1 /* Target Definitions for TI C6X. 2 Copyright (C) 2010-2018 Free Software Foundation, Inc. 3 Contributed by Andrew Jenner <andrew@codesourcery.com> 4 Contributed by Bernd Schmidt <bernds@codesourcery.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it 9 under the terms of the GNU General Public License as published 10 by the Free Software Foundation; either version 3, or (at your 11 option) any later version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 16 License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #ifndef GCC_C6X_H 23 #define GCC_C6X_H 24 25 /* Feature bit definitions that enable specific insns. */ 26 #define C6X_INSNS_C62X 1 27 #define C6X_INSNS_C64X 2 28 #define C6X_INSNS_C64XP 4 29 #define C6X_INSNS_C67X 8 30 #define C6X_INSNS_C67XP 16 31 #define C6X_INSNS_C674X 32 32 #define C6X_INSNS_ATOMIC 64 33 #define C6X_INSNS_ALL_CPU_BITS 127 34 35 #define C6X_DEFAULT_INSN_MASK \ 36 (C6X_INSNS_C62X | C6X_INSNS_C64X | C6X_INSNS_C64XP) 37 38 /* A mask of allowed insn types, as defined above. */ 39 extern unsigned long c6x_insn_mask; 40 41 /* Value of -march= */ 42 extern c6x_cpu_t c6x_arch; 43 #define C6X_DEFAULT_ARCH C6X_CPU_C64XP 44 45 /* True if the target has C64x instructions. */ 46 #define TARGET_INSNS_64 ((c6x_insn_mask & C6X_INSNS_C64X) != 0) 47 /* True if the target has C64x+ instructions. */ 48 #define TARGET_INSNS_64PLUS ((c6x_insn_mask & C6X_INSNS_C64XP) != 0) 49 /* True if the target has C67x instructions. */ 50 #define TARGET_INSNS_67 ((c6x_insn_mask & C6X_INSNS_C67X) != 0) 51 /* True if the target has C67x+ instructions. */ 52 #define TARGET_INSNS_67PLUS ((c6x_insn_mask & C6X_INSNS_C67XP) != 0) 53 54 /* True if the target supports doubleword loads. */ 55 #define TARGET_LDDW (TARGET_INSNS_64 || TARGET_INSNS_67) 56 /* True if the target supports doubleword loads. */ 57 #define TARGET_STDW TARGET_INSNS_64 58 /* True if the target supports the MPY32 family of instructions. */ 59 #define TARGET_MPY32 TARGET_INSNS_64PLUS 60 /* True if the target has floating point hardware. */ 61 #define TARGET_FP TARGET_INSNS_67 62 /* True if the target has C67x+ floating point extensions. */ 63 #define TARGET_FP_EXT TARGET_INSNS_67PLUS 64 65 #define TARGET_DEFAULT 0 66 67 /* Run-time Target. */ 68 69 #define TARGET_CPU_CPP_BUILTINS() \ 70 do \ 71 { \ 72 builtin_assert ("machine=tic6x"); \ 73 builtin_assert ("cpu=tic6x"); \ 74 builtin_define ("__TMS320C6X__"); \ 75 builtin_define ("_TMS320C6X"); \ 76 \ 77 if (TARGET_DSBT) \ 78 builtin_define ("__DSBT__"); \ 79 \ 80 if (TARGET_BIG_ENDIAN) \ 81 builtin_define ("_BIG_ENDIAN"); \ 82 else \ 83 builtin_define ("_LITTLE_ENDIAN"); \ 84 \ 85 switch (c6x_arch) \ 86 { \ 87 case unk_isa: \ 88 break; \ 89 case C6X_CPU_C62X: \ 90 builtin_define ("_TMS320C6200"); \ 91 break; \ 92 \ 93 case C6X_CPU_C64XP: \ 94 builtin_define ("_TMS320C6400_PLUS"); \ 95 /* fall through */ \ 96 case C6X_CPU_C64X: \ 97 builtin_define ("_TMS320C6400"); \ 98 break; \ 99 \ 100 case C6X_CPU_C67XP: \ 101 builtin_define ("_TMS320C6700_PLUS"); \ 102 /* fall through */ \ 103 case C6X_CPU_C67X: \ 104 builtin_define ("_TMS320C6700"); \ 105 break; \ 106 \ 107 case C6X_CPU_C674X: \ 108 builtin_define ("_TMS320C6740"); \ 109 builtin_define ("_TMS320C6700_PLUS"); \ 110 builtin_define ("_TMS320C6700"); \ 111 builtin_define ("_TMS320C6400_PLUS"); \ 112 builtin_define ("_TMS320C6400"); \ 113 break; \ 114 } \ 115 } while (0) 116 117 #define OPTION_DEFAULT_SPECS \ 118 {"arch", "%{!march=*:-march=%(VALUE)}" } 119 120 /* Storage Layout. */ 121 122 #define BITS_BIG_ENDIAN 0 123 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) 124 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) 125 126 #define REG_WORDS_BIG_ENDIAN 0 127 128 #define UNITS_PER_WORD 4 129 #define PARM_BOUNDARY 8 130 #define STACK_BOUNDARY 64 131 #define FUNCTION_BOUNDARY 32 132 #define BIGGEST_ALIGNMENT 64 133 #define STRICT_ALIGNMENT 1 134 135 /* The ABI requires static arrays must be at least 8 byte aligned. 136 Really only externally visible arrays must be aligned this way, as 137 only those are directly visible from another compilation unit. But 138 we don't have that information available here. */ 139 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \ 140 (((ALIGN) < BITS_PER_UNIT * 8 && TREE_CODE (TYPE) == ARRAY_TYPE) \ 141 ? BITS_PER_UNIT * 8 : (ALIGN)) 142 143 /* Type Layout. */ 144 145 #define DEFAULT_SIGNED_CHAR 1 146 147 #undef SIZE_TYPE 148 #define SIZE_TYPE "unsigned int" 149 #undef PTRDIFF_TYPE 150 #define PTRDIFF_TYPE "int" 151 152 /* Registers. */ 153 154 #define FIRST_PSEUDO_REGISTER 67 155 #define FIXED_REGISTERS \ 156 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 157 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 158 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, \ 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 160 1, 1, 1} 161 #define CALL_USED_REGISTERS \ 162 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, \ 163 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 164 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, \ 165 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 166 1, 1, 1} 167 168 /* This lists call-used non-predicate registers first, followed by call-used 169 registers, followed by predicate registers. We want to avoid allocating 170 the predicate registers for other uses as much as possible. */ 171 #define REG_ALLOC_ORDER \ 172 { \ 173 REG_A0, REG_A3, REG_A4, REG_A5, REG_A6, REG_A7, REG_A8, REG_A9, \ 174 REG_A16, REG_A17, REG_A18, REG_A19, REG_A20, REG_A21, REG_A22, REG_A23, \ 175 REG_A24, REG_A25, REG_A26, REG_A27, REG_A28, REG_A29, REG_A30, REG_A31, \ 176 REG_B4, REG_B5, REG_B6, REG_B7, REG_B8, REG_B9, REG_B16, \ 177 REG_B17, REG_B18, REG_B19, REG_B20, REG_B21, REG_B22, REG_B23, REG_B24, \ 178 REG_B25, REG_B26, REG_B27, REG_B28, REG_B29, REG_B30, REG_B31, \ 179 REG_A10, REG_A11, REG_A12, REG_A13, REG_A14, REG_A15, \ 180 REG_B3, REG_B10, REG_B11, REG_B12, REG_B13, REG_B14, REG_B15, \ 181 REG_A1, REG_A2, REG_B0, REG_B1, REG_B2, REG_ILC \ 182 } 183 184 /* Register Classes. */ 185 186 enum reg_class 187 { 188 NO_REGS, 189 PREDICATE_A_REGS, 190 PREDICATE_B_REGS, 191 PREDICATE_REGS, 192 PICREG, 193 SPREG, 194 CALL_USED_B_REGS, 195 NONPREDICATE_A_REGS, 196 NONPREDICATE_B_REGS, 197 NONPREDICATE_REGS, 198 A_REGS, 199 B_REGS, 200 GENERAL_REGS, 201 ALL_REGS, 202 LIM_REG_CLASSES 203 }; 204 205 #define N_REG_CLASSES (int) LIM_REG_CLASSES 206 207 #define REG_CLASS_NAMES { \ 208 "NO_REGS", \ 209 "PREDICATE_A_REGS", \ 210 "PREDICATE_B_REGS", \ 211 "PREDICATE_REGS", \ 212 "PICREG", \ 213 "SPREG", \ 214 "CALL_USED_B_REGS", \ 215 "NONPREDICATE_A_REGS", \ 216 "NONPREDICATE_B_REGS", \ 217 "NONPREDICATE_REGS", \ 218 "A_REGS", \ 219 "B_REGS", \ 220 "GENERAL_REGS", \ 221 "ALL_REGS" } 222 223 #define REG_CLASS_CONTENTS \ 224 { \ 225 /* NO_REGS. */ \ 226 { 0x00000000, 0x00000000, 0 }, \ 227 /* PREDICATE_A_REGS. */ \ 228 { 0x00000006, 0x00000000, 0 }, \ 229 /* PREDICATE_B_REGS. */ \ 230 { 0x00000000, 0x00000007, 0 }, \ 231 /* PREDICATE_REGS. */ \ 232 { 0x00000006, 0x00000007, 0 }, \ 233 /* PICREG. */ \ 234 { 0x00000000, 0x00004000, 0 }, \ 235 /* SPREG. */ \ 236 { 0x00000000, 0x00008000, 0 }, \ 237 /* CALL_USED_B_REGS. */ \ 238 { 0x00000000, 0xFFFF03FF, 0 }, \ 239 /* NONPREDICATE_A_REGS. */ \ 240 { 0xFFFFFFF9, 0x00000000, 0 }, \ 241 /* NONPREDICATE_B_REGS. */ \ 242 { 0x00000000, 0xFFFFFFF8, 0 }, \ 243 /* NONPREDICATE_REGS. */ \ 244 { 0xFFFFFFF9, 0xFFFFFFF8, 0 }, \ 245 /* A_REGS. */ \ 246 { 0xFFFFFFFF, 0x00000000, 3 }, \ 247 /* B_REGS. */ \ 248 { 0x00000000, 0xFFFFFFFF, 3 }, \ 249 /* GENERAL_REGS. */ \ 250 { 0xFFFFFFFF, 0xFFFFFFFF, 3 }, \ 251 /* ALL_REGS. */ \ 252 { 0xFFFFFFFF, 0xFFFFFFFF, 7 }, \ 253 } 254 255 #define A_REGNO_P(N) ((N) <= REG_A31) 256 #define B_REGNO_P(N) ((N) >= REG_B0 && (N) <= REG_B31) 257 258 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X))) 259 #define CROSS_OPERANDS(X0,X1) \ 260 (A_REG_P (X0) == A_REG_P (X1) ? CROSS_N : CROSS_Y) 261 262 #define REGNO_REG_CLASS(reg) \ 263 ((reg) >= REG_A1 && (reg) <= REG_A2 ? PREDICATE_A_REGS \ 264 : (reg) == REG_A0 && TARGET_INSNS_64 ? PREDICATE_A_REGS \ 265 : (reg) >= REG_B0 && (reg) <= REG_B2 ? PREDICATE_B_REGS \ 266 : A_REGNO_P (reg) ? NONPREDICATE_A_REGS \ 267 : call_used_regs[reg] ? CALL_USED_B_REGS : B_REGS) 268 269 #define BASE_REG_CLASS ALL_REGS 270 #define INDEX_REG_CLASS ALL_REGS 271 272 #define REGNO_OK_FOR_BASE_STRICT_P(X) \ 273 ((X) < FIRST_PSEUDO_REGISTER \ 274 || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER)) 275 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X) 1 276 277 #define REGNO_OK_FOR_INDEX_STRICT_P(X) \ 278 ((X) < FIRST_PSEUDO_REGISTER \ 279 || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER)) 280 #define REGNO_OK_FOR_INDEX_NONSTRICT_P(X) 1 281 282 #ifdef REG_OK_STRICT 283 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X) 284 #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_STRICT_P (X) 285 #else 286 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X) 287 #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (X) 288 #endif 289 290 #define CLASS_MAX_NREGS(class, mode) \ 291 ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 292 293 #define REGNO_OK_FOR_INDIRECT_JUMP_P(REGNO, MODE) B_REGNO_P (REGNO) 294 295 /* Stack and Calling. */ 296 297 /* SP points to 4 bytes below the first word of the frame. */ 298 #define STACK_POINTER_OFFSET 4 299 /* Likewise for AP (which is the incoming stack pointer). */ 300 #define FIRST_PARM_OFFSET(fundecl) 4 301 #define FRAME_GROWS_DOWNWARD 1 302 #define STACK_GROWS_DOWNWARD 1 303 304 #define STACK_POINTER_REGNUM REG_B15 305 #define HARD_FRAME_POINTER_REGNUM REG_A15 306 /* These two always get eliminated in favour of the stack pointer 307 or the hard frame pointer. */ 308 #define FRAME_POINTER_REGNUM REG_FRAME 309 #define ARG_POINTER_REGNUM REG_ARGP 310 311 #define PIC_OFFSET_TABLE_REGNUM REG_B14 312 313 /* We keep the stack pointer constant rather than using push/pop 314 instructions. */ 315 #define ACCUMULATE_OUTGOING_ARGS 1 316 317 /* Before the prologue, the return address is in the B3 register. */ 318 #define RETURN_ADDR_REGNO REG_B3 319 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNO) 320 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (RETURN_ADDR_REGNO) 321 322 #define RETURN_ADDR_RTX(COUNT, FRAME) c6x_return_addr_rtx (COUNT) 323 324 #define INCOMING_FRAME_SP_OFFSET 0 325 #define ARG_POINTER_CFA_OFFSET(fundecl) 0 326 327 #define STATIC_CHAIN_REGNUM REG_A2 328 329 struct c6x_args { 330 /* Number of arguments to pass in registers. */ 331 int nregs; 332 /* Number of arguments passed in registers so far. */ 333 int count; 334 }; 335 336 #define CUMULATIVE_ARGS struct c6x_args 337 338 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \ 339 c6x_init_cumulative_args (&cum, fntype, libname, n_named_args) 340 341 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ 342 (c6x_block_reg_pad_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD) 343 344 #define FUNCTION_ARG_REGNO_P(r) \ 345 (((r) >= REG_A4 && (r) <= REG_A13) || ((r) >= REG_B4 && (r) <= REG_B13)) 346 347 #define DEFAULT_PCC_STRUCT_RETURN 0 348 349 #define FUNCTION_PROFILER(file, labelno) \ 350 fatal_error (input_location, \ 351 "profiling is not yet implemented for this architecture") 352 353 354 /* Trampolines. */ 355 #define TRAMPOLINE_SIZE 32 356 #define TRAMPOLINE_ALIGNMENT 256 357 358 #define ELIMINABLE_REGS \ 359 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 360 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ 361 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 362 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ 363 364 /* Define the offset between two registers, one to be eliminated, and the other 365 its replacement, at the start of a routine. */ 366 367 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 368 ((OFFSET) = c6x_initial_elimination_offset ((FROM), (TO))) 369 370 /* Addressing Modes. */ 371 372 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P(x) && GET_CODE(x) != CONST_DOUBLE) 373 #define MAX_REGS_PER_ADDRESS 2 374 375 #define HAVE_PRE_DECREMENT 1 376 #define HAVE_POST_DECREMENT 1 377 #define HAVE_PRE_INCREMENT 1 378 #define HAVE_POST_INCREMENT 1 379 380 /* Register forms are available, but due to scaling we currently don't 381 support them. */ 382 #define HAVE_PRE_MODIFY_DISP 1 383 #define HAVE_POST_MODIFY_DISP 1 384 385 #define LEGITIMATE_PIC_OPERAND_P(X) \ 386 (!symbolic_operand (X, SImode)) 387 388 struct GTY(()) machine_function 389 { 390 /* True if we expanded a sibling call. */ 391 int contains_sibcall; 392 }; 393 394 /* Costs. */ 395 #define NO_FUNCTION_CSE 1 396 397 #define SLOW_BYTE_ACCESS 0 398 399 #define BRANCH_COST(speed_p, predictable_p) 6 400 401 402 /* Model costs for the vectorizer. */ 403 404 /* Cost of conditional branch. */ 405 #ifndef TARG_COND_BRANCH_COST 406 #define TARG_COND_BRANCH_COST 6 407 #endif 408 409 /* Cost of any scalar operation, excluding load and store. */ 410 #ifndef TARG_SCALAR_STMT_COST 411 #define TARG_SCALAR_STMT_COST 1 412 #endif 413 414 /* Cost of scalar load. */ 415 #undef TARG_SCALAR_LOAD_COST 416 #define TARG_SCALAR_LOAD_COST 2 /* load + rotate */ 417 418 /* Cost of scalar store. */ 419 #undef TARG_SCALAR_STORE_COST 420 #define TARG_SCALAR_STORE_COST 10 421 422 /* Cost of any vector operation, excluding load, store, 423 or vector to scalar operation. */ 424 #undef TARG_VEC_STMT_COST 425 #define TARG_VEC_STMT_COST 1 426 427 /* Cost of vector to scalar operation. */ 428 #undef TARG_VEC_TO_SCALAR_COST 429 #define TARG_VEC_TO_SCALAR_COST 1 430 431 /* Cost of scalar to vector operation. */ 432 #undef TARG_SCALAR_TO_VEC_COST 433 #define TARG_SCALAR_TO_VEC_COST 1 434 435 /* Cost of aligned vector load. */ 436 #undef TARG_VEC_LOAD_COST 437 #define TARG_VEC_LOAD_COST 1 438 439 /* Cost of misaligned vector load. */ 440 #undef TARG_VEC_UNALIGNED_LOAD_COST 441 #define TARG_VEC_UNALIGNED_LOAD_COST 2 442 443 /* Cost of vector store. */ 444 #undef TARG_VEC_STORE_COST 445 #define TARG_VEC_STORE_COST 1 446 447 /* Cost of vector permutation. */ 448 #ifndef TARG_VEC_PERMUTE_COST 449 #define TARG_VEC_PERMUTE_COST 1 450 #endif 451 452 /* ttype entries (the only interesting data references used) are 453 sb-relative got-indirect (aka .ehtype). */ 454 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \ 455 (((code) == 0 && (data) == 1) ? (DW_EH_PE_datarel | DW_EH_PE_indirect) \ 456 : DW_EH_PE_absptr) 457 458 /* This should be the same as the definition in elfos.h, plus the call 459 to output special unwinding directives. */ 460 #undef ASM_DECLARE_FUNCTION_NAME 461 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ 462 do \ 463 { \ 464 c6x_output_file_unwind (FILE); \ 465 ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \ 466 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \ 467 ASM_OUTPUT_LABEL (FILE, NAME); \ 468 } \ 469 while (0) 470 471 /* This should be the same as the definition in elfos.h, plus the call 472 to output special unwinding directives. */ 473 #undef ASM_DECLARE_FUNCTION_SIZE 474 #define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \ 475 c6x_function_end (STREAM, NAME) 476 477 /* Arbitrarily choose A4/A5. */ 478 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) + 4 : INVALID_REGNUM) 479 480 /* The register that holds the return address in exception handlers. */ 481 #define C6X_EH_STACKADJ_REGNUM 3 482 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, C6X_EH_STACKADJ_REGNUM) 483 484 485 /* Assembler Format. */ 486 487 #define DWARF2_ASM_LINE_DEBUG_INFO 1 488 489 #undef ASM_APP_ON 490 #define ASM_APP_ON "\t; #APP \n" 491 #undef ASM_APP_OFF 492 #define ASM_APP_OFF "\t; #NO_APP \n" 493 494 #define ASM_OUTPUT_COMMON(stream, name, size, rounded) 495 #define ASM_OUTPUT_LOCAL(stream, name, size, rounded) 496 497 #define GLOBAL_ASM_OP "\t.global\t" 498 499 #define REGISTER_NAMES \ 500 { \ 501 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", \ 502 "A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15", \ 503 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", \ 504 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", \ 505 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", \ 506 "B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15", \ 507 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", \ 508 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", \ 509 "FP", "ARGP", "ILC" } 510 511 #define DBX_REGISTER_NUMBER(N) (dbx_register_map[(N)]) 512 513 extern unsigned const dbx_register_map[FIRST_PSEUDO_REGISTER]; 514 515 #define FINAL_PRESCAN_INSN c6x_final_prescan_insn 516 517 #define TEXT_SECTION_ASM_OP ".text;" 518 #define DATA_SECTION_ASM_OP ".data;" 519 520 #define ASM_OUTPUT_ALIGN(stream, power) \ 521 do \ 522 { \ 523 if (power) \ 524 fprintf ((stream), "\t.align\t%d\n", power); \ 525 } \ 526 while (0) 527 528 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 529 do { char __buf[256]; \ 530 fprintf (FILE, "\t.long\t"); \ 531 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \ 532 assemble_name (FILE, __buf); \ 533 fputc ('\n', FILE); \ 534 } while (0) 535 536 /* Determine whether to place EXP (an expression or a decl) should be 537 placed into one of the small data sections. */ 538 #define PLACE_IN_SDATA_P(EXP) \ 539 (c6x_sdata_mode == C6X_SDATA_NONE ? false \ 540 : c6x_sdata_mode == C6X_SDATA_ALL ? true \ 541 : !AGGREGATE_TYPE_P (TREE_TYPE (EXP))) 542 543 #define SCOMMON_ASM_OP "\t.scomm\t" 544 545 #undef ASM_OUTPUT_ALIGNED_DECL_COMMON 546 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \ 547 do \ 548 { \ 549 if (DECL != NULL && PLACE_IN_SDATA_P (DECL)) \ 550 fprintf ((FILE), "%s", SCOMMON_ASM_OP); \ 551 else \ 552 fprintf ((FILE), "%s", COMMON_ASM_OP); \ 553 assemble_name ((FILE), (NAME)); \ 554 fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\ 555 } \ 556 while (0) 557 558 /* This says how to output assembler code to declare an 559 uninitialized internal linkage data object. */ 560 561 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL 562 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \ 563 do { \ 564 if (PLACE_IN_SDATA_P (DECL)) \ 565 switch_to_section (sbss_section); \ 566 else \ 567 switch_to_section (bss_section); \ 568 ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object"); \ 569 if (!flag_inhibit_size_directive) \ 570 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \ 571 ASM_OUTPUT_ALIGN ((FILE), exact_log2((ALIGN) / BITS_PER_UNIT)); \ 572 ASM_OUTPUT_LABEL(FILE, NAME); \ 573 ASM_OUTPUT_SKIP((FILE), (SIZE) ? (SIZE) : 1); \ 574 } while (0) 575 576 #define CASE_VECTOR_PC_RELATIVE flag_pic 577 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic 578 579 #define ADDR_VEC_ALIGN(VEC) (JUMP_TABLES_IN_TEXT_SECTION ? 5 : 2) 580 581 /* This is how to output an element of a case-vector that is relative. */ 582 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 583 do { char buf[100]; \ 584 fputs ("\t.long ", FILE); \ 585 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ 586 assemble_name (FILE, buf); \ 587 putc ('-', FILE); \ 588 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ 589 assemble_name (FILE, buf); \ 590 putc ('\n', FILE); \ 591 } while (0) 592 593 /* Misc. */ 594 595 #define CASE_VECTOR_MODE SImode 596 #define MOVE_MAX 4 597 #define MOVE_RATIO(SPEED) 4 598 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1) 599 #define Pmode SImode 600 #define FUNCTION_MODE QImode 601 602 #define CPU_UNITS_QUERY 1 603 604 extern int c6x_initial_flag_pic; 605 606 #endif /* GCC_C6X_H */ 607