1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package template
6
7import (
8	"bytes"
9	"fmt"
10	"io"
11	"reflect"
12	"runtime"
13	"sort"
14	"strings"
15	"text/template/parse"
16)
17
18// maxExecDepth specifies the maximum stack depth of templates within
19// templates. This limit is only practically reached by accidentally
20// recursive template invocations. This limit allows us to return
21// an error instead of triggering a stack overflow.
22// For gccgo we make this 1000 rather than 100000 to avoid stack overflow
23// on non-split-stack systems.
24const maxExecDepth = 1000
25
26// state represents the state of an execution. It's not part of the
27// template so that multiple executions of the same template
28// can execute in parallel.
29type state struct {
30	tmpl  *Template
31	wr    io.Writer
32	node  parse.Node // current node, for errors
33	vars  []variable // push-down stack of variable values.
34	depth int        // the height of the stack of executing templates.
35}
36
37// variable holds the dynamic value of a variable such as $, $x etc.
38type variable struct {
39	name  string
40	value reflect.Value
41}
42
43// push pushes a new variable on the stack.
44func (s *state) push(name string, value reflect.Value) {
45	s.vars = append(s.vars, variable{name, value})
46}
47
48// mark returns the length of the variable stack.
49func (s *state) mark() int {
50	return len(s.vars)
51}
52
53// pop pops the variable stack up to the mark.
54func (s *state) pop(mark int) {
55	s.vars = s.vars[0:mark]
56}
57
58// setVar overwrites the top-nth variable on the stack. Used by range iterations.
59func (s *state) setVar(n int, value reflect.Value) {
60	s.vars[len(s.vars)-n].value = value
61}
62
63// varValue returns the value of the named variable.
64func (s *state) varValue(name string) reflect.Value {
65	for i := s.mark() - 1; i >= 0; i-- {
66		if s.vars[i].name == name {
67			return s.vars[i].value
68		}
69	}
70	s.errorf("undefined variable: %s", name)
71	return zero
72}
73
74var zero reflect.Value
75
76// at marks the state to be on node n, for error reporting.
77func (s *state) at(node parse.Node) {
78	s.node = node
79}
80
81// doublePercent returns the string with %'s replaced by %%, if necessary,
82// so it can be used safely inside a Printf format string.
83func doublePercent(str string) string {
84	return strings.Replace(str, "%", "%%", -1)
85}
86
87// TODO: It would be nice if ExecError was more broken down, but
88// the way ErrorContext embeds the template name makes the
89// processing too clumsy.
90
91// ExecError is the custom error type returned when Execute has an
92// error evaluating its template. (If a write error occurs, the actual
93// error is returned; it will not be of type ExecError.)
94type ExecError struct {
95	Name string // Name of template.
96	Err  error  // Pre-formatted error.
97}
98
99func (e ExecError) Error() string {
100	return e.Err.Error()
101}
102
103// errorf records an ExecError and terminates processing.
104func (s *state) errorf(format string, args ...interface{}) {
105	name := doublePercent(s.tmpl.Name())
106	if s.node == nil {
107		format = fmt.Sprintf("template: %s: %s", name, format)
108	} else {
109		location, context := s.tmpl.ErrorContext(s.node)
110		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
111	}
112	panic(ExecError{
113		Name: s.tmpl.Name(),
114		Err:  fmt.Errorf(format, args...),
115	})
116}
117
118// writeError is the wrapper type used internally when Execute has an
119// error writing to its output. We strip the wrapper in errRecover.
120// Note that this is not an implementation of error, so it cannot escape
121// from the package as an error value.
122type writeError struct {
123	Err error // Original error.
124}
125
126func (s *state) writeError(err error) {
127	panic(writeError{
128		Err: err,
129	})
130}
131
132// errRecover is the handler that turns panics into returns from the top
133// level of Parse.
134func errRecover(errp *error) {
135	e := recover()
136	if e != nil {
137		switch err := e.(type) {
138		case runtime.Error:
139			panic(e)
140		case writeError:
141			*errp = err.Err // Strip the wrapper.
142		case ExecError:
143			*errp = err // Keep the wrapper.
144		default:
145			panic(e)
146		}
147	}
148}
149
150// ExecuteTemplate applies the template associated with t that has the given name
151// to the specified data object and writes the output to wr.
152// If an error occurs executing the template or writing its output,
153// execution stops, but partial results may already have been written to
154// the output writer.
155// A template may be executed safely in parallel, although if parallel
156// executions share a Writer the output may be interleaved.
157func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
158	var tmpl *Template
159	if t.common != nil {
160		tmpl = t.tmpl[name]
161	}
162	if tmpl == nil {
163		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
164	}
165	return tmpl.Execute(wr, data)
166}
167
168// Execute applies a parsed template to the specified data object,
169// and writes the output to wr.
170// If an error occurs executing the template or writing its output,
171// execution stops, but partial results may already have been written to
172// the output writer.
173// A template may be executed safely in parallel, although if parallel
174// executions share a Writer the output may be interleaved.
175//
176// If data is a reflect.Value, the template applies to the concrete
177// value that the reflect.Value holds, as in fmt.Print.
178func (t *Template) Execute(wr io.Writer, data interface{}) error {
179	return t.execute(wr, data)
180}
181
182func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
183	defer errRecover(&err)
184	value, ok := data.(reflect.Value)
185	if !ok {
186		value = reflect.ValueOf(data)
187	}
188	state := &state{
189		tmpl: t,
190		wr:   wr,
191		vars: []variable{{"$", value}},
192	}
193	if t.Tree == nil || t.Root == nil {
194		state.errorf("%q is an incomplete or empty template", t.Name())
195	}
196	state.walk(value, t.Root)
197	return
198}
199
200// DefinedTemplates returns a string listing the defined templates,
201// prefixed by the string "; defined templates are: ". If there are none,
202// it returns the empty string. For generating an error message here
203// and in html/template.
204func (t *Template) DefinedTemplates() string {
205	if t.common == nil {
206		return ""
207	}
208	var b bytes.Buffer
209	for name, tmpl := range t.tmpl {
210		if tmpl.Tree == nil || tmpl.Root == nil {
211			continue
212		}
213		if b.Len() > 0 {
214			b.WriteString(", ")
215		}
216		fmt.Fprintf(&b, "%q", name)
217	}
218	var s string
219	if b.Len() > 0 {
220		s = "; defined templates are: " + b.String()
221	}
222	return s
223}
224
225// Walk functions step through the major pieces of the template structure,
226// generating output as they go.
227func (s *state) walk(dot reflect.Value, node parse.Node) {
228	s.at(node)
229	switch node := node.(type) {
230	case *parse.ActionNode:
231		// Do not pop variables so they persist until next end.
232		// Also, if the action declares variables, don't print the result.
233		val := s.evalPipeline(dot, node.Pipe)
234		if len(node.Pipe.Decl) == 0 {
235			s.printValue(node, val)
236		}
237	case *parse.IfNode:
238		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
239	case *parse.ListNode:
240		for _, node := range node.Nodes {
241			s.walk(dot, node)
242		}
243	case *parse.RangeNode:
244		s.walkRange(dot, node)
245	case *parse.TemplateNode:
246		s.walkTemplate(dot, node)
247	case *parse.TextNode:
248		if _, err := s.wr.Write(node.Text); err != nil {
249			s.writeError(err)
250		}
251	case *parse.WithNode:
252		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
253	default:
254		s.errorf("unknown node: %s", node)
255	}
256}
257
258// walkIfOrWith walks an 'if' or 'with' node. The two control structures
259// are identical in behavior except that 'with' sets dot.
260func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
261	defer s.pop(s.mark())
262	val := s.evalPipeline(dot, pipe)
263	truth, ok := isTrue(val)
264	if !ok {
265		s.errorf("if/with can't use %v", val)
266	}
267	if truth {
268		if typ == parse.NodeWith {
269			s.walk(val, list)
270		} else {
271			s.walk(dot, list)
272		}
273	} else if elseList != nil {
274		s.walk(dot, elseList)
275	}
276}
277
278// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
279// and whether the value has a meaningful truth value. This is the definition of
280// truth used by if and other such actions.
281func IsTrue(val interface{}) (truth, ok bool) {
282	return isTrue(reflect.ValueOf(val))
283}
284
285func isTrue(val reflect.Value) (truth, ok bool) {
286	if !val.IsValid() {
287		// Something like var x interface{}, never set. It's a form of nil.
288		return false, true
289	}
290	switch val.Kind() {
291	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
292		truth = val.Len() > 0
293	case reflect.Bool:
294		truth = val.Bool()
295	case reflect.Complex64, reflect.Complex128:
296		truth = val.Complex() != 0
297	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
298		truth = !val.IsNil()
299	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
300		truth = val.Int() != 0
301	case reflect.Float32, reflect.Float64:
302		truth = val.Float() != 0
303	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
304		truth = val.Uint() != 0
305	case reflect.Struct:
306		truth = true // Struct values are always true.
307	default:
308		return
309	}
310	return truth, true
311}
312
313func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
314	s.at(r)
315	defer s.pop(s.mark())
316	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
317	// mark top of stack before any variables in the body are pushed.
318	mark := s.mark()
319	oneIteration := func(index, elem reflect.Value) {
320		// Set top var (lexically the second if there are two) to the element.
321		if len(r.Pipe.Decl) > 0 {
322			s.setVar(1, elem)
323		}
324		// Set next var (lexically the first if there are two) to the index.
325		if len(r.Pipe.Decl) > 1 {
326			s.setVar(2, index)
327		}
328		s.walk(elem, r.List)
329		s.pop(mark)
330	}
331	switch val.Kind() {
332	case reflect.Array, reflect.Slice:
333		if val.Len() == 0 {
334			break
335		}
336		for i := 0; i < val.Len(); i++ {
337			oneIteration(reflect.ValueOf(i), val.Index(i))
338		}
339		return
340	case reflect.Map:
341		if val.Len() == 0 {
342			break
343		}
344		for _, key := range sortKeys(val.MapKeys()) {
345			oneIteration(key, val.MapIndex(key))
346		}
347		return
348	case reflect.Chan:
349		if val.IsNil() {
350			break
351		}
352		i := 0
353		for ; ; i++ {
354			elem, ok := val.Recv()
355			if !ok {
356				break
357			}
358			oneIteration(reflect.ValueOf(i), elem)
359		}
360		if i == 0 {
361			break
362		}
363		return
364	case reflect.Invalid:
365		break // An invalid value is likely a nil map, etc. and acts like an empty map.
366	default:
367		s.errorf("range can't iterate over %v", val)
368	}
369	if r.ElseList != nil {
370		s.walk(dot, r.ElseList)
371	}
372}
373
374func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
375	s.at(t)
376	tmpl := s.tmpl.tmpl[t.Name]
377	if tmpl == nil {
378		s.errorf("template %q not defined", t.Name)
379	}
380	if s.depth == maxExecDepth {
381		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
382	}
383	// Variables declared by the pipeline persist.
384	dot = s.evalPipeline(dot, t.Pipe)
385	newState := *s
386	newState.depth++
387	newState.tmpl = tmpl
388	// No dynamic scoping: template invocations inherit no variables.
389	newState.vars = []variable{{"$", dot}}
390	newState.walk(dot, tmpl.Root)
391}
392
393// Eval functions evaluate pipelines, commands, and their elements and extract
394// values from the data structure by examining fields, calling methods, and so on.
395// The printing of those values happens only through walk functions.
396
397// evalPipeline returns the value acquired by evaluating a pipeline. If the
398// pipeline has a variable declaration, the variable will be pushed on the
399// stack. Callers should therefore pop the stack after they are finished
400// executing commands depending on the pipeline value.
401func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
402	if pipe == nil {
403		return
404	}
405	s.at(pipe)
406	for _, cmd := range pipe.Cmds {
407		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
408		// If the object has type interface{}, dig down one level to the thing inside.
409		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
410			value = reflect.ValueOf(value.Interface()) // lovely!
411		}
412	}
413	for _, variable := range pipe.Decl {
414		s.push(variable.Ident[0], value)
415	}
416	return value
417}
418
419func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
420	if len(args) > 1 || final.IsValid() {
421		s.errorf("can't give argument to non-function %s", args[0])
422	}
423}
424
425func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
426	firstWord := cmd.Args[0]
427	switch n := firstWord.(type) {
428	case *parse.FieldNode:
429		return s.evalFieldNode(dot, n, cmd.Args, final)
430	case *parse.ChainNode:
431		return s.evalChainNode(dot, n, cmd.Args, final)
432	case *parse.IdentifierNode:
433		// Must be a function.
434		return s.evalFunction(dot, n, cmd, cmd.Args, final)
435	case *parse.PipeNode:
436		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
437		return s.evalPipeline(dot, n)
438	case *parse.VariableNode:
439		return s.evalVariableNode(dot, n, cmd.Args, final)
440	}
441	s.at(firstWord)
442	s.notAFunction(cmd.Args, final)
443	switch word := firstWord.(type) {
444	case *parse.BoolNode:
445		return reflect.ValueOf(word.True)
446	case *parse.DotNode:
447		return dot
448	case *parse.NilNode:
449		s.errorf("nil is not a command")
450	case *parse.NumberNode:
451		return s.idealConstant(word)
452	case *parse.StringNode:
453		return reflect.ValueOf(word.Text)
454	}
455	s.errorf("can't evaluate command %q", firstWord)
456	panic("not reached")
457}
458
459// idealConstant is called to return the value of a number in a context where
460// we don't know the type. In that case, the syntax of the number tells us
461// its type, and we use Go rules to resolve. Note there is no such thing as
462// a uint ideal constant in this situation - the value must be of int type.
463func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
464	// These are ideal constants but we don't know the type
465	// and we have no context.  (If it was a method argument,
466	// we'd know what we need.) The syntax guides us to some extent.
467	s.at(constant)
468	switch {
469	case constant.IsComplex:
470		return reflect.ValueOf(constant.Complex128) // incontrovertible.
471	case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
472		return reflect.ValueOf(constant.Float64)
473	case constant.IsInt:
474		n := int(constant.Int64)
475		if int64(n) != constant.Int64 {
476			s.errorf("%s overflows int", constant.Text)
477		}
478		return reflect.ValueOf(n)
479	case constant.IsUint:
480		s.errorf("%s overflows int", constant.Text)
481	}
482	return zero
483}
484
485func isHexConstant(s string) bool {
486	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
487}
488
489func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
490	s.at(field)
491	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
492}
493
494func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
495	s.at(chain)
496	if len(chain.Field) == 0 {
497		s.errorf("internal error: no fields in evalChainNode")
498	}
499	if chain.Node.Type() == parse.NodeNil {
500		s.errorf("indirection through explicit nil in %s", chain)
501	}
502	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
503	pipe := s.evalArg(dot, nil, chain.Node)
504	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
505}
506
507func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
508	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
509	s.at(variable)
510	value := s.varValue(variable.Ident[0])
511	if len(variable.Ident) == 1 {
512		s.notAFunction(args, final)
513		return value
514	}
515	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
516}
517
518// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
519// dot is the environment in which to evaluate arguments, while
520// receiver is the value being walked along the chain.
521func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
522	n := len(ident)
523	for i := 0; i < n-1; i++ {
524		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
525	}
526	// Now if it's a method, it gets the arguments.
527	return s.evalField(dot, ident[n-1], node, args, final, receiver)
528}
529
530func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
531	s.at(node)
532	name := node.Ident
533	function, ok := findFunction(name, s.tmpl)
534	if !ok {
535		s.errorf("%q is not a defined function", name)
536	}
537	return s.evalCall(dot, function, cmd, name, args, final)
538}
539
540// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
541// The 'final' argument represents the return value from the preceding
542// value of the pipeline, if any.
543func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
544	if !receiver.IsValid() {
545		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
546			s.errorf("nil data; no entry for key %q", fieldName)
547		}
548		return zero
549	}
550	typ := receiver.Type()
551	receiver, isNil := indirect(receiver)
552	// Unless it's an interface, need to get to a value of type *T to guarantee
553	// we see all methods of T and *T.
554	ptr := receiver
555	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
556		ptr = ptr.Addr()
557	}
558	if method := ptr.MethodByName(fieldName); method.IsValid() {
559		return s.evalCall(dot, method, node, fieldName, args, final)
560	}
561	hasArgs := len(args) > 1 || final.IsValid()
562	// It's not a method; must be a field of a struct or an element of a map.
563	switch receiver.Kind() {
564	case reflect.Struct:
565		tField, ok := receiver.Type().FieldByName(fieldName)
566		if ok {
567			if isNil {
568				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
569			}
570			field := receiver.FieldByIndex(tField.Index)
571			if tField.PkgPath != "" { // field is unexported
572				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
573			}
574			// If it's a function, we must call it.
575			if hasArgs {
576				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
577			}
578			return field
579		}
580	case reflect.Map:
581		if isNil {
582			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
583		}
584		// If it's a map, attempt to use the field name as a key.
585		nameVal := reflect.ValueOf(fieldName)
586		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
587			if hasArgs {
588				s.errorf("%s is not a method but has arguments", fieldName)
589			}
590			result := receiver.MapIndex(nameVal)
591			if !result.IsValid() {
592				switch s.tmpl.option.missingKey {
593				case mapInvalid:
594					// Just use the invalid value.
595				case mapZeroValue:
596					result = reflect.Zero(receiver.Type().Elem())
597				case mapError:
598					s.errorf("map has no entry for key %q", fieldName)
599				}
600			}
601			return result
602		}
603	}
604	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
605	panic("not reached")
606}
607
608var (
609	errorType        = reflect.TypeOf((*error)(nil)).Elem()
610	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
611	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
612)
613
614// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
615// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
616// as the function itself.
617func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
618	if args != nil {
619		args = args[1:] // Zeroth arg is function name/node; not passed to function.
620	}
621	typ := fun.Type()
622	numIn := len(args)
623	if final.IsValid() {
624		numIn++
625	}
626	numFixed := len(args)
627	if typ.IsVariadic() {
628		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
629		if numIn < numFixed {
630			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
631		}
632	} else if numIn != typ.NumIn() {
633		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
634	}
635	if !goodFunc(typ) {
636		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
637		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
638	}
639	// Build the arg list.
640	argv := make([]reflect.Value, numIn)
641	// Args must be evaluated. Fixed args first.
642	i := 0
643	for ; i < numFixed && i < len(args); i++ {
644		argv[i] = s.evalArg(dot, typ.In(i), args[i])
645	}
646	// Now the ... args.
647	if typ.IsVariadic() {
648		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
649		for ; i < len(args); i++ {
650			argv[i] = s.evalArg(dot, argType, args[i])
651		}
652	}
653	// Add final value if necessary.
654	if final.IsValid() {
655		t := typ.In(typ.NumIn() - 1)
656		if typ.IsVariadic() {
657			if numIn-1 < numFixed {
658				// The added final argument corresponds to a fixed parameter of the function.
659				// Validate against the type of the actual parameter.
660				t = typ.In(numIn - 1)
661			} else {
662				// The added final argument corresponds to the variadic part.
663				// Validate against the type of the elements of the variadic slice.
664				t = t.Elem()
665			}
666		}
667		argv[i] = s.validateType(final, t)
668	}
669	result := fun.Call(argv)
670	// If we have an error that is not nil, stop execution and return that error to the caller.
671	if len(result) == 2 && !result[1].IsNil() {
672		s.at(node)
673		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
674	}
675	v := result[0]
676	if v.Type() == reflectValueType {
677		v = v.Interface().(reflect.Value)
678	}
679	return v
680}
681
682// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
683func canBeNil(typ reflect.Type) bool {
684	switch typ.Kind() {
685	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
686		return true
687	case reflect.Struct:
688		return typ == reflectValueType
689	}
690	return false
691}
692
693// validateType guarantees that the value is valid and assignable to the type.
694func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
695	if !value.IsValid() {
696		if typ == nil || canBeNil(typ) {
697			// An untyped nil interface{}. Accept as a proper nil value.
698			return reflect.Zero(typ)
699		}
700		s.errorf("invalid value; expected %s", typ)
701	}
702	if typ == reflectValueType && value.Type() != typ {
703		return reflect.ValueOf(value)
704	}
705	if typ != nil && !value.Type().AssignableTo(typ) {
706		if value.Kind() == reflect.Interface && !value.IsNil() {
707			value = value.Elem()
708			if value.Type().AssignableTo(typ) {
709				return value
710			}
711			// fallthrough
712		}
713		// Does one dereference or indirection work? We could do more, as we
714		// do with method receivers, but that gets messy and method receivers
715		// are much more constrained, so it makes more sense there than here.
716		// Besides, one is almost always all you need.
717		switch {
718		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
719			value = value.Elem()
720			if !value.IsValid() {
721				s.errorf("dereference of nil pointer of type %s", typ)
722			}
723		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
724			value = value.Addr()
725		default:
726			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
727		}
728	}
729	return value
730}
731
732func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
733	s.at(n)
734	switch arg := n.(type) {
735	case *parse.DotNode:
736		return s.validateType(dot, typ)
737	case *parse.NilNode:
738		if canBeNil(typ) {
739			return reflect.Zero(typ)
740		}
741		s.errorf("cannot assign nil to %s", typ)
742	case *parse.FieldNode:
743		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
744	case *parse.VariableNode:
745		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
746	case *parse.PipeNode:
747		return s.validateType(s.evalPipeline(dot, arg), typ)
748	case *parse.IdentifierNode:
749		return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
750	case *parse.ChainNode:
751		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
752	}
753	switch typ.Kind() {
754	case reflect.Bool:
755		return s.evalBool(typ, n)
756	case reflect.Complex64, reflect.Complex128:
757		return s.evalComplex(typ, n)
758	case reflect.Float32, reflect.Float64:
759		return s.evalFloat(typ, n)
760	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
761		return s.evalInteger(typ, n)
762	case reflect.Interface:
763		if typ.NumMethod() == 0 {
764			return s.evalEmptyInterface(dot, n)
765		}
766	case reflect.Struct:
767		if typ == reflectValueType {
768			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
769		}
770	case reflect.String:
771		return s.evalString(typ, n)
772	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
773		return s.evalUnsignedInteger(typ, n)
774	}
775	s.errorf("can't handle %s for arg of type %s", n, typ)
776	panic("not reached")
777}
778
779func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
780	s.at(n)
781	if n, ok := n.(*parse.BoolNode); ok {
782		value := reflect.New(typ).Elem()
783		value.SetBool(n.True)
784		return value
785	}
786	s.errorf("expected bool; found %s", n)
787	panic("not reached")
788}
789
790func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
791	s.at(n)
792	if n, ok := n.(*parse.StringNode); ok {
793		value := reflect.New(typ).Elem()
794		value.SetString(n.Text)
795		return value
796	}
797	s.errorf("expected string; found %s", n)
798	panic("not reached")
799}
800
801func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
802	s.at(n)
803	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
804		value := reflect.New(typ).Elem()
805		value.SetInt(n.Int64)
806		return value
807	}
808	s.errorf("expected integer; found %s", n)
809	panic("not reached")
810}
811
812func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
813	s.at(n)
814	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
815		value := reflect.New(typ).Elem()
816		value.SetUint(n.Uint64)
817		return value
818	}
819	s.errorf("expected unsigned integer; found %s", n)
820	panic("not reached")
821}
822
823func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
824	s.at(n)
825	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
826		value := reflect.New(typ).Elem()
827		value.SetFloat(n.Float64)
828		return value
829	}
830	s.errorf("expected float; found %s", n)
831	panic("not reached")
832}
833
834func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
835	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
836		value := reflect.New(typ).Elem()
837		value.SetComplex(n.Complex128)
838		return value
839	}
840	s.errorf("expected complex; found %s", n)
841	panic("not reached")
842}
843
844func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
845	s.at(n)
846	switch n := n.(type) {
847	case *parse.BoolNode:
848		return reflect.ValueOf(n.True)
849	case *parse.DotNode:
850		return dot
851	case *parse.FieldNode:
852		return s.evalFieldNode(dot, n, nil, zero)
853	case *parse.IdentifierNode:
854		return s.evalFunction(dot, n, n, nil, zero)
855	case *parse.NilNode:
856		// NilNode is handled in evalArg, the only place that calls here.
857		s.errorf("evalEmptyInterface: nil (can't happen)")
858	case *parse.NumberNode:
859		return s.idealConstant(n)
860	case *parse.StringNode:
861		return reflect.ValueOf(n.Text)
862	case *parse.VariableNode:
863		return s.evalVariableNode(dot, n, nil, zero)
864	case *parse.PipeNode:
865		return s.evalPipeline(dot, n)
866	}
867	s.errorf("can't handle assignment of %s to empty interface argument", n)
868	panic("not reached")
869}
870
871// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
872func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
873	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
874		if v.IsNil() {
875			return v, true
876		}
877	}
878	return v, false
879}
880
881// indirectInterface returns the concrete value in an interface value,
882// or else the zero reflect.Value.
883// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
884// the fact that x was an interface value is forgotten.
885func indirectInterface(v reflect.Value) reflect.Value {
886	if v.Kind() != reflect.Interface {
887		return v
888	}
889	if v.IsNil() {
890		return reflect.Value{}
891	}
892	return v.Elem()
893}
894
895// printValue writes the textual representation of the value to the output of
896// the template.
897func (s *state) printValue(n parse.Node, v reflect.Value) {
898	s.at(n)
899	iface, ok := printableValue(v)
900	if !ok {
901		s.errorf("can't print %s of type %s", n, v.Type())
902	}
903	_, err := fmt.Fprint(s.wr, iface)
904	if err != nil {
905		s.writeError(err)
906	}
907}
908
909// printableValue returns the, possibly indirected, interface value inside v that
910// is best for a call to formatted printer.
911func printableValue(v reflect.Value) (interface{}, bool) {
912	if v.Kind() == reflect.Ptr {
913		v, _ = indirect(v) // fmt.Fprint handles nil.
914	}
915	if !v.IsValid() {
916		return "<no value>", true
917	}
918
919	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
920		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
921			v = v.Addr()
922		} else {
923			switch v.Kind() {
924			case reflect.Chan, reflect.Func:
925				return nil, false
926			}
927		}
928	}
929	return v.Interface(), true
930}
931
932// sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
933func sortKeys(v []reflect.Value) []reflect.Value {
934	if len(v) <= 1 {
935		return v
936	}
937	switch v[0].Kind() {
938	case reflect.Float32, reflect.Float64:
939		sort.Slice(v, func(i, j int) bool {
940			return v[i].Float() < v[j].Float()
941		})
942	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
943		sort.Slice(v, func(i, j int) bool {
944			return v[i].Int() < v[j].Int()
945		})
946	case reflect.String:
947		sort.Slice(v, func(i, j int) bool {
948			return v[i].String() < v[j].String()
949		})
950	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
951		sort.Slice(v, func(i, j int) bool {
952			return v[i].Uint() < v[j].Uint()
953		})
954	}
955	return v
956}
957