1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package sync
6
7import (
8	"internal/race"
9	"runtime"
10	"sync/atomic"
11	"unsafe"
12)
13
14// A Pool is a set of temporary objects that may be individually saved and
15// retrieved.
16//
17// Any item stored in the Pool may be removed automatically at any time without
18// notification. If the Pool holds the only reference when this happens, the
19// item might be deallocated.
20//
21// A Pool is safe for use by multiple goroutines simultaneously.
22//
23// Pool's purpose is to cache allocated but unused items for later reuse,
24// relieving pressure on the garbage collector. That is, it makes it easy to
25// build efficient, thread-safe free lists. However, it is not suitable for all
26// free lists.
27//
28// An appropriate use of a Pool is to manage a group of temporary items
29// silently shared among and potentially reused by concurrent independent
30// clients of a package. Pool provides a way to amortize allocation overhead
31// across many clients.
32//
33// An example of good use of a Pool is in the fmt package, which maintains a
34// dynamically-sized store of temporary output buffers. The store scales under
35// load (when many goroutines are actively printing) and shrinks when
36// quiescent.
37//
38// On the other hand, a free list maintained as part of a short-lived object is
39// not a suitable use for a Pool, since the overhead does not amortize well in
40// that scenario. It is more efficient to have such objects implement their own
41// free list.
42//
43// A Pool must not be copied after first use.
44type Pool struct {
45	noCopy noCopy
46
47	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
48	localSize uintptr        // size of the local array
49
50	// New optionally specifies a function to generate
51	// a value when Get would otherwise return nil.
52	// It may not be changed concurrently with calls to Get.
53	New func() interface{}
54}
55
56// Local per-P Pool appendix.
57type poolLocalInternal struct {
58	private interface{}   // Can be used only by the respective P.
59	shared  []interface{} // Can be used by any P.
60	Mutex                 // Protects shared.
61}
62
63type poolLocal struct {
64	poolLocalInternal
65
66	// Prevents false sharing on widespread platforms with
67	// 128 mod (cache line size) = 0 .
68	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
69}
70
71// from runtime
72func fastrand() uint32
73
74var poolRaceHash [128]uint64
75
76// poolRaceAddr returns an address to use as the synchronization point
77// for race detector logic. We don't use the actual pointer stored in x
78// directly, for fear of conflicting with other synchronization on that address.
79// Instead, we hash the pointer to get an index into poolRaceHash.
80// See discussion on golang.org/cl/31589.
81func poolRaceAddr(x interface{}) unsafe.Pointer {
82	ptr := uintptr((*[2]unsafe.Pointer)(unsafe.Pointer(&x))[1])
83	h := uint32((uint64(uint32(ptr)) * 0x85ebca6b) >> 16)
84	return unsafe.Pointer(&poolRaceHash[h%uint32(len(poolRaceHash))])
85}
86
87// Put adds x to the pool.
88func (p *Pool) Put(x interface{}) {
89	if x == nil {
90		return
91	}
92	if race.Enabled {
93		if fastrand()%4 == 0 {
94			// Randomly drop x on floor.
95			return
96		}
97		race.ReleaseMerge(poolRaceAddr(x))
98		race.Disable()
99	}
100	l := p.pin()
101	if l.private == nil {
102		l.private = x
103		x = nil
104	}
105	runtime_procUnpin()
106	if x != nil {
107		l.Lock()
108		l.shared = append(l.shared, x)
109		l.Unlock()
110	}
111	if race.Enabled {
112		race.Enable()
113	}
114}
115
116// Get selects an arbitrary item from the Pool, removes it from the
117// Pool, and returns it to the caller.
118// Get may choose to ignore the pool and treat it as empty.
119// Callers should not assume any relation between values passed to Put and
120// the values returned by Get.
121//
122// If Get would otherwise return nil and p.New is non-nil, Get returns
123// the result of calling p.New.
124func (p *Pool) Get() interface{} {
125	if race.Enabled {
126		race.Disable()
127	}
128	l := p.pin()
129	x := l.private
130	l.private = nil
131	runtime_procUnpin()
132	if x == nil {
133		l.Lock()
134		last := len(l.shared) - 1
135		if last >= 0 {
136			x = l.shared[last]
137			l.shared = l.shared[:last]
138		}
139		l.Unlock()
140		if x == nil {
141			x = p.getSlow()
142		}
143	}
144	if race.Enabled {
145		race.Enable()
146		if x != nil {
147			race.Acquire(poolRaceAddr(x))
148		}
149	}
150	if x == nil && p.New != nil {
151		x = p.New()
152	}
153	return x
154}
155
156func (p *Pool) getSlow() (x interface{}) {
157	// See the comment in pin regarding ordering of the loads.
158	size := atomic.LoadUintptr(&p.localSize) // load-acquire
159	local := p.local                         // load-consume
160	// Try to steal one element from other procs.
161	pid := runtime_procPin()
162	runtime_procUnpin()
163	for i := 0; i < int(size); i++ {
164		l := indexLocal(local, (pid+i+1)%int(size))
165		l.Lock()
166		last := len(l.shared) - 1
167		if last >= 0 {
168			x = l.shared[last]
169			l.shared = l.shared[:last]
170			l.Unlock()
171			break
172		}
173		l.Unlock()
174	}
175	return x
176}
177
178// pin pins the current goroutine to P, disables preemption and returns poolLocal pool for the P.
179// Caller must call runtime_procUnpin() when done with the pool.
180func (p *Pool) pin() *poolLocal {
181	pid := runtime_procPin()
182	// In pinSlow we store to localSize and then to local, here we load in opposite order.
183	// Since we've disabled preemption, GC cannot happen in between.
184	// Thus here we must observe local at least as large localSize.
185	// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
186	s := atomic.LoadUintptr(&p.localSize) // load-acquire
187	l := p.local                          // load-consume
188	if uintptr(pid) < s {
189		return indexLocal(l, pid)
190	}
191	return p.pinSlow()
192}
193
194func (p *Pool) pinSlow() *poolLocal {
195	// Retry under the mutex.
196	// Can not lock the mutex while pinned.
197	runtime_procUnpin()
198	allPoolsMu.Lock()
199	defer allPoolsMu.Unlock()
200	pid := runtime_procPin()
201	// poolCleanup won't be called while we are pinned.
202	s := p.localSize
203	l := p.local
204	if uintptr(pid) < s {
205		return indexLocal(l, pid)
206	}
207	if p.local == nil {
208		allPools = append(allPools, p)
209	}
210	// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
211	size := runtime.GOMAXPROCS(0)
212	local := make([]poolLocal, size)
213	atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
214	atomic.StoreUintptr(&p.localSize, uintptr(size))         // store-release
215	return &local[pid]
216}
217
218func poolCleanup() {
219	// This function is called with the world stopped, at the beginning of a garbage collection.
220	// It must not allocate and probably should not call any runtime functions.
221	// Defensively zero out everything, 2 reasons:
222	// 1. To prevent false retention of whole Pools.
223	// 2. If GC happens while a goroutine works with l.shared in Put/Get,
224	//    it will retain whole Pool. So next cycle memory consumption would be doubled.
225	for i, p := range allPools {
226		allPools[i] = nil
227		for i := 0; i < int(p.localSize); i++ {
228			l := indexLocal(p.local, i)
229			l.private = nil
230			for j := range l.shared {
231				l.shared[j] = nil
232			}
233			l.shared = nil
234		}
235		p.local = nil
236		p.localSize = 0
237	}
238	allPools = []*Pool{}
239}
240
241var (
242	allPoolsMu Mutex
243	allPools   []*Pool
244)
245
246func init() {
247	runtime_registerPoolCleanup(poolCleanup)
248}
249
250func indexLocal(l unsafe.Pointer, i int) *poolLocal {
251	lp := unsafe.Pointer(uintptr(l) + uintptr(i)*unsafe.Sizeof(poolLocal{}))
252	return (*poolLocal)(lp)
253}
254
255// Implemented in runtime.
256func runtime_registerPoolCleanup(cleanup func())
257func runtime_procPin() int
258func runtime_procUnpin()
259