1 /* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2    Copyright (C) 1994-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_ARC_H
21 #define GCC_ARC_H
22 
23 #include <stdbool.h>
24 
25 /* Things to do:
26 
27    - incscc, decscc?
28 
29 */
30 
31 #define SYMBOL_FLAG_SHORT_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
32 #define SYMBOL_FLAG_MEDIUM_CALL	(SYMBOL_FLAG_MACH_DEP << 1)
33 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 2)
34 #define SYMBOL_FLAG_CMEM	(SYMBOL_FLAG_MACH_DEP << 3)
35 
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT	PROCESSOR_arc700
38 #endif
39 
40 /* Check if this symbol has a long_call attribute in its declaration */
41 #define SYMBOL_REF_LONG_CALL_P(X)	\
42 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
43 
44 /* Check if this symbol has a medium_call attribute in its declaration */
45 #define SYMBOL_REF_MEDIUM_CALL_P(X)	\
46 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
47 
48 /* Check if this symbol has a short_call attribute in its declaration */
49 #define SYMBOL_REF_SHORT_CALL_P(X)	\
50 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
51 
52 /* Names to predefine in the preprocessor for this target machine.  */
53 #define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
54 
55 /* Macros enabled by specific command line option.  FIXME: to be
56    deprecatd.  */
57 #define CPP_SPEC "\
58 %{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59 %{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60 %{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61 %{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62 %{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63 %{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64 %{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65 %(subtarget_cpp_spec)"
66 
67 #undef CC1_SPEC
68 #define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}}	\
69 %{EB:-mbig-endian} %{EL:-mlittle-endian}			\
70 %{G*}								\
71 "
72 extern const char *arc_cpu_to_as (int argc, const char **argv);
73 
74 #define EXTRA_SPEC_FUNCTIONS			\
75   { "cpu_to_as", arc_cpu_to_as },
76 
77 /* This macro defines names of additional specifications to put in the specs
78    that can be used in various specifications like CC1_SPEC.  Its definition
79    is an initializer with a subgrouping for each command option.
80 
81    Each subgrouping contains a string constant, that defines the
82    specification name, and a string constant that used by the GCC driver
83    program.
84 
85    Do not define this macro if it does not need to do anything.  */
86 #define EXTRA_SPECS				      \
87   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC }, \
88   SUBTARGET_EXTRA_SPECS
89 
90 #ifndef SUBTARGET_EXTRA_SPECS
91 #define SUBTARGET_EXTRA_SPECS
92 #endif
93 
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97 
98 #undef ASM_SPEC
99 #define ASM_SPEC  "%{mbig-endian|EB:-EB} %{EL} "			\
100   "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} %{mfpu=fpuda*:-mfpuda}"
101 
102 #define OPTION_DEFAULT_SPECS						\
103   {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
104 
105 #ifndef DRIVER_ENDIAN_SELF_SPECS
106 #define DRIVER_ENDIAN_SELF_SPECS ""
107 #endif
108 
109 #define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS		   \
110   "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}"	   \
111   "%{mARC601: -mcpu=arc601 %<mARC601}"				   \
112   "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}"		   \
113   "%{mEA: -mea %<mEA}"
114 
115 /* Run-time compilation parameters selecting different hardware subsets.  */
116 
117 #define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
118 
119 #define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
120 #define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET	\
121 		     || TARGET_FP_DP_AX)
122 
123 #define SUBTARGET_SWITCHES
124 
125 /* Instruction set characteristics.
126    These are internal macros, set by the appropriate -m option.  */
127 
128 /* Non-zero means the cpu supports norm instruction.  This flag is set by
129    default for A7, and only for pre A7 cores when -mnorm is given.  */
130 #define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
131 /* Indicate if an optimized floating point emulation library is available.  */
132 #define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
133 
134 /* Non-zero means the cpu supports swap instruction.  This flag is set by
135    default for A7, and only for pre A7 cores when -mswap is given.  */
136 #define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
137 
138 /* Provide some macros for size / scheduling features of the ARC700, so
139    that we can pick & choose features if we get a new cpu family member.  */
140 
141 /* Should we try to unalign likely taken branches without a delay slot.  */
142 #define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
143 
144 /* Should we add padding before a return insn to avoid mispredict?  */
145 #define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
146 
147 /* For an anulled-true delay slot insn for a delayed branch, should we only
148    use conditional execution?  */
149 #define TARGET_AT_DBR_CONDEXEC  (!TARGET_ARC700 && !TARGET_V2)
150 
151 #define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id	\
152 			== BASE_ARCH_6xx)			\
153 		       && (TARGET_BARREL_SHIFTER))
154 #define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id	\
155 			== BASE_ARCH_6xx)			\
156 		       && (!TARGET_BARREL_SHIFTER))
157 #define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id	\
158 		       == BASE_ARCH_700)
159 /* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
160    TARGET_ARC700 is true, and TARGET_NPS400 is true.  */
161 #define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id	\
162 			== BASE_ARCH_700)			\
163 		       && (arc_selected_cpu->processor		\
164 			   == PROCESSOR_nps400))
165 #define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
166 #define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
167 #define TARGET_V2 (TARGET_EM || TARGET_HS)
168 
169 #ifndef UNALIGNED_ACCESS_DEFAULT
170 #define UNALIGNED_ACCESS_DEFAULT 0
171 #endif
172 
173 #ifndef TARGET_NPS_BITOPS_DEFAULT
174 #define TARGET_NPS_BITOPS_DEFAULT 0
175 #endif
176 
177 #ifndef TARGET_NPS_CMEM_DEFAULT
178 #define TARGET_NPS_CMEM_DEFAULT 0
179 #endif
180 
181 /* Enable the RRQ instruction alternatives.  */
182 
183 #define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
184 
185 /* Target machine storage layout.  */
186 
187 /* We want zero_extract to mean the same
188    no matter what the byte endianness is.  */
189 #define BITS_BIG_ENDIAN 0
190 
191 /* Define this if most significant byte of a word is the lowest numbered.  */
192 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
193 
194 /* Define this if most significant word of a multiword number is the lowest
195    numbered.  */
196 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
197 
198 /* Width in bits of a "word", which is the contents of a machine register.
199    Note that this is not necessarily the width of data type `int';
200    if using 16-bit ints on a 68000, this would still be 32.
201    But on a machine with 16-bit registers, this would be 16.  */
202 #define BITS_PER_WORD 32
203 
204 /* Width of a word, in units (bytes).  */
205 #define UNITS_PER_WORD 4
206 
207 /* Define this macro if it is advisable to hold scalars in registers
208    in a wider mode than that declared by the program.  In such cases,
209    the value is constrained to be within the bounds of the declared
210    type, but kept valid in the wider mode.  The signedness of the
211    extension may differ from that of the type.  */
212 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
213 if (GET_MODE_CLASS (MODE) == MODE_INT		\
214     && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
215 {						\
216   (MODE) = SImode;				\
217 }
218 
219 /* Width in bits of a pointer.
220    See also the macro `Pmode' defined below.  */
221 #define POINTER_SIZE 32
222 
223 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
224 #define PARM_BOUNDARY 32
225 
226 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
227 /* TOCHECK: Changed from 64 to 32 */
228 #define STACK_BOUNDARY 32
229 
230 /* ALIGN FRAMES on word boundaries.  */
231 #define ARC_STACK_ALIGN(LOC) \
232   (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
233 
234 /* Allocation boundary (in *bits*) for the code of a function.  */
235 #define FUNCTION_BOUNDARY 32
236 
237 /* Alignment of field after `int : 0' in a structure.  */
238 #define EMPTY_FIELD_BOUNDARY 32
239 
240 /* Every structure's size must be a multiple of this.  */
241 #define STRUCTURE_SIZE_BOUNDARY 8
242 
243 /* A bitfield declared as `int' forces `int' alignment for the struct.  */
244 #define PCC_BITFIELD_TYPE_MATTERS 1
245 
246 /* An expression for the alignment of a structure field FIELD if the
247    alignment computed in the usual way (including applying of
248    `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
249    alignment) is COMPUTED.  It overrides alignment only if the field
250    alignment has not been set by the `__attribute__ ((aligned (N)))'
251    construct.
252 */
253 
254 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
255 (TYPE_MODE (strip_array_types (TYPE)) == DFmode \
256  ? MIN ((COMPUTED), 32) : (COMPUTED))
257 
258 
259 
260 /* No data type wants to be aligned rounder than this.  */
261 /* This is bigger than currently necessary for the ARC.  If 8 byte floats are
262    ever added it's not clear whether they'll need such alignment or not.  For
263    now we assume they will.  We can always relax it if necessary but the
264    reverse isn't true.  */
265 /* TOCHECK: Changed from 64 to 32 */
266 #define BIGGEST_ALIGNMENT 32
267 
268 /* The best alignment to use in cases where we have a choice.  */
269 #define FASTEST_ALIGNMENT 32
270 
271 /* Make arrays of chars word-aligned for the same reasons.  */
272 #define LOCAL_ALIGNMENT(TYPE, ALIGN)             \
273   (TREE_CODE (TYPE) == ARRAY_TYPE               \
274    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
275    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
276 
277 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
278   (TREE_CODE (TYPE) == ARRAY_TYPE		\
279    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
280    && arc_size_opt_level < 3			\
281    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
282 
283 /* Set this nonzero if move instructions will actually fail to work
284    when given unaligned data.  */
285 /* On the ARC the lower address bits are masked to 0 as necessary.  The chip
286    won't croak when given an unaligned address, but the insn will still fail
287    to produce the correct result.  */
288 #define STRICT_ALIGNMENT (!unaligned_access && !TARGET_HS)
289 
290 /* Layout of source language data types.  */
291 
292 #define SHORT_TYPE_SIZE		16
293 #define INT_TYPE_SIZE		32
294 #define LONG_TYPE_SIZE		32
295 #define LONG_LONG_TYPE_SIZE	64
296 #define FLOAT_TYPE_SIZE		32
297 #define DOUBLE_TYPE_SIZE	64
298 #define LONG_DOUBLE_TYPE_SIZE	64
299 
300 /* Define this as 1 if `char' should by default be signed; else as 0.  */
301 #define DEFAULT_SIGNED_CHAR 0
302 
303 #undef SIZE_TYPE
304 #define SIZE_TYPE "unsigned int"
305 
306 #undef PTRDIFF_TYPE
307 #define PTRDIFF_TYPE "int"
308 
309 #undef WCHAR_TYPE
310 #define WCHAR_TYPE "int"
311 
312 #undef WCHAR_TYPE_SIZE
313 #define WCHAR_TYPE_SIZE 32
314 
315 #define PROGRAM_COUNTER_REGNO 63
316 
317 /* Standard register usage.  */
318 
319 /* Number of actual hardware registers.
320    The hardware registers are assigned numbers for the compiler
321    from 0 to just below FIRST_PSEUDO_REGISTER.
322    All registers that the compiler knows about must be given numbers,
323    even those that are not normally considered general registers.
324 
325    Registers 61, 62, and 63 are not really registers and we needn't treat
326    them as such.  We still need a register for the condition code and
327    argument pointer.  */
328 
329 /* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
330    r144, r145 = lp_start, lp_end
331    and therefore the pseudo registers start from r146. */
332 #define FIRST_PSEUDO_REGISTER 146
333 
334 /* 1 for registers that have pervasive standard uses
335    and are not available for the register allocator.
336 
337    0-28  - general purpose registers
338    29    - ilink1 (interrupt link register)
339    30    - ilink2 (interrupt link register)
340    31    - blink (branch link register)
341    32-59 - reserved for extensions
342    60    - LP_COUNT
343    61    - condition code
344    62    - argument pointer
345    63    - program counter
346 
347    FWIW, this is how the 61-63 encodings are used by the hardware:
348    61    - reserved
349    62    - long immediate data indicator
350    63    - PCL (program counter aligned to 32 bit, read-only)
351 
352    The general purpose registers are further broken down into:
353 
354    0-7   - arguments/results
355    8-12  - call used (r11 - static chain pointer)
356    13-25 - call saved
357    26    - global pointer
358    27    - frame pointer
359    28    - stack pointer
360    29    - ilink1
361    30    - ilink2
362    31    - return address register
363 
364    By default, the extension registers are not available.  */
365 /* Present implementations only have VR0-VR23 only.  */
366 /* ??? FIXME: r27 and r31 should not be fixed registers.  */
367 #define FIXED_REGISTERS \
368 { 0, 0, 0, 0, 0, 0, 0, 0,	\
369   0, 0, 0, 0, 0, 0, 0, 0,	\
370   0, 0, 0, 0, 0, 0, 0, 0,	\
371   0, 0, 1, 1, 1, 1, 1, 1,	\
372 				\
373   1, 1, 1, 1, 1, 1, 1, 1,	\
374   0, 0, 0, 0, 1, 1, 1, 1,	\
375   1, 1, 1, 1, 1, 1, 1, 1,	\
376   1, 1, 1, 1, 0, 1, 1, 1,       \
377 				\
378   0, 0, 0, 0, 0, 0, 0, 0,       \
379   0, 0, 0, 0, 0, 0, 0, 0,       \
380   0, 0, 0, 0, 0, 0, 0, 0,       \
381   1, 1, 1, 1, 1, 1, 1, 1,       \
382 				\
383   1, 1, 1, 1, 1, 1, 1, 1,       \
384   1, 1, 1, 1, 1, 1, 1, 1,       \
385   1, 1, 1, 1, 1, 1, 1, 1,       \
386   1, 1, 1, 1, 1, 1, 1, 1,       \
387 				\
388   0, 0, 0, 0, 0, 0, 0, 0,       \
389   0, 0, 0, 0, 0, 0, 0, 0,	\
390   1, 1}
391 
392 /* 1 for registers not available across function calls.
393    These must include the FIXED_REGISTERS and also any
394    registers that can be used without being saved.
395    The latter must include the registers where values are returned
396    and the register where structure-value addresses are passed.
397    Aside from that, you can include as many other registers as you like.  */
398 #define CALL_USED_REGISTERS     \
399 {                               \
400   1, 1, 1, 1, 1, 1, 1, 1,	\
401   1, 1, 1, 1, 1, 0, 0, 0,	\
402   0, 0, 0, 0, 0, 0, 0, 0,	\
403   0, 0, 1, 1, 1, 1, 1, 1,	\
404 				\
405   1, 1, 1, 1, 1, 1, 1, 1,	\
406   1, 1, 1, 1, 1, 1, 1, 1,	\
407   1, 1, 1, 1, 1, 1, 1, 1,	\
408   1, 1, 1, 1, 1, 1, 1, 1,       \
409 				\
410   0, 0, 0, 0, 0, 0, 0, 0,       \
411   0, 0, 0, 0, 0, 0, 0, 0,       \
412   0, 0, 0, 0, 0, 0, 0, 0,       \
413   1, 1, 1, 1, 1, 1, 1, 1,       \
414 				\
415   1, 1, 1, 1, 1, 1, 1, 1,       \
416   1, 1, 1, 1, 1, 1, 1, 1,       \
417   1, 1, 1, 1, 1, 1, 1, 1,       \
418   1, 1, 1, 1, 1, 1, 1, 1,       \
419 				\
420   0, 0, 0, 0, 0, 0, 0, 0,       \
421   0, 0, 0, 0, 0, 0, 0, 0,	\
422   1, 1}
423 
424 /* If defined, an initializer for a vector of integers, containing the
425    numbers of hard registers in the order in which GCC should
426    prefer to use them (from most preferred to least).  */
427 #define REG_ALLOC_ORDER \
428 { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1,			\
429   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 				\
430   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
431   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,		\
432   27, 28, 29, 30, 31, 63}
433 
434 /* Internal macros to classify a register number as to whether it's a
435    general purpose register for compact insns (r0-r3,r12-r15), or
436    stack pointer (r28).  */
437 
438 #define COMPACT_GP_REG_P(REGNO) \
439    (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
440 #define SP_REG_P(REGNO)  ((REGNO) == 28)
441 
442 
443 
444 /* Register classes and constants.  */
445 
446 /* Define the classes of registers for register constraints in the
447    machine description.  Also define ranges of constants.
448 
449    One of the classes must always be named ALL_REGS and include all hard regs.
450    If there is more than one class, another class must be named NO_REGS
451    and contain no registers.
452 
453    The name GENERAL_REGS must be the name of a class (or an alias for
454    another name such as ALL_REGS).  This is the class of registers
455    that is allowed by "g" or "r" in a register constraint.
456    Also, registers outside this class are allocated only when
457    instructions express preferences for them.
458 
459    The classes must be numbered in nondecreasing order; that is,
460    a larger-numbered class must never be contained completely
461    in a smaller-numbered class.
462 
463    For any two classes, it is very desirable that there be another
464    class that represents their union.
465 
466    It is important that any condition codes have class NO_REGS.
467    See `register_operand'.  */
468 
469 enum reg_class
470 {
471    NO_REGS,
472    R0_REGS,			/* 'x' */
473    GP_REG,			/* 'Rgp' */
474    FP_REG,			/* 'f' */
475    SP_REGS,			/* 'b' */
476    LPCOUNT_REG, 		/* 'l' */
477    LINK_REGS,	 		/* 'k' */
478    DOUBLE_REGS,			/* D0, D1 */
479    SIMD_VR_REGS,		/* VR00-VR63 */
480    SIMD_DMA_CONFIG_REGS,	/* DI0-DI7,DO0-DO7 */
481    ARCOMPACT16_REGS,		/* 'q' */
482    AC16_BASE_REGS,  		/* 'e' */
483    SIBCALL_REGS,		/* "Rsc" */
484    GENERAL_REGS,		/* 'r' */
485    MPY_WRITABLE_CORE_REGS,	/* 'W' */
486    WRITABLE_CORE_REGS,		/* 'w' */
487    CHEAP_CORE_REGS,		/* 'c' */
488    ALL_CORE_REGS,		/* 'Rac' */
489    R0R3_CD_REGS,		/* 'Rcd' */
490    R0R1_CD_REGS,		/* 'Rsd' */
491    AC16_H_REGS,			/* 'h' */
492    ALL_REGS,
493    LIM_REG_CLASSES
494 };
495 
496 #define N_REG_CLASSES (int) LIM_REG_CLASSES
497 
498 /* Give names of register classes as strings for dump file.   */
499 #define REG_CLASS_NAMES	  \
500 {                         \
501   "NO_REGS",           	  \
502   "R0_REGS",            	  \
503   "GP_REG",            	  \
504   "FP_REG",            	  \
505   "SP_REGS",		  \
506   "LPCOUNT_REG",	  \
507   "LINK_REGS",         	  \
508   "DOUBLE_REGS",          \
509   "SIMD_VR_REGS",         \
510   "SIMD_DMA_CONFIG_REGS", \
511   "ARCOMPACT16_REGS",  	  \
512   "AC16_BASE_REGS",       \
513   "SIBCALL_REGS",	  \
514   "GENERAL_REGS",      	  \
515   "MPY_WRITABLE_CORE_REGS",   \
516   "WRITABLE_CORE_REGS",   \
517   "CHEAP_CORE_REGS",	  \
518   "R0R3_CD_REGS", \
519   "R0R1_CD_REGS", \
520   "AC16_H_REGS",	    \
521   "ALL_CORE_REGS",	  \
522   "ALL_REGS"          	  \
523 }
524 
525 /* Define which registers fit in which classes.
526    This is an initializer for a vector of HARD_REG_SET
527    of length N_REG_CLASSES.  */
528 
529 #define REG_CLASS_CONTENTS \
530 {													\
531   {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},	     /* No Registers */			\
532   {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'x', r0 register , r0 */	\
533   {0x04000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'Rgp', Global Pointer, r26 */	\
534   {0x08000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'f', Frame Pointer, r27 */	\
535   {0x10000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'b', Stack Pointer, r28 */	\
536   {0x00000000, 0x10000000, 0x00000000, 0x00000000, 0x00000000},      /* 'l', LPCOUNT Register, r60 */	\
537   {0xe0000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'k', LINK Registers, r29-r31 */	\
538   {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000},      /* 'D', D1, D2 Registers */	\
539   {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000},      /* 'V', VR00-VR63 Registers */	\
540   {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff},      /* 'V', DI0-7,DO0-7 Registers */	\
541   {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000},	     /* 'q', r0-r3, r12-r15 */		\
542   {0x1000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000},	     /* 'e', r0-r3, r12-r15, sp */	\
543   {0x1c001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000},    /* "Rsc", r0-r12 */ \
544   {0x9fffffff, 0x80000000, 0x00000000, 0x00000000, 0x00000000},      /* 'r', r0-r28, blink, ap and pcl */	\
545   {0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'W',  r0-r31 */ \
546   /* Include ap / pcl in WRITABLE_CORE_REGS for sake of symmetry.  As these \
547      registers are fixed, it does not affect the literal meaning of the \
548      constraints, but it makes it a superset of GENERAL_REGS, thus \
549      enabling some operations that would otherwise not be possible.  */ \
550   {0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'w', r0-r31, r60 */ \
551   {0xffffffff, 0x9fffffff, 0x00000000, 0x00000000, 0x00000000},      /* 'c', r0-r60, ap, pcl */ \
552   {0xffffffff, 0x9fffffff, 0x00000000, 0x00000000, 0x00000000},      /* 'Rac', r0-r60, ap, pcl */ \
553   {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'Rcd', r0-r3 */ \
554   {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'Rsd', r0-r1 */ \
555   {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000},      /* 'h',  r0-28, r30 */ \
556   {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff}       /* All Registers */		\
557 }
558 
559 /* Local macros to mark the first and last regs of different classes.  */
560 #define ARC_FIRST_SIMD_VR_REG              64
561 #define ARC_LAST_SIMD_VR_REG               127
562 
563 #define ARC_FIRST_SIMD_DMA_CONFIG_REG      128
564 #define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG   128
565 #define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG  136
566 #define ARC_LAST_SIMD_DMA_CONFIG_REG       143
567 
568 /* ARCv2 double-register accumulator.  */
569 #define ACC_REG_FIRST 58
570 #define ACC_REG_LAST  59
571 #define ACCL_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
572 #define ACCH_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
573 
574 /* The same information, inverted:
575    Return the class number of the smallest class containing
576    reg number REGNO.  This could be a conditional expression
577    or could index an array.  */
578 
579 extern enum reg_class arc_regno_reg_class[];
580 
581 #define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
582 
583 /* The class value for valid index registers. An index register is
584    one used in an address where its value is either multiplied by
585    a scale factor or added to another register (as well as added to a
586    displacement).  */
587 
588 #define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
589 
590 /* The class value for valid base registers. A base register is one used in
591    an address which is the register value plus a displacement.  */
592 
593 #define BASE_REG_CLASS (TARGET_MIXED_CODE ? AC16_BASE_REGS : GENERAL_REGS)
594 
595 /* These assume that REGNO is a hard or pseudo reg number.
596    They give nonzero only if REGNO is a hard reg of the suitable class
597    or a pseudo reg currently allocated to a suitable hard reg.
598    Since they use reg_renumber, they are safe only once reg_renumber
599    has been allocated, which happens in local-alloc.c.  */
600 #define REGNO_OK_FOR_BASE_P(REGNO)					\
601   ((REGNO) < 29 || ((REGNO) == ARG_POINTER_REGNUM) || ((REGNO) == 63)	\
602    || ((unsigned) reg_renumber[REGNO] < 29)				\
603    || ((unsigned) (REGNO) == (unsigned) arc_tp_regno)			\
604    || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59))		\
605    || ((REGNO) == 30 && fixed_regs[REGNO] == 0))
606 
607 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
608 
609 /* Given an rtx X being reloaded into a reg required to be
610    in class CLASS, return the class of reg to actually use.
611    In general this is just CLASS; but on some machines
612    in some cases it is preferable to use a more restrictive class.  */
613 
614 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
615   arc_preferred_reload_class((X), (CLASS))
616 
617   extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
618 
619 /* Return the maximum number of consecutive registers
620    needed to represent mode MODE in a register of class CLASS.  */
621 
622 #define CLASS_MAX_NREGS(CLASS, MODE) \
623 (( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
624 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
625 
626 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
627 #define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
628   ((unsigned) (((X) >> (SHIFT)) + 0x100) \
629    < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
630 #define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
631 #define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
632 #define LARGE_INT(X) \
633 (((X) < 0) \
634  ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
635  : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
636 #define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
637 #define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
638 #define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
639 #define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
640 #define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
641 #define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
642 #define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
643 #define IS_ONE(X) ((X) == 1)
644 #define IS_ZERO(X) ((X) == 0)
645 
646 /* Stack layout and stack pointer usage.  */
647 
648 /* Define this macro if pushing a word onto the stack moves the stack
649    pointer to a smaller address.  */
650 #define STACK_GROWS_DOWNWARD 1
651 
652 /* Define this if the nominal address of the stack frame
653    is at the high-address end of the local variables;
654    that is, each additional local variable allocated
655    goes at a more negative offset in the frame.  */
656 #define FRAME_GROWS_DOWNWARD 1
657 
658 /* Offset from the stack pointer register to the first location at which
659    outgoing arguments are placed.  */
660 #define STACK_POINTER_OFFSET (0)
661 
662 /* Offset of first parameter from the argument pointer register value.  */
663 #define FIRST_PARM_OFFSET(FNDECL) (0)
664 
665 /* A C expression whose value is RTL representing the address in a
666    stack frame where the pointer to the caller's frame is stored.
667    Assume that FRAMEADDR is an RTL expression for the address of the
668    stack frame itself.
669 
670    If you don't define this macro, the default is to return the value
671    of FRAMEADDR--that is, the stack frame address is also the address
672    of the stack word that points to the previous frame.  */
673 /* ??? unfinished */
674 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
675 
676 /* A C expression whose value is RTL representing the value of the
677    return address for the frame COUNT steps up from the current frame.
678    FRAMEADDR is the frame pointer of the COUNT frame, or the frame
679    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
680    is defined.  */
681 /* The current return address is in r31.  The return address of anything
682    farther back is at [%fp,4].  */
683 
684 #define RETURN_ADDR_RTX(COUNT, FRAME) \
685 arc_return_addr_rtx(COUNT,FRAME)
686 
687 /* Register to use for pushing function arguments.  */
688 #define STACK_POINTER_REGNUM 28
689 
690 /* Base register for access to local variables of the function.  */
691 #define FRAME_POINTER_REGNUM 27
692 
693 /* Base register for access to arguments of the function. This register
694    will be eliminated into either fp or sp.  */
695 #define ARG_POINTER_REGNUM 62
696 
697 #define RETURN_ADDR_REGNUM 31
698 
699 /* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
700 /* Register in which static-chain is passed to a function.  This must
701    not be a register used by the prologue.  */
702 #define STATIC_CHAIN_REGNUM  11
703 
704 /* Function argument passing.  */
705 
706 /* If defined, the maximum amount of space required for outgoing
707    arguments will be computed and placed into the variable
708    `crtl->outgoing_args_size'.  No space will be pushed
709    onto the stack for each call; instead, the function prologue should
710    increase the stack frame size by this amount.  */
711 #define ACCUMULATE_OUTGOING_ARGS 1
712 
713 /* Define a data type for recording info about an argument list
714    during the scan of that argument list.  This data type should
715    hold all necessary information about the function itself
716    and about the args processed so far, enough to enable macros
717    such as FUNCTION_ARG to determine where the next arg should go.  */
718 #define CUMULATIVE_ARGS int
719 
720 /* Initialize a variable CUM of type CUMULATIVE_ARGS
721    for a call to a function whose data type is FNTYPE.
722    For a library call, FNTYPE is 0.  */
723 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
724   ((CUM) = 0)
725 
726 /* The number of registers used for parameter passing.  Local to this file.  */
727 #define MAX_ARC_PARM_REGS (TARGET_RF16 ? 4 : 8)
728 
729 /* 1 if N is a possible register number for function argument passing.  */
730 #define FUNCTION_ARG_REGNO_P(N) \
731 ((unsigned) (N) < MAX_ARC_PARM_REGS)
732 
733 /* The ROUND_ADVANCE* macros are local to this file.  */
734 /* Round SIZE up to a word boundary.  */
735 #define ROUND_ADVANCE(SIZE) \
736 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
737 
738 /* Round arg MODE/TYPE up to the next word boundary.  */
739 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
740 ((MODE) == BLKmode				\
741  ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
742  : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
743 
744 #define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
745 /* Round CUM up to the necessary point for argument MODE/TYPE.  */
746 /* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
747    ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit.  */
748 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
749   ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
750    + 1)
751 
752 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
753    a reg.  This includes arguments that have to be passed by reference as the
754    pointer to them is passed in a reg if one is available (and that is what
755    we're given).
756    When passing arguments NAMED is always 1.  When receiving arguments NAMED
757    is 1 for each argument except the last in a stdarg/varargs function.  In
758    a stdarg function we want to treat the last named arg as named.  In a
759    varargs function we want to treat the last named arg (which is
760    `__builtin_va_alist') as unnamed.
761    This macro is only used in this file.  */
762 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
763 ((CUM) < MAX_ARC_PARM_REGS)
764 
765 
766 /* Function results.  */
767 
768 /* Define how to find the value returned by a library function
769    assuming the value has mode MODE.  */
770 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
771 
772 /* 1 if N is a possible register number for a function value
773    as seen by the caller.  */
774 /* ??? What about r1 in DI/DF values.  */
775 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
776 
777 /* Tell GCC to use RETURN_IN_MEMORY.  */
778 #define DEFAULT_PCC_STRUCT_RETURN 0
779 
780 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
781    the stack pointer does not matter.  The value is tested only in
782    functions that have frame pointers.
783    No definition is equivalent to always zero.  */
784 #define EXIT_IGNORE_STACK 0
785 
786 #define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
787 
788 #define EH_USES(REGNO) arc_eh_uses((REGNO))
789 
790 /* Definitions for register eliminations.
791 
792    This is an array of structures.  Each structure initializes one pair
793    of eliminable registers.  The "from" register number is given first,
794    followed by "to".  Eliminations of the same "from" register are listed
795    in order of preference.
796 
797    We have two registers that can be eliminated on the ARC.  First, the
798    argument pointer register can always be eliminated in favor of the stack
799    pointer register or frame pointer register.  Secondly, the frame pointer
800    register can often be eliminated in favor of the stack pointer register.
801 */
802 
803 #define ELIMINABLE_REGS					\
804 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
805  {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},		\
806  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
807 
808 /* Define the offset between two registers, one to be eliminated, and the other
809    its replacement, at the start of a routine.  */
810 extern int arc_initial_elimination_offset(int from, int to);
811 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
812   (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
813 
814 /* All the work done in PROFILE_HOOK, but still required.  */
815 #undef FUNCTION_PROFILER
816 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
817 
818 #define NO_PROFILE_COUNTERS  1
819 
820 /* Trampolines.  */
821 
822 /* Length in units of the trampoline for entering a nested function.  */
823 #define TRAMPOLINE_SIZE 16
824 
825 /* Alignment required for a trampoline in bits .  */
826 /* For actual data alignment we just need 32, no more than the stack;
827    however, to reduce cache coherency issues, we want to make sure that
828    trampoline instructions always appear the same in any given cache line.  */
829 #define TRAMPOLINE_ALIGNMENT 256
830 
831 /* Library calls.  */
832 
833 /* Addressing modes, and classification of registers for them.  */
834 
835 /* Maximum number of registers that can appear in a valid memory address.  */
836 /* The `ld' insn allows 2, but the `st' insn only allows 1.  */
837 #define MAX_REGS_PER_ADDRESS 1
838 
839 /* We have pre inc/dec (load/store with update).  */
840 #define HAVE_PRE_INCREMENT 1
841 #define HAVE_PRE_DECREMENT 1
842 #define HAVE_POST_INCREMENT 1
843 #define HAVE_POST_DECREMENT 1
844 #define HAVE_PRE_MODIFY_DISP 1
845 #define HAVE_POST_MODIFY_DISP 1
846 #define HAVE_PRE_MODIFY_REG 1
847 #define HAVE_POST_MODIFY_REG 1
848 /* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
849    a special predicate for the memory operand of stores, like for the SH.  */
850 
851 /* Recognize any constant value that is a valid address.  */
852 #define CONSTANT_ADDRESS_P(X)					\
853   (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)):	\
854    (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
855     || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
856 
857 /* Is the argument a const_int rtx, containing an exact power of 2 */
858 #define  IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
859 #define  IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
860 
861 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
862    and check its validity for a certain class.
863    We have two alternate definitions for each of them.
864    The *_NONSTRICT definition accepts all pseudo regs; the other rejects
865    them unless they have been allocated suitable hard regs.
866 
867    Most source files want to accept pseudo regs in the hope that
868    they will get allocated to the class that the insn wants them to be in.
869    Source files for reload pass need to be strict.
870    After reload, it makes no difference, since pseudo regs have
871    been eliminated by then.  */
872 
873 /* Nonzero if X is a hard reg that can be used as an index
874    or if it is a pseudo reg.  */
875 #define REG_OK_FOR_INDEX_P_NONSTRICT(X)			\
876   ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
877    || REGNO_OK_FOR_BASE_P (REGNO (X)))
878 
879 /* Nonzero if X is a hard reg that can be used as a base reg
880    or if it is a pseudo reg.  */
881 #define REG_OK_FOR_BASE_P_NONSTRICT(X)			\
882   ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
883    || REGNO_OK_FOR_BASE_P (REGNO (X)))
884 
885 /* Nonzero if X is a hard reg that can be used as an index.  */
886 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
887 /* Nonzero if X is a hard reg that can be used as a base reg.  */
888 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
889 
890 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
891    that is a valid memory address for an instruction.
892    The MODE argument is the machine mode for the MEM expression
893    that wants to use this address.  */
894 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
895    but the `st' insn only allows [reg],[reg+shimm],[limm].
896    The only thing we can do is only allow the most strict case `st' and hope
897    other parts optimize out the restrictions for `ld'.  */
898 
899 #define RTX_OK_FOR_BASE_P(X, STRICT) \
900 (REG_P (X) \
901  && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
902 
903 #define RTX_OK_FOR_INDEX_P(X, STRICT) \
904 (REG_P (X) \
905  && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
906 
907 /* A C compound statement that attempts to replace X, which is an address
908    that needs reloading, with a valid memory address for an operand of
909    mode MODE.  WIN is a C statement label elsewhere in the code.
910 
911    We try to get a normal form
912    of the address.  That will allow inheritance of the address reloads.  */
913 
914 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
915   do {									\
916     if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE)))	\
917       goto WIN;								\
918   } while (0)
919 
920 /* Reading lp_count for anything but the lp instruction is very slow on the
921    ARC700.  */
922 #define DONT_REALLOC(REGNO,MODE) \
923   (TARGET_ARC700 && (REGNO) == 60)
924 
925 
926 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
927    return the mode to be used for the comparison.  */
928 /*extern machine_mode arc_select_cc_mode ();*/
929 #define SELECT_CC_MODE(OP, X, Y) \
930 arc_select_cc_mode (OP, X, Y)
931 
932 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
933    floating point inequality comparison.  */
934 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
935 
936 /* Costs.  */
937 
938 /* Compute extra cost of moving data between one register class
939    and another.  */
940 #define REGISTER_MOVE_COST(MODE, CLASS, TO_CLASS) \
941    arc_register_move_cost ((MODE), (CLASS), (TO_CLASS))
942 
943 /* Compute the cost of moving data between registers and memory.  */
944 /* Memory is 3 times as expensive as registers.
945    ??? Is that the right way to look at it?  */
946 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
947 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
948 
949 /* The cost of a branch insn.  */
950 /* ??? What's the right value here?  Branches are certainly more
951    expensive than reg->reg moves.  */
952 #define BRANCH_COST(speed_p, predictable_p) 2
953 
954 /* Scc sets the destination to 1 and then conditionally zeroes it.
955    Best case, ORed SCCs can be made into clear - condset - condset.
956    But it could also end up as five insns.  So say it costs four on
957    average.
958    These extra instructions - and the second comparison - will also be
959    an extra cost if the first comparison would have been decisive.
960    So get an average saving, with a probability of the first branch
961    beging decisive of p0, we want:
962    p0 * (branch_cost - 4) > (1 - p0) * 5
963    ??? We don't get to see that probability to evaluate, so we can
964    only wildly guess that it might be 50%.
965    ??? The compiler also lacks the notion of branch predictability.  */
966 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
967   (BRANCH_COST (optimize_function_for_speed_p (cfun), \
968 		false) > 9)
969 
970 /* Nonzero if access to memory by bytes is slow and undesirable.
971    For RISC chips, it means that access to memory by bytes is no
972    better than access by words when possible, so grab a whole word
973    and maybe make use of that.  */
974 #define SLOW_BYTE_ACCESS  0
975 
976 /* Define this macro if it is as good or better to call a constant
977    function address than to call an address kept in a register.  */
978 /* On the ARC, calling through registers is slow.  */
979 #define NO_FUNCTION_CSE 1
980 
981 /* Section selection.  */
982 /* WARNING: These section names also appear in dwarfout.c.  */
983 
984 #define TEXT_SECTION_ASM_OP	"\t.section\t.text"
985 #define DATA_SECTION_ASM_OP	"\t.section\t.data"
986 
987 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
988 #define SDATA_SECTION_ASM_OP	"\t.section\t.sdata"
989 #define SBSS_SECTION_ASM_OP	"\t.section\t.sbss"
990 
991 /* Expression whose value is a string, including spacing, containing the
992    assembler operation to identify the following data as initialization/termination
993    code. If not defined, GCC will assume such a section does not exist. */
994 #define INIT_SECTION_ASM_OP "\t.section\t.init"
995 #define FINI_SECTION_ASM_OP "\t.section\t.fini"
996 
997 /* Define this macro if jump tables (for tablejump insns) should be
998    output in the text section, along with the assembler instructions.
999    Otherwise, the readonly data section is used.
1000    This macro is irrelevant if there is no separate readonly data section.  */
1001 #define JUMP_TABLES_IN_TEXT_SECTION  (flag_pic || CASE_VECTOR_PC_RELATIVE)
1002 
1003 /* For DWARF.  Marginally different than default so output is "prettier"
1004    (and consistent with above).  */
1005 #define PUSHSECTION_FORMAT "\t%s %s\n"
1006 
1007 /* Tell crtstuff.c we're using ELF.  */
1008 #define OBJECT_FORMAT_ELF
1009 
1010 /* PIC */
1011 
1012 /* The register number of the register used to address a table of static
1013    data addresses in memory.  In some cases this register is defined by a
1014    processor's ``application binary interface'' (ABI).  When this macro
1015    is defined, RTL is generated for this register once, as with the stack
1016    pointer and frame pointer registers.  If this macro is not defined, it
1017    is up to the machine-dependent files to allocate such a register (if
1018    necessary).  */
1019 #define PIC_OFFSET_TABLE_REGNUM 26
1020 
1021 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1022    clobbered by calls.  Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1023    is not defined.  */
1024 /* This register is call-saved on the ARC.  */
1025 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1026 
1027 /* A C expression that is nonzero if X is a legitimate immediate
1028    operand on the target machine when generating position independent code.
1029    You can assume that X satisfies CONSTANT_P, so you need not
1030    check this.  You can also assume `flag_pic' is true, so you need not
1031    check it either.  You need not define this macro if all constants
1032    (including SYMBOL_REF) can be immediate operands when generating
1033    position independent code.  */
1034 #define LEGITIMATE_PIC_OPERAND_P(X)  \
1035   (!arc_raw_symbolic_reference_mentioned_p ((X), true))
1036 
1037 /* PIC and small data don't mix on ARC because they use the same register.  */
1038 #define SDATA_BASE_REGNUM 26
1039 
1040 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1041   (flag_pic \
1042    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1043    : DW_EH_PE_absptr)
1044 
1045 /* Control the assembler format that we output.  */
1046 
1047 /* A C string constant describing how to begin a comment in the target
1048    assembler language.  The compiler assumes that the comment will
1049    end at the end of the line.  */
1050 /* Gas needs this to be "#" in order to recognize line directives.  */
1051 #define ASM_COMMENT_START "#"
1052 
1053 /* Output to assembler file text saying following lines
1054    may contain character constants, extra white space, comments, etc.  */
1055 #undef ASM_APP_ON
1056 #define ASM_APP_ON ""
1057 
1058 /* Output to assembler file text saying following lines
1059    no longer contain unusual constructs.  */
1060 #undef ASM_APP_OFF
1061 #define ASM_APP_OFF ""
1062 
1063 /* Globalizing directive for a label.  */
1064 #define GLOBAL_ASM_OP "\t.global\t"
1065 
1066 /* This is how to output an assembler line defining a `char' constant.  */
1067 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1068 ( fprintf (FILE, "\t.byte\t"),			\
1069   output_addr_const (FILE, (VALUE)),		\
1070   fprintf (FILE, "\n"))
1071 
1072 /* This is how to output an assembler line defining a `short' constant.  */
1073 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1074 ( fprintf (FILE, "\t.hword\t"),			\
1075   output_addr_const (FILE, (VALUE)),		\
1076   fprintf (FILE, "\n"))
1077 
1078 /* This is how to output an assembler line defining an `int' constant.
1079    We also handle symbol output here.  Code addresses must be right shifted
1080    by 2 because that's how the jump instruction wants them.  */
1081 #define ASM_OUTPUT_INT(FILE, VALUE) \
1082 do {									\
1083   fprintf (FILE, "\t.word\t");						\
1084   if (GET_CODE (VALUE) == LABEL_REF)					\
1085     {									\
1086       fprintf (FILE, "%%st(@");						\
1087       output_addr_const (FILE, (VALUE));				\
1088       fprintf (FILE, ")");						\
1089     }									\
1090   else									\
1091     output_addr_const (FILE, (VALUE));					\
1092   fprintf (FILE, "\n");					                \
1093 } while (0)
1094 
1095 /* This is how to output an assembler line defining a `float' constant.  */
1096 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1097 {							\
1098   long t;						\
1099   char str[30];						\
1100   REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);		\
1101   REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1102   fprintf (FILE, "\t.word\t0x%lx %s %s\n",		\
1103 	   t, ASM_COMMENT_START, str);			\
1104 }
1105 
1106 /* This is how to output an assembler line defining a `double' constant.  */
1107 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1108 {							\
1109   long t[2];						\
1110   char str[30];						\
1111   REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);		\
1112   REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1113   fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1114 	   t[0], ASM_COMMENT_START, str, t[1]);		\
1115 }
1116 
1117 /* This is how to output the definition of a user-level label named NAME,
1118    such as the label on a static function or variable NAME.  */
1119 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1120 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1121 
1122 #define ASM_NAME_P(NAME) ( NAME[0]=='*')
1123 
1124 /* This is how to output a reference to a user-level label named NAME.
1125    `assemble_name' uses this.  */
1126 /* We work around a dwarfout.c deficiency by watching for labels from it and
1127    not adding the '_' prefix.  There is a comment in
1128    dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL.  */
1129 #define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1130 do {							\
1131   const char *NAME;					\
1132   NAME = (*targetm.strip_name_encoding)(NAME1);		\
1133   if ((NAME)[0] == '.' && (NAME)[1] == 'L')		\
1134     fprintf (FILE, "%s", NAME);				\
1135   else							\
1136     {							\
1137       if (!ASM_NAME_P (NAME1))				\
1138 	fprintf (FILE, "%s", user_label_prefix);	\
1139       fprintf (FILE, "%s", NAME);			\
1140     }							\
1141 } while (0)
1142 
1143 /* This is how to output a reference to a symbol_ref / label_ref as
1144    (part of) an operand.  To disambiguate from register names like
1145    a1 / a2 / status etc, symbols are preceded by '@'.  */
1146 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1147   ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1148 #define ASM_OUTPUT_LABEL_REF(FILE,STR)			\
1149   do							\
1150     {							\
1151       fputc ('@', file);				\
1152       assemble_name ((FILE), (STR));			\
1153     }							\
1154   while (0)
1155 
1156 /* Store in OUTPUT a string (made with alloca) containing
1157    an assembler-name for a local static variable named NAME.
1158    LABELNO is an integer which is different for each call.  */
1159 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1160 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1161   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1162 
1163 /* The following macro defines the format used to output the second
1164    operand of the .type assembler directive.  Different svr4 assemblers
1165    expect various different forms for this operand.  The one given here
1166    is just a default.  You may need to override it in your machine-
1167    specific tm.h file (depending upon the particulars of your assembler).  */
1168 
1169 #undef  TYPE_OPERAND_FMT
1170 #define TYPE_OPERAND_FMT	"@%s"
1171 
1172 /*  A C string containing the appropriate assembler directive to
1173     specify the size of a symbol, without any arguments.  On systems
1174     that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1175     on other systems, the default is not to define this macro.  */
1176 #undef SIZE_ASM_OP
1177 #define SIZE_ASM_OP "\t.size\t"
1178 
1179 /* Assembler pseudo-op to equate one value with another.  */
1180 /* ??? This is needed because dwarfout.c provides a default definition too
1181    late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1182    that we use).  */
1183 #ifdef SET_ASM_OP
1184 #undef SET_ASM_OP
1185 #endif
1186 #define SET_ASM_OP "\t.set\t"
1187 
1188 extern char rname29[], rname30[];
1189 extern char rname56[], rname57[], rname58[], rname59[];
1190 /* How to refer to registers in assembler output.
1191    This sequence is indexed by compiler's hard-register-number (see above).  */
1192 #define REGISTER_NAMES								\
1193 {  "r0",   "r1",   "r2",   "r3",       "r4",     "r5",     "r6",    "r7",	\
1194    "r8",   "r9",  "r10",  "r11",      "r12",    "r13",    "r14",   "r15",	\
1195   "r16",  "r17",  "r18",  "r19",      "r20",    "r21",    "r22",   "r23",	\
1196   "r24",  "r25",   "gp",   "fp",       "sp",  rname29,  rname30, "blink",	\
1197   "r32",  "r33",  "r34",  "r35",      "r36",    "r37",    "r38",   "r39",	\
1198    "d1",   "d1",   "d2",   "d2",      "r44",    "r45",    "r46",   "r47",	\
1199   "r48",  "r49",  "r50",  "r51",      "r52",    "r53",    "r54",   "r55",	\
1200   rname56,rname57,rname58,rname59,"lp_count",    "cc",     "ap",   "pcl",	\
1201   "vr0",  "vr1",  "vr2",  "vr3",      "vr4",    "vr5",    "vr6",   "vr7",       \
1202   "vr8",  "vr9", "vr10", "vr11",     "vr12",   "vr13",   "vr14",  "vr15",	\
1203  "vr16", "vr17", "vr18", "vr19",     "vr20",   "vr21",   "vr22",  "vr23",	\
1204  "vr24", "vr25", "vr26", "vr27",     "vr28",   "vr29",   "vr30",  "vr31",	\
1205  "vr32", "vr33", "vr34", "vr35",     "vr36",   "vr37",   "vr38",  "vr39",	\
1206  "vr40", "vr41", "vr42", "vr43",     "vr44",   "vr45",   "vr46",  "vr47",	\
1207  "vr48", "vr49", "vr50", "vr51",     "vr52",   "vr53",   "vr54",  "vr55",	\
1208  "vr56", "vr57", "vr58", "vr59",     "vr60",   "vr61",   "vr62",  "vr63",	\
1209   "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1210   "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1211   "lp_start", "lp_end" \
1212 }
1213 
1214 #define ADDITIONAL_REGISTER_NAMES		\
1215 {						\
1216   {"ilink",  29},				\
1217   {"r29",    29},				\
1218   {"r30",    30}				\
1219 }
1220 
1221 /* Entry to the insn conditionalizer.  */
1222 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1223   arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1224 
1225 /* A C expression which evaluates to true if CODE is a valid
1226    punctuation character for use in the `PRINT_OPERAND' macro.  */
1227 extern char arc_punct_chars[];
1228 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1229 arc_punct_chars[(unsigned char) (CHAR)]
1230 
1231 /* Print operand X (an rtx) in assembler syntax to file FILE.
1232    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1233    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1234 #define PRINT_OPERAND(FILE, X, CODE) \
1235 arc_print_operand (FILE, X, CODE)
1236 
1237 /* A C compound statement to output to stdio stream STREAM the
1238    assembler syntax for an instruction operand that is a memory
1239    reference whose address is ADDR.  ADDR is an RTL expression.
1240 
1241    On some machines, the syntax for a symbolic address depends on
1242    the section that the address refers to.  On these machines,
1243    define the macro `ENCODE_SECTION_INFO' to store the information
1244    into the `symbol_ref', and then check for it here.  */
1245 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1246 arc_print_operand_address (FILE, ADDR)
1247 
1248 /* This is how to output an element of a case-vector that is absolute.  */
1249 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1250 do {							\
1251   char label[30];					\
1252   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
1253   fprintf (FILE, "\t.word ");				\
1254   assemble_name (FILE, label);				\
1255   fprintf(FILE, "\n");					\
1256 } while (0)
1257 
1258 /* This is how to output an element of a case-vector that is relative.  */
1259 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1260 do {							\
1261   char label[30];					\
1262   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
1263   switch (GET_MODE (BODY))				\
1264     {							\
1265     case E_QImode: fprintf (FILE, "\t.byte "); break;	\
1266     case E_HImode: fprintf (FILE, "\t.hword "); break;	\
1267     case E_SImode: fprintf (FILE, "\t.word "); break;	\
1268     default: gcc_unreachable ();			\
1269     }							\
1270   assemble_name (FILE, label);				\
1271   fprintf (FILE, "-");					\
1272   ASM_GENERATE_INTERNAL_LABEL (label, "L", REL);	\
1273   assemble_name (FILE, label);				\
1274   if (TARGET_COMPACT_CASESI)				\
1275     fprintf (FILE, " + %d", 4 + arc_get_unalign ());	\
1276   fprintf(FILE, "\n");                                  \
1277 } while (0)
1278 
1279 /* ADDR_DIFF_VECs are in the text section and thus can affect the
1280    current alignment.  */
1281 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE)       \
1282   do                                                    \
1283     {                                                   \
1284       if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1285 	  && ((GET_MODE_SIZE (as_a <scalar_int_mode>	\
1286 			      (GET_MODE (PATTERN (JUMPTABLE)))) \
1287 	       * XVECLEN (PATTERN (JUMPTABLE), 1) + 1)	\
1288 	      & 2))					\
1289       arc_toggle_unalign ();				\
1290     }                                                   \
1291   while (0)
1292 
1293 #define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1294 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1295   (JUMP_ALIGN(LABEL) \
1296    ? JUMP_ALIGN(LABEL) \
1297    : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1298    ? 1 : 0)
1299 /* The desired alignment for the location counter at the beginning
1300    of a loop.  */
1301 /* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1302    optimization.  */
1303 #define LOOP_ALIGN(X) 0
1304 
1305 #define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1306 
1307 /* This is how to output an assembler line
1308    that says to advance the location counter
1309    to a multiple of 2**LOG bytes.  */
1310 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1311 do { \
1312   if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1313   if ((LOG)  > 1) \
1314     arc_clear_unalign (); \
1315 } while (0)
1316 
1317 /*  ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1318     Define this macro when you need to see the variable's decl in order to
1319     chose what to output.  */
1320 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1321   arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1322 
1323 /* Debugging information.  */
1324 
1325 /* Generate DBX and DWARF debugging information.  */
1326 #ifdef DBX_DEBUGGING_INFO
1327 #undef DBX_DEBUGGING_INFO
1328 #endif
1329 #define DBX_DEBUGGING_INFO
1330 
1331 #ifdef DWARF2_DEBUGGING_INFO
1332 #undef DWARF2_DEBUGGING_INFO
1333 #endif
1334 #define DWARF2_DEBUGGING_INFO
1335 
1336 /* Prefer STABS (for now).  */
1337 #undef PREFERRED_DEBUGGING_TYPE
1338 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1339 
1340 /* How to renumber registers for dbx and gdb.  */
1341 #define DBX_REGISTER_NUMBER(REGNO) \
1342   ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1343    ? ((REGNO) ^ !TARGET_BIG_ENDIAN) \
1344    : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 59) \
1345    ? ((REGNO) == 57 \
1346       ? 58 /* MMED */ \
1347       : ((REGNO) & 1) ^ TARGET_BIG_ENDIAN \
1348       ? 59 /* MHI */ \
1349       : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */ \
1350    : (REGNO))
1351 
1352 #define DWARF_FRAME_REGNUM(REG) (REG)
1353 
1354 #define DWARF_FRAME_RETURN_COLUMN 	DWARF_FRAME_REGNUM (31)
1355 
1356 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 31)
1357 
1358 /* Frame info.  */
1359 
1360 #define EH_RETURN_DATA_REGNO(N)  ((N) < 2 ? (N) : INVALID_REGNUM)
1361 
1362 #define EH_RETURN_STACKADJ_RTX   gen_rtx_REG (Pmode, 2)
1363 
1364 /* Turn off splitting of long stabs.  */
1365 #define DBX_CONTIN_LENGTH 0
1366 
1367 /* Miscellaneous.  */
1368 
1369 /* Specify the machine mode that this machine uses
1370    for the index in the tablejump instruction.
1371    If we have pc relative case vectors, we start the case vector shortening
1372    with QImode.  */
1373 #define CASE_VECTOR_MODE \
1374   ((optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1375 
1376 /* Define as C expression which evaluates to nonzero if the tablejump
1377    instruction expects the table to contain offsets from the address of the
1378    table.
1379    Do not define this if the table should contain absolute addresses.  */
1380 #define CASE_VECTOR_PC_RELATIVE TARGET_CASE_VECTOR_PC_RELATIVE
1381 
1382 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1383   CASE_VECTOR_SHORTEN_MODE_1 \
1384     (MIN_OFFSET, TARGET_COMPACT_CASESI ? MAX_OFFSET + 6 : MAX_OFFSET, BODY)
1385 
1386 #define CASE_VECTOR_SHORTEN_MODE_1(MIN_OFFSET, MAX_OFFSET, BODY) \
1387 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1388  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1389  : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127 \
1390  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1391  : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535 \
1392  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode) \
1393  : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 \
1394  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode) \
1395  : SImode)
1396 
1397 #define ADDR_VEC_ALIGN(VEC_INSN) \
1398   (exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode> \
1399 			      (GET_MODE (PATTERN (VEC_INSN))))))
1400 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1401 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) \
1402   ASM_OUTPUT_ALIGN ((FILE), ADDR_VEC_ALIGN (TABLE))
1403 
1404 #define INSN_LENGTH_ALIGNMENT(INSN)		  \
1405   ((JUMP_TABLE_DATA_P (INSN)			  \
1406     && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1407     && GET_MODE (PATTERN (INSN)) == QImode)	  \
1408    ? 0 : length_unit_log)
1409 
1410 /* Define if operations between registers always perform the operation
1411    on the full register even if a narrower mode is specified.  */
1412 #define WORD_REGISTER_OPERATIONS 1
1413 
1414 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1415    will either zero-extend or sign-extend.  The value of this macro should
1416    be the code that says which one of the two operations is implicitly
1417    done, NIL if none.  */
1418 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1419 
1420 
1421 /* Max number of bytes we can move from memory to memory
1422    in one reasonably fast instruction.  */
1423 #define MOVE_MAX 4
1424 
1425 /* Undo the effects of the movmem pattern presence on STORE_BY_PIECES_P .  */
1426 #define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1427 
1428 /* Define this to be nonzero if shift instructions ignore all but the
1429    low-order few bits.
1430 */
1431 #define SHIFT_COUNT_TRUNCATED 1
1432 
1433 /* We assume that the store-condition-codes instructions store 0 for false
1434    and some other value for true.  This is the value stored for true.  */
1435 #define STORE_FLAG_VALUE 1
1436 
1437 /* Specify the machine mode that pointers have.
1438    After generation of rtl, the compiler makes no further distinction
1439    between pointers and any other objects of this machine mode.  */
1440 /* ARCompact has full 32-bit pointers.  */
1441 #define Pmode SImode
1442 
1443 /* A function address in a call instruction.  */
1444 #define FUNCTION_MODE SImode
1445 
1446 /* Define the information needed to generate branch and scc insns.  This is
1447    stored from the compare operation.  Note that we can't use "rtx" here
1448    since it hasn't been defined!  */
1449 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1450 
1451 /* ARC function types.   */
1452 enum arc_function_type {
1453   /* No function should have the unknown type.  This value is used to
1454    indicate the that function type has not yet been computed.  */
1455   ARC_FUNCTION_UNKNOWN  = 0,
1456 
1457   /* The normal function type indicates that the function has the
1458    standard prologue and epilogue.  */
1459   ARC_FUNCTION_NORMAL  = 1 << 0,
1460   /* These are interrupt handlers.  The name corresponds to the register
1461      name that contains the return address.  */
1462   ARC_FUNCTION_ILINK1  = 1 << 1,
1463   ARC_FUNCTION_ILINK2  = 1 << 2,
1464   /* Fast interrupt is only available on ARCv2 processors.  */
1465   ARC_FUNCTION_FIRQ    = 1 << 3,
1466   /* The naked function type indicates that the function does not have
1467    prologue or epilogue, and that no stack frame is available.  */
1468   ARC_FUNCTION_NAKED   = 1 << 4
1469 };
1470 
1471 /* Check if a function is an interrupt function.  */
1472 #define ARC_INTERRUPT_P(TYPE)					\
1473   (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2		\
1474 	      | ARC_FUNCTION_FIRQ)) != 0)
1475 
1476 /* Check if a function is a fast interrupt function.  */
1477 #define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1478 
1479 /* Check if a function is normal, that is, has standard prologue and
1480    epilogue.  */
1481 #define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1482 
1483 /* Check if a function is naked.  */
1484 #define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1485 
1486 /* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1487    SECTION_OP, and then to switch back to text section.  */
1488 #undef CRT_CALL_STATIC_FUNCTION
1489 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
1490   asm (SECTION_OP "\n\t"					\
1491        "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t"	\
1492        "jl  [r12]\n"						\
1493        TEXT_SECTION_ASM_OP);
1494 
1495 /* This macro expands to the name of the scratch register r12, used for
1496    temporary calculations according to the ABI.  */
1497 #define ARC_TEMP_SCRATCH_REG "r12"
1498 
1499 /* The C++ compiler must use one bit to indicate whether the function
1500    that will be called through a pointer-to-member-function is
1501    virtual.  Normally, we assume that the low-order bit of a function
1502    pointer must always be zero.  Then, by ensuring that the
1503    vtable_index is odd, we can distinguish which variant of the union
1504    is in use.  But, on some platforms function pointers can be odd,
1505    and so this doesn't work.  In that case, we use the low-order bit
1506    of the `delta' field, and shift the remainder of the `delta' field
1507    to the left. We needed to do this for A4 because the address was always
1508    shifted and thus could be odd.  */
1509 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1510   (ptrmemfunc_vbit_in_pfn)
1511 
1512 #define INSN_SETS_ARE_DELAYED(X)		\
1513   (GET_CODE (X) == INSN				\
1514    && GET_CODE (PATTERN (X)) != SEQUENCE	\
1515    && GET_CODE (PATTERN (X)) != USE		\
1516    && GET_CODE (PATTERN (X)) != CLOBBER		\
1517    && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1518 
1519 #define INSN_REFERENCES_ARE_DELAYED(insn)				\
1520   (INSN_SETS_ARE_DELAYED (insn))
1521 
1522 #define CALL_ATTR(X, NAME) \
1523   ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1524    && GET_CODE (PATTERN (X)) != USE \
1525    && GET_CODE (PATTERN (X)) != CLOBBER \
1526    && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1527 
1528 #define REVERSE_CONDITION(CODE,MODE)				 \
1529   (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode		 \
1530     || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode	 \
1531     || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode	 \
1532     || (MODE) == CC_FPUmode)					 \
1533    ? reverse_condition_maybe_unordered ((CODE))			 \
1534    : reverse_condition ((CODE)))
1535 
1536 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1537   ((LENGTH) \
1538    = (GET_CODE (PATTERN (X)) == SEQUENCE \
1539       ? ((LENGTH) \
1540 	 + arc_adjust_insn_length ( \
1541              as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1542 	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1543 	     true)							\
1544 	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1545 	 + arc_adjust_insn_length ( \
1546 	     as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1547 	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1548 	     true)							\
1549 	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1550       : arc_adjust_insn_length ((X), (LENGTH), false)))
1551 
1552 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1553 
1554 #define INIT_EXPANDERS arc_init_expanders ()
1555 
1556 enum
1557 {
1558   ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1559 };
1560 
1561 /* The define_cond_exec construct is rather crude, as we can't have
1562    different ones with different conditions apply to different sets
1563    of instructions.  We can't use an attribute test inside the condition,
1564    because that would lead to infinite recursion as the attribute test
1565    needs to recognize the insn.  So, instead we have a clause for
1566    the pattern condition of all sfunc patterns which is only relevant for
1567    the predicated varaint.  */
1568 #define SFUNC_CHECK_PREDICABLE \
1569   (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1570 
1571 /* MPYW feature macro.  Only valid for ARCHS and ARCEM cores.  */
1572 #define TARGET_MPYW     ((arc_mpy_option > 0) && TARGET_V2)
1573 /* Full ARCv2 multiplication feature macro.  */
1574 #define TARGET_MULTI    ((arc_mpy_option > 1) && TARGET_V2)
1575 /* General MPY feature macro.  */
1576 #define TARGET_MPY      ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1577 /* ARC700 MPY feature macro.  */
1578 #define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1579 /* Any multiplication feature macro.  */
1580 #define TARGET_ANY_MPY						\
1581   (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1582 /* PLUS_DMPY feature macro.  */
1583 #define TARGET_PLUS_DMPY  ((arc_mpy_option > 6) && TARGET_HS)
1584 /* PLUS_MACD feature macro.  */
1585 #define TARGET_PLUS_MACD  ((arc_mpy_option > 7) && TARGET_HS)
1586 /* PLUS_QMACW feature macro.  */
1587 #define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1588 
1589 /* ARC600 and ARC601 feature macro.  */
1590 #define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1591 /* ARC600, ARC601 and ARC700 feature macro.  */
1592 #define TARGET_ARCOMPACT_FAMILY				\
1593   (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1594 /* Loop count register can be read in very next instruction after has
1595    been written to by an ordinary instruction.  */
1596 #define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1597 
1598 /* FPU defines.  */
1599 /* Any FPU support.  */
1600 #define TARGET_HARD_FLOAT   ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1601 /* Single precision floating point support.  */
1602 #define TARGET_FP_SP_BASE   ((arc_fpu_build & FPU_SP) != 0)
1603 /* Double precision floating point support.  */
1604 #define TARGET_FP_DP_BASE   ((arc_fpu_build & FPU_DP) != 0)
1605 /* Single precision floating point support with fused operation.  */
1606 #define TARGET_FP_SP_FUSED  ((arc_fpu_build & FPU_SF) != 0)
1607 /* Double precision floating point support with fused operation.  */
1608 #define TARGET_FP_DP_FUSED  ((arc_fpu_build & FPU_DF) != 0)
1609 /* Single precision floating point conversion instruction support.  */
1610 #define TARGET_FP_SP_CONV   ((arc_fpu_build & FPU_SC) != 0)
1611 /* Double precision floating point conversion instruction support.  */
1612 #define TARGET_FP_DP_CONV   ((arc_fpu_build & FPU_DC) != 0)
1613 /* Single precision floating point SQRT/DIV instruction support.  */
1614 #define TARGET_FP_SP_SQRT   ((arc_fpu_build & FPU_SD) != 0)
1615 /* Double precision floating point SQRT/DIV instruction support.  */
1616 #define TARGET_FP_DP_SQRT   ((arc_fpu_build & FPU_DD) != 0)
1617 /* Double precision floating point assist instruction support.  */
1618 #define TARGET_FP_DP_AX     ((arc_fpu_build & FPX_DP) != 0)
1619 /* Custom FP instructions used by QuarkSE EM cpu.  */
1620 #define TARGET_FPX_QUARK    (TARGET_EM && TARGET_SPFP		\
1621 			     && (arc_fpu_build == FPX_QK))
1622 /* DBNZ support is available for ARCv2 core3 cpus.  */
1623 #define TARGET_DBNZ (TARGET_V2 && (arc_tune == ARC_TUNE_CORE_3))
1624 
1625 #endif /* GCC_ARC_H */
1626