1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package template 6 7import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16) 17 18// maxExecDepth specifies the maximum stack depth of templates within 19// templates. This limit is only practically reached by accidentally 20// recursive template invocations. This limit allows us to return 21// an error instead of triggering a stack overflow. 22// For gccgo we make this 1000 rather than 100000 to avoid stack overflow 23// on non-split-stack systems. 24const maxExecDepth = 1000 25 26// state represents the state of an execution. It's not part of the 27// template so that multiple executions of the same template 28// can execute in parallel. 29type state struct { 30 tmpl *Template 31 wr io.Writer 32 node parse.Node // current node, for errors 33 vars []variable // push-down stack of variable values. 34 depth int // the height of the stack of executing templates. 35} 36 37// variable holds the dynamic value of a variable such as $, $x etc. 38type variable struct { 39 name string 40 value reflect.Value 41} 42 43// push pushes a new variable on the stack. 44func (s *state) push(name string, value reflect.Value) { 45 s.vars = append(s.vars, variable{name, value}) 46} 47 48// mark returns the length of the variable stack. 49func (s *state) mark() int { 50 return len(s.vars) 51} 52 53// pop pops the variable stack up to the mark. 54func (s *state) pop(mark int) { 55 s.vars = s.vars[0:mark] 56} 57 58// setVar overwrites the top-nth variable on the stack. Used by range iterations. 59func (s *state) setVar(n int, value reflect.Value) { 60 s.vars[len(s.vars)-n].value = value 61} 62 63// varValue returns the value of the named variable. 64func (s *state) varValue(name string) reflect.Value { 65 for i := s.mark() - 1; i >= 0; i-- { 66 if s.vars[i].name == name { 67 return s.vars[i].value 68 } 69 } 70 s.errorf("undefined variable: %s", name) 71 return zero 72} 73 74var zero reflect.Value 75 76// at marks the state to be on node n, for error reporting. 77func (s *state) at(node parse.Node) { 78 s.node = node 79} 80 81// doublePercent returns the string with %'s replaced by %%, if necessary, 82// so it can be used safely inside a Printf format string. 83func doublePercent(str string) string { 84 return strings.Replace(str, "%", "%%", -1) 85} 86 87// TODO: It would be nice if ExecError was more broken down, but 88// the way ErrorContext embeds the template name makes the 89// processing too clumsy. 90 91// ExecError is the custom error type returned when Execute has an 92// error evaluating its template. (If a write error occurs, the actual 93// error is returned; it will not be of type ExecError.) 94type ExecError struct { 95 Name string // Name of template. 96 Err error // Pre-formatted error. 97} 98 99func (e ExecError) Error() string { 100 return e.Err.Error() 101} 102 103// errorf records an ExecError and terminates processing. 104func (s *state) errorf(format string, args ...interface{}) { 105 name := doublePercent(s.tmpl.Name()) 106 if s.node == nil { 107 format = fmt.Sprintf("template: %s: %s", name, format) 108 } else { 109 location, context := s.tmpl.ErrorContext(s.node) 110 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 111 } 112 panic(ExecError{ 113 Name: s.tmpl.Name(), 114 Err: fmt.Errorf(format, args...), 115 }) 116} 117 118// writeError is the wrapper type used internally when Execute has an 119// error writing to its output. We strip the wrapper in errRecover. 120// Note that this is not an implementation of error, so it cannot escape 121// from the package as an error value. 122type writeError struct { 123 Err error // Original error. 124} 125 126func (s *state) writeError(err error) { 127 panic(writeError{ 128 Err: err, 129 }) 130} 131 132// errRecover is the handler that turns panics into returns from the top 133// level of Parse. 134func errRecover(errp *error) { 135 e := recover() 136 if e != nil { 137 switch err := e.(type) { 138 case runtime.Error: 139 panic(e) 140 case writeError: 141 *errp = err.Err // Strip the wrapper. 142 case ExecError: 143 *errp = err // Keep the wrapper. 144 default: 145 panic(e) 146 } 147 } 148} 149 150// ExecuteTemplate applies the template associated with t that has the given name 151// to the specified data object and writes the output to wr. 152// If an error occurs executing the template or writing its output, 153// execution stops, but partial results may already have been written to 154// the output writer. 155// A template may be executed safely in parallel, although if parallel 156// executions share a Writer the output may be interleaved. 157func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 158 var tmpl *Template 159 if t.common != nil { 160 tmpl = t.tmpl[name] 161 } 162 if tmpl == nil { 163 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 164 } 165 return tmpl.Execute(wr, data) 166} 167 168// Execute applies a parsed template to the specified data object, 169// and writes the output to wr. 170// If an error occurs executing the template or writing its output, 171// execution stops, but partial results may already have been written to 172// the output writer. 173// A template may be executed safely in parallel, although if parallel 174// executions share a Writer the output may be interleaved. 175// 176// If data is a reflect.Value, the template applies to the concrete 177// value that the reflect.Value holds, as in fmt.Print. 178func (t *Template) Execute(wr io.Writer, data interface{}) error { 179 return t.execute(wr, data) 180} 181 182func (t *Template) execute(wr io.Writer, data interface{}) (err error) { 183 defer errRecover(&err) 184 value, ok := data.(reflect.Value) 185 if !ok { 186 value = reflect.ValueOf(data) 187 } 188 state := &state{ 189 tmpl: t, 190 wr: wr, 191 vars: []variable{{"$", value}}, 192 } 193 if t.Tree == nil || t.Root == nil { 194 state.errorf("%q is an incomplete or empty template", t.Name()) 195 } 196 state.walk(value, t.Root) 197 return 198} 199 200// DefinedTemplates returns a string listing the defined templates, 201// prefixed by the string "; defined templates are: ". If there are none, 202// it returns the empty string. For generating an error message here 203// and in html/template. 204func (t *Template) DefinedTemplates() string { 205 if t.common == nil { 206 return "" 207 } 208 var b bytes.Buffer 209 for name, tmpl := range t.tmpl { 210 if tmpl.Tree == nil || tmpl.Root == nil { 211 continue 212 } 213 if b.Len() > 0 { 214 b.WriteString(", ") 215 } 216 fmt.Fprintf(&b, "%q", name) 217 } 218 var s string 219 if b.Len() > 0 { 220 s = "; defined templates are: " + b.String() 221 } 222 return s 223} 224 225// Walk functions step through the major pieces of the template structure, 226// generating output as they go. 227func (s *state) walk(dot reflect.Value, node parse.Node) { 228 s.at(node) 229 switch node := node.(type) { 230 case *parse.ActionNode: 231 // Do not pop variables so they persist until next end. 232 // Also, if the action declares variables, don't print the result. 233 val := s.evalPipeline(dot, node.Pipe) 234 if len(node.Pipe.Decl) == 0 { 235 s.printValue(node, val) 236 } 237 case *parse.IfNode: 238 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 239 case *parse.ListNode: 240 for _, node := range node.Nodes { 241 s.walk(dot, node) 242 } 243 case *parse.RangeNode: 244 s.walkRange(dot, node) 245 case *parse.TemplateNode: 246 s.walkTemplate(dot, node) 247 case *parse.TextNode: 248 if _, err := s.wr.Write(node.Text); err != nil { 249 s.writeError(err) 250 } 251 case *parse.WithNode: 252 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 253 default: 254 s.errorf("unknown node: %s", node) 255 } 256} 257 258// walkIfOrWith walks an 'if' or 'with' node. The two control structures 259// are identical in behavior except that 'with' sets dot. 260func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 261 defer s.pop(s.mark()) 262 val := s.evalPipeline(dot, pipe) 263 truth, ok := isTrue(val) 264 if !ok { 265 s.errorf("if/with can't use %v", val) 266 } 267 if truth { 268 if typ == parse.NodeWith { 269 s.walk(val, list) 270 } else { 271 s.walk(dot, list) 272 } 273 } else if elseList != nil { 274 s.walk(dot, elseList) 275 } 276} 277 278// IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 279// and whether the value has a meaningful truth value. This is the definition of 280// truth used by if and other such actions. 281func IsTrue(val interface{}) (truth, ok bool) { 282 return isTrue(reflect.ValueOf(val)) 283} 284 285func isTrue(val reflect.Value) (truth, ok bool) { 286 if !val.IsValid() { 287 // Something like var x interface{}, never set. It's a form of nil. 288 return false, true 289 } 290 switch val.Kind() { 291 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 292 truth = val.Len() > 0 293 case reflect.Bool: 294 truth = val.Bool() 295 case reflect.Complex64, reflect.Complex128: 296 truth = val.Complex() != 0 297 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 298 truth = !val.IsNil() 299 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 300 truth = val.Int() != 0 301 case reflect.Float32, reflect.Float64: 302 truth = val.Float() != 0 303 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 304 truth = val.Uint() != 0 305 case reflect.Struct: 306 truth = true // Struct values are always true. 307 default: 308 return 309 } 310 return truth, true 311} 312 313func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 314 s.at(r) 315 defer s.pop(s.mark()) 316 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 317 // mark top of stack before any variables in the body are pushed. 318 mark := s.mark() 319 oneIteration := func(index, elem reflect.Value) { 320 // Set top var (lexically the second if there are two) to the element. 321 if len(r.Pipe.Decl) > 0 { 322 s.setVar(1, elem) 323 } 324 // Set next var (lexically the first if there are two) to the index. 325 if len(r.Pipe.Decl) > 1 { 326 s.setVar(2, index) 327 } 328 s.walk(elem, r.List) 329 s.pop(mark) 330 } 331 switch val.Kind() { 332 case reflect.Array, reflect.Slice: 333 if val.Len() == 0 { 334 break 335 } 336 for i := 0; i < val.Len(); i++ { 337 oneIteration(reflect.ValueOf(i), val.Index(i)) 338 } 339 return 340 case reflect.Map: 341 if val.Len() == 0 { 342 break 343 } 344 for _, key := range sortKeys(val.MapKeys()) { 345 oneIteration(key, val.MapIndex(key)) 346 } 347 return 348 case reflect.Chan: 349 if val.IsNil() { 350 break 351 } 352 i := 0 353 for ; ; i++ { 354 elem, ok := val.Recv() 355 if !ok { 356 break 357 } 358 oneIteration(reflect.ValueOf(i), elem) 359 } 360 if i == 0 { 361 break 362 } 363 return 364 case reflect.Invalid: 365 break // An invalid value is likely a nil map, etc. and acts like an empty map. 366 default: 367 s.errorf("range can't iterate over %v", val) 368 } 369 if r.ElseList != nil { 370 s.walk(dot, r.ElseList) 371 } 372} 373 374func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 375 s.at(t) 376 tmpl := s.tmpl.tmpl[t.Name] 377 if tmpl == nil { 378 s.errorf("template %q not defined", t.Name) 379 } 380 if s.depth == maxExecDepth { 381 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 382 } 383 // Variables declared by the pipeline persist. 384 dot = s.evalPipeline(dot, t.Pipe) 385 newState := *s 386 newState.depth++ 387 newState.tmpl = tmpl 388 // No dynamic scoping: template invocations inherit no variables. 389 newState.vars = []variable{{"$", dot}} 390 newState.walk(dot, tmpl.Root) 391} 392 393// Eval functions evaluate pipelines, commands, and their elements and extract 394// values from the data structure by examining fields, calling methods, and so on. 395// The printing of those values happens only through walk functions. 396 397// evalPipeline returns the value acquired by evaluating a pipeline. If the 398// pipeline has a variable declaration, the variable will be pushed on the 399// stack. Callers should therefore pop the stack after they are finished 400// executing commands depending on the pipeline value. 401func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 402 if pipe == nil { 403 return 404 } 405 s.at(pipe) 406 for _, cmd := range pipe.Cmds { 407 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 408 // If the object has type interface{}, dig down one level to the thing inside. 409 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 410 value = reflect.ValueOf(value.Interface()) // lovely! 411 } 412 } 413 for _, variable := range pipe.Decl { 414 s.push(variable.Ident[0], value) 415 } 416 return value 417} 418 419func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 420 if len(args) > 1 || final.IsValid() { 421 s.errorf("can't give argument to non-function %s", args[0]) 422 } 423} 424 425func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 426 firstWord := cmd.Args[0] 427 switch n := firstWord.(type) { 428 case *parse.FieldNode: 429 return s.evalFieldNode(dot, n, cmd.Args, final) 430 case *parse.ChainNode: 431 return s.evalChainNode(dot, n, cmd.Args, final) 432 case *parse.IdentifierNode: 433 // Must be a function. 434 return s.evalFunction(dot, n, cmd, cmd.Args, final) 435 case *parse.PipeNode: 436 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 437 return s.evalPipeline(dot, n) 438 case *parse.VariableNode: 439 return s.evalVariableNode(dot, n, cmd.Args, final) 440 } 441 s.at(firstWord) 442 s.notAFunction(cmd.Args, final) 443 switch word := firstWord.(type) { 444 case *parse.BoolNode: 445 return reflect.ValueOf(word.True) 446 case *parse.DotNode: 447 return dot 448 case *parse.NilNode: 449 s.errorf("nil is not a command") 450 case *parse.NumberNode: 451 return s.idealConstant(word) 452 case *parse.StringNode: 453 return reflect.ValueOf(word.Text) 454 } 455 s.errorf("can't evaluate command %q", firstWord) 456 panic("not reached") 457} 458 459// idealConstant is called to return the value of a number in a context where 460// we don't know the type. In that case, the syntax of the number tells us 461// its type, and we use Go rules to resolve. Note there is no such thing as 462// a uint ideal constant in this situation - the value must be of int type. 463func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 464 // These are ideal constants but we don't know the type 465 // and we have no context. (If it was a method argument, 466 // we'd know what we need.) The syntax guides us to some extent. 467 s.at(constant) 468 switch { 469 case constant.IsComplex: 470 return reflect.ValueOf(constant.Complex128) // incontrovertible. 471 case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"): 472 return reflect.ValueOf(constant.Float64) 473 case constant.IsInt: 474 n := int(constant.Int64) 475 if int64(n) != constant.Int64 { 476 s.errorf("%s overflows int", constant.Text) 477 } 478 return reflect.ValueOf(n) 479 case constant.IsUint: 480 s.errorf("%s overflows int", constant.Text) 481 } 482 return zero 483} 484 485func isHexConstant(s string) bool { 486 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 487} 488 489func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 490 s.at(field) 491 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 492} 493 494func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 495 s.at(chain) 496 if len(chain.Field) == 0 { 497 s.errorf("internal error: no fields in evalChainNode") 498 } 499 if chain.Node.Type() == parse.NodeNil { 500 s.errorf("indirection through explicit nil in %s", chain) 501 } 502 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 503 pipe := s.evalArg(dot, nil, chain.Node) 504 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 505} 506 507func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 508 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 509 s.at(variable) 510 value := s.varValue(variable.Ident[0]) 511 if len(variable.Ident) == 1 { 512 s.notAFunction(args, final) 513 return value 514 } 515 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 516} 517 518// evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 519// dot is the environment in which to evaluate arguments, while 520// receiver is the value being walked along the chain. 521func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 522 n := len(ident) 523 for i := 0; i < n-1; i++ { 524 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 525 } 526 // Now if it's a method, it gets the arguments. 527 return s.evalField(dot, ident[n-1], node, args, final, receiver) 528} 529 530func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 531 s.at(node) 532 name := node.Ident 533 function, ok := findFunction(name, s.tmpl) 534 if !ok { 535 s.errorf("%q is not a defined function", name) 536 } 537 return s.evalCall(dot, function, cmd, name, args, final) 538} 539 540// evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 541// The 'final' argument represents the return value from the preceding 542// value of the pipeline, if any. 543func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 544 if !receiver.IsValid() { 545 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 546 s.errorf("nil data; no entry for key %q", fieldName) 547 } 548 return zero 549 } 550 typ := receiver.Type() 551 receiver, isNil := indirect(receiver) 552 // Unless it's an interface, need to get to a value of type *T to guarantee 553 // we see all methods of T and *T. 554 ptr := receiver 555 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() { 556 ptr = ptr.Addr() 557 } 558 if method := ptr.MethodByName(fieldName); method.IsValid() { 559 return s.evalCall(dot, method, node, fieldName, args, final) 560 } 561 hasArgs := len(args) > 1 || final.IsValid() 562 // It's not a method; must be a field of a struct or an element of a map. 563 switch receiver.Kind() { 564 case reflect.Struct: 565 tField, ok := receiver.Type().FieldByName(fieldName) 566 if ok { 567 if isNil { 568 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 569 } 570 field := receiver.FieldByIndex(tField.Index) 571 if tField.PkgPath != "" { // field is unexported 572 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 573 } 574 // If it's a function, we must call it. 575 if hasArgs { 576 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 577 } 578 return field 579 } 580 case reflect.Map: 581 if isNil { 582 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 583 } 584 // If it's a map, attempt to use the field name as a key. 585 nameVal := reflect.ValueOf(fieldName) 586 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 587 if hasArgs { 588 s.errorf("%s is not a method but has arguments", fieldName) 589 } 590 result := receiver.MapIndex(nameVal) 591 if !result.IsValid() { 592 switch s.tmpl.option.missingKey { 593 case mapInvalid: 594 // Just use the invalid value. 595 case mapZeroValue: 596 result = reflect.Zero(receiver.Type().Elem()) 597 case mapError: 598 s.errorf("map has no entry for key %q", fieldName) 599 } 600 } 601 return result 602 } 603 } 604 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 605 panic("not reached") 606} 607 608var ( 609 errorType = reflect.TypeOf((*error)(nil)).Elem() 610 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 611 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 612) 613 614// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 615// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 616// as the function itself. 617func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 618 if args != nil { 619 args = args[1:] // Zeroth arg is function name/node; not passed to function. 620 } 621 typ := fun.Type() 622 numIn := len(args) 623 if final.IsValid() { 624 numIn++ 625 } 626 numFixed := len(args) 627 if typ.IsVariadic() { 628 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 629 if numIn < numFixed { 630 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 631 } 632 } else if numIn != typ.NumIn() { 633 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 634 } 635 if !goodFunc(typ) { 636 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 637 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 638 } 639 // Build the arg list. 640 argv := make([]reflect.Value, numIn) 641 // Args must be evaluated. Fixed args first. 642 i := 0 643 for ; i < numFixed && i < len(args); i++ { 644 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 645 } 646 // Now the ... args. 647 if typ.IsVariadic() { 648 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 649 for ; i < len(args); i++ { 650 argv[i] = s.evalArg(dot, argType, args[i]) 651 } 652 } 653 // Add final value if necessary. 654 if final.IsValid() { 655 t := typ.In(typ.NumIn() - 1) 656 if typ.IsVariadic() { 657 if numIn-1 < numFixed { 658 // The added final argument corresponds to a fixed parameter of the function. 659 // Validate against the type of the actual parameter. 660 t = typ.In(numIn - 1) 661 } else { 662 // The added final argument corresponds to the variadic part. 663 // Validate against the type of the elements of the variadic slice. 664 t = t.Elem() 665 } 666 } 667 argv[i] = s.validateType(final, t) 668 } 669 result := fun.Call(argv) 670 // If we have an error that is not nil, stop execution and return that error to the caller. 671 if len(result) == 2 && !result[1].IsNil() { 672 s.at(node) 673 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 674 } 675 v := result[0] 676 if v.Type() == reflectValueType { 677 v = v.Interface().(reflect.Value) 678 } 679 return v 680} 681 682// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 683func canBeNil(typ reflect.Type) bool { 684 switch typ.Kind() { 685 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 686 return true 687 case reflect.Struct: 688 return typ == reflectValueType 689 } 690 return false 691} 692 693// validateType guarantees that the value is valid and assignable to the type. 694func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 695 if !value.IsValid() { 696 if typ == nil || canBeNil(typ) { 697 // An untyped nil interface{}. Accept as a proper nil value. 698 return reflect.Zero(typ) 699 } 700 s.errorf("invalid value; expected %s", typ) 701 } 702 if typ == reflectValueType && value.Type() != typ { 703 return reflect.ValueOf(value) 704 } 705 if typ != nil && !value.Type().AssignableTo(typ) { 706 if value.Kind() == reflect.Interface && !value.IsNil() { 707 value = value.Elem() 708 if value.Type().AssignableTo(typ) { 709 return value 710 } 711 // fallthrough 712 } 713 // Does one dereference or indirection work? We could do more, as we 714 // do with method receivers, but that gets messy and method receivers 715 // are much more constrained, so it makes more sense there than here. 716 // Besides, one is almost always all you need. 717 switch { 718 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 719 value = value.Elem() 720 if !value.IsValid() { 721 s.errorf("dereference of nil pointer of type %s", typ) 722 } 723 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 724 value = value.Addr() 725 default: 726 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 727 } 728 } 729 return value 730} 731 732func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 733 s.at(n) 734 switch arg := n.(type) { 735 case *parse.DotNode: 736 return s.validateType(dot, typ) 737 case *parse.NilNode: 738 if canBeNil(typ) { 739 return reflect.Zero(typ) 740 } 741 s.errorf("cannot assign nil to %s", typ) 742 case *parse.FieldNode: 743 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 744 case *parse.VariableNode: 745 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 746 case *parse.PipeNode: 747 return s.validateType(s.evalPipeline(dot, arg), typ) 748 case *parse.IdentifierNode: 749 return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ) 750 case *parse.ChainNode: 751 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 752 } 753 switch typ.Kind() { 754 case reflect.Bool: 755 return s.evalBool(typ, n) 756 case reflect.Complex64, reflect.Complex128: 757 return s.evalComplex(typ, n) 758 case reflect.Float32, reflect.Float64: 759 return s.evalFloat(typ, n) 760 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 761 return s.evalInteger(typ, n) 762 case reflect.Interface: 763 if typ.NumMethod() == 0 { 764 return s.evalEmptyInterface(dot, n) 765 } 766 case reflect.Struct: 767 if typ == reflectValueType { 768 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 769 } 770 case reflect.String: 771 return s.evalString(typ, n) 772 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 773 return s.evalUnsignedInteger(typ, n) 774 } 775 s.errorf("can't handle %s for arg of type %s", n, typ) 776 panic("not reached") 777} 778 779func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 780 s.at(n) 781 if n, ok := n.(*parse.BoolNode); ok { 782 value := reflect.New(typ).Elem() 783 value.SetBool(n.True) 784 return value 785 } 786 s.errorf("expected bool; found %s", n) 787 panic("not reached") 788} 789 790func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 791 s.at(n) 792 if n, ok := n.(*parse.StringNode); ok { 793 value := reflect.New(typ).Elem() 794 value.SetString(n.Text) 795 return value 796 } 797 s.errorf("expected string; found %s", n) 798 panic("not reached") 799} 800 801func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 802 s.at(n) 803 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 804 value := reflect.New(typ).Elem() 805 value.SetInt(n.Int64) 806 return value 807 } 808 s.errorf("expected integer; found %s", n) 809 panic("not reached") 810} 811 812func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 813 s.at(n) 814 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 815 value := reflect.New(typ).Elem() 816 value.SetUint(n.Uint64) 817 return value 818 } 819 s.errorf("expected unsigned integer; found %s", n) 820 panic("not reached") 821} 822 823func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 824 s.at(n) 825 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 826 value := reflect.New(typ).Elem() 827 value.SetFloat(n.Float64) 828 return value 829 } 830 s.errorf("expected float; found %s", n) 831 panic("not reached") 832} 833 834func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 835 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 836 value := reflect.New(typ).Elem() 837 value.SetComplex(n.Complex128) 838 return value 839 } 840 s.errorf("expected complex; found %s", n) 841 panic("not reached") 842} 843 844func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 845 s.at(n) 846 switch n := n.(type) { 847 case *parse.BoolNode: 848 return reflect.ValueOf(n.True) 849 case *parse.DotNode: 850 return dot 851 case *parse.FieldNode: 852 return s.evalFieldNode(dot, n, nil, zero) 853 case *parse.IdentifierNode: 854 return s.evalFunction(dot, n, n, nil, zero) 855 case *parse.NilNode: 856 // NilNode is handled in evalArg, the only place that calls here. 857 s.errorf("evalEmptyInterface: nil (can't happen)") 858 case *parse.NumberNode: 859 return s.idealConstant(n) 860 case *parse.StringNode: 861 return reflect.ValueOf(n.Text) 862 case *parse.VariableNode: 863 return s.evalVariableNode(dot, n, nil, zero) 864 case *parse.PipeNode: 865 return s.evalPipeline(dot, n) 866 } 867 s.errorf("can't handle assignment of %s to empty interface argument", n) 868 panic("not reached") 869} 870 871// indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 872func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 873 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 874 if v.IsNil() { 875 return v, true 876 } 877 } 878 return v, false 879} 880 881// indirectInterface returns the concrete value in an interface value, 882// or else the zero reflect.Value. 883// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 884// the fact that x was an interface value is forgotten. 885func indirectInterface(v reflect.Value) reflect.Value { 886 if v.Kind() != reflect.Interface { 887 return v 888 } 889 if v.IsNil() { 890 return reflect.Value{} 891 } 892 return v.Elem() 893} 894 895// printValue writes the textual representation of the value to the output of 896// the template. 897func (s *state) printValue(n parse.Node, v reflect.Value) { 898 s.at(n) 899 iface, ok := printableValue(v) 900 if !ok { 901 s.errorf("can't print %s of type %s", n, v.Type()) 902 } 903 _, err := fmt.Fprint(s.wr, iface) 904 if err != nil { 905 s.writeError(err) 906 } 907} 908 909// printableValue returns the, possibly indirected, interface value inside v that 910// is best for a call to formatted printer. 911func printableValue(v reflect.Value) (interface{}, bool) { 912 if v.Kind() == reflect.Ptr { 913 v, _ = indirect(v) // fmt.Fprint handles nil. 914 } 915 if !v.IsValid() { 916 return "<no value>", true 917 } 918 919 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 920 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 921 v = v.Addr() 922 } else { 923 switch v.Kind() { 924 case reflect.Chan, reflect.Func: 925 return nil, false 926 } 927 } 928 } 929 return v.Interface(), true 930} 931 932// sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 933func sortKeys(v []reflect.Value) []reflect.Value { 934 if len(v) <= 1 { 935 return v 936 } 937 switch v[0].Kind() { 938 case reflect.Float32, reflect.Float64: 939 sort.Slice(v, func(i, j int) bool { 940 return v[i].Float() < v[j].Float() 941 }) 942 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 943 sort.Slice(v, func(i, j int) bool { 944 return v[i].Int() < v[j].Int() 945 }) 946 case reflect.String: 947 sort.Slice(v, func(i, j int) bool { 948 return v[i].String() < v[j].String() 949 }) 950 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 951 sort.Slice(v, func(i, j int) bool { 952 return v[i].Uint() < v[j].Uint() 953 }) 954 } 955 return v 956} 957