this
614      --  case). If the type is packed, a string literal is always converted
615      --  into an aggregate, except in the case of a null slice, for which no
616      --  aggregate can be written. In that case, rewrite the assignment as a
617      --  null statement, a length check has already been emitted to verify
618      --  that the range of the left-hand side is empty.
619
620      --  Note that this code is not executed if we have an assignment of a
621      --  string literal to a non-bit aligned component of a record, a case
622      --  which cannot be handled by the backend.
623
624      elsif Nkind (Rhs) = N_String_Literal then
625         if String_Length (Strval (Rhs)) = 0
626           and then Is_Bit_Packed_Array (L_Type)
627         then
628            Rewrite (N, Make_Null_Statement (Loc));
629            Analyze (N);
630         end if;
631
632         return;
633
634      --  If either operand is bit packed, then we need a loop, since we can't
635      --  be sure that the slice is byte aligned. Similarly, if either operand
636      --  is a possibly unaligned slice, then we need a loop (since the back
637      --  end cannot handle unaligned slices).
638
639      elsif Is_Bit_Packed_Array (L_Type)
640        or else Is_Bit_Packed_Array (R_Type)
641        or else Is_Possibly_Unaligned_Slice (Lhs)
642        or else Is_Possibly_Unaligned_Slice (Rhs)
643      then
644         Loop_Required := True;
645
646      --  If we are not bit-packed, and we have only one slice, then no overlap
647      --  is possible except in the parameter case, so we can let the back end
648      --  handle things.
649
650      elsif not (L_Slice and R_Slice) then
651         if Forwards_OK (N) then
652            return;
653         end if;
654      end if;
655
656      --  If the right-hand side is a string literal, introduce a temporary for
657      --  it, for use in the generated loop that will follow.
658
659      if Nkind (Rhs) = N_String_Literal then
660         declare
661            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
662            Decl : Node_Id;
663
664         begin
665            Decl :=
666              Make_Object_Declaration (Loc,
667                 Defining_Identifier => Temp,
668                 Object_Definition => New_Occurrence_Of (L_Type, Loc),
669                 Expression => Relocate_Node (Rhs));
670
671            Insert_Action (N, Decl);
672            Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
673            R_Type := Etype (Temp);
674         end;
675      end if;
676
677      --  Come here to complete the analysis
678
679      --    Loop_Required: Set to True if we know that a loop is required
680      --                   regardless of overlap considerations.
681
682      --    Forwards_OK:   Set to False if we already know that a forwards
683      --                   move is not safe, else set to True.
684
685      --    Backwards_OK:  Set to False if we already know that a backwards
686      --                   move is not safe, else set to True
687
688      --  Our task at this stage is to complete the overlap analysis, which can
689      --  result in possibly setting Forwards_OK or Backwards_OK to False, and
690      --  then generating the final code, either by deciding that it is OK
691      --  after all to let Gigi handle it, or by generating appropriate code
692      --  in the front end.
693
694      declare
695         L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
696         R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
697
698         Left_Lo  : constant Node_Id := Type_Low_Bound  (L_Index_Typ);
699         Left_Hi  : constant Node_Id := Type_High_Bound (L_Index_Typ);
700         Right_Lo : constant Node_Id := Type_Low_Bound  (R_Index_Typ);
701         Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
702
703         Act_L_Array : Node_Id;
704         Act_R_Array : Node_Id;
705
706         Cleft_Lo  : Node_Id;
707         Cright_Lo : Node_Id;
708         Condition : Node_Id;
709
710         Cresult : Compare_Result;
711
712      begin
713         --  Get the expressions for the arrays. If we are dealing with a
714         --  private type, then convert to the underlying type. We can do
715         --  direct assignments to an array that is a private type, but we
716         --  cannot assign to elements of the array without this extra
717         --  unchecked conversion.
718
719         --  Note: We propagate Parent to the conversion nodes to generate
720         --  a well-formed subtree.
721
722         if Nkind (Act_Lhs) = N_Slice then
723            Larray := Prefix (Act_Lhs);
724         else
725            Larray := Act_Lhs;
726
727            if Is_Private_Type (Etype (Larray)) then
728               declare
729                  Par : constant Node_Id := Parent (Larray);
730               begin
731                  Larray :=
732                    Unchecked_Convert_To
733                      (Underlying_Type (Etype (Larray)), Larray);
734                  Set_Parent (Larray, Par);
735               end;
736            end if;
737         end if;
738
739         if Nkind (Act_Rhs) = N_Slice then
740            Rarray := Prefix (Act_Rhs);
741         else
742            Rarray := Act_Rhs;
743
744            if Is_Private_Type (Etype (Rarray)) then
745               declare
746                  Par : constant Node_Id := Parent (Rarray);
747               begin
748                  Rarray :=
749                    Unchecked_Convert_To
750                      (Underlying_Type (Etype (Rarray)), Rarray);
751                  Set_Parent (Rarray, Par);
752               end;
753            end if;
754         end if;
755
756         --  If both sides are slices, we must figure out whether it is safe
757         --  to do the move in one direction or the other. It is always safe
758         --  if there is a change of representation since obviously two arrays
759         --  with different representations cannot possibly overlap.
760
761         if (not Crep) and L_Slice and R_Slice then
762            Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
763            Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
764
765            --  If both left- and right-hand arrays are entity names, and refer
766            --  to different entities, then we know that the move is safe (the
767            --  two storage areas are completely disjoint).
768
769            if Is_Entity_Name (Act_L_Array)
770              and then Is_Entity_Name (Act_R_Array)
771              and then Entity (Act_L_Array) /= Entity (Act_R_Array)
772            then
773               null;
774
775            --  Otherwise, we assume the worst, which is that the two arrays
776            --  are the same array. There is no need to check if we know that
777            --  is the case, because if we don't know it, we still have to
778            --  assume it.
779
780            --  Generally if the same array is involved, then we have an
781            --  overlapping case. We will have to really assume the worst (i.e.
782            --  set neither of the OK flags) unless we can determine the lower
783            --  or upper bounds at compile time and compare them.
784
785            else
786               Cresult :=
787                 Compile_Time_Compare
788                   (Left_Lo, Right_Lo, Assume_Valid => True);
789
790               if Cresult = Unknown then
791                  Cresult :=
792                    Compile_Time_Compare
793                      (Left_Hi, Right_Hi, Assume_Valid => True);
794               end if;
795
796               case Cresult is
797                  when EQ | LE | LT =>
798                     Set_Backwards_OK (N, False);
799
800                  when GE | GT =>
801                     Set_Forwards_OK  (N, False);
802
803                  when NE | Unknown =>
804                     Set_Backwards_OK (N, False);
805                     Set_Forwards_OK  (N, False);
806               end case;
807            end if;
808         end if;
809
810         --  If after that analysis Loop_Required is False, meaning that we
811         --  have not discovered some non-overlap reason for requiring a loop,
812         --  then the outcome depends on the capabilities of the back end.
813
814         if not Loop_Required then
815            --  Assume the back end can deal with all cases of overlap by
816            --  falling back to memmove if it cannot use a more efficient
817            --  approach.
818
819            return;
820         end if;
821
822         --  At this stage we have to generate an explicit loop, and we have
823         --  the following cases:
824
825         --  Forwards_OK = True
826
827         --    Rnn : right_index := right_index'First;
828         --    for Lnn in left-index loop
829         --       left (Lnn) := right (Rnn);
830         --       Rnn := right_index'Succ (Rnn);
831         --    end loop;
832
833         --    Note: the above code MUST be analyzed with checks off, because
834         --    otherwise the Succ could overflow. But in any case this is more
835         --    efficient.
836
837         --  Forwards_OK = False, Backwards_OK = True
838
839         --    Rnn : right_index := right_index'Last;
840         --    for Lnn in reverse left-index loop
841         --       left (Lnn) := right (Rnn);
842         --       Rnn := right_index'Pred (Rnn);
843         --    end loop;
844
845         --    Note: the above code MUST be analyzed with checks off, because
846         --    otherwise the Pred could overflow. But in any case this is more
847         --    efficient.
848
849         --  Forwards_OK = Backwards_OK = False
850
851         --    This only happens if we have the same array on each side. It is
852         --    possible to create situations using overlays that violate this,
853         --    but we simply do not promise to get this "right" in this case.
854
855         --    There are two possible subcases. If the No_Implicit_Conditionals
856         --    restriction is set, then we generate the following code:
857
858         --      declare
859         --        T : constant <operand-type> := rhs;
860         --      begin
861         --        lhs := T;
862         --      end;
863
864         --    If implicit conditionals are permitted, then we generate:
865
866         --      if Left_Lo <= Right_Lo then
867         --         <code for Forwards_OK = True above>
868         --      else
869         --         <code for Backwards_OK = True above>
870         --      end if;
871
872         --  In order to detect possible aliasing, we examine the renamed
873         --  expression when the source or target is a renaming. However,
874         --  the renaming may be intended to capture an address that may be
875         --  affected by subsequent code, and therefore we must recover
876         --  the actual entity for the expansion that follows, not the
877         --  object it renames. In particular, if source or target designate
878         --  a portion of a dynamically allocated object, the pointer to it
879         --  may be reassigned but the renaming preserves the proper location.
880
881         if Is_Entity_Name (Rhs)
882           and then
883             Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
884           and then Nkind (Act_Rhs) = N_Slice
885         then
886            Rarray := Rhs;
887         end if;
888
889         if Is_Entity_Name (Lhs)
890           and then
891             Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
892           and then Nkind (Act_Lhs) = N_Slice
893         then
894            Larray := Lhs;
895         end if;
896
897         --  Cases where either Forwards_OK or Backwards_OK is true
898
899         if Forwards_OK (N) or else Backwards_OK (N) then
900            if Needs_Finalization (Component_Type (L_Type))
901              and then Base_Type (L_Type) = Base_Type (R_Type)
902              and then Ndim = 1
903              and then not No_Ctrl_Actions (N)
904            then
905               declare
906                  Proc    : constant Entity_Id :=
907                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
908                  Actuals : List_Id;
909
910               begin
911                  Apply_Dereference (Larray);
912                  Apply_Dereference (Rarray);
913                  Actuals := New_List (
914                    Duplicate_Subexpr (Larray,   Name_Req => True),
915                    Duplicate_Subexpr (Rarray,   Name_Req => True),
916                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
917                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
918                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
919                    Duplicate_Subexpr (Right_Hi, Name_Req => True));
920
921                  Append_To (Actuals,
922                    New_Occurrence_Of (
923                      Boolean_Literals (not Forwards_OK (N)), Loc));
924
925                  Rewrite (N,
926                    Make_Procedure_Call_Statement (Loc,
927                      Name => New_Occurrence_Of (Proc, Loc),
928                      Parameter_Associations => Actuals));
929               end;
930
931            else
932               Rewrite (N,
933                 Expand_Assign_Array_Loop
934                   (N, Larray, Rarray, L_Type, R_Type, Ndim,
935                    Rev => not Forwards_OK (N)));
936            end if;
937
938         --  Case of both are false with No_Implicit_Conditionals
939
940         elsif Restriction_Active (No_Implicit_Conditionals) then
941            declare
942                  T : constant Entity_Id :=
943                        Make_Defining_Identifier (Loc, Chars => Name_T);
944
945            begin
946               Rewrite (N,
947                 Make_Block_Statement (Loc,
948                  Declarations => New_List (
949                    Make_Object_Declaration (Loc,
950                      Defining_Identifier => T,
951                      Constant_Present  => True,
952                      Object_Definition =>
953                        New_Occurrence_Of (Etype (Rhs), Loc),
954                      Expression        => Relocate_Node (Rhs))),
955
956                    Handled_Statement_Sequence =>
957                      Make_Handled_Sequence_Of_Statements (Loc,
958                        Statements => New_List (
959                          Make_Assignment_Statement (Loc,
960                            Name       => Relocate_Node (Lhs),
961                            Expression => New_Occurrence_Of (T, Loc))))));
962            end;
963
964         --  Case of both are false with implicit conditionals allowed
965
966         else
967            --  Before we generate this code, we must ensure that the left and
968            --  right side array types are defined. They may be itypes, and we
969            --  cannot let them be defined inside the if, since the first use
970            --  in the then may not be executed.
971
972            Ensure_Defined (L_Type, N);
973            Ensure_Defined (R_Type, N);
974
975            --  We normally compare addresses to find out which way round to
976            --  do the loop, since this is reliable, and handles the cases of
977            --  parameters, conversions etc. But we can't do that in the bit
978            --  packed case, because addresses don't work there.
979
980            if not Is_Bit_Packed_Array (L_Type) then
981               Condition :=
982                 Make_Op_Le (Loc,
983                   Left_Opnd =>
984                     Unchecked_Convert_To (RTE (RE_Integer_Address),
985                       Make_Attribute_Reference (Loc,
986                         Prefix =>
987                           Make_Indexed_Component (Loc,
988                             Prefix =>
989                               Duplicate_Subexpr_Move_Checks (Larray, True),
990                             Expressions => New_List (
991                               Make_Attribute_Reference (Loc,
992                                 Prefix =>
993                                   New_Occurrence_Of
994                                     (L_Index_Typ, Loc),
995                                 Attribute_Name => Name_First))),
996                         Attribute_Name => Name_Address)),
997
998                   Right_Opnd =>
999                     Unchecked_Convert_To (RTE (RE_Integer_Address),
1000                       Make_Attribute_Reference (Loc,
1001                         Prefix =>
1002                           Make_Indexed_Component (Loc,
1003                             Prefix =>
1004                               Duplicate_Subexpr_Move_Checks (Rarray, True),
1005                             Expressions => New_List (
1006                               Make_Attribute_Reference (Loc,
1007                                 Prefix =>
1008                                   New_Occurrence_Of
1009                                     (R_Index_Typ, Loc),
1010                                 Attribute_Name => Name_First))),
1011                         Attribute_Name => Name_Address)));
1012
1013            --  For the bit packed and VM cases we use the bounds. That's OK,
1014            --  because we don't have to worry about parameters, since they
1015            --  cannot cause overlap. Perhaps we should worry about weird slice
1016            --  conversions ???
1017
1018            else
1019               --  Copy the bounds
1020
1021               Cleft_Lo  := New_Copy_Tree (Left_Lo);
1022               Cright_Lo := New_Copy_Tree (Right_Lo);
1023
1024               --  If the types do not match we add an implicit conversion
1025               --  here to ensure proper match
1026
1027               if Etype (Left_Lo) /= Etype (Right_Lo) then
1028                  Cright_Lo :=
1029                    Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
1030               end if;
1031
1032               --  Reset the Analyzed flag, because the bounds of the index
1033               --  type itself may be universal, and must must be reanalyzed
1034               --  to acquire the proper type for the back end.
1035
1036               Set_Analyzed (Cleft_Lo, False);
1037               Set_Analyzed (Cright_Lo, False);
1038
1039               Condition :=
1040                 Make_Op_Le (Loc,
1041                   Left_Opnd  => Cleft_Lo,
1042                   Right_Opnd => Cright_Lo);
1043            end if;
1044
1045            if Needs_Finalization (Component_Type (L_Type))
1046              and then Base_Type (L_Type) = Base_Type (R_Type)
1047              and then Ndim = 1
1048              and then not No_Ctrl_Actions (N)
1049            then
1050
1051               --  Call TSS procedure for array assignment, passing the
1052               --  explicit bounds of right- and left-hand sides.
1053
1054               declare
1055                  Proc    : constant Entity_Id :=
1056                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
1057                  Actuals : List_Id;
1058
1059               begin
1060                  Apply_Dereference (Larray);
1061                  Apply_Dereference (Rarray);
1062                  Actuals := New_List (
1063                    Duplicate_Subexpr (Larray,   Name_Req => True),
1064                    Duplicate_Subexpr (Rarray,   Name_Req => True),
1065                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
1066                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
1067                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
1068                    Duplicate_Subexpr (Right_Hi, Name_Req => True));
1069
1070                  Append_To (Actuals,
1071                     Make_Op_Not (Loc,
1072                       Right_Opnd => Condition));
1073
1074                  Rewrite (N,
1075                    Make_Procedure_Call_Statement (Loc,
1076                      Name => New_Occurrence_Of (Proc, Loc),
1077                      Parameter_Associations => Actuals));
1078               end;
1079
1080            else
1081               Rewrite (N,
1082                 Make_Implicit_If_Statement (N,
1083                   Condition => Condition,
1084
1085                   Then_Statements => New_List (
1086                     Expand_Assign_Array_Loop
1087                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
1088                       Rev => False)),
1089
1090                   Else_Statements => New_List (
1091                     Expand_Assign_Array_Loop
1092                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
1093                       Rev => True))));
1094            end if;
1095         end if;
1096
1097         Analyze (N, Suppress => All_Checks);
1098      end;
1099
1100   exception
1101      when RE_Not_Available =>
1102         return;
1103   end Expand_Assign_Array;
1104
1105   ------------------------------
1106   -- Expand_Assign_Array_Loop --
1107   ------------------------------
1108
1109   --  The following is an example of the loop generated for the case of a
1110   --  two-dimensional array:
1111
1112   --    declare
1113   --       R2b : Tm1X1 := 1;
1114   --    begin
1115   --       for L1b in 1 .. 100 loop
1116   --          declare
1117   --             R4b : Tm1X2 := 1;
1118   --          begin
1119   --             for L3b in 1 .. 100 loop
1120   --                vm1 (L1b, L3b) := vm2 (R2b, R4b);
1121   --                R4b := Tm1X2'succ(R4b);
1122   --             end loop;
1123   --          end;
1124   --          R2b := Tm1X1'succ(R2b);
1125   --       end loop;
1126   --    end;
1127
1128   --  Here Rev is False, and Tm1Xn are the subscript types for the right-hand
1129   --  side. The declarations of R2b and R4b are inserted before the original
1130   --  assignment statement.
1131
1132   function Expand_Assign_Array_Loop
1133     (N      : Node_Id;
1134      Larray : Entity_Id;
1135      Rarray : Entity_Id;
1136      L_Type : Entity_Id;
1137      R_Type : Entity_Id;
1138      Ndim   : Pos;
1139      Rev    : Boolean) return Node_Id
1140   is
1141      Loc  : constant Source_Ptr := Sloc (N);
1142
1143      Lnn : array (1 .. Ndim) of Entity_Id;
1144      Rnn : array (1 .. Ndim) of Entity_Id;
1145      --  Entities used as subscripts on left and right sides
1146
1147      L_Index_Type : array (1 .. Ndim) of Entity_Id;
1148      R_Index_Type : array (1 .. Ndim) of Entity_Id;
1149      --  Left and right index types
1150
1151      Assign : Node_Id;
1152
1153      F_Or_L : Name_Id;
1154      S_Or_P : Name_Id;
1155
1156      function Build_Step (J : Nat) return Node_Id;
1157      --  The increment step for the index of the right-hand side is written
1158      --  as an attribute reference (Succ or Pred). This function returns
1159      --  the corresponding node, which is placed at the end of the loop body.
1160
1161      ----------------
1162      -- Build_Step --
1163      ----------------
1164
1165      function Build_Step (J : Nat) return Node_Id is
1166         Step : Node_Id;
1167         Lim  : Name_Id;
1168
1169      begin
1170         if Rev then
1171            Lim := Name_First;
1172         else
1173            Lim := Name_Last;
1174         end if;
1175
1176         Step :=
1177            Make_Assignment_Statement (Loc,
1178               Name => New_Occurrence_Of (Rnn (J), Loc),
1179               Expression =>
1180                 Make_Attribute_Reference (Loc,
1181                   Prefix =>
1182                     New_Occurrence_Of (R_Index_Type (J), Loc),
1183                   Attribute_Name => S_Or_P,
1184                   Expressions => New_List (
1185                     New_Occurrence_Of (Rnn (J), Loc))));
1186
1187      --  Note that on the last iteration of the loop, the index is increased
1188      --  (or decreased) past the corresponding bound. This is consistent with
1189      --  the C semantics of the back-end, where such an off-by-one value on a
1190      --  dead index variable is OK. However, in CodePeer mode this leads to
1191      --  spurious warnings, and thus we place a guard around the attribute
1192      --  reference. For obvious reasons we only do this for CodePeer.
1193
1194         if CodePeer_Mode then
1195            Step :=
1196              Make_If_Statement (Loc,
1197                 Condition =>
1198                    Make_Op_Ne (Loc,
1199                       Left_Opnd  => New_Occurrence_Of (Lnn (J), Loc),
1200                       Right_Opnd =>
1201                         Make_Attribute_Reference (Loc,
1202                           Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
1203                           Attribute_Name => Lim)),
1204                 Then_Statements => New_List (Step));
1205         end if;
1206
1207         return Step;
1208      end Build_Step;
1209
1210   --  Start of processing for Expand_Assign_Array_Loop
1211
1212   begin
1213      if Rev then
1214         F_Or_L := Name_Last;
1215         S_Or_P := Name_Pred;
1216      else
1217         F_Or_L := Name_First;
1218         S_Or_P := Name_Succ;
1219      end if;
1220
1221      --  Setup index types and subscript entities
1222
1223      declare
1224         L_Index : Node_Id;
1225         R_Index : Node_Id;
1226
1227      begin
1228         L_Index := First_Index (L_Type);
1229         R_Index := First_Index (R_Type);
1230
1231         for J in 1 .. Ndim loop
1232            Lnn (J) := Make_Temporary (Loc, 'L');
1233            Rnn (J) := Make_Temporary (Loc, 'R');
1234
1235            L_Index_Type (J) := Etype (L_Index);
1236            R_Index_Type (J) := Etype (R_Index);
1237
1238            Next_Index (L_Index);
1239            Next_Index (R_Index);
1240         end loop;
1241      end;
1242
1243      --  Now construct the assignment statement
1244
1245      declare
1246         ExprL : constant List_Id := New_List;
1247         ExprR : constant List_Id := New_List;
1248
1249      begin
1250         for J in 1 .. Ndim loop
1251            Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
1252            Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
1253         end loop;
1254
1255         Assign :=
1256           Make_Assignment_Statement (Loc,
1257             Name =>
1258               Make_Indexed_Component (Loc,
1259                 Prefix      => Duplicate_Subexpr (Larray, Name_Req => True),
1260                 Expressions => ExprL),
1261             Expression =>
1262               Make_Indexed_Component (Loc,
1263                 Prefix      => Duplicate_Subexpr (Rarray, Name_Req => True),
1264                 Expressions => ExprR));
1265
1266         --  We set assignment OK, since there are some cases, e.g. in object
1267         --  declarations, where we are actually assigning into a constant.
1268         --  If there really is an illegality, it was caught long before now,
1269         --  and was flagged when the original assignment was analyzed.
1270
1271         Set_Assignment_OK (Name (Assign));
1272
1273         --  Propagate the No_Ctrl_Actions flag to individual assignments
1274
1275         Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1276      end;
1277
1278      --  Now construct the loop from the inside out, with the last subscript
1279      --  varying most rapidly. Note that Assign is first the raw assignment
1280      --  statement, and then subsequently the loop that wraps it up.
1281
1282      for J in reverse 1 .. Ndim loop
1283         Assign :=
1284           Make_Block_Statement (Loc,
1285             Declarations => New_List (
1286              Make_Object_Declaration (Loc,
1287                Defining_Identifier => Rnn (J),
1288                Object_Definition =>
1289                  New_Occurrence_Of (R_Index_Type (J), Loc),
1290                Expression =>
1291                  Make_Attribute_Reference (Loc,
1292                    Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1293                    Attribute_Name => F_Or_L))),
1294
1295           Handled_Statement_Sequence =>
1296             Make_Handled_Sequence_Of_Statements (Loc,
1297               Statements => New_List (
1298                 Make_Implicit_Loop_Statement (N,
1299                   Iteration_Scheme =>
1300                     Make_Iteration_Scheme (Loc,
1301                       Loop_Parameter_Specification =>
1302                         Make_Loop_Parameter_Specification (Loc,
1303                           Defining_Identifier => Lnn (J),
1304                           Reverse_Present => Rev,
1305                           Discrete_Subtype_Definition =>
1306                             New_Occurrence_Of (L_Index_Type (J), Loc))),
1307
1308                   Statements => New_List (Assign, Build_Step (J))))));
1309      end loop;
1310
1311      return Assign;
1312   end Expand_Assign_Array_Loop;
1313
1314   --------------------------
1315   -- Expand_Assign_Record --
1316   --------------------------
1317
1318   procedure Expand_Assign_Record (N : Node_Id) is
1319      Lhs   : constant Node_Id    := Name (N);
1320      Rhs   : Node_Id             := Expression (N);
1321      L_Typ : constant Entity_Id  := Base_Type (Etype (Lhs));
1322
1323   begin
1324      --  If change of representation, then extract the real right-hand side
1325      --  from the type conversion, and proceed with component-wise assignment,
1326      --  since the two types are not the same as far as the back end is
1327      --  concerned.
1328
1329      if Change_Of_Representation (N) then
1330         Rhs := Expression (Rhs);
1331
1332      --  If this may be a case of a large bit aligned component, then proceed
1333      --  with component-wise assignment, to avoid possible clobbering of other
1334      --  components sharing bits in the first or last byte of the component to
1335      --  be assigned.
1336
1337      elsif Possible_Bit_Aligned_Component (Lhs)
1338              or
1339            Possible_Bit_Aligned_Component (Rhs)
1340      then
1341         null;
1342
1343      --  If we have a tagged type that has a complete record representation
1344      --  clause, we must do we must do component-wise assignments, since child
1345      --  types may have used gaps for their components, and we might be
1346      --  dealing with a view conversion.
1347
1348      elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
1349         null;
1350
1351      --  If neither condition met, then nothing special to do, the back end
1352      --  can handle assignment of the entire component as a single entity.
1353
1354      else
1355         return;
1356      end if;
1357
1358      --  At this stage we know that we must do a component wise assignment
1359
1360      declare
1361         Loc   : constant Source_Ptr := Sloc (N);
1362         R_Typ : constant Entity_Id  := Base_Type (Etype (Rhs));
1363         Decl  : constant Node_Id    := Declaration_Node (R_Typ);
1364         RDef  : Node_Id;
1365         F     : Entity_Id;
1366
1367         function Find_Component
1368           (Typ  : Entity_Id;
1369            Comp : Entity_Id) return Entity_Id;
1370         --  Find the component with the given name in the underlying record
1371         --  declaration for Typ. We need to use the actual entity because the
1372         --  type may be private and resolution by identifier alone would fail.
1373
1374         function Make_Component_List_Assign
1375           (CL  : Node_Id;
1376            U_U : Boolean := False) return List_Id;
1377         --  Returns a sequence of statements to assign the components that
1378         --  are referenced in the given component list. The flag U_U is
1379         --  used to force the usage of the inferred value of the variant
1380         --  part expression as the switch for the generated case statement.
1381
1382         function Make_Field_Assign
1383           (C   : Entity_Id;
1384            U_U : Boolean := False) return Node_Id;
1385         --  Given C, the entity for a discriminant or component, build an
1386         --  assignment for the corresponding field values. The flag U_U
1387         --  signals the presence of an Unchecked_Union and forces the usage
1388         --  of the inferred discriminant value of C as the right-hand side
1389         --  of the assignment.
1390
1391         function Make_Field_Assigns (CI : List_Id) return List_Id;
1392         --  Given CI, a component items list, construct series of statements
1393         --  for fieldwise assignment of the corresponding components.
1394
1395         --------------------
1396         -- Find_Component --
1397         --------------------
1398
1399         function Find_Component
1400           (Typ  : Entity_Id;
1401            Comp : Entity_Id) return Entity_Id
1402         is
1403            Utyp : constant Entity_Id := Underlying_Type (Typ);
1404            C    : Entity_Id;
1405
1406         begin
1407            C := First_Entity (Utyp);
1408            while Present (C) loop
1409               if Chars (C) = Chars (Comp) then
1410                  return C;
1411               end if;
1412
1413               Next_Entity (C);
1414            end loop;
1415
1416            raise Program_Error;
1417         end Find_Component;
1418
1419         --------------------------------
1420         -- Make_Component_List_Assign --
1421         --------------------------------
1422
1423         function Make_Component_List_Assign
1424           (CL  : Node_Id;
1425            U_U : Boolean := False) return List_Id
1426         is
1427            CI : constant List_Id := Component_Items (CL);
1428            VP : constant Node_Id := Variant_Part (CL);
1429
1430            Alts   : List_Id;
1431            DC     : Node_Id;
1432            DCH    : List_Id;
1433            Expr   : Node_Id;
1434            Result : List_Id;
1435            V      : Node_Id;
1436
1437         begin
1438            Result := Make_Field_Assigns (CI);
1439
1440            if Present (VP) then
1441               V := First_Non_Pragma (Variants (VP));
1442               Alts := New_List;
1443               while Present (V) loop
1444                  DCH := New_List;
1445                  DC := First (Discrete_Choices (V));
1446                  while Present (DC) loop
1447                     Append_To (DCH, New_Copy_Tree (DC));
1448                     Next (DC);
1449                  end loop;
1450
1451                  Append_To (Alts,
1452                    Make_Case_Statement_Alternative (Loc,
1453                      Discrete_Choices => DCH,
1454                      Statements =>
1455                        Make_Component_List_Assign (Component_List (V))));
1456                  Next_Non_Pragma (V);
1457               end loop;
1458
1459               --  If we have an Unchecked_Union, use the value of the inferred
1460               --  discriminant of the variant part expression as the switch
1461               --  for the case statement. The case statement may later be
1462               --  folded.
1463
1464               if U_U then
1465                  Expr :=
1466                    New_Copy (Get_Discriminant_Value (
1467                      Entity (Name (VP)),
1468                      Etype (Rhs),
1469                      Discriminant_Constraint (Etype (Rhs))));
1470               else
1471                  Expr :=
1472                    Make_Selected_Component (Loc,
1473                      Prefix        => Duplicate_Subexpr (Rhs),
1474                      Selector_Name =>
1475                        Make_Identifier (Loc, Chars (Name (VP))));
1476               end if;
1477
1478               Append_To (Result,
1479                 Make_Case_Statement (Loc,
1480                   Expression => Expr,
1481                   Alternatives => Alts));
1482            end if;
1483
1484            return Result;
1485         end Make_Component_List_Assign;
1486
1487         -----------------------
1488         -- Make_Field_Assign --
1489         -----------------------
1490
1491         function Make_Field_Assign
1492           (C   : Entity_Id;
1493            U_U : Boolean := False) return Node_Id
1494         is
1495            A    : Node_Id;
1496            Disc : Entity_Id;
1497            Expr : Node_Id;
1498
1499         begin
1500            --  The discriminant entity to be used in the retrieval below must
1501            --  be one in the corresponding type, given that the assignment may
1502            --  be between derived and parent types.
1503
1504            if Is_Derived_Type (Etype (Rhs)) then
1505               Disc := Find_Component (R_Typ, C);
1506            else
1507               Disc := C;
1508            end if;
1509
1510            --  In the case of an Unchecked_Union, use the discriminant
1511            --  constraint value as on the right-hand side of the assignment.
1512
1513            if U_U then
1514               Expr :=
1515                 New_Copy (Get_Discriminant_Value (C,
1516                   Etype (Rhs),
1517                   Discriminant_Constraint (Etype (Rhs))));
1518            else
1519               Expr :=
1520                 Make_Selected_Component (Loc,
1521                   Prefix        => Duplicate_Subexpr (Rhs),
1522                   Selector_Name => New_Occurrence_Of (Disc, Loc));
1523            end if;
1524
1525            A :=
1526              Make_Assignment_Statement (Loc,
1527                Name =>
1528                  Make_Selected_Component (Loc,
1529                    Prefix        => Duplicate_Subexpr (Lhs),
1530                    Selector_Name =>
1531                      New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1532                Expression => Expr);
1533
1534            --  Set Assignment_OK, so discriminants can be assigned
1535
1536            Set_Assignment_OK (Name (A), True);
1537
1538            if Componentwise_Assignment (N)
1539              and then Nkind (Name (A)) = N_Selected_Component
1540              and then Chars (Selector_Name (Name (A))) = Name_uParent
1541            then
1542               Set_Componentwise_Assignment (A);
1543            end if;
1544
1545            return A;
1546         end Make_Field_Assign;
1547
1548         ------------------------
1549         -- Make_Field_Assigns --
1550         ------------------------
1551
1552         function Make_Field_Assigns (CI : List_Id) return List_Id is
1553            Item   : Node_Id;
1554            Result : List_Id;
1555
1556         begin
1557            Item := First (CI);
1558            Result := New_List;
1559
1560            while Present (Item) loop
1561
1562               --  Look for components, but exclude _tag field assignment if
1563               --  the special Componentwise_Assignment flag is set.
1564
1565               if Nkind (Item) = N_Component_Declaration
1566                 and then not (Is_Tag (Defining_Identifier (Item))
1567                                 and then Componentwise_Assignment (N))
1568               then
1569                  Append_To
1570                    (Result, Make_Field_Assign (Defining_Identifier (Item)));
1571               end if;
1572
1573               Next (Item);
1574            end loop;
1575
1576            return Result;
1577         end Make_Field_Assigns;
1578
1579      --  Start of processing for Expand_Assign_Record
1580
1581      begin
1582         --  Note that we use the base types for this processing. This results
1583         --  in some extra work in the constrained case, but the change of
1584         --  representation case is so unusual that it is not worth the effort.
1585
1586         --  First copy the discriminants. This is done unconditionally. It
1587         --  is required in the unconstrained left side case, and also in the
1588         --  case where this assignment was constructed during the expansion
1589         --  of a type conversion (since initialization of discriminants is
1590         --  suppressed in this case). It is unnecessary but harmless in
1591         --  other cases.
1592
1593         --  Special case: no copy if the target has no discriminants
1594
1595         if Has_Discriminants (L_Typ)
1596           and then Is_Unchecked_Union (Base_Type (L_Typ))
1597         then
1598            null;
1599
1600         elsif Has_Discriminants (L_Typ) then
1601            F := First_Discriminant (R_Typ);
1602            while Present (F) loop
1603
1604               --  If we are expanding the initialization of a derived record
1605               --  that constrains or renames discriminants of the parent, we
1606               --  must use the corresponding discriminant in the parent.
1607
1608               declare
1609                  CF : Entity_Id;
1610
1611               begin
1612                  if Inside_Init_Proc
1613                    and then Present (Corresponding_Discriminant (F))
1614                  then
1615                     CF := Corresponding_Discriminant (F);
1616                  else
1617                     CF := F;
1618                  end if;
1619
1620                  if Is_Unchecked_Union (Base_Type (R_Typ)) then
1621
1622                     --  Within an initialization procedure this is the
1623                     --  assignment to an unchecked union component, in which
1624                     --  case there is no discriminant to initialize.
1625
1626                     if Inside_Init_Proc then
1627                        null;
1628
1629                     else
1630                        --  The assignment is part of a conversion from a
1631                        --  derived unchecked union type with an inferable
1632                        --  discriminant, to a parent type.
1633
1634                        Insert_Action (N, Make_Field_Assign (CF, True));
1635                     end if;
1636
1637                  else
1638                     Insert_Action (N, Make_Field_Assign (CF));
1639                  end if;
1640
1641                  Next_Discriminant (F);
1642               end;
1643            end loop;
1644
1645            --  If the derived type has a stored constraint, assign the value
1646            --  of the corresponding discriminants explicitly, skipping those
1647            --  that are renamed discriminants. We cannot just retrieve them
1648            --  from the Rhs by selected component because they are invisible
1649            --  in the type of the right-hand side.
1650
1651            if Stored_Constraint (R_Typ) /= No_Elist then
1652               declare
1653                  Assign    : Node_Id;
1654                  Discr_Val : Elmt_Id;
1655
1656               begin
1657                  Discr_Val := First_Elmt (Stored_Constraint (R_Typ));
1658                  F := First_Entity (R_Typ);
1659                  while Present (F) loop
1660                     if Ekind (F) = E_Discriminant
1661                       and then Is_Completely_Hidden (F)
1662                       and then Present (Corresponding_Record_Component (F))
1663                       and then
1664                         (not Is_Entity_Name (Node (Discr_Val))
1665                           or else Ekind (Entity (Node (Discr_Val))) /=
1666                                     E_Discriminant)
1667                     then
1668                        Assign :=
1669                          Make_Assignment_Statement (Loc,
1670                            Name       =>
1671                              Make_Selected_Component (Loc,
1672                                Prefix        => Duplicate_Subexpr (Lhs),
1673                                Selector_Name =>
1674                                  New_Occurrence_Of
1675                                    (Corresponding_Record_Component (F), Loc)),
1676                            Expression => New_Copy (Node (Discr_Val)));
1677
1678                        Set_Assignment_OK (Name (Assign));
1679                        Insert_Action (N, Assign);
1680                        Next_Elmt (Discr_Val);
1681                     end if;
1682
1683                     Next_Entity (F);
1684                  end loop;
1685               end;
1686            end if;
1687         end if;
1688
1689         --  We know the underlying type is a record, but its current view
1690         --  may be private. We must retrieve the usable record declaration.
1691
1692         if Nkind_In (Decl, N_Private_Type_Declaration,
1693                            N_Private_Extension_Declaration)
1694           and then Present (Full_View (R_Typ))
1695         then
1696            RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1697         else
1698            RDef := Type_Definition (Decl);
1699         end if;
1700
1701         if Nkind (RDef) = N_Derived_Type_Definition then
1702            RDef := Record_Extension_Part (RDef);
1703         end if;
1704
1705         if Nkind (RDef) = N_Record_Definition
1706           and then Present (Component_List (RDef))
1707         then
1708            if Is_Unchecked_Union (R_Typ) then
1709               Insert_Actions (N,
1710                 Make_Component_List_Assign (Component_List (RDef), True));
1711            else
1712               Insert_Actions
1713                 (N, Make_Component_List_Assign (Component_List (RDef)));
1714            end if;
1715
1716            Rewrite (N, Make_Null_Statement (Loc));
1717         end if;
1718      end;
1719   end Expand_Assign_Record;
1720
1721   -------------------------------------
1722   -- Expand_Assign_With_Target_Names --
1723   -------------------------------------
1724
1725   procedure Expand_Assign_With_Target_Names (N : Node_Id) is
1726      LHS     : constant Node_Id    := Name (N);
1727      LHS_Typ : constant Entity_Id  := Etype (LHS);
1728      Loc     : constant Source_Ptr := Sloc (N);
1729      RHS     : constant Node_Id    := Expression (N);
1730
1731      Ent : Entity_Id;
1732      --  The entity of the left-hand side
1733
1734      function Replace_Target (N : Node_Id) return Traverse_Result;
1735      --  Replace occurrences of the target name by the proper entity: either
1736      --  the entity of the LHS in simple cases, or the formal of the
1737      --  constructed procedure otherwise.
1738
1739      --------------------
1740      -- Replace_Target --
1741      --------------------
1742
1743      function Replace_Target (N : Node_Id) return Traverse_Result is
1744      begin
1745         if Nkind (N) = N_Target_Name then
1746            Rewrite (N, New_Occurrence_Of (Ent, Sloc (N)));
1747
1748         --  The expression will be reanalyzed when the enclosing assignment
1749         --  is reanalyzed, so reset the entity, which may be a temporary
1750         --  created during analysis, e.g. a loop variable for an iterated
1751         --  component association. However, if entity is callable then
1752         --  resolution has established its proper identity (including in
1753         --  rewritten prefixed calls) so we must preserve it.
1754
1755         elsif Is_Entity_Name (N) then
1756            if Present (Entity (N))
1757              and then not Is_Overloadable (Entity (N))
1758            then
1759               Set_Entity (N, Empty);
1760            end if;
1761         end if;
1762
1763         Set_Analyzed (N, False);
1764         return OK;
1765      end Replace_Target;
1766
1767      procedure Replace_Target_Name is new Traverse_Proc (Replace_Target);
1768
1769      --  Local variables
1770
1771      New_RHS : Node_Id;
1772      Proc_Id : Entity_Id;
1773
1774   --  Start of processing for Expand_Assign_With_Target_Names
1775
1776   begin
1777      New_RHS := New_Copy_Tree (RHS);
1778
1779      --  The left-hand side is a direct name
1780
1781      if Is_Entity_Name (LHS)
1782        and then not Is_Renaming_Of_Object (Entity (LHS))
1783      then
1784         Ent := Entity (LHS);
1785         Replace_Target_Name (New_RHS);
1786
1787         --  Generate:
1788         --    LHS := ... LHS ...;
1789
1790         Rewrite (N,
1791           Make_Assignment_Statement (Loc,
1792             Name       => Relocate_Node (LHS),
1793             Expression => New_RHS));
1794
1795      --  The left-hand side is not a direct name, but is side-effect free.
1796      --  Capture its value in a temporary to avoid multiple evaluations.
1797
1798      elsif Side_Effect_Free (LHS) then
1799         Ent := Make_Temporary (Loc, 'T');
1800         Replace_Target_Name (New_RHS);
1801
1802         --  Generate:
1803         --    T : LHS_Typ := LHS;
1804
1805         Insert_Before_And_Analyze (N,
1806           Make_Object_Declaration (Loc,
1807             Defining_Identifier => Ent,
1808             Object_Definition   => New_Occurrence_Of (LHS_Typ, Loc),
1809             Expression          => New_Copy_Tree (LHS)));
1810
1811         --  Generate:
1812         --    LHS := ... T ...;
1813
1814         Rewrite (N,
1815           Make_Assignment_Statement (Loc,
1816             Name       => Relocate_Node (LHS),
1817             Expression => New_RHS));
1818
1819      --  Otherwise wrap the whole assignment statement in a procedure with an
1820      --  IN OUT parameter. The original assignment then becomes a call to the
1821      --  procedure with the left-hand side as an actual.
1822
1823      else
1824         Ent := Make_Temporary (Loc, 'T');
1825         Replace_Target_Name (New_RHS);
1826
1827         --  Generate:
1828         --    procedure P (T : in out LHS_Typ) is
1829         --    begin
1830         --       T := ... T ...;
1831         --    end P;
1832
1833         Proc_Id := Make_Temporary (Loc, 'P');
1834
1835         Insert_Before_And_Analyze (N,
1836           Make_Subprogram_Body (Loc,
1837             Specification              =>
1838               Make_Procedure_Specification (Loc,
1839                 Defining_Unit_Name       => Proc_Id,
1840                 Parameter_Specifications => New_List (
1841                   Make_Parameter_Specification (Loc,
1842                     Defining_Identifier => Ent,
1843                     In_Present          => True,
1844                     Out_Present         => True,
1845                     Parameter_Type      =>
1846                       New_Occurrence_Of (LHS_Typ, Loc)))),
1847
1848             Declarations               => Empty_List,
1849
1850             Handled_Statement_Sequence =>
1851               Make_Handled_Sequence_Of_Statements (Loc,
1852                 Statements => New_List (
1853                   Make_Assignment_Statement (Loc,
1854                     Name       => New_Occurrence_Of (Ent, Loc),
1855                     Expression => New_RHS)))));
1856
1857         --  Generate:
1858         --    P (LHS);
1859
1860         Rewrite (N,
1861           Make_Procedure_Call_Statement (Loc,
1862             Name                   => New_Occurrence_Of (Proc_Id, Loc),
1863             Parameter_Associations => New_List (Relocate_Node (LHS))));
1864      end if;
1865
1866      --  Analyze rewritten node, either as assignment or procedure call
1867
1868      Analyze (N);
1869   end Expand_Assign_With_Target_Names;
1870
1871   -----------------------------------
1872   -- Expand_N_Assignment_Statement --
1873   -----------------------------------
1874
1875   --  This procedure implements various cases where an assignment statement
1876   --  cannot just be passed on to the back end in untransformed state.
1877
1878   procedure Expand_N_Assignment_Statement (N : Node_Id) is
1879      Crep : constant Boolean    := Change_Of_Representation (N);
1880      Lhs  : constant Node_Id    := Name (N);
1881      Loc  : constant Source_Ptr := Sloc (N);
1882      Rhs  : constant Node_Id    := Expression (N);
1883      Typ  : constant Entity_Id  := Underlying_Type (Etype (Lhs));
1884      Exp  : Node_Id;
1885
1886   begin
1887      --  Special case to check right away, if the Componentwise_Assignment
1888      --  flag is set, this is a reanalysis from the expansion of the primitive
1889      --  assignment procedure for a tagged type, and all we need to do is to
1890      --  expand to assignment of components, because otherwise, we would get
1891      --  infinite recursion (since this looks like a tagged assignment which
1892      --  would normally try to *call* the primitive assignment procedure).
1893
1894      if Componentwise_Assignment (N) then
1895         Expand_Assign_Record (N);
1896         return;
1897      end if;
1898
1899      --  Defend against invalid subscripts on left side if we are in standard
1900      --  validity checking mode. No need to do this if we are checking all
1901      --  subscripts.
1902
1903      --  Note that we do this right away, because there are some early return
1904      --  paths in this procedure, and this is required on all paths.
1905
1906      if Validity_Checks_On
1907        and then Validity_Check_Default
1908        and then not Validity_Check_Subscripts
1909      then
1910         Check_Valid_Lvalue_Subscripts (Lhs);
1911      end if;
1912
1913      --  Separate expansion if RHS contain target names. Note that assignment
1914      --  may already have been expanded if RHS is aggregate.
1915
1916      if Nkind (N) = N_Assignment_Statement and then Has_Target_Names (N) then
1917         Expand_Assign_With_Target_Names (N);
1918         return;
1919      end if;
1920
1921      --  Ada 2005 (AI-327): Handle assignment to priority of protected object
1922
1923      --  Rewrite an assignment to X'Priority into a run-time call
1924
1925      --   For example:         X'Priority := New_Prio_Expr;
1926      --   ...is expanded into  Set_Ceiling (X._Object, New_Prio_Expr);
1927
1928      --  Note that although X'Priority is notionally an object, it is quite
1929      --  deliberately not defined as an aliased object in the RM. This means
1930      --  that it works fine to rewrite it as a call, without having to worry
1931      --  about complications that would other arise from X'Priority'Access,
1932      --  which is illegal, because of the lack of aliasing.
1933
1934      if Ada_Version >= Ada_2005 then
1935         declare
1936            Call           : Node_Id;
1937            Conctyp        : Entity_Id;
1938            Ent            : Entity_Id;
1939            Subprg         : Entity_Id;
1940            RT_Subprg_Name : Node_Id;
1941
1942         begin
1943            --  Handle chains of renamings
1944
1945            Ent := Name (N);
1946            while Nkind (Ent) in N_Has_Entity
1947              and then Present (Entity (Ent))
1948              and then Present (Renamed_Object (Entity (Ent)))
1949            loop
1950               Ent := Renamed_Object (Entity (Ent));
1951            end loop;
1952
1953            --  The attribute Priority applied to protected objects has been
1954            --  previously expanded into a call to the Get_Ceiling run-time
1955            --  subprogram. In restricted profiles this is not available.
1956
1957            if Is_Expanded_Priority_Attribute (Ent) then
1958
1959               --  Look for the enclosing concurrent type
1960
1961               Conctyp := Current_Scope;
1962               while not Is_Concurrent_Type (Conctyp) loop
1963                  Conctyp := Scope (Conctyp);
1964               end loop;
1965
1966               pragma Assert (Is_Protected_Type (Conctyp));
1967
1968               --  Generate the first actual of the call
1969
1970               Subprg := Current_Scope;
1971               while not Present (Protected_Body_Subprogram (Subprg)) loop
1972                  Subprg := Scope (Subprg);
1973               end loop;
1974
1975               --  Select the appropriate run-time call
1976
1977               if Number_Entries (Conctyp) = 0 then
1978                  RT_Subprg_Name :=
1979                    New_Occurrence_Of (RTE (RE_Set_Ceiling), Loc);
1980               else
1981                  RT_Subprg_Name :=
1982                    New_Occurrence_Of (RTE (RO_PE_Set_Ceiling), Loc);
1983               end if;
1984
1985               Call :=
1986                 Make_Procedure_Call_Statement (Loc,
1987                   Name => RT_Subprg_Name,
1988                   Parameter_Associations => New_List (
1989                     New_Copy_Tree (First (Parameter_Associations (Ent))),
1990                     Relocate_Node (Expression (N))));
1991
1992               Rewrite (N, Call);
1993               Analyze (N);
1994
1995               return;
1996            end if;
1997         end;
1998      end if;
1999
2000      --  Deal with assignment checks unless suppressed
2001
2002      if not Suppress_Assignment_Checks (N) then
2003
2004         --  First deal with generation of range check if required
2005
2006         if Do_Range_Check (Rhs) then
2007            Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
2008         end if;
2009
2010         --  Then generate predicate check if required
2011
2012         Apply_Predicate_Check (Rhs, Typ);
2013      end if;
2014
2015      --  Check for a special case where a high level transformation is
2016      --  required. If we have either of:
2017
2018      --    P.field := rhs;
2019      --    P (sub) := rhs;
2020
2021      --  where P is a reference to a bit packed array, then we have to unwind
2022      --  the assignment. The exact meaning of being a reference to a bit
2023      --  packed array is as follows:
2024
2025      --    An indexed component whose prefix is a bit packed array is a
2026      --    reference to a bit packed array.
2027
2028      --    An indexed component or selected component whose prefix is a
2029      --    reference to a bit packed array is itself a reference ot a
2030      --    bit packed array.
2031
2032      --  The required transformation is
2033
2034      --     Tnn : prefix_type := P;
2035      --     Tnn.field := rhs;
2036      --     P := Tnn;
2037
2038      --  or
2039
2040      --     Tnn : prefix_type := P;
2041      --     Tnn (subscr) := rhs;
2042      --     P := Tnn;
2043
2044      --  Since P is going to be evaluated more than once, any subscripts
2045      --  in P must have their evaluation forced.
2046
2047      if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
2048        and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
2049      then
2050         declare
2051            BPAR_Expr : constant Node_Id   := Relocate_Node (Prefix (Lhs));
2052            BPAR_Typ  : constant Entity_Id := Etype (BPAR_Expr);
2053            Tnn       : constant Entity_Id :=
2054                          Make_Temporary (Loc, 'T', BPAR_Expr);
2055
2056         begin
2057            --  Insert the post assignment first, because we want to copy the
2058            --  BPAR_Expr tree before it gets analyzed in the context of the
2059            --  pre assignment. Note that we do not analyze the post assignment
2060            --  yet (we cannot till we have completed the analysis of the pre
2061            --  assignment). As usual, the analysis of this post assignment
2062            --  will happen on its own when we "run into" it after finishing
2063            --  the current assignment.
2064
2065            Insert_After (N,
2066              Make_Assignment_Statement (Loc,
2067                Name       => New_Copy_Tree (BPAR_Expr),
2068                Expression => New_Occurrence_Of (Tnn, Loc)));
2069
2070            --  At this stage BPAR_Expr is a reference to a bit packed array
2071            --  where the reference was not expanded in the original tree,
2072            --  since it was on the left side of an assignment. But in the
2073            --  pre-assignment statement (the object definition), BPAR_Expr
2074            --  will end up on the right-hand side, and must be reexpanded. To
2075            --  achieve this, we reset the analyzed flag of all selected and
2076            --  indexed components down to the actual indexed component for
2077            --  the packed array.
2078
2079            Exp := BPAR_Expr;
2080            loop
2081               Set_Analyzed (Exp, False);
2082
2083               if Nkind_In (Exp, N_Indexed_Component,
2084                                 N_Selected_Component)
2085               then
2086                  Exp := Prefix (Exp);
2087               else
2088                  exit;
2089               end if;
2090            end loop;
2091
2092            --  Now we can insert and analyze the pre-assignment
2093
2094            --  If the right-hand side requires a transient scope, it has
2095            --  already been placed on the stack. However, the declaration is
2096            --  inserted in the tree outside of this scope, and must reflect
2097            --  the proper scope for its variable. This awkward bit is forced
2098            --  by the stricter scope discipline imposed by GCC 2.97.
2099
2100            declare
2101               Uses_Transient_Scope : constant Boolean :=
2102                                        Scope_Is_Transient
2103                                          and then N = Node_To_Be_Wrapped;
2104
2105            begin
2106               if Uses_Transient_Scope then
2107                  Push_Scope (Scope (Current_Scope));
2108               end if;
2109
2110               Insert_Before_And_Analyze (N,
2111                 Make_Object_Declaration (Loc,
2112                   Defining_Identifier => Tnn,
2113                   Object_Definition   => New_Occurrence_Of (BPAR_Typ, Loc),
2114                   Expression          => BPAR_Expr));
2115
2116               if Uses_Transient_Scope then
2117                  Pop_Scope;
2118               end if;
2119            end;
2120
2121            --  Now fix up the original assignment and continue processing
2122
2123            Rewrite (Prefix (Lhs),
2124              New_Occurrence_Of (Tnn, Loc));
2125
2126            --  We do not need to reanalyze that assignment, and we do not need
2127            --  to worry about references to the temporary, but we do need to
2128            --  make sure that the temporary is not marked as a true constant
2129            --  since we now have a generated assignment to it.
2130
2131            Set_Is_True_Constant (Tnn, False);
2132         end;
2133      end if;
2134
2135      --  When we have the appropriate type of aggregate in the expression (it
2136      --  has been determined during analysis of the aggregate by setting the
2137      --  delay flag), let's perform in place assignment and thus avoid
2138      --  creating a temporary.
2139
2140      if Is_Delayed_Aggregate (Rhs) then
2141         Convert_Aggr_In_Assignment (N);
2142         Rewrite (N, Make_Null_Statement (Loc));
2143         Analyze (N);
2144
2145         return;
2146      end if;
2147
2148      --  Apply discriminant check if required. If Lhs is an access type to a
2149      --  designated type with discriminants, we must always check. If the
2150      --  type has unknown discriminants, more elaborate processing below.
2151
2152      if Has_Discriminants (Etype (Lhs))
2153        and then not Has_Unknown_Discriminants (Etype (Lhs))
2154      then
2155         --  Skip discriminant check if change of representation. Will be
2156         --  done when the change of representation is expanded out.
2157
2158         if not Crep then
2159            Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
2160         end if;
2161
2162      --  If the type is private without discriminants, and the full type
2163      --  has discriminants (necessarily with defaults) a check may still be
2164      --  necessary if the Lhs is aliased. The private discriminants must be
2165      --  visible to build the discriminant constraints.
2166
2167      --  Only an explicit dereference that comes from source indicates
2168      --  aliasing. Access to formals of protected operations and entries
2169      --  create dereferences but are not semantic aliasings.
2170
2171      elsif Is_Private_Type (Etype (Lhs))
2172        and then Has_Discriminants (Typ)
2173        and then Nkind (Lhs) = N_Explicit_Dereference
2174        and then Comes_From_Source (Lhs)
2175      then
2176         declare
2177            Lt  : constant Entity_Id := Etype (Lhs);
2178            Ubt : Entity_Id          := Base_Type (Typ);
2179
2180         begin
2181            --  In the case of an expander-generated record subtype whose base
2182            --  type still appears private, Typ will have been set to that
2183            --  private type rather than the underlying record type (because
2184            --  Underlying type will have returned the record subtype), so it's
2185            --  necessary to apply Underlying_Type again to the base type to
2186            --  get the record type we need for the discriminant check. Such
2187            --  subtypes can be created for assignments in certain cases, such
2188            --  as within an instantiation passed this kind of private type.
2189            --  It would be good to avoid this special test, but making changes
2190            --  to prevent this odd form of record subtype seems difficult. ???
2191
2192            if Is_Private_Type (Ubt) then
2193               Ubt := Underlying_Type (Ubt);
2194            end if;
2195
2196            Set_Etype (Lhs, Ubt);
2197            Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
2198            Apply_Discriminant_Check (Rhs, Ubt, Lhs);
2199            Set_Etype (Lhs, Lt);
2200         end;
2201
2202      --  If the Lhs has a private type with unknown discriminants, it may
2203      --  have a full view with discriminants, but those are nameable only
2204      --  in the underlying type, so convert the Rhs to it before potential
2205      --  checking. Convert Lhs as well, otherwise the actual subtype might
2206      --  not be constructible. If the discriminants have defaults the type
2207      --  is unconstrained and there is nothing to check.
2208
2209      elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
2210        and then Has_Discriminants (Typ)
2211        and then not Has_Defaulted_Discriminants (Typ)
2212      then
2213         Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
2214         Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
2215         Apply_Discriminant_Check (Rhs, Typ, Lhs);
2216
2217      --  In the access type case, we need the same discriminant check, and
2218      --  also range checks if we have an access to constrained array.
2219
2220      elsif Is_Access_Type (Etype (Lhs))
2221        and then Is_Constrained (Designated_Type (Etype (Lhs)))
2222      then
2223         if Has_Discriminants (Designated_Type (Etype (Lhs))) then
2224
2225            --  Skip discriminant check if change of representation. Will be
2226            --  done when the change of representation is expanded out.
2227
2228            if not Crep then
2229               Apply_Discriminant_Check (Rhs, Etype (Lhs));
2230            end if;
2231
2232         elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
2233            Apply_Range_Check (Rhs, Etype (Lhs));
2234
2235            if Is_Constrained (Etype (Lhs)) then
2236               Apply_Length_Check (Rhs, Etype (Lhs));
2237            end if;
2238
2239            if Nkind (Rhs) = N_Allocator then
2240               declare
2241                  Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
2242                  C_Es       : Check_Result;
2243
2244               begin
2245                  C_Es :=
2246                    Get_Range_Checks
2247                      (Lhs,
2248                       Target_Typ,
2249                       Etype (Designated_Type (Etype (Lhs))));
2250
2251                  Insert_Range_Checks
2252                    (C_Es,
2253                     N,
2254                     Target_Typ,
2255                     Sloc (Lhs),
2256                     Lhs);
2257               end;
2258            end if;
2259         end if;
2260
2261      --  Apply range check for access type case
2262
2263      elsif Is_Access_Type (Etype (Lhs))
2264        and then Nkind (Rhs) = N_Allocator
2265        and then Nkind (Expression (Rhs)) = N_Qualified_Expression
2266      then
2267         Analyze_And_Resolve (Expression (Rhs));
2268         Apply_Range_Check
2269           (Expression (Rhs), Designated_Type (Etype (Lhs)));
2270      end if;
2271
2272      --  Ada 2005 (AI-231): Generate the run-time check
2273
2274      if Is_Access_Type (Typ)
2275        and then Can_Never_Be_Null (Etype (Lhs))
2276        and then not Can_Never_Be_Null (Etype (Rhs))
2277
2278        --  If an actual is an out parameter of a null-excluding access
2279        --  type, there is access check on entry, so we set the flag
2280        --  Suppress_Assignment_Checks on the generated statement to
2281        --  assign the actual to the parameter block, and we do not want
2282        --  to generate an additional check at this point.
2283
2284        and then not Suppress_Assignment_Checks (N)
2285      then
2286         Apply_Constraint_Check (Rhs, Etype (Lhs));
2287      end if;
2288
2289      --  Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
2290      --  stand-alone obj of an anonymous access type. Do not install the check
2291      --  when the Lhs denotes a container cursor and the Next function employs
2292      --  an access type, because this can never result in a dangling pointer.
2293
2294      if Is_Access_Type (Typ)
2295        and then Is_Entity_Name (Lhs)
2296        and then Ekind (Entity (Lhs)) /= E_Loop_Parameter
2297        and then Present (Effective_Extra_Accessibility (Entity (Lhs)))
2298      then
2299         declare
2300            function Lhs_Entity return Entity_Id;
2301            --  Look through renames to find the underlying entity.
2302            --  For assignment to a rename, we don't care about the
2303            --  Enclosing_Dynamic_Scope of the rename declaration.
2304
2305            ----------------
2306            -- Lhs_Entity --
2307            ----------------
2308
2309            function Lhs_Entity return Entity_Id is
2310               Result : Entity_Id := Entity (Lhs);
2311
2312            begin
2313               while Present (Renamed_Object (Result)) loop
2314
2315                  --  Renamed_Object must return an Entity_Name here
2316                  --  because of preceding "Present (E_E_A (...))" test.
2317
2318                  Result := Entity (Renamed_Object (Result));
2319               end loop;
2320
2321               return Result;
2322            end Lhs_Entity;
2323
2324            --  Local Declarations
2325
2326            Access_Check : constant Node_Id :=
2327                             Make_Raise_Program_Error (Loc,
2328                               Condition =>
2329                                 Make_Op_Gt (Loc,
2330                                   Left_Opnd  =>
2331                                     Dynamic_Accessibility_Level (Rhs),
2332                                   Right_Opnd =>
2333                                     Make_Integer_Literal (Loc,
2334                                       Intval =>
2335                                         Scope_Depth
2336                                           (Enclosing_Dynamic_Scope
2337                                             (Lhs_Entity)))),
2338                               Reason => PE_Accessibility_Check_Failed);
2339
2340            Access_Level_Update : constant Node_Id :=
2341                                    Make_Assignment_Statement (Loc,
2342                                     Name       =>
2343                                       New_Occurrence_Of
2344                                         (Effective_Extra_Accessibility
2345                                            (Entity (Lhs)), Loc),
2346                                     Expression =>
2347                                        Dynamic_Accessibility_Level (Rhs));
2348
2349         begin
2350            if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
2351               Insert_Action (N, Access_Check);
2352            end if;
2353
2354            Insert_Action (N, Access_Level_Update);
2355         end;
2356      end if;
2357
2358      --  Case of assignment to a bit packed array element. If there is a
2359      --  change of representation this must be expanded into components,
2360      --  otherwise this is a bit-field assignment.
2361
2362      if Nkind (Lhs) = N_Indexed_Component
2363        and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
2364      then
2365         --  Normal case, no change of representation
2366
2367         if not Crep then
2368            Expand_Bit_Packed_Element_Set (N);
2369            return;
2370
2371         --  Change of representation case
2372
2373         else
2374            --  Generate the following, to force component-by-component
2375            --  assignments in an efficient way. Otherwise each component
2376            --  will require a temporary and two bit-field manipulations.
2377
2378            --  T1 : Elmt_Type;
2379            --  T1 := RhS;
2380            --  Lhs := T1;
2381
2382            declare
2383               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
2384               Stats : List_Id;
2385
2386            begin
2387               Stats :=
2388                 New_List (
2389                   Make_Object_Declaration (Loc,
2390                     Defining_Identifier => Tnn,
2391                     Object_Definition   =>
2392                       New_Occurrence_Of (Etype (Lhs), Loc)),
2393                   Make_Assignment_Statement (Loc,
2394                     Name       => New_Occurrence_Of (Tnn, Loc),
2395                     Expression => Relocate_Node (Rhs)),
2396                   Make_Assignment_Statement (Loc,
2397                     Name       => Relocate_Node (Lhs),
2398                     Expression => New_Occurrence_Of (Tnn, Loc)));
2399
2400               Insert_Actions (N, Stats);
2401               Rewrite (N, Make_Null_Statement (Loc));
2402               Analyze (N);
2403            end;
2404         end if;
2405
2406      --  Build-in-place function call case. This is for assignment statements
2407      --  that come from aggregate component associations or from init procs.
2408      --  User-written assignment statements with b-i-p calls are handled
2409      --  elsewhere.
2410
2411      elsif Is_Build_In_Place_Function_Call (Rhs) then
2412         pragma Assert (not Comes_From_Source (N));
2413         Make_Build_In_Place_Call_In_Assignment (N, Rhs);
2414
2415      elsif Is_Tagged_Type (Typ)
2416        or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
2417      then
2418         Tagged_Case : declare
2419            L                   : List_Id := No_List;
2420            Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
2421
2422         begin
2423            --  In the controlled case, we ensure that function calls are
2424            --  evaluated before finalizing the target. In all cases, it makes
2425            --  the expansion easier if the side effects are removed first.
2426
2427            Remove_Side_Effects (Lhs);
2428            Remove_Side_Effects (Rhs);
2429
2430            --  Avoid recursion in the mechanism
2431
2432            Set_Analyzed (N);
2433
2434            --  If dispatching assignment, we need to dispatch to _assign
2435
2436            if Is_Class_Wide_Type (Typ)
2437
2438               --  If the type is tagged, we may as well use the predefined
2439               --  primitive assignment. This avoids inlining a lot of code
2440               --  and in the class-wide case, the assignment is replaced
2441               --  by a dispatching call to _assign. It is suppressed in the
2442               --  case of assignments created by the expander that correspond
2443               --  to initializations, where we do want to copy the tag
2444               --  (Expand_Ctrl_Actions flag is set False in this case). It is
2445               --  also suppressed if restriction No_Dispatching_Calls is in
2446               --  force because in that case predefined primitives are not
2447               --  generated.
2448
2449               or else (Is_Tagged_Type (Typ)
2450                         and then Chars (Current_Scope) /= Name_uAssign
2451                         and then Expand_Ctrl_Actions
2452                         and then
2453                           not Restriction_Active (No_Dispatching_Calls))
2454            then
2455               if Is_Limited_Type (Typ) then
2456
2457                  --  This can happen in an instance when the formal is an
2458                  --  extension of a limited interface, and the actual is
2459                  --  limited. This is an error according to AI05-0087, but
2460                  --  is not caught at the point of instantiation in earlier
2461                  --  versions.
2462
2463                  --  This is wrong, error messages cannot be issued during
2464                  --  expansion, since they would be missed in -gnatc mode ???
2465
2466                  Error_Msg_N ("assignment not available on limited type", N);
2467                  return;
2468               end if;
2469
2470               --  Fetch the primitive op _assign and proper type to call it.
2471               --  Because of possible conflicts between private and full view,
2472               --  fetch the proper type directly from the operation profile.
2473
2474               declare
2475                  Op    : constant Entity_Id :=
2476                            Find_Prim_Op (Typ, Name_uAssign);
2477                  F_Typ : Entity_Id := Etype (First_Formal (Op));
2478
2479               begin
2480                  --  If the assignment is dispatching, make sure to use the
2481                  --  proper type.
2482
2483                  if Is_Class_Wide_Type (Typ) then
2484                     F_Typ := Class_Wide_Type (F_Typ);
2485                  end if;
2486
2487                  L := New_List;
2488
2489                  --  In case of assignment to a class-wide tagged type, before
2490                  --  the assignment we generate run-time check to ensure that
2491                  --  the tags of source and target match.
2492
2493                  if not Tag_Checks_Suppressed (Typ)
2494                    and then Is_Class_Wide_Type (Typ)
2495                    and then Is_Tagged_Type (Typ)
2496                    and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
2497                  then
2498                     declare
2499                        Lhs_Tag : Node_Id;
2500                        Rhs_Tag : Node_Id;
2501
2502                     begin
2503                        if not Is_Interface (Typ) then
2504                           Lhs_Tag :=
2505                             Make_Selected_Component (Loc,
2506                               Prefix        => Duplicate_Subexpr (Lhs),
2507                               Selector_Name =>
2508                                 Make_Identifier (Loc, Name_uTag));
2509                           Rhs_Tag :=
2510                             Make_Selected_Component (Loc,
2511                               Prefix        => Duplicate_Subexpr (Rhs),
2512                               Selector_Name =>
2513                                 Make_Identifier (Loc, Name_uTag));
2514                        else
2515                           --  Displace the pointer to the base of the objects
2516                           --  applying 'Address, which is later expanded into
2517                           --  a call to RE_Base_Address.
2518
2519                           Lhs_Tag :=
2520                             Make_Explicit_Dereference (Loc,
2521                               Prefix =>
2522                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2523                                   Make_Attribute_Reference (Loc,
2524                                     Prefix         => Duplicate_Subexpr (Lhs),
2525                                     Attribute_Name => Name_Address)));
2526                           Rhs_Tag :=
2527                             Make_Explicit_Dereference (Loc,
2528                               Prefix =>
2529                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2530                                   Make_Attribute_Reference (Loc,
2531                                     Prefix         => Duplicate_Subexpr (Rhs),
2532                                     Attribute_Name => Name_Address)));
2533                        end if;
2534
2535                        Append_To (L,
2536                          Make_Raise_Constraint_Error (Loc,
2537                            Condition =>
2538                              Make_Op_Ne (Loc,
2539                                Left_Opnd  => Lhs_Tag,
2540                                Right_Opnd => Rhs_Tag),
2541                            Reason    => CE_Tag_Check_Failed));
2542                     end;
2543                  end if;
2544
2545                  declare
2546                     Left_N  : Node_Id := Duplicate_Subexpr (Lhs);
2547                     Right_N : Node_Id := Duplicate_Subexpr (Rhs);
2548
2549                  begin
2550                     --  In order to dispatch the call to _assign the type of
2551                     --  the actuals must match. Add conversion (if required).
2552
2553                     if Etype (Lhs) /= F_Typ then
2554                        Left_N := Unchecked_Convert_To (F_Typ, Left_N);
2555                     end if;
2556
2557                     if Etype (Rhs) /= F_Typ then
2558                        Right_N := Unchecked_Convert_To (F_Typ, Right_N);
2559                     end if;
2560
2561                     Append_To (L,
2562                       Make_Procedure_Call_Statement (Loc,
2563                         Name => New_Occurrence_Of (Op, Loc),
2564                         Parameter_Associations => New_List (
2565                           Node1 => Left_N,
2566                           Node2 => Right_N)));
2567                  end;
2568               end;
2569
2570            else
2571               L := Make_Tag_Ctrl_Assignment (N);
2572
2573               --  We can't afford to have destructive Finalization Actions in
2574               --  the Self assignment case, so if the target and the source
2575               --  are not obviously different, code is generated to avoid the
2576               --  self assignment case:
2577
2578               --    if lhs'address /= rhs'address then
2579               --       <code for controlled and/or tagged assignment>
2580               --    end if;
2581
2582               --  Skip this if Restriction (No_Finalization) is active
2583
2584               if not Statically_Different (Lhs, Rhs)
2585                 and then Expand_Ctrl_Actions
2586                 and then not Restriction_Active (No_Finalization)
2587               then
2588                  L := New_List (
2589                    Make_Implicit_If_Statement (N,
2590                      Condition =>
2591                        Make_Op_Ne (Loc,
2592                          Left_Opnd =>
2593                            Make_Attribute_Reference (Loc,
2594                              Prefix         => Duplicate_Subexpr (Lhs),
2595                              Attribute_Name => Name_Address),
2596
2597                           Right_Opnd =>
2598                            Make_Attribute_Reference (Loc,
2599                              Prefix         => Duplicate_Subexpr (Rhs),
2600                              Attribute_Name => Name_Address)),
2601
2602                      Then_Statements => L));
2603               end if;
2604
2605               --  We need to set up an exception handler for implementing
2606               --  7.6.1(18). The remaining adjustments are tackled by the
2607               --  implementation of adjust for record_controllers (see
2608               --  s-finimp.adb).
2609
2610               --  This is skipped if we have no finalization
2611
2612               if Expand_Ctrl_Actions
2613                 and then not Restriction_Active (No_Finalization)
2614               then
2615                  L := New_List (
2616                    Make_Block_Statement (Loc,
2617                      Handled_Statement_Sequence =>
2618                        Make_Handled_Sequence_Of_Statements (Loc,
2619                          Statements => L,
2620                          Exception_Handlers => New_List (
2621                            Make_Handler_For_Ctrl_Operation (Loc)))));
2622               end if;
2623            end if;
2624
2625            Rewrite (N,
2626              Make_Block_Statement (Loc,
2627                Handled_Statement_Sequence =>
2628                  Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
2629
2630            --  If no restrictions on aborts, protect the whole assignment
2631            --  for controlled objects as per 9.8(11).
2632
2633            if Needs_Finalization (Typ)
2634              and then Expand_Ctrl_Actions
2635              and then Abort_Allowed
2636            then
2637               declare
2638                  Blk : constant Entity_Id :=
2639                          New_Internal_Entity
2640                            (E_Block, Current_Scope, Sloc (N), 'B');
2641                  AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);
2642
2643               begin
2644                  Set_Is_Abort_Block (N);
2645
2646                  Set_Scope (Blk, Current_Scope);
2647                  Set_Etype (Blk, Standard_Void_Type);
2648                  Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
2649
2650                  Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2651                  Set_At_End_Proc (Handled_Statement_Sequence (N),
2652                    New_Occurrence_Of (AUD, Loc));
2653
2654                  --  Present the Abort_Undefer_Direct function to the backend
2655                  --  so that it can inline the call to the function.
2656
2657                  Add_Inlined_Body (AUD, N);
2658
2659                  Expand_At_End_Handler
2660                    (Handled_Statement_Sequence (N), Blk);
2661               end;
2662            end if;
2663
2664            --  N has been rewritten to a block statement for which it is
2665            --  known by construction that no checks are necessary: analyze
2666            --  it with all checks suppressed.
2667
2668            Analyze (N, Suppress => All_Checks);
2669            return;
2670         end Tagged_Case;
2671
2672      --  Array types
2673
2674      elsif Is_Array_Type (Typ) then
2675         declare
2676            Actual_Rhs : Node_Id := Rhs;
2677
2678         begin
2679            while Nkind_In (Actual_Rhs, N_Type_Conversion,
2680                                        N_Qualified_Expression)
2681            loop
2682               Actual_Rhs := Expression (Actual_Rhs);
2683            end loop;
2684
2685            Expand_Assign_Array (N, Actual_Rhs);
2686            return;
2687         end;
2688
2689      --  Record types
2690
2691      elsif Is_Record_Type (Typ) then
2692         Expand_Assign_Record (N);
2693         return;
2694
2695      --  Scalar types. This is where we perform the processing related to the
2696      --  requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2697      --  scalar values.
2698
2699      elsif Is_Scalar_Type (Typ) then
2700
2701         --  Case where right side is known valid
2702
2703         if Expr_Known_Valid (Rhs) then
2704
2705            --  Here the right side is valid, so it is fine. The case to deal
2706            --  with is when the left side is a local variable reference whose
2707            --  value is not currently known to be valid. If this is the case,
2708            --  and the assignment appears in an unconditional context, then
2709            --  we can mark the left side as now being valid if one of these
2710            --  conditions holds:
2711
2712            --    The expression of the right side has Do_Range_Check set so
2713            --    that we know a range check will be performed. Note that it
2714            --    can be the case that a range check is omitted because we
2715            --    make the assumption that we can assume validity for operands
2716            --    appearing in the right side in determining whether a range
2717            --    check is required
2718
2719            --    The subtype of the right side matches the subtype of the
2720            --    left side. In this case, even though we have not checked
2721            --    the range of the right side, we know it is in range of its
2722            --    subtype if the expression is valid.
2723
2724            if Is_Local_Variable_Reference (Lhs)
2725              and then not Is_Known_Valid (Entity (Lhs))
2726              and then In_Unconditional_Context (N)
2727            then
2728               if Do_Range_Check (Rhs)
2729                 or else Etype (Lhs) = Etype (Rhs)
2730               then
2731                  Set_Is_Known_Valid (Entity (Lhs), True);
2732               end if;
2733            end if;
2734
2735         --  Case where right side may be invalid in the sense of the RM
2736         --  reference above. The RM does not require that we check for the
2737         --  validity on an assignment, but it does require that the assignment
2738         --  of an invalid value not cause erroneous behavior.
2739
2740         --  The general approach in GNAT is to use the Is_Known_Valid flag
2741         --  to avoid the need for validity checking on assignments. However
2742         --  in some cases, we have to do validity checking in order to make
2743         --  sure that the setting of this flag is correct.
2744
2745         else
2746            --  Validate right side if we are validating copies
2747
2748            if Validity_Checks_On
2749              and then Validity_Check_Copies
2750            then
2751               --  Skip this if left-hand side is an array or record component
2752               --  and elementary component validity checks are suppressed.
2753
2754               if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
2755                 and then not Validity_Check_Components
2756               then
2757                  null;
2758               else
2759                  Ensure_Valid (Rhs);
2760               end if;
2761
2762               --  We can propagate this to the left side where appropriate
2763
2764               if Is_Local_Variable_Reference (Lhs)
2765                 and then not Is_Known_Valid (Entity (Lhs))
2766                 and then In_Unconditional_Context (N)
2767               then
2768                  Set_Is_Known_Valid (Entity (Lhs), True);
2769               end if;
2770
2771            --  Otherwise check to see what should be done
2772
2773            --  If left side is a local variable, then we just set its flag to
2774            --  indicate that its value may no longer be valid, since we are
2775            --  copying a potentially invalid value.
2776
2777            elsif Is_Local_Variable_Reference (Lhs) then
2778               Set_Is_Known_Valid (Entity (Lhs), False);
2779
2780            --  Check for case of a nonlocal variable on the left side which
2781            --  is currently known to be valid. In this case, we simply ensure
2782            --  that the right side is valid. We only play the game of copying
2783            --  validity status for local variables, since we are doing this
2784            --  statically, not by tracing the full flow graph.
2785
2786            elsif Is_Entity_Name (Lhs)
2787              and then Is_Known_Valid (Entity (Lhs))
2788            then
2789               --  Note: If Validity_Checking mode is set to none, we ignore
2790               --  the Ensure_Valid call so don't worry about that case here.
2791
2792               Ensure_Valid (Rhs);
2793
2794            --  In all other cases, we can safely copy an invalid value without
2795            --  worrying about the status of the left side. Since it is not a
2796            --  variable reference it will not be considered
2797            --  as being known to be valid in any case.
2798
2799            else
2800               null;
2801            end if;
2802         end if;
2803      end if;
2804
2805   exception
2806      when RE_Not_Available =>
2807         return;
2808   end Expand_N_Assignment_Statement;
2809
2810   ------------------------------
2811   -- Expand_N_Block_Statement --
2812   ------------------------------
2813
2814   --  Encode entity names defined in block statement
2815
2816   procedure Expand_N_Block_Statement (N : Node_Id) is
2817   begin
2818      Qualify_Entity_Names (N);
2819   end Expand_N_Block_Statement;
2820
2821   -----------------------------
2822   -- Expand_N_Case_Statement --
2823   -----------------------------
2824
2825   procedure Expand_N_Case_Statement (N : Node_Id) is
2826      Loc    : constant Source_Ptr := Sloc (N);
2827      Expr   : constant Node_Id    := Expression (N);
2828      Alt    : Node_Id;
2829      Len    : Nat;
2830      Cond   : Node_Id;
2831      Choice : Node_Id;
2832      Chlist : List_Id;
2833
2834   begin
2835      --  Check for the situation where we know at compile time which branch
2836      --  will be taken.
2837
2838      --  If the value is static but its subtype is predicated and the value
2839      --  does not obey the predicate, the value is marked non-static, and
2840      --  there can be no corresponding static alternative. In that case we
2841      --  replace the case statement with an exception, regardless of whether
2842      --  assertions are enabled or not, unless predicates are ignored.
2843
2844      if Compile_Time_Known_Value (Expr)
2845        and then Has_Predicates (Etype (Expr))
2846        and then not Predicates_Ignored (Etype (Expr))
2847        and then not Is_OK_Static_Expression (Expr)
2848      then
2849         Rewrite (N,
2850           Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data));
2851         Analyze (N);
2852         return;
2853
2854      elsif Compile_Time_Known_Value (Expr)
2855        and then (not Has_Predicates (Etype (Expr))
2856                   or else Is_Static_Expression (Expr))
2857      then
2858         Alt := Find_Static_Alternative (N);
2859
2860         --  Do not consider controlled objects found in a case statement which
2861         --  actually models a case expression because their early finalization
2862         --  will affect the result of the expression.
2863
2864         if not From_Conditional_Expression (N) then
2865            Process_Statements_For_Controlled_Objects (Alt);
2866         end if;
2867
2868         --  Move statements from this alternative after the case statement.
2869         --  They are already analyzed, so will be skipped by the analyzer.
2870
2871         Insert_List_After (N, Statements (Alt));
2872
2873         --  That leaves the case statement as a shell. So now we can kill all
2874         --  other alternatives in the case statement.
2875
2876         Kill_Dead_Code (Expression (N));
2877
2878         declare
2879            Dead_Alt : Node_Id;
2880
2881         begin
2882            --  Loop through case alternatives, skipping pragmas, and skipping
2883            --  the one alternative that we select (and therefore retain).
2884
2885            Dead_Alt := First (Alternatives (N));
2886            while Present (Dead_Alt) loop
2887               if Dead_Alt /= Alt
2888                 and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
2889               then
2890                  Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
2891               end if;
2892
2893               Next (Dead_Alt);
2894            end loop;
2895         end;
2896
2897         Rewrite (N, Make_Null_Statement (Loc));
2898         return;
2899      end if;
2900
2901      --  Here if the choice is not determined at compile time
2902
2903      declare
2904         Last_Alt : constant Node_Id := Last (Alternatives (N));
2905
2906         Others_Present : Boolean;
2907         Others_Node    : Node_Id;
2908
2909         Then_Stms : List_Id;
2910         Else_Stms : List_Id;
2911
2912      begin
2913         if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2914            Others_Present := True;
2915            Others_Node    := Last_Alt;
2916         else
2917            Others_Present := False;
2918         end if;
2919
2920         --  First step is to worry about possible invalid argument. The RM
2921         --  requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2922         --  outside the base range), then Constraint_Error must be raised.
2923
2924         --  Case of validity check required (validity checks are on, the
2925         --  expression is not known to be valid, and the case statement
2926         --  comes from source -- no need to validity check internally
2927         --  generated case statements).
2928
2929         if Validity_Check_Default
2930           and then not Predicates_Ignored (Etype (Expr))
2931         then
2932            Ensure_Valid (Expr);
2933         end if;
2934
2935         --  If there is only a single alternative, just replace it with the
2936         --  sequence of statements since obviously that is what is going to
2937         --  be executed in all cases.
2938
2939         Len := List_Length (Alternatives (N));
2940
2941         if Len = 1 then
2942
2943            --  We still need to evaluate the expression if it has any side
2944            --  effects.
2945
2946            Remove_Side_Effects (Expression (N));
2947            Alt := First (Alternatives (N));
2948
2949            --  Do not consider controlled objects found in a case statement
2950            --  which actually models a case expression because their early
2951            --  finalization will affect the result of the expression.
2952
2953            if not From_Conditional_Expression (N) then
2954               Process_Statements_For_Controlled_Objects (Alt);
2955            end if;
2956
2957            Insert_List_After (N, Statements (Alt));
2958
2959            --  That leaves the case statement as a shell. The alternative that
2960            --  will be executed is reset to a null list. So now we can kill
2961            --  the entire case statement.
2962
2963            Kill_Dead_Code (Expression (N));
2964            Rewrite (N, Make_Null_Statement (Loc));
2965            return;
2966
2967         --  An optimization. If there are only two alternatives, and only
2968         --  a single choice, then rewrite the whole case statement as an
2969         --  if statement, since this can result in subsequent optimizations.
2970         --  This helps not only with case statements in the source of a
2971         --  simple form, but also with generated code (discriminant check
2972         --  functions in particular).
2973
2974         --  Note: it is OK to do this before expanding out choices for any
2975         --  static predicates, since the if statement processing will handle
2976         --  the static predicate case fine.
2977
2978         elsif Len = 2 then
2979            Chlist := Discrete_Choices (First (Alternatives (N)));
2980
2981            if List_Length (Chlist) = 1 then
2982               Choice := First (Chlist);
2983
2984               Then_Stms := Statements (First (Alternatives (N)));
2985               Else_Stms := Statements (Last  (Alternatives (N)));
2986
2987               --  For TRUE, generate "expression", not expression = true
2988
2989               if Nkind (Choice) = N_Identifier
2990                 and then Entity (Choice) = Standard_True
2991               then
2992                  Cond := Expression (N);
2993
2994               --  For FALSE, generate "expression" and switch then/else
2995
2996               elsif Nkind (Choice) = N_Identifier
2997                 and then Entity (Choice) = Standard_False
2998               then
2999                  Cond := Expression (N);
3000                  Else_Stms := Statements (First (Alternatives (N)));
3001                  Then_Stms := Statements (Last  (Alternatives (N)));
3002
3003               --  For a range, generate "expression in range"
3004
3005               elsif Nkind (Choice) = N_Range
3006                 or else (Nkind (Choice) = N_Attribute_Reference
3007                           and then Attribute_Name (Choice) = Name_Range)
3008                 or else (Is_Entity_Name (Choice)
3009                           and then Is_Type (Entity (Choice)))
3010               then
3011                  Cond :=
3012                    Make_In (Loc,
3013                      Left_Opnd  => Expression (N),
3014                      Right_Opnd => Relocate_Node (Choice));
3015
3016               --  A subtype indication is not a legal operator in a membership
3017               --  test, so retrieve its range.
3018
3019               elsif Nkind (Choice) = N_Subtype_Indication then
3020                  Cond :=
3021                    Make_In (Loc,
3022                      Left_Opnd  => Expression (N),
3023                      Right_Opnd =>
3024                        Relocate_Node
3025                          (Range_Expression (Constraint (Choice))));
3026
3027               --  For any other subexpression "expression = value"
3028
3029               else
3030                  Cond :=
3031                    Make_Op_Eq (Loc,
3032                      Left_Opnd  => Expression (N),
3033                      Right_Opnd => Relocate_Node (Choice));
3034               end if;
3035
3036               --  Now rewrite the case as an IF
3037
3038               Rewrite (N,
3039                 Make_If_Statement (Loc,
3040                   Condition => Cond,
3041                   Then_Statements => Then_Stms,
3042                   Else_Statements => Else_Stms));
3043               Analyze (N);
3044               return;
3045            end if;
3046         end if;
3047
3048         --  If the last alternative is not an Others choice, replace it with
3049         --  an N_Others_Choice. Note that we do not bother to call Analyze on
3050         --  the modified case statement, since it's only effect would be to
3051         --  compute the contents of the Others_Discrete_Choices which is not
3052         --  needed by the back end anyway.
3053
3054         --  The reason for this is that the back end always needs some default
3055         --  for a switch, so if we have not supplied one in the processing
3056         --  above for validity checking, then we need to supply one here.
3057
3058         if not Others_Present then
3059            Others_Node := Make_Others_Choice (Sloc (Last_Alt));
3060
3061            --  If Predicates_Ignored is true the value does not satisfy the
3062            --  predicate, and there is no Others choice, Constraint_Error
3063            --  must be raised (4.5.7 (21/3)).
3064
3065            if Predicates_Ignored (Etype (Expr)) then
3066               declare
3067                  Except  : constant Node_Id :=
3068                              Make_Raise_Constraint_Error (Loc,
3069                                Reason => CE_Invalid_Data);
3070                  New_Alt : constant Node_Id :=
3071                              Make_Case_Statement_Alternative (Loc,
3072                                Discrete_Choices => New_List (
3073                                  Make_Others_Choice (Loc)),
3074                                Statements       => New_List (Except));
3075
3076               begin
3077                  Append (New_Alt, Alternatives (N));
3078                  Analyze_And_Resolve (Except);
3079               end;
3080
3081            else
3082               Set_Others_Discrete_Choices
3083                 (Others_Node, Discrete_Choices (Last_Alt));
3084               Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
3085            end if;
3086
3087         end if;
3088
3089         --  Deal with possible declarations of controlled objects, and also
3090         --  with rewriting choice sequences for static predicate references.
3091
3092         Alt := First_Non_Pragma (Alternatives (N));
3093         while Present (Alt) loop
3094
3095            --  Do not consider controlled objects found in a case statement
3096            --  which actually models a case expression because their early
3097            --  finalization will affect the result of the expression.
3098
3099            if not From_Conditional_Expression (N) then
3100               Process_Statements_For_Controlled_Objects (Alt);
3101            end if;
3102
3103            if Has_SP_Choice (Alt) then
3104               Expand_Static_Predicates_In_Choices (Alt);
3105            end if;
3106
3107            Next_Non_Pragma (Alt);
3108         end loop;
3109      end;
3110   end Expand_N_Case_Statement;
3111
3112   -----------------------------
3113   -- Expand_N_Exit_Statement --
3114   -----------------------------
3115
3116   --  The only processing required is to deal with a possible C/Fortran
3117   --  boolean value used as the condition for the exit statement.
3118
3119   procedure Expand_N_Exit_Statement (N : Node_Id) is
3120   begin
3121      Adjust_Condition (Condition (N));
3122   end Expand_N_Exit_Statement;
3123
3124   ----------------------------------
3125   -- Expand_Formal_Container_Loop --
3126   ----------------------------------
3127
3128   procedure Expand_Formal_Container_Loop (N : Node_Id) is
3129      Loc       : constant Source_Ptr := Sloc (N);
3130      Isc       : constant Node_Id    := Iteration_Scheme (N);
3131      I_Spec    : constant Node_Id    := Iterator_Specification (Isc);
3132      Cursor    : constant Entity_Id  := Defining_Identifier (I_Spec);
3133      Container : constant Node_Id    := Entity (Name (I_Spec));
3134      Stats     : constant List_Id    := Statements (N);
3135
3136      Advance   : Node_Id;
3137      Init_Decl : Node_Id;
3138      Init_Name : Entity_Id;
3139      New_Loop  : Node_Id;
3140
3141   begin
3142      --  The expansion of a formal container loop resembles the one for Ada
3143      --  containers. The only difference is that the primitives mention the
3144      --  domain of iteration explicitly, and function First applied to the
3145      --  container yields a cursor directly.
3146
3147      --    Cursor : Cursor_type := First (Container);
3148      --    while Has_Element (Cursor, Container) loop
3149      --          <original loop statements>
3150      --       Cursor := Next (Container, Cursor);
3151      --    end loop;
3152
3153      Build_Formal_Container_Iteration
3154        (N, Container, Cursor, Init_Decl, Advance, New_Loop);
3155
3156      Append_To (Stats, Advance);
3157
3158      --  Build a block to capture declaration of the cursor
3159
3160      Rewrite (N,
3161        Make_Block_Statement (Loc,
3162          Declarations               => New_List (Init_Decl),
3163          Handled_Statement_Sequence =>
3164            Make_Handled_Sequence_Of_Statements (Loc,
3165              Statements => New_List (New_Loop))));
3166
3167      --  The loop parameter is declared by an object declaration, but within
3168      --  the loop we must prevent user assignments to it, so we analyze the
3169      --  declaration and reset the entity kind, before analyzing the rest of
3170      --  the loop.
3171
3172      Analyze (Init_Decl);
3173      Init_Name := Defining_Identifier (Init_Decl);
3174      Set_Ekind (Init_Name, E_Loop_Parameter);
3175
3176      --  The cursor was marked as a loop parameter to prevent user assignments
3177      --  to it, however this renders the advancement step illegal as it is not
3178      --  possible to change the value of a constant. Flag the advancement step
3179      --  as a legal form of assignment to remedy this side effect.
3180
3181      Set_Assignment_OK (Name (Advance));
3182      Analyze (N);
3183
3184      --  Because we have to analyze the initial declaration of the loop
3185      --  parameter multiple times its scope is incorrectly set at this point
3186      --  to the one surrounding the block statement - so set the scope
3187      --  manually to be the actual block statement, and indicate that it is
3188      --  not visible after the block has been analyzed.
3189
3190      Set_Scope (Init_Name, Entity (Identifier (N)));
3191      Set_Is_Immediately_Visible (Init_Name, False);
3192   end Expand_Formal_Container_Loop;
3193
3194   ------------------------------------------
3195   -- Expand_Formal_Container_Element_Loop --
3196   ------------------------------------------
3197
3198   procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is
3199      Loc           : constant Source_Ptr := Sloc (N);
3200      Isc           : constant Node_Id    := Iteration_Scheme (N);
3201      I_Spec        : constant Node_Id    := Iterator_Specification (Isc);
3202      Element       : constant Entity_Id  := Defining_Identifier (I_Spec);
3203      Container     : constant Node_Id    := Entity (Name (I_Spec));
3204      Container_Typ : constant Entity_Id  := Base_Type (Etype (Container));
3205      Stats         : constant List_Id    := Statements (N);
3206
3207      Cursor    : constant Entity_Id :=
3208                    Make_Defining_Identifier (Loc,
3209                      Chars => New_External_Name (Chars (Element), 'C'));
3210      Elmt_Decl : Node_Id;
3211      Elmt_Ref  : Node_Id;
3212
3213      Element_Op : constant Entity_Id :=
3214                     Get_Iterable_Type_Primitive (Container_Typ, Name_Element);
3215
3216      Advance   : Node_Id;
3217      Init      : Node_Id;
3218      New_Loop  : Node_Id;
3219
3220   begin
3221      --  For an element iterator, the Element aspect must be present,
3222      --  (this is checked during analysis) and the expansion takes the form:
3223
3224      --    Cursor : Cursor_Type := First (Container);
3225      --    Elmt : Element_Type;
3226      --    while Has_Element (Cursor, Container) loop
3227      --       Elmt := Element (Container, Cursor);
3228      --          <original loop statements>
3229      --       Cursor := Next (Container, Cursor);
3230      --    end loop;
3231
3232      --   However this expansion is not legal if the element is indefinite.
3233      --   In that case we create a block to hold a variable declaration
3234      --   initialized with a call to Element, and generate:
3235
3236      --    Cursor : Cursor_Type := First (Container);
3237      --    while Has_Element (Cursor, Container) loop
3238      --       declare
3239      --          Elmt : Element_Type := Element (Container, Cursor);
3240      --       begin
3241      --          <original loop statements>
3242      --          Cursor := Next (Container, Cursor);
3243      --       end;
3244      --    end loop;
3245
3246      Build_Formal_Container_Iteration
3247        (N, Container, Cursor, Init, Advance, New_Loop);
3248      Append_To (Stats, Advance);
3249
3250      Set_Ekind (Cursor, E_Variable);
3251      Insert_Action (N, Init);
3252
3253      --  Declaration for Element
3254
3255      Elmt_Decl :=
3256        Make_Object_Declaration (Loc,
3257          Defining_Identifier => Element,
3258          Object_Definition   => New_Occurrence_Of (Etype (Element_Op), Loc));
3259
3260      if not Is_Constrained (Etype (Element_Op)) then
3261         Set_Expression (Elmt_Decl,
3262           Make_Function_Call (Loc,
3263             Name                   => New_Occurrence_Of (Element_Op, Loc),
3264             Parameter_Associations => New_List (
3265               Convert_To_Iterable_Type (Container, Loc),
3266               New_Occurrence_Of (Cursor, Loc))));
3267
3268         Set_Statements (New_Loop,
3269           New_List
3270             (Make_Block_Statement (Loc,
3271                Declarations => New_List (Elmt_Decl),
3272                Handled_Statement_Sequence =>
3273                  Make_Handled_Sequence_Of_Statements (Loc,
3274                    Statements =>  Stats))));
3275
3276      else
3277         Elmt_Ref :=
3278           Make_Assignment_Statement (Loc,
3279             Name       => New_Occurrence_Of (Element, Loc),
3280             Expression =>
3281               Make_Function_Call (Loc,
3282                 Name                   => New_Occurrence_Of (Element_Op, Loc),
3283                 Parameter_Associations => New_List (
3284                   Convert_To_Iterable_Type (Container, Loc),
3285                   New_Occurrence_Of (Cursor, Loc))));
3286
3287         Prepend (Elmt_Ref, Stats);
3288
3289         --  The element is assignable in the expanded code
3290
3291         Set_Assignment_OK (Name (Elmt_Ref));
3292
3293         --  The loop is rewritten as a block, to hold the element declaration
3294
3295         New_Loop :=
3296           Make_Block_Statement (Loc,
3297             Declarations               => New_List (Elmt_Decl),
3298             Handled_Statement_Sequence =>
3299               Make_Handled_Sequence_Of_Statements (Loc,
3300                 Statements =>  New_List (New_Loop)));
3301      end if;
3302
3303      --  The element is only modified in expanded code, so it appears as
3304      --  unassigned to the warning machinery. We must suppress this spurious
3305      --  warning explicitly.
3306
3307      Set_Warnings_Off (Element);
3308
3309      Rewrite (N, New_Loop);
3310
3311      --  The loop parameter is declared by an object declaration, but within
3312      --  the loop we must prevent user assignments to it, so we analyze the
3313      --  declaration and reset the entity kind, before analyzing the rest of
3314      --  the loop.
3315
3316      Analyze (Elmt_Decl);
3317      Set_Ekind (Defining_Identifier (Elmt_Decl), E_Loop_Parameter);
3318
3319      Analyze (N);
3320   end Expand_Formal_Container_Element_Loop;
3321
3322   -----------------------------
3323   -- Expand_N_Goto_Statement --
3324   -----------------------------
3325
3326   --  Add poll before goto if polling active
3327
3328   procedure Expand_N_Goto_Statement (N : Node_Id) is
3329   begin
3330      Generate_Poll_Call (N);
3331   end Expand_N_Goto_Statement;
3332
3333   ---------------------------
3334   -- Expand_N_If_Statement --
3335   ---------------------------
3336
3337   --  First we deal with the case of C and Fortran convention boolean values,
3338   --  with zero/non-zero semantics.
3339
3340   --  Second, we deal with the obvious rewriting for the cases where the
3341   --  condition of the IF is known at compile time to be True or False.
3342
3343   --  Third, we remove elsif parts which have non-empty Condition_Actions and
3344   --  rewrite as independent if statements. For example:
3345
3346   --     if x then xs
3347   --     elsif y then ys
3348   --     ...
3349   --     end if;
3350
3351   --  becomes
3352   --
3353   --     if x then xs
3354   --     else
3355   --        <<condition actions of y>>
3356   --        if y then ys
3357   --        ...
3358   --        end if;
3359   --     end if;
3360
3361   --  This rewriting is needed if at least one elsif part has a non-empty
3362   --  Condition_Actions list. We also do the same processing if there is a
3363   --  constant condition in an elsif part (in conjunction with the first
3364   --  processing step mentioned above, for the recursive call made to deal
3365   --  with the created inner if, this deals with properly optimizing the
3366   --  cases of constant elsif conditions).
3367
3368   procedure Expand_N_If_Statement (N : Node_Id) is
3369      Loc    : constant Source_Ptr := Sloc (N);
3370      Hed    : Node_Id;
3371      E      : Node_Id;
3372      New_If : Node_Id;
3373
3374      Warn_If_Deleted : constant Boolean :=
3375                          Warn_On_Deleted_Code and then Comes_From_Source (N);
3376      --  Indicates whether we want warnings when we delete branches of the
3377      --  if statement based on constant condition analysis. We never want
3378      --  these warnings for expander generated code.
3379
3380   begin
3381      --  Do not consider controlled objects found in an if statement which
3382      --  actually models an if expression because their early finalization
3383      --  will affect the result of the expression.
3384
3385      if not From_Conditional_Expression (N) then
3386         Process_Statements_For_Controlled_Objects (N);
3387      end if;
3388
3389      Adjust_Condition (Condition (N));
3390
3391      --  The following loop deals with constant conditions for the IF. We
3392      --  need a loop because as we eliminate False conditions, we grab the
3393      --  first elsif condition and use it as the primary condition.
3394
3395      while Compile_Time_Known_Value (Condition (N)) loop
3396
3397         --  If condition is True, we can simply rewrite the if statement now
3398         --  by replacing it by the series of then statements.
3399
3400         if Is_True (Expr_Value (Condition (N))) then
3401
3402            --  All the else parts can be killed
3403
3404            Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
3405            Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
3406
3407            Hed := Remove_Head (Then_Statements (N));
3408            Insert_List_After (N, Then_Statements (N));
3409            Rewrite (N, Hed);
3410            return;
3411
3412         --  If condition is False, then we can delete the condition and
3413         --  the Then statements
3414
3415         else
3416            --  We do not delete the condition if constant condition warnings
3417            --  are enabled, since otherwise we end up deleting the desired
3418            --  warning. Of course the backend will get rid of this True/False
3419            --  test anyway, so nothing is lost here.
3420
3421            if not Constant_Condition_Warnings then
3422               Kill_Dead_Code (Condition (N));
3423            end if;
3424
3425            Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
3426
3427            --  If there are no elsif statements, then we simply replace the
3428            --  entire if statement by the sequence of else statements.
3429
3430            if No (Elsif_Parts (N)) then
3431               if No (Else_Statements (N))
3432                 or else Is_Empty_List (Else_Statements (N))
3433               then
3434                  Rewrite (N,
3435                    Make_Null_Statement (Sloc (N)));
3436               else
3437                  Hed := Remove_Head (Else_Statements (N));
3438                  Insert_List_After (N, Else_Statements (N));
3439                  Rewrite (N, Hed);
3440               end if;
3441
3442               return;
3443
3444            --  If there are elsif statements, the first of them becomes the
3445            --  if/then section of the rebuilt if statement This is the case
3446            --  where we loop to reprocess this copied condition.
3447
3448            else
3449               Hed := Remove_Head (Elsif_Parts (N));
3450               Insert_Actions      (N, Condition_Actions (Hed));
3451               Set_Condition       (N, Condition (Hed));
3452               Set_Then_Statements (N, Then_Statements (Hed));
3453
3454               --  Hed might have been captured as the condition determining
3455               --  the current value for an entity. Now it is detached from
3456               --  the tree, so a Current_Value pointer in the condition might
3457               --  need to be updated.
3458
3459               Set_Current_Value_Condition (N);
3460
3461               if Is_Empty_List (Elsif_Parts (N)) then
3462                  Set_Elsif_Parts (N, No_List);
3463               end if;
3464            end if;
3465         end if;
3466      end loop;
3467
3468      --  Loop through elsif parts, dealing with constant conditions and
3469      --  possible condition actions that are present.
3470
3471      if Present (Elsif_Parts (N)) then
3472         E := First (Elsif_Parts (N));
3473         while Present (E) loop
3474
3475            --  Do not consider controlled objects found in an if statement
3476            --  which actually models an if expression because their early
3477            --  finalization will affect the result of the expression.
3478
3479            if not From_Conditional_Expression (N) then
3480               Process_Statements_For_Controlled_Objects (E);
3481            end if;
3482
3483            Adjust_Condition (Condition (E));
3484
3485            --  If there are condition actions, then rewrite the if statement
3486            --  as indicated above. We also do the same rewrite for a True or
3487            --  False condition. The further processing of this constant
3488            --  condition is then done by the recursive call to expand the
3489            --  newly created if statement
3490
3491            if Present (Condition_Actions (E))
3492              or else Compile_Time_Known_Value (Condition (E))
3493            then
3494               New_If :=
3495                 Make_If_Statement (Sloc (E),
3496                   Condition       => Condition (E),
3497                   Then_Statements => Then_Statements (E),
3498                   Elsif_Parts     => No_List,
3499                   Else_Statements => Else_Statements (N));
3500
3501               --  Elsif parts for new if come from remaining elsif's of parent
3502
3503               while Present (Next (E)) loop
3504                  if No (Elsif_Parts (New_If)) then
3505                     Set_Elsif_Parts (New_If, New_List);
3506                  end if;
3507
3508                  Append (Remove_Next (E), Elsif_Parts (New_If));
3509               end loop;
3510
3511               Set_Else_Statements (N, New_List (New_If));
3512
3513               if Present (Condition_Actions (E)) then
3514                  Insert_List_Before (New_If, Condition_Actions (E));
3515               end if;
3516
3517               Remove (E);
3518
3519               if Is_Empty_List (Elsif_Parts (N)) then
3520                  Set_Elsif_Parts (N, No_List);
3521               end if;
3522
3523               Analyze (New_If);
3524
3525               --  Note this is not an implicit if statement, since it is part
3526               --  of an explicit if statement in the source (or of an implicit
3527               --  if statement that has already been tested). We set the flag
3528               --  after calling Analyze to avoid generating extra warnings
3529               --  specific to pure if statements, however (see
3530               --  Sem_Ch5.Analyze_If_Statement).
3531
3532               Set_Comes_From_Source (New_If, Comes_From_Source (N));
3533               return;
3534
3535            --  No special processing for that elsif part, move to next
3536
3537            else
3538               Next (E);
3539            end if;
3540         end loop;
3541      end if;
3542
3543      --  Some more optimizations applicable if we still have an IF statement
3544
3545      if Nkind (N) /= N_If_Statement then
3546         return;
3547      end if;
3548
3549      --  Another optimization, special cases that can be simplified
3550
3551      --     if expression then
3552      --        return true;
3553      --     else
3554      --        return false;
3555      --     end if;
3556
3557      --  can be changed to:
3558
3559      --     return expression;
3560
3561      --  and
3562
3563      --     if expression then
3564      --        return false;
3565      --     else
3566      --        return true;
3567      --     end if;
3568
3569      --  can be changed to:
3570
3571      --     return not (expression);
3572
3573      --  Only do these optimizations if we are at least at -O1 level and
3574      --  do not do them if control flow optimizations are suppressed.
3575
3576      if Optimization_Level > 0
3577        and then not Opt.Suppress_Control_Flow_Optimizations
3578      then
3579         if Nkind (N) = N_If_Statement
3580           and then No (Elsif_Parts (N))
3581           and then Present (Else_Statements (N))
3582           and then List_Length (Then_Statements (N)) = 1
3583           and then List_Length (Else_Statements (N)) = 1
3584         then
3585            declare
3586               Then_Stm : constant Node_Id := First (Then_Statements (N));
3587               Else_Stm : constant Node_Id := First (Else_Statements (N));
3588
3589            begin
3590               if Nkind (Then_Stm) = N_Simple_Return_Statement
3591                    and then
3592                  Nkind (Else_Stm) = N_Simple_Return_Statement
3593               then
3594                  declare
3595                     Then_Expr : constant Node_Id := Expression (Then_Stm);
3596                     Else_Expr : constant Node_Id := Expression (Else_Stm);
3597
3598                  begin
3599                     if Nkind (Then_Expr) = N_Identifier
3600                          and then
3601                        Nkind (Else_Expr) = N_Identifier
3602                     then
3603                        if Entity (Then_Expr) = Standard_True
3604                          and then Entity (Else_Expr) = Standard_False
3605                        then
3606                           Rewrite (N,
3607                             Make_Simple_Return_Statement (Loc,
3608                               Expression => Relocate_Node (Condition (N))));
3609                           Analyze (N);
3610                           return;
3611
3612                        elsif Entity (Then_Expr) = Standard_False
3613                          and then Entity (Else_Expr) = Standard_True
3614                        then
3615                           Rewrite (N,
3616                             Make_Simple_Return_Statement (Loc,
3617                               Expression =>
3618                                 Make_Op_Not (Loc,
3619                                   Right_Opnd =>
3620                                     Relocate_Node (Condition (N)))));
3621                           Analyze (N);
3622                           return;
3623                        end if;
3624                     end if;
3625                  end;
3626               end if;
3627            end;
3628         end if;
3629      end if;
3630   end Expand_N_If_Statement;
3631
3632   --------------------------
3633   -- Expand_Iterator_Loop --
3634   --------------------------
3635
3636   procedure Expand_Iterator_Loop (N : Node_Id) is
3637      Isc    : constant Node_Id    := Iteration_Scheme (N);
3638      I_Spec : constant Node_Id    := Iterator_Specification (Isc);
3639
3640      Container     : constant Node_Id     := Name (I_Spec);
3641      Container_Typ : constant Entity_Id   := Base_Type (Etype (Container));
3642
3643   begin
3644      --  Processing for arrays
3645
3646      if Is_Array_Type (Container_Typ) then
3647         pragma Assert (Of_Present (I_Spec));
3648         Expand_Iterator_Loop_Over_Array (N);
3649
3650      elsif Has_Aspect (Container_Typ, Aspect_Iterable) then
3651         if Of_Present (I_Spec) then
3652            Expand_Formal_Container_Element_Loop (N);
3653         else
3654            Expand_Formal_Container_Loop (N);
3655         end if;
3656
3657      --  Processing for containers
3658
3659      else
3660         Expand_Iterator_Loop_Over_Container
3661           (N, Isc, I_Spec, Container, Container_Typ);
3662      end if;
3663   end Expand_Iterator_Loop;
3664
3665   -------------------------------------
3666   -- Expand_Iterator_Loop_Over_Array --
3667   -------------------------------------
3668
3669   procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is
3670      Isc        : constant Node_Id    := Iteration_Scheme (N);
3671      I_Spec     : constant Node_Id    := Iterator_Specification (Isc);
3672      Array_Node : constant Node_Id    := Name (I_Spec);
3673      Array_Typ  : constant Entity_Id  := Base_Type (Etype (Array_Node));
3674      Array_Dim  : constant Pos        := Number_Dimensions (Array_Typ);
3675      Id         : constant Entity_Id  := Defining_Identifier (I_Spec);
3676      Loc        : constant Source_Ptr := Sloc (Isc);
3677      Stats      : constant List_Id    := Statements (N);
3678      Core_Loop  : Node_Id;
3679      Dim1       : Int;
3680      Ind_Comp   : Node_Id;
3681      Iterator   : Entity_Id;
3682
3683   --  Start of processing for Expand_Iterator_Loop_Over_Array
3684
3685   begin
3686      --  for Element of Array loop
3687
3688      --  It requires an internally generated cursor to iterate over the array
3689
3690      pragma Assert (Of_Present (I_Spec));
3691
3692      Iterator := Make_Temporary (Loc, 'C');
3693
3694      --  Generate:
3695      --    Element : Component_Type renames Array (Iterator);
3696      --    Iterator is the index value, or a list of index values
3697      --    in the case of a multidimensional array.
3698
3699      Ind_Comp :=
3700        Make_Indexed_Component (Loc,
3701          Prefix      => Relocate_Node (Array_Node),
3702          Expressions => New_List (New_Occurrence_Of (Iterator, Loc)));
3703
3704      Prepend_To (Stats,
3705        Make_Object_Renaming_Declaration (Loc,
3706          Defining_Identifier => Id,
3707          Subtype_Mark        =>
3708            New_Occurrence_Of (Component_Type (Array_Typ), Loc),
3709          Name                => Ind_Comp));
3710
3711      --  Mark the loop variable as needing debug info, so that expansion
3712      --  of the renaming will result in Materialize_Entity getting set via
3713      --  Debug_Renaming_Declaration. (This setting is needed here because
3714      --  the setting in Freeze_Entity comes after the expansion, which is
3715      --  too late. ???)
3716
3717      Set_Debug_Info_Needed (Id);
3718
3719      --  Generate:
3720
3721      --    for Iterator in [reverse] Array'Range (Array_Dim) loop
3722      --       Element : Component_Type renames Array (Iterator);
3723      --       <original loop statements>
3724      --    end loop;
3725
3726      --  If this is an iteration over a multidimensional array, the
3727      --  innermost loop is over the last dimension in Ada, and over
3728      --  the first dimension in Fortran.
3729
3730      if Convention (Array_Typ) = Convention_Fortran then
3731         Dim1 := 1;
3732      else
3733         Dim1 := Array_Dim;
3734      end if;
3735
3736      Core_Loop :=
3737        Make_Loop_Statement (Sloc (N),
3738          Iteration_Scheme =>
3739            Make_Iteration_Scheme (Loc,
3740              Loop_Parameter_Specification =>
3741                Make_Loop_Parameter_Specification (Loc,
3742                  Defining_Identifier         => Iterator,
3743                  Discrete_Subtype_Definition =>
3744                    Make_Attribute_Reference (Loc,
3745                      Prefix         => Relocate_Node (Array_Node),
3746                      Attribute_Name => Name_Range,
3747                      Expressions    => New_List (
3748                        Make_Integer_Literal (Loc, Dim1))),
3749                  Reverse_Present             => Reverse_Present (I_Spec))),
3750           Statements      => Stats,
3751           End_Label       => Empty);
3752
3753      --  Processing for multidimensional array. The body of each loop is
3754      --  a loop over a previous dimension, going in decreasing order in Ada
3755      --  and in increasing order in Fortran.
3756
3757      if Array_Dim > 1 then
3758         for Dim in 1 .. Array_Dim - 1 loop
3759            if Convention (Array_Typ) = Convention_Fortran then
3760               Dim1 := Dim + 1;
3761            else
3762               Dim1 := Array_Dim - Dim;
3763            end if;
3764
3765            Iterator := Make_Temporary (Loc, 'C');
3766
3767            --  Generate the dimension loops starting from the innermost one
3768
3769            --    for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
3770            --       <core loop>
3771            --    end loop;
3772
3773            Core_Loop :=
3774              Make_Loop_Statement (Sloc (N),
3775                Iteration_Scheme =>
3776                  Make_Iteration_Scheme (Loc,
3777                    Loop_Parameter_Specification =>
3778                      Make_Loop_Parameter_Specification (Loc,
3779                        Defining_Identifier         => Iterator,
3780                        Discrete_Subtype_Definition =>
3781                          Make_Attribute_Reference (Loc,
3782                            Prefix         => Relocate_Node (Array_Node),
3783                            Attribute_Name => Name_Range,
3784                            Expressions    => New_List (
3785                              Make_Integer_Literal (Loc, Dim1))),
3786                    Reverse_Present              => Reverse_Present (I_Spec))),
3787                Statements       => New_List (Core_Loop),
3788                End_Label        => Empty);
3789
3790            --  Update the previously created object renaming declaration with
3791            --  the new iterator, by adding the index of the next loop to the
3792            --  indexed component, in the order that corresponds to the
3793            --  convention.
3794
3795            if Convention (Array_Typ) = Convention_Fortran then
3796               Append_To (Expressions (Ind_Comp),
3797                 New_Occurrence_Of (Iterator, Loc));
3798            else
3799               Prepend_To (Expressions (Ind_Comp),
3800                 New_Occurrence_Of (Iterator, Loc));
3801            end if;
3802         end loop;
3803      end if;
3804
3805      --  Inherit the loop identifier from the original loop. This ensures that
3806      --  the scope stack is consistent after the rewriting.
3807
3808      if Present (Identifier (N)) then
3809         Set_Identifier (Core_Loop, Relocate_Node (Identifier (N)));
3810      end if;
3811
3812      Rewrite (N, Core_Loop);
3813      Analyze (N);
3814   end Expand_Iterator_Loop_Over_Array;
3815
3816   -----------------------------------------
3817   -- Expand_Iterator_Loop_Over_Container --
3818   -----------------------------------------
3819
3820   --  For a 'for ... in' loop, such as:
3821
3822   --      for Cursor in Iterator_Function (...) loop
3823   --          ...
3824   --      end loop;
3825
3826   --  we generate:
3827
3828   --    Iter : Iterator_Type := Iterator_Function (...);
3829   --    Cursor : Cursor_type := First (Iter); -- or Last for "reverse"
3830   --    while Has_Element (Cursor) loop
3831   --       ...
3832   --
3833   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3834   --    end loop;
3835
3836   --  For a 'for ... of' loop, such as:
3837
3838   --      for X of Container loop
3839   --          ...
3840   --      end loop;
3841
3842   --  the RM implies the generation of:
3843
3844   --    Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator
3845   --    Cursor : Cursor_Type := First (Iter); -- or Last for "reverse"
3846   --    while Has_Element (Cursor) loop
3847   --       declare
3848   --          X : Element_Type renames Element (Cursor).Element.all;
3849   --          --  or Constant_Element
3850   --       begin
3851   --          ...
3852   --       end;
3853   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3854   --    end loop;
3855
3856   --  In the general case, we do what the RM says. However, the operations
3857   --  Element and Iter.Next are slow, which is bad inside a loop, because they
3858   --  involve dispatching via interfaces, secondary stack manipulation,
3859   --  Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the
3860   --  predefined containers, we use an equivalent but optimized expansion.
3861
3862   --  In the optimized case, we make use of these:
3863
3864   --     procedure Next (Position : in out Cursor); -- instead of Iter.Next
3865
3866   --     function Pseudo_Reference
3867   --       (Container : aliased Vector'Class) return Reference_Control_Type;
3868
3869   --     type Element_Access is access all Element_Type;
3870
3871   --     function Get_Element_Access
3872   --       (Position : Cursor) return not null Element_Access;
3873
3874   --  Next is declared in the visible part of the container packages.
3875   --  The other three are added in the private part. (We're not supposed to
3876   --  pollute the namespace for clients. The compiler has no trouble breaking
3877   --  privacy to call things in the private part of an instance.)
3878
3879   --  Source:
3880
3881   --      for X of My_Vector loop
3882   --          X.Count := X.Count + 1;
3883   --          ...
3884   --      end loop;
3885
3886   --  The compiler will generate:
3887
3888   --      Iter : Reversible_Iterator'Class := Iterate (My_Vector);
3889   --      --  Reversible_Iterator is an interface. Iterate is the
3890   --      --  Default_Iterator aspect of Vector. This increments Lock,
3891   --      --  disallowing tampering with cursors. Unfortunately, it does not
3892   --      --  increment Busy. The result of Iterate is Limited_Controlled;
3893   --      --  finalization will decrement Lock.  This is a build-in-place
3894   --      --  dispatching call to Iterate.
3895
3896   --      Cur : Cursor := First (Iter); -- or Last
3897   --      --  Dispatching call via interface.
3898
3899   --      Control : Reference_Control_Type := Pseudo_Reference (My_Vector);
3900   --      --  Pseudo_Reference increments Busy, to detect tampering with
3901   --      --  elements, as required by RM. Also redundantly increment
3902   --      --  Lock. Finalization of Control will decrement both Busy and
3903   --      --  Lock. Pseudo_Reference returns a record containing a pointer to
3904   --      --  My_Vector, used by Finalize.
3905   --      --
3906   --      --  Control is not used below, except to finalize it -- it's purely
3907   --      --  an RAII thing. This is needed because we are eliminating the
3908   --      --  call to Reference within the loop.
3909
3910   --      while Has_Element (Cur) loop
3911   --          declare
3912   --              X : My_Element renames Get_Element_Access (Cur).all;
3913   --              --  Get_Element_Access returns a pointer to the element
3914   --              --  designated by Cur. No dispatching here, and no horsing
3915   --              --  around with access discriminants. This is instead of the
3916   --              --  existing
3917   --              --
3918   --              --    X : My_Element renames Reference (Cur).Element.all;
3919   --              --
3920   --              --  which creates a controlled object.
3921   --          begin
3922   --              --  Any attempt to tamper with My_Vector here in the loop
3923   --              --  will correctly raise Program_Error, because of the
3924   --              --  Control.
3925   --
3926   --              X.Count := X.Count + 1;
3927   --              ...
3928   --
3929   --              Next (Cur); -- or Prev
3930   --              --  This is instead of "Cur := Next (Iter, Cur);"
3931   --          end;
3932   --          --  No finalization here
3933   --      end loop;
3934   --      Finalize Iter and Control here, decrementing Lock twice and Busy
3935   --      once.
3936
3937   --  This optimization makes "for ... of" loops over 30 times faster in cases
3938   --  measured.
3939
3940   procedure Expand_Iterator_Loop_Over_Container
3941     (N             : Node_Id;
3942      Isc           : Node_Id;
3943      I_Spec        : Node_Id;
3944      Container     : Node_Id;
3945      Container_Typ : Entity_Id)
3946   is
3947      Id       : constant Entity_Id   := Defining_Identifier (I_Spec);
3948      Elem_Typ : constant Entity_Id   := Etype (Id);
3949      Id_Kind  : constant Entity_Kind := Ekind (Id);
3950      Loc      : constant Source_Ptr  := Sloc (N);
3951      Stats    : constant List_Id     := Statements (N);
3952
3953      Cursor    : Entity_Id;
3954      Decl      : Node_Id;
3955      Iter_Type : Entity_Id;
3956      Iterator  : Entity_Id;
3957      Name_Init : Name_Id;
3958      Name_Step : Name_Id;
3959      New_Loop  : Node_Id;
3960
3961      Fast_Element_Access_Op : Entity_Id := Empty;
3962      Fast_Step_Op           : Entity_Id := Empty;
3963      --  Only for optimized version of "for ... of"
3964
3965      Iter_Pack : Entity_Id;
3966      --  The package in which the iterator interface is instantiated. This is
3967      --  typically an instance within the container package.
3968
3969      Pack : Entity_Id;
3970      --  The package in which the container type is declared
3971
3972   begin
3973      --  Determine the advancement and initialization steps for the cursor.
3974      --  Analysis of the expanded loop will verify that the container has a
3975      --  reverse iterator.
3976
3977      if Reverse_Present (I_Spec) then
3978         Name_Init := Name_Last;
3979         Name_Step := Name_Previous;
3980      else
3981         Name_Init := Name_First;
3982         Name_Step := Name_Next;
3983      end if;
3984
3985      --  The type of the iterator is the return type of the Iterate function
3986      --  used. For the "of" form this is the default iterator for the type,
3987      --  otherwise it is the type of the explicit function used in the
3988      --  iterator specification. The most common case will be an Iterate
3989      --  function in the container package.
3990
3991      --  The Iterator type is declared in an instance within the container
3992      --  package itself, for example:
3993
3994      --    package Vector_Iterator_Interfaces is new
3995      --      Ada.Iterator_Interfaces (Cursor, Has_Element);
3996
3997      --  If the container type is a derived type, the cursor type is found in
3998      --  the package of the ultimate ancestor type.
3999
4000      if Is_Derived_Type (Container_Typ) then
4001         Pack := Scope (Root_Type (Container_Typ));
4002      else
4003         Pack := Scope (Container_Typ);
4004      end if;
4005
4006      if Of_Present (I_Spec) then
4007         Handle_Of : declare
4008            Container_Arg : Node_Id;
4009
4010            function Get_Default_Iterator
4011              (T : Entity_Id) return Entity_Id;
4012            --  Return the default iterator for a specific type. If the type is
4013            --  derived, we return the inherited or overridden one if
4014            --  appropriate.
4015
4016            --------------------------
4017            -- Get_Default_Iterator --
4018            --------------------------
4019
4020            function Get_Default_Iterator
4021              (T : Entity_Id) return Entity_Id
4022            is
4023               Iter : constant Entity_Id :=
4024                 Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator));
4025               Prim : Elmt_Id;
4026               Op   : Entity_Id;
4027
4028            begin
4029               Container_Arg := New_Copy_Tree (Container);
4030
4031               --  A previous version of GNAT allowed indexing aspects to be
4032               --  redefined on derived container types, while the default
4033               --  iterator was inherited from the parent type. This
4034               --  nonstandard extension is preserved for use by the
4035               --  modeling project under debug flag -gnatd.X.
4036
4037               if Debug_Flag_Dot_XX then
4038                  if Base_Type (Etype (Container)) /=
4039                     Base_Type (Etype (First_Formal (Iter)))
4040                  then
4041                     Container_Arg :=
4042                       Make_Type_Conversion (Loc,
4043                         Subtype_Mark =>
4044                           New_Occurrence_Of
4045                             (Etype (First_Formal (Iter)), Loc),
4046                         Expression   => Container_Arg);
4047                  end if;
4048
4049                  return Iter;
4050
4051               elsif Is_Derived_Type (T) then
4052
4053                  --  The default iterator must be a primitive operation of the
4054                  --  type, at the same dispatch slot position. The DT position
4055                  --  may not be established if type is not frozen yet.
4056
4057                  Prim := First_Elmt (Primitive_Operations (T));
4058                  while Present (Prim) loop
4059                     Op := Node (Prim);
4060
4061                     if Alias (Op) = Iter
4062                       or else
4063                         (Chars (Op) = Chars (Iter)
4064                           and then Present (DTC_Entity (Op))
4065                           and then DT_Position (Op) = DT_Position (Iter))
4066                     then
4067                        return Op;
4068                     end if;
4069
4070                     Next_Elmt (Prim);
4071                  end loop;
4072
4073                  --  If we didn't find it, then our parent type is not
4074                  --  iterable, so we return the Default_Iterator aspect of
4075                  --  this type.
4076
4077                  return Iter;
4078
4079               --  Otherwise not a derived type
4080
4081               else
4082                  return Iter;
4083               end if;
4084            end Get_Default_Iterator;
4085
4086            --  Local variables
4087
4088            Default_Iter : Entity_Id;
4089            Ent          : Entity_Id;
4090
4091            Reference_Control_Type : Entity_Id := Empty;
4092            Pseudo_Reference       : Entity_Id := Empty;
4093
4094         --  Start of processing for Handle_Of
4095
4096         begin
4097            if Is_Class_Wide_Type (Container_Typ) then
4098               Default_Iter :=
4099                 Get_Default_Iterator (Etype (Base_Type (Container_Typ)));
4100            else
4101               Default_Iter := Get_Default_Iterator (Etype (Container));
4102            end if;
4103
4104            Cursor := Make_Temporary (Loc, 'C');
4105
4106            --  For a container element iterator, the iterator type is obtained
4107            --  from the corresponding aspect, whose return type is descended
4108            --  from the corresponding interface type in some instance of
4109            --  Ada.Iterator_Interfaces. The actuals of that instantiation
4110            --  are Cursor and Has_Element.
4111
4112            Iter_Type := Etype (Default_Iter);
4113
4114            --  The iterator type, which is a class-wide type, may itself be
4115            --  derived locally, so the desired instantiation is the scope of
4116            --  the root type of the iterator type.
4117
4118            Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
4119
4120            --  Find declarations needed for "for ... of" optimization
4121
4122            Ent := First_Entity (Pack);
4123            while Present (Ent) loop
4124               if Chars (Ent) = Name_Get_Element_Access then
4125                  Fast_Element_Access_Op := Ent;
4126
4127               elsif Chars (Ent) = Name_Step
4128                 and then Ekind (Ent) = E_Procedure
4129               then
4130                  Fast_Step_Op := Ent;
4131
4132               elsif Chars (Ent) = Name_Reference_Control_Type then
4133                  Reference_Control_Type := Ent;
4134
4135               elsif Chars (Ent) = Name_Pseudo_Reference then
4136                  Pseudo_Reference := Ent;
4137               end if;
4138
4139               Next_Entity (Ent);
4140            end loop;
4141
4142            if Present (Reference_Control_Type)
4143              and then Present (Pseudo_Reference)
4144            then
4145               Insert_Action (N,
4146                 Make_Object_Declaration (Loc,
4147                   Defining_Identifier => Make_Temporary (Loc, 'D'),
4148                   Object_Definition   =>
4149                     New_Occurrence_Of (Reference_Control_Type, Loc),
4150                   Expression          =>
4151                     Make_Function_Call (Loc,
4152                       Name                   =>
4153                         New_Occurrence_Of (Pseudo_Reference, Loc),
4154                       Parameter_Associations =>
4155                         New_List (New_Copy_Tree (Container_Arg)))));
4156            end if;
4157
4158            --  Rewrite domain of iteration as a call to the default iterator
4159            --  for the container type. The formal may be an access parameter
4160            --  in which case we must build a reference to the container.
4161
4162            declare
4163               Arg : Node_Id;
4164            begin
4165               if Is_Access_Type (Etype (First_Entity (Default_Iter))) then
4166                  Arg :=
4167                    Make_Attribute_Reference (Loc,
4168                      Prefix         => Container_Arg,
4169                      Attribute_Name => Name_Unrestricted_Access);
4170               else
4171                  Arg := Container_Arg;
4172               end if;
4173
4174               Rewrite (Name (I_Spec),
4175                 Make_Function_Call (Loc,
4176                   Name                   =>
4177                     New_Occurrence_Of (Default_Iter, Loc),
4178                   Parameter_Associations => New_List (Arg)));
4179            end;
4180
4181            Analyze_And_Resolve (Name (I_Spec));
4182
4183            --  Find cursor type in proper iterator package, which is an
4184            --  instantiation of Iterator_Interfaces.
4185
4186            Ent := First_Entity (Iter_Pack);
4187            while Present (Ent) loop
4188               if Chars (Ent) = Name_Cursor then
4189                  Set_Etype (Cursor, Etype (Ent));
4190                  exit;
4191               end if;
4192
4193               Next_Entity (Ent);
4194            end loop;
4195
4196            if Present (Fast_Element_Access_Op) then
4197               Decl :=
4198                 Make_Object_Renaming_Declaration (Loc,
4199                   Defining_Identifier => Id,
4200                   Subtype_Mark        =>
4201                     New_Occurrence_Of (Elem_Typ, Loc),
4202                   Name                =>
4203                     Make_Explicit_Dereference (Loc,
4204                       Prefix =>
4205                         Make_Function_Call (Loc,
4206                           Name                   =>
4207                             New_Occurrence_Of (Fast_Element_Access_Op, Loc),
4208                           Parameter_Associations =>
4209                             New_List (New_Occurrence_Of (Cursor, Loc)))));
4210
4211            else
4212               Decl :=
4213                 Make_Object_Renaming_Declaration (Loc,
4214                   Defining_Identifier => Id,
4215                   Subtype_Mark        =>
4216                     New_Occurrence_Of (Elem_Typ, Loc),
4217                   Name                =>
4218                     Make_Indexed_Component (Loc,
4219                       Prefix      => Relocate_Node (Container_Arg),
4220                       Expressions =>
4221                         New_List (New_Occurrence_Of (Cursor, Loc))));
4222            end if;
4223
4224            --  The defining identifier in the iterator is user-visible and
4225            --  must be visible in the debugger.
4226
4227            Set_Debug_Info_Needed (Id);
4228
4229            --  If the container does not have a variable indexing aspect,
4230            --  the element is a constant in the loop. The container itself
4231            --  may be constant, in which case the element is a constant as
4232            --  well. The container has been rewritten as a call to Iterate,
4233            --  so examine original node.
4234
4235            if No (Find_Value_Of_Aspect
4236                     (Container_Typ, Aspect_Variable_Indexing))
4237              or else not Is_Variable (Original_Node (Container))
4238            then
4239               Set_Ekind (Id, E_Constant);
4240            end if;
4241
4242            Prepend_To (Stats, Decl);
4243         end Handle_Of;
4244
4245      --  X in Iterate (S) : type of iterator is type of explicitly given
4246      --  Iterate function, and the loop variable is the cursor. It will be
4247      --  assigned in the loop and must be a variable.
4248
4249      else
4250         Iter_Type := Etype (Name (I_Spec));
4251
4252         --  The iterator type, which is a class-wide type, may itself be
4253         --  derived locally, so the desired instantiation is the scope of
4254         --  the root type of the iterator type, as in the "of" case.
4255
4256         Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
4257         Cursor := Id;
4258      end if;
4259
4260      Iterator := Make_Temporary (Loc, 'I');
4261
4262      --  For both iterator forms, add a call to the step operation to advance
4263      --  the cursor. Generate:
4264
4265      --     Cursor := Iterator.Next (Cursor);
4266
4267      --   or else
4268
4269      --     Cursor := Next (Cursor);
4270
4271      if Present (Fast_Element_Access_Op) and then Present (Fast_Step_Op) then
4272         declare
4273            Curs_Name : constant Node_Id := New_Occurrence_Of (Cursor, Loc);
4274            Step_Call : Node_Id;
4275
4276         begin
4277            Step_Call :=
4278              Make_Procedure_Call_Statement (Loc,
4279                Name                   =>
4280                  New_Occurrence_Of (Fast_Step_Op, Loc),
4281                Parameter_Associations => New_List (Curs_Name));
4282
4283            Append_To (Stats, Step_Call);
4284            Set_Assignment_OK (Curs_Name);
4285         end;
4286
4287      else
4288         declare
4289            Rhs : Node_Id;
4290
4291         begin
4292            Rhs :=
4293              Make_Function_Call (Loc,
4294                Name                   =>
4295                  Make_Selected_Component (Loc,
4296                    Prefix        => New_Occurrence_Of (Iterator, Loc),
4297                    Selector_Name => Make_Identifier (Loc, Name_Step)),
4298                Parameter_Associations => New_List (
4299                   New_Occurrence_Of (Cursor, Loc)));
4300
4301            Append_To (Stats,
4302              Make_Assignment_Statement (Loc,
4303                 Name       => New_Occurrence_Of (Cursor, Loc),
4304                 Expression => Rhs));
4305            Set_Assignment_OK (Name (Last (Stats)));
4306         end;
4307      end if;
4308
4309      --  Generate:
4310      --    while Has_Element (Cursor) loop
4311      --       <Stats>
4312      --    end loop;
4313
4314      --   Has_Element is the second actual in the iterator package
4315
4316      New_Loop :=
4317        Make_Loop_Statement (Loc,
4318          Iteration_Scheme =>
4319            Make_Iteration_Scheme (Loc,
4320              Condition =>
4321                Make_Function_Call (Loc,
4322                  Name                   =>
4323                    New_Occurrence_Of
4324                      (Next_Entity (First_Entity (Iter_Pack)), Loc),
4325                  Parameter_Associations => New_List (
4326                    New_Occurrence_Of (Cursor, Loc)))),
4327
4328          Statements => Stats,
4329          End_Label  => Empty);
4330
4331      --  If present, preserve identifier of loop, which can be used in an exit
4332      --  statement in the body.
4333
4334      if Present (Identifier (N)) then
4335         Set_Identifier (New_Loop, Relocate_Node (Identifier (N)));
4336      end if;
4337
4338      --  Create the declarations for Iterator and cursor and insert them
4339      --  before the source loop. Given that the domain of iteration is already
4340      --  an entity, the iterator is just a renaming of that entity. Possible
4341      --  optimization ???
4342
4343      Insert_Action (N,
4344        Make_Object_Renaming_Declaration (Loc,
4345          Defining_Identifier => Iterator,
4346          Subtype_Mark        => New_Occurrence_Of (Iter_Type, Loc),
4347          Name                => Relocate_Node (Name (I_Spec))));
4348
4349      --  Create declaration for cursor
4350
4351      declare
4352         Cursor_Decl : constant Node_Id :=
4353                         Make_Object_Declaration (Loc,
4354                           Defining_Identifier => Cursor,
4355                           Object_Definition   =>
4356                             New_Occurrence_Of (Etype (Cursor), Loc),
4357                           Expression          =>
4358                             Make_Selected_Component (Loc,
4359                               Prefix        =>
4360                                 New_Occurrence_Of (Iterator, Loc),
4361                               Selector_Name =>
4362                                 Make_Identifier (Loc, Name_Init)));
4363
4364      begin
4365         --  The cursor is only modified in expanded code, so it appears
4366         --  as unassigned to the warning machinery. We must suppress this
4367         --  spurious warning explicitly. The cursor's kind is that of the
4368         --  original loop parameter (it is a constant if the domain of
4369         --  iteration is constant).
4370
4371         Set_Warnings_Off (Cursor);
4372         Set_Assignment_OK (Cursor_Decl);
4373
4374         Insert_Action (N, Cursor_Decl);
4375         Set_Ekind (Cursor, Id_Kind);
4376      end;
4377
4378      --  If the range of iteration is given by a function call that returns
4379      --  a container, the finalization actions have been saved in the
4380      --  Condition_Actions of the iterator. Insert them now at the head of
4381      --  the loop.
4382
4383      if Present (Condition_Actions (Isc)) then
4384         Insert_List_Before (N, Condition_Actions (Isc));
4385      end if;
4386
4387      Rewrite (N, New_Loop);
4388      Analyze (N);
4389   end Expand_Iterator_Loop_Over_Container;
4390
4391   -----------------------------
4392   -- Expand_N_Loop_Statement --
4393   -----------------------------
4394
4395   --  1. Remove null loop entirely
4396   --  2. Deal with while condition for C/Fortran boolean
4397   --  3. Deal with loops with a non-standard enumeration type range
4398   --  4. Deal with while loops where Condition_Actions is set
4399   --  5. Deal with loops over predicated subtypes
4400   --  6. Deal with loops with iterators over arrays and containers
4401   --  7. Insert polling call if required
4402
4403   procedure Expand_N_Loop_Statement (N : Node_Id) is
4404      Loc    : constant Source_Ptr := Sloc (N);
4405      Scheme : constant Node_Id    := Iteration_Scheme (N);
4406      Stmt   : Node_Id;
4407
4408   begin
4409      --  Delete null loop
4410
4411      if Is_Null_Loop (N) then
4412         Rewrite (N, Make_Null_Statement (Loc));
4413         return;
4414      end if;
4415
4416      --  Deal with condition for C/Fortran Boolean
4417
4418      if Present (Scheme) then
4419         Adjust_Condition (Condition (Scheme));
4420      end if;
4421
4422      --  Generate polling call
4423
4424      if Is_Non_Empty_List (Statements (N)) then
4425         Generate_Poll_Call (First (Statements (N)));
4426      end if;
4427
4428      --  Nothing more to do for plain loop with no iteration scheme
4429
4430      if No (Scheme) then
4431         null;
4432
4433      --  Case of for loop (Loop_Parameter_Specification present)
4434
4435      --  Note: we do not have to worry about validity checking of the for loop
4436      --  range bounds here, since they were frozen with constant declarations
4437      --  and it is during that process that the validity checking is done.
4438
4439      elsif Present (Loop_Parameter_Specification (Scheme)) then
4440         declare
4441            LPS     : constant Node_Id   :=
4442                        Loop_Parameter_Specification (Scheme);
4443            Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
4444            Ltype   : constant Entity_Id := Etype (Loop_Id);
4445            Btype   : constant Entity_Id := Base_Type (Ltype);
4446            Expr    : Node_Id;
4447            Decls   : List_Id;
4448            New_Id  : Entity_Id;
4449
4450         begin
4451            --  Deal with loop over predicates
4452
4453            if Is_Discrete_Type (Ltype)
4454              and then Present (Predicate_Function (Ltype))
4455            then
4456               Expand_Predicated_Loop (N);
4457
4458            --  Handle the case where we have a for loop with the range type
4459            --  being an enumeration type with non-standard representation.
4460            --  In this case we expand:
4461
4462            --    for x in [reverse] a .. b loop
4463            --       ...
4464            --    end loop;
4465
4466            --  to
4467
4468            --    for xP in [reverse] integer
4469            --      range etype'Pos (a) .. etype'Pos (b)
4470            --    loop
4471            --       declare
4472            --          x : constant etype := Pos_To_Rep (xP);
4473            --       begin
4474            --          ...
4475            --       end;
4476            --    end loop;
4477
4478            elsif Is_Enumeration_Type (Btype)
4479              and then Present (Enum_Pos_To_Rep (Btype))
4480            then
4481               New_Id :=
4482                 Make_Defining_Identifier (Loc,
4483                   Chars => New_External_Name (Chars (Loop_Id), 'P'));
4484
4485               --  If the type has a contiguous representation, successive
4486               --  values can be generated as offsets from the first literal.
4487
4488               if Has_Contiguous_Rep (Btype) then
4489                  Expr :=
4490                     Unchecked_Convert_To (Btype,
4491                       Make_Op_Add (Loc,
4492                         Left_Opnd =>
4493                            Make_Integer_Literal (Loc,
4494                              Enumeration_Rep (First_Literal (Btype))),
4495                         Right_Opnd => New_Occurrence_Of (New_Id, Loc)));
4496               else
4497                  --  Use the constructed array Enum_Pos_To_Rep
4498
4499                  Expr :=
4500                    Make_Indexed_Component (Loc,
4501                      Prefix      =>
4502                        New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc),
4503                      Expressions =>
4504                        New_List (New_Occurrence_Of (New_Id, Loc)));
4505               end if;
4506
4507               --  Build declaration for loop identifier
4508
4509               Decls :=
4510                 New_List (
4511                   Make_Object_Declaration (Loc,
4512                     Defining_Identifier => Loop_Id,
4513                     Constant_Present    => True,
4514                     Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4515                     Expression          => Expr));
4516
4517               Rewrite (N,
4518                 Make_Loop_Statement (Loc,
4519                   Identifier => Identifier (N),
4520
4521                   Iteration_Scheme =>
4522                     Make_Iteration_Scheme (Loc,
4523                       Loop_Parameter_Specification =>
4524                         Make_Loop_Parameter_Specification (Loc,
4525                           Defining_Identifier => New_Id,
4526                           Reverse_Present => Reverse_Present (LPS),
4527
4528                           Discrete_Subtype_Definition =>
4529                             Make_Subtype_Indication (Loc,
4530
4531                               Subtype_Mark =>
4532                                 New_Occurrence_Of (Standard_Natural, Loc),
4533
4534                               Constraint =>
4535                                 Make_Range_Constraint (Loc,
4536                                   Range_Expression =>
4537                                     Make_Range (Loc,
4538
4539                                       Low_Bound =>
4540                                         Make_Attribute_Reference (Loc,
4541                                           Prefix =>
4542                                             New_Occurrence_Of (Btype, Loc),
4543
4544                                           Attribute_Name => Name_Pos,
4545
4546                                           Expressions => New_List (
4547                                             Relocate_Node
4548                                               (Type_Low_Bound (Ltype)))),
4549
4550                                       High_Bound =>
4551                                         Make_Attribute_Reference (Loc,
4552                                           Prefix =>
4553                                             New_Occurrence_Of (Btype, Loc),
4554
4555                                           Attribute_Name => Name_Pos,
4556
4557                                           Expressions => New_List (
4558                                             Relocate_Node
4559                                               (Type_High_Bound
4560                                                  (Ltype))))))))),
4561
4562                   Statements => New_List (
4563                     Make_Block_Statement (Loc,
4564                       Declarations => Decls,
4565                       Handled_Statement_Sequence =>
4566                         Make_Handled_Sequence_Of_Statements (Loc,
4567                           Statements => Statements (N)))),
4568
4569                   End_Label => End_Label (N)));
4570
4571               --  The loop parameter's entity must be removed from the loop
4572               --  scope's entity list and rendered invisible, since it will
4573               --  now be located in the new block scope. Any other entities
4574               --  already associated with the loop scope, such as the loop
4575               --  parameter's subtype, will remain there.
4576
4577               --  In an element loop, the loop will contain a declaration for
4578               --  a cursor variable; otherwise the loop id is the first entity
4579               --  in the scope constructed for the loop.
4580
4581               if Comes_From_Source (Loop_Id) then
4582                  pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
4583                  null;
4584               end if;
4585
4586               Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
4587               Remove_Homonym (Loop_Id);
4588
4589               if Last_Entity (Scope (Loop_Id)) = Loop_Id then
4590                  Set_Last_Entity (Scope (Loop_Id), Empty);
4591               end if;
4592
4593               Analyze (N);
4594
4595            --  Nothing to do with other cases of for loops
4596
4597            else
4598               null;
4599            end if;
4600         end;
4601
4602      --  Second case, if we have a while loop with Condition_Actions set, then
4603      --  we change it into a plain loop:
4604
4605      --    while C loop
4606      --       ...
4607      --    end loop;
4608
4609      --  changed to:
4610
4611      --    loop
4612      --       <<condition actions>>
4613      --       exit when not C;
4614      --       ...
4615      --    end loop
4616
4617      elsif Present (Scheme)
4618        and then Present (Condition_Actions (Scheme))
4619        and then Present (Condition (Scheme))
4620      then
4621         declare
4622            ES : Node_Id;
4623
4624         begin
4625            ES :=
4626              Make_Exit_Statement (Sloc (Condition (Scheme)),
4627                Condition =>
4628                  Make_Op_Not (Sloc (Condition (Scheme)),
4629                    Right_Opnd => Condition (Scheme)));
4630
4631            Prepend (ES, Statements (N));
4632            Insert_List_Before (ES, Condition_Actions (Scheme));
4633
4634            --  This is not an implicit loop, since it is generated in response
4635            --  to the loop statement being processed. If this is itself
4636            --  implicit, the restriction has already been checked. If not,
4637            --  it is an explicit loop.
4638
4639            Rewrite (N,
4640              Make_Loop_Statement (Sloc (N),
4641                Identifier => Identifier (N),
4642                Statements => Statements (N),
4643                End_Label  => End_Label  (N)));
4644
4645            Analyze (N);
4646         end;
4647
4648      --  Here to deal with iterator case
4649
4650      elsif Present (Scheme)
4651        and then Present (Iterator_Specification (Scheme))
4652      then
4653         Expand_Iterator_Loop (N);
4654
4655         --  An iterator loop may generate renaming declarations for elements
4656         --  that require debug information. This is the case in particular
4657         --  with element iterators, where debug information must be generated
4658         --  for the temporary that holds the element value. These temporaries
4659         --  are created within a transient block whose local declarations are
4660         --  transferred to the loop, which now has nontrivial local objects.
4661
4662         if Nkind (N) = N_Loop_Statement
4663           and then Present (Identifier (N))
4664         then
4665            Qualify_Entity_Names (N);
4666         end if;
4667      end if;
4668
4669      --  When the iteration scheme mentiones attribute 'Loop_Entry, the loop
4670      --  is transformed into a conditional block where the original loop is
4671      --  the sole statement. Inspect the statements of the nested loop for
4672      --  controlled objects.
4673
4674      Stmt := N;
4675
4676      if Subject_To_Loop_Entry_Attributes (Stmt) then
4677         Stmt := Find_Loop_In_Conditional_Block (Stmt);
4678      end if;
4679
4680      Process_Statements_For_Controlled_Objects (Stmt);
4681   end Expand_N_Loop_Statement;
4682
4683   ----------------------------
4684   -- Expand_Predicated_Loop --
4685   ----------------------------
4686
4687   --  Note: the expander can handle generation of loops over predicated
4688   --  subtypes for both the dynamic and static cases. Depending on what
4689   --  we decide is allowed in Ada 2012 mode and/or extensions allowed
4690   --  mode, the semantic analyzer may disallow one or both forms.
4691
4692   procedure Expand_Predicated_Loop (N : Node_Id) is
4693      Loc     : constant Source_Ptr := Sloc (N);
4694      Isc     : constant Node_Id    := Iteration_Scheme (N);
4695      LPS     : constant Node_Id    := Loop_Parameter_Specification (Isc);
4696      Loop_Id : constant Entity_Id  := Defining_Identifier (LPS);
4697      Ltype   : constant Entity_Id  := Etype (Loop_Id);
4698      Stat    : constant List_Id    := Static_Discrete_Predicate (Ltype);
4699      Stmts   : constant List_Id    := Statements (N);
4700
4701   begin
4702      --  Case of iteration over non-static predicate, should not be possible
4703      --  since this is not allowed by the semantics and should have been
4704      --  caught during analysis of the loop statement.
4705
4706      if No (Stat) then
4707         raise Program_Error;
4708
4709      --  If the predicate list is empty, that corresponds to a predicate of
4710      --  False, in which case the loop won't run at all, and we rewrite the
4711      --  entire loop as a null statement.
4712
4713      elsif Is_Empty_List (Stat) then
4714         Rewrite (N, Make_Null_Statement (Loc));
4715         Analyze (N);
4716
4717      --  For expansion over a static predicate we generate the following
4718
4719      --     declare
4720      --        J : Ltype := min-val;
4721      --     begin
4722      --        loop
4723      --           body
4724      --           case J is
4725      --              when endpoint => J := startpoint;
4726      --              when endpoint => J := startpoint;
4727      --              ...
4728      --              when max-val  => exit;
4729      --              when others   => J := Lval'Succ (J);
4730      --           end case;
4731      --        end loop;
4732      --     end;
4733
4734      --  with min-val replaced by max-val and Succ replaced by Pred if the
4735      --  loop parameter specification carries a Reverse indicator.
4736
4737      --  To make this a little clearer, let's take a specific example:
4738
4739      --        type Int is range 1 .. 10;
4740      --        subtype StaticP is Int with
4741      --          predicate => StaticP in 3 | 10 | 5 .. 7;
4742      --          ...
4743      --        for L in StaticP loop
4744      --           Put_Line ("static:" & J'Img);
4745      --        end loop;
4746
4747      --  In this case, the loop is transformed into
4748
4749      --     begin
4750      --        J : L := 3;
4751      --        loop
4752      --           body
4753      --           case J is
4754      --              when 3  => J := 5;
4755      --              when 7  => J := 10;
4756      --              when 10 => exit;
4757      --              when others  => J := L'Succ (J);
4758      --           end case;
4759      --        end loop;
4760      --     end;
4761
4762      --  In addition, if the loop specification is given by a subtype
4763      --  indication that constrains a predicated type, the bounds of
4764      --  iteration are given by those of the subtype indication.
4765
4766      else
4767         Static_Predicate : declare
4768            S    : Node_Id;
4769            D    : Node_Id;
4770            P    : Node_Id;
4771            Alts : List_Id;
4772            Cstm : Node_Id;
4773
4774            --  If the domain is an itype, note the bounds of its range.
4775
4776            L_Hi  : Node_Id := Empty;
4777            L_Lo  : Node_Id := Empty;
4778
4779            function Lo_Val (N : Node_Id) return Node_Id;
4780            --  Given static expression or static range, returns an identifier
4781            --  whose value is the low bound of the expression value or range.
4782
4783            function Hi_Val (N : Node_Id) return Node_Id;
4784            --  Given static expression or static range, returns an identifier
4785            --  whose value is the high bound of the expression value or range.
4786
4787            ------------
4788            -- Hi_Val --
4789            ------------
4790
4791            function Hi_Val (N : Node_Id) return Node_Id is
4792            begin
4793               if Is_OK_Static_Expression (N) then
4794                  return New_Copy (N);
4795               else
4796                  pragma Assert (Nkind (N) = N_Range);
4797                  return New_Copy (High_Bound (N));
4798               end if;
4799            end Hi_Val;
4800
4801            ------------
4802            -- Lo_Val --
4803            ------------
4804
4805            function Lo_Val (N : Node_Id) return Node_Id is
4806            begin
4807               if Is_OK_Static_Expression (N) then
4808                  return New_Copy (N);
4809               else
4810                  pragma Assert (Nkind (N) = N_Range);
4811                  return New_Copy (Low_Bound (N));
4812               end if;
4813            end Lo_Val;
4814
4815         --  Start of processing for Static_Predicate
4816
4817         begin
4818            --  Convert loop identifier to normal variable and reanalyze it so
4819            --  that this conversion works. We have to use the same defining
4820            --  identifier, since there may be references in the loop body.
4821
4822            Set_Analyzed (Loop_Id, False);
4823            Set_Ekind    (Loop_Id, E_Variable);
4824
4825            --  In most loops the loop variable is assigned in various
4826            --  alternatives in the body. However, in the rare case when
4827            --  the range specifies a single element, the loop variable
4828            --  may trigger a spurious warning that is could be constant.
4829            --  This warning might as well be suppressed.
4830
4831            Set_Warnings_Off (Loop_Id);
4832
4833            if Is_Itype (Ltype) then
4834               L_Hi := High_Bound (Scalar_Range (Ltype));
4835               L_Lo := Low_Bound  (Scalar_Range (Ltype));
4836            end if;
4837
4838            --  Loop to create branches of case statement
4839
4840            Alts := New_List;
4841
4842            if Reverse_Present (LPS) then
4843
4844               --  Initial value is largest value in predicate.
4845
4846               if Is_Itype (Ltype) then
4847                  D :=
4848                    Make_Object_Declaration (Loc,
4849                      Defining_Identifier => Loop_Id,
4850                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4851                      Expression          => L_Hi);
4852
4853               else
4854                  D :=
4855                    Make_Object_Declaration (Loc,
4856                      Defining_Identifier => Loop_Id,
4857                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4858                      Expression          => Hi_Val (Last (Stat)));
4859               end if;
4860
4861               P := Last (Stat);
4862               while Present (P) loop
4863                  if No (Prev (P)) then
4864                     S := Make_Exit_Statement (Loc);
4865                  else
4866                     S :=
4867                       Make_Assignment_Statement (Loc,
4868                         Name       => New_Occurrence_Of (Loop_Id, Loc),
4869                         Expression => Hi_Val (Prev (P)));
4870                     Set_Suppress_Assignment_Checks (S);
4871                  end if;
4872
4873                  Append_To (Alts,
4874                    Make_Case_Statement_Alternative (Loc,
4875                      Statements       => New_List (S),
4876                      Discrete_Choices => New_List (Lo_Val (P))));
4877
4878                  Prev (P);
4879               end loop;
4880
4881               if Is_Itype (Ltype)
4882                 and then Is_OK_Static_Expression (L_Lo)
4883                 and then
4884                   Expr_Value (L_Lo) /= Expr_Value (Lo_Val (First (Stat)))
4885               then
4886                  Append_To (Alts,
4887                    Make_Case_Statement_Alternative (Loc,
4888                      Statements       => New_List (Make_Exit_Statement (Loc)),
4889                      Discrete_Choices => New_List (L_Lo)));
4890               end if;
4891
4892            else
4893               --  Initial value is smallest value in predicate
4894
4895               if Is_Itype (Ltype) then
4896                  D :=
4897                    Make_Object_Declaration (Loc,
4898                      Defining_Identifier => Loop_Id,
4899                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4900                      Expression          => L_Lo);
4901               else
4902                  D :=
4903                    Make_Object_Declaration (Loc,
4904                      Defining_Identifier => Loop_Id,
4905                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4906                      Expression          => Lo_Val (First (Stat)));
4907               end if;
4908
4909               P := First (Stat);
4910               while Present (P) loop
4911                  if No (Next (P)) then
4912                     S := Make_Exit_Statement (Loc);
4913                  else
4914                     S :=
4915                       Make_Assignment_Statement (Loc,
4916                         Name       => New_Occurrence_Of (Loop_Id, Loc),
4917                         Expression => Lo_Val (Next (P)));
4918                     Set_Suppress_Assignment_Checks (S);
4919                  end if;
4920
4921                  Append_To (Alts,
4922                    Make_Case_Statement_Alternative (Loc,
4923                      Statements       => New_List (S),
4924                      Discrete_Choices => New_List (Hi_Val (P))));
4925
4926                  Next (P);
4927               end loop;
4928
4929               if Is_Itype (Ltype)
4930                 and then Is_OK_Static_Expression (L_Hi)
4931                 and then
4932                   Expr_Value (L_Hi) /= Expr_Value (Lo_Val (Last (Stat)))
4933               then
4934                  Append_To (Alts,
4935                    Make_Case_Statement_Alternative (Loc,
4936                      Statements       => New_List (Make_Exit_Statement (Loc)),
4937                      Discrete_Choices => New_List (L_Hi)));
4938               end if;
4939            end if;
4940
4941            --  Add others choice
4942
4943            declare
4944               Name_Next : Name_Id;
4945
4946            begin
4947               if Reverse_Present (LPS) then
4948                  Name_Next := Name_Pred;
4949               else
4950                  Name_Next := Name_Succ;
4951               end if;
4952
4953               S :=
4954                 Make_Assignment_Statement (Loc,
4955                   Name       => New_Occurrence_Of (Loop_Id, Loc),
4956                   Expression =>
4957                     Make_Attribute_Reference (Loc,
4958                       Prefix         => New_Occurrence_Of (Ltype, Loc),
4959                       Attribute_Name => Name_Next,
4960                       Expressions    => New_List (
4961                         New_Occurrence_Of (Loop_Id, Loc))));
4962               Set_Suppress_Assignment_Checks (S);
4963            end;
4964
4965            Append_To (Alts,
4966              Make_Case_Statement_Alternative (Loc,
4967                Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4968                Statements       => New_List (S)));
4969
4970            --  Construct case statement and append to body statements
4971
4972            Cstm :=
4973              Make_Case_Statement (Loc,
4974                Expression   => New_Occurrence_Of (Loop_Id, Loc),
4975                Alternatives => Alts);
4976            Append_To (Stmts, Cstm);
4977
4978            --  Rewrite the loop
4979
4980            Set_Suppress_Assignment_Checks (D);
4981
4982            Rewrite (N,
4983              Make_Block_Statement (Loc,
4984                Declarations               => New_List (D),
4985                Handled_Statement_Sequence =>
4986                  Make_Handled_Sequence_Of_Statements (Loc,
4987                    Statements => New_List (
4988                      Make_Loop_Statement (Loc,
4989                        Statements => Stmts,
4990                        End_Label  => Empty)))));
4991
4992            Analyze (N);
4993         end Static_Predicate;
4994      end if;
4995   end Expand_Predicated_Loop;
4996
4997   ------------------------------
4998   -- Make_Tag_Ctrl_Assignment --
4999   ------------------------------
5000
5001   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
5002      Asn : constant Node_Id    := Relocate_Node (N);
5003      L   : constant Node_Id    := Name (N);
5004      Loc : constant Source_Ptr := Sloc (N);
5005      Res : constant List_Id    := New_List;
5006      T   : constant Entity_Id  := Underlying_Type (Etype (L));
5007
5008      Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
5009      Ctrl_Act : constant Boolean := Needs_Finalization (T)
5010                                       and then not No_Ctrl_Actions (N);
5011      Save_Tag : constant Boolean := Is_Tagged_Type (T)
5012                                       and then not Comp_Asn
5013                                       and then not No_Ctrl_Actions (N)
5014                                       and then Tagged_Type_Expansion;
5015      Adj_Call : Node_Id;
5016      Fin_Call : Node_Id;
5017      Tag_Id   : Entity_Id;
5018
5019   begin
5020      --  Finalize the target of the assignment when controlled
5021
5022      --  We have two exceptions here:
5023
5024      --   1. If we are in an init proc since it is an initialization more
5025      --      than an assignment.
5026
5027      --   2. If the left-hand side is a temporary that was not initialized
5028      --      (or the parent part of a temporary since it is the case in
5029      --      extension aggregates). Such a temporary does not come from
5030      --      source. We must examine the original node for the prefix, because
5031      --      it may be a component of an entry formal, in which case it has
5032      --      been rewritten and does not appear to come from source either.
5033
5034      --  Case of init proc
5035
5036      if not Ctrl_Act then
5037         null;
5038
5039      --  The left-hand side is an uninitialized temporary object
5040
5041      elsif Nkind (L) = N_Type_Conversion
5042        and then Is_Entity_Name (Expression (L))
5043        and then Nkind (Parent (Entity (Expression (L)))) =
5044                                              N_Object_Declaration
5045        and then No_Initialization (Parent (Entity (Expression (L))))
5046      then
5047         null;
5048
5049      else
5050         Fin_Call :=
5051           Make_Final_Call
5052             (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
5053              Typ     => Etype (L));
5054
5055         if Present (Fin_Call) then
5056            Append_To (Res, Fin_Call);
5057         end if;
5058      end if;
5059
5060      --  Save the Tag in a local variable Tag_Id
5061
5062      if Save_Tag then
5063         Tag_Id := Make_Temporary (Loc, 'A');
5064
5065         Append_To (Res,
5066           Make_Object_Declaration (Loc,
5067             Defining_Identifier => Tag_Id,
5068             Object_Definition   => New_Occurrence_Of (RTE (RE_Tag), Loc),
5069             Expression          =>
5070               Make_Selected_Component (Loc,
5071                 Prefix        => Duplicate_Subexpr_No_Checks (L),
5072                 Selector_Name =>
5073                   New_Occurrence_Of (First_Tag_Component (T), Loc))));
5074
5075      --  Otherwise Tag_Id is not used
5076
5077      else
5078         Tag_Id := Empty;
5079      end if;
5080
5081      --  If the tagged type has a full rep clause, expand the assignment into
5082      --  component-wise assignments. Mark the node as unanalyzed in order to
5083      --  generate the proper code and propagate this scenario by setting a
5084      --  flag to avoid infinite recursion.
5085
5086      if Comp_Asn then
5087         Set_Analyzed (Asn, False);
5088         Set_Componentwise_Assignment (Asn, True);
5089      end if;
5090
5091      Append_To (Res, Asn);
5092
5093      --  Restore the tag
5094
5095      if Save_Tag then
5096         Append_To (Res,
5097           Make_Assignment_Statement (Loc,
5098             Name       =>
5099               Make_Selected_Component (Loc,
5100                 Prefix        => Duplicate_Subexpr_No_Checks (L),
5101                 Selector_Name =>
5102                   New_Occurrence_Of (First_Tag_Component (T), Loc)),
5103             Expression => New_Occurrence_Of (Tag_Id, Loc)));
5104      end if;
5105
5106      --  Adjust the target after the assignment when controlled (not in the
5107      --  init proc since it is an initialization more than an assignment).
5108
5109      if Ctrl_Act then
5110         Adj_Call :=
5111           Make_Adjust_Call
5112             (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
5113              Typ     => Etype (L));
5114
5115         if Present (Adj_Call) then
5116            Append_To (Res, Adj_Call);
5117         end if;
5118      end if;
5119
5120      return Res;
5121
5122   exception
5123
5124      --  Could use comment here ???
5125
5126      when RE_Not_Available =>
5127         return Empty_List;
5128   end Make_Tag_Ctrl_Assignment;
5129
5130end Exp_Ch5;
5131