1 /* Target Definitions for TI C6X.
2    Copyright (C) 2010-2018 Free Software Foundation, Inc.
3    Contributed by Andrew Jenner <andrew@codesourcery.com>
4    Contributed by Bernd Schmidt <bernds@codesourcery.com>
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published
10    by the Free Software Foundation; either version 3, or (at your
11    option) any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_C6X_H
23 #define GCC_C6X_H
24 
25 /* Feature bit definitions that enable specific insns.  */
26 #define C6X_INSNS_C62X		1
27 #define C6X_INSNS_C64X		2
28 #define C6X_INSNS_C64XP		4
29 #define C6X_INSNS_C67X		8
30 #define C6X_INSNS_C67XP		16
31 #define C6X_INSNS_C674X		32
32 #define C6X_INSNS_ATOMIC	64
33 #define C6X_INSNS_ALL_CPU_BITS	127
34 
35 #define C6X_DEFAULT_INSN_MASK						\
36   (C6X_INSNS_C62X | C6X_INSNS_C64X | C6X_INSNS_C64XP)
37 
38 /* A mask of allowed insn types, as defined above.  */
39 extern unsigned long c6x_insn_mask;
40 
41 /* Value of -march= */
42 extern c6x_cpu_t c6x_arch;
43 #define C6X_DEFAULT_ARCH C6X_CPU_C64XP
44 
45 /* True if the target has C64x instructions.  */
46 #define TARGET_INSNS_64		((c6x_insn_mask & C6X_INSNS_C64X) != 0)
47 /* True if the target has C64x+ instructions.  */
48 #define TARGET_INSNS_64PLUS	((c6x_insn_mask & C6X_INSNS_C64XP) != 0)
49 /* True if the target has C67x instructions.  */
50 #define TARGET_INSNS_67		((c6x_insn_mask & C6X_INSNS_C67X) != 0)
51 /* True if the target has C67x+ instructions.  */
52 #define TARGET_INSNS_67PLUS	((c6x_insn_mask & C6X_INSNS_C67XP) != 0)
53 
54 /* True if the target supports doubleword loads.  */
55 #define TARGET_LDDW		(TARGET_INSNS_64 || TARGET_INSNS_67)
56 /* True if the target supports doubleword loads.  */
57 #define TARGET_STDW		TARGET_INSNS_64
58 /* True if the target supports the MPY32 family of instructions.  */
59 #define TARGET_MPY32		TARGET_INSNS_64PLUS
60 /* True if the target has floating point hardware.  */
61 #define TARGET_FP		TARGET_INSNS_67
62 /* True if the target has C67x+ floating point extensions.  */
63 #define TARGET_FP_EXT		TARGET_INSNS_67PLUS
64 
65 #define TARGET_DEFAULT 0
66 
67 /* Run-time Target.  */
68 
69 #define TARGET_CPU_CPP_BUILTINS()		\
70   do						\
71     {						\
72       builtin_assert ("machine=tic6x");		\
73       builtin_assert ("cpu=tic6x");		\
74       builtin_define ("__TMS320C6X__");		\
75       builtin_define ("_TMS320C6X");		\
76 						\
77       if (TARGET_DSBT)				\
78 	builtin_define ("__DSBT__");		\
79 						\
80       if (TARGET_BIG_ENDIAN)			\
81 	builtin_define ("_BIG_ENDIAN");		\
82       else					\
83 	builtin_define ("_LITTLE_ENDIAN");	\
84 						\
85       switch (c6x_arch)				\
86 	{					\
87 	case unk_isa:				\
88 	  break;				\
89 	case C6X_CPU_C62X:			\
90 	  builtin_define ("_TMS320C6200");	\
91 	  break;				\
92 						\
93 	case C6X_CPU_C64XP:			\
94 	  builtin_define ("_TMS320C6400_PLUS");	\
95 	  /* fall through */			\
96 	case C6X_CPU_C64X:			\
97 	  builtin_define ("_TMS320C6400");	\
98 	  break;				\
99 						\
100 	case C6X_CPU_C67XP:			\
101 	  builtin_define ("_TMS320C6700_PLUS");	\
102 	  /* fall through */			\
103 	case C6X_CPU_C67X:			\
104 	  builtin_define ("_TMS320C6700");	\
105 	  break;				\
106 						\
107 	case C6X_CPU_C674X:			\
108 	  builtin_define ("_TMS320C6740");	\
109 	  builtin_define ("_TMS320C6700_PLUS");	\
110 	  builtin_define ("_TMS320C6700");	\
111 	  builtin_define ("_TMS320C6400_PLUS");	\
112 	  builtin_define ("_TMS320C6400");	\
113 	  break;				\
114 	}					\
115     } while (0)
116 
117 #define OPTION_DEFAULT_SPECS \
118   {"arch", "%{!march=*:-march=%(VALUE)}" }
119 
120 /* Storage Layout.  */
121 
122 #define BITS_BIG_ENDIAN 0
123 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
124 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
125 
126 #define REG_WORDS_BIG_ENDIAN 0
127 
128 #define UNITS_PER_WORD 4
129 #define PARM_BOUNDARY 8
130 #define STACK_BOUNDARY 64
131 #define FUNCTION_BOUNDARY 32
132 #define BIGGEST_ALIGNMENT 64
133 #define STRICT_ALIGNMENT 1
134 
135 /* The ABI requires static arrays must be at least 8 byte aligned.
136    Really only externally visible arrays must be aligned this way, as
137    only those are directly visible from another compilation unit.  But
138    we don't have that information available here.  */
139 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN)					\
140   (((ALIGN) < BITS_PER_UNIT * 8 && TREE_CODE (TYPE) == ARRAY_TYPE)	\
141    ? BITS_PER_UNIT * 8 : (ALIGN))
142 
143 /* Type Layout.  */
144 
145 #define DEFAULT_SIGNED_CHAR 1
146 
147 #undef SIZE_TYPE
148 #define SIZE_TYPE "unsigned int"
149 #undef PTRDIFF_TYPE
150 #define PTRDIFF_TYPE "int"
151 
152 /* Registers.  */
153 
154 #define FIRST_PSEUDO_REGISTER 67
155 #define FIXED_REGISTERS					\
156   { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
157     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
158     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	\
159     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
160     1, 1, 1}
161 #define CALL_USED_REGISTERS				\
162   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,	\
163     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
164     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,	\
165     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
166     1, 1, 1}
167 
168 /* This lists call-used non-predicate registers first, followed by call-used
169    registers, followed by predicate registers.  We want to avoid allocating
170    the predicate registers for other uses as much as possible.  */
171 #define REG_ALLOC_ORDER							\
172   {									\
173     REG_A0, REG_A3, REG_A4, REG_A5, REG_A6, REG_A7, REG_A8, REG_A9,	\
174     REG_A16, REG_A17, REG_A18, REG_A19, REG_A20, REG_A21, REG_A22, REG_A23, \
175     REG_A24, REG_A25, REG_A26, REG_A27, REG_A28, REG_A29, REG_A30, REG_A31, \
176     REG_B4, REG_B5, REG_B6, REG_B7, REG_B8, REG_B9, REG_B16,	\
177     REG_B17, REG_B18, REG_B19, REG_B20, REG_B21, REG_B22, REG_B23, REG_B24, \
178     REG_B25, REG_B26, REG_B27, REG_B28, REG_B29, REG_B30, REG_B31,	\
179     REG_A10, REG_A11, REG_A12, REG_A13, REG_A14, REG_A15,		\
180     REG_B3, REG_B10, REG_B11, REG_B12, REG_B13, REG_B14, REG_B15,	\
181     REG_A1, REG_A2, REG_B0, REG_B1, REG_B2, REG_ILC			\
182   }
183 
184 /* Register Classes.  */
185 
186 enum reg_class
187   {
188     NO_REGS,
189     PREDICATE_A_REGS,
190     PREDICATE_B_REGS,
191     PREDICATE_REGS,
192     PICREG,
193     SPREG,
194     CALL_USED_B_REGS,
195     NONPREDICATE_A_REGS,
196     NONPREDICATE_B_REGS,
197     NONPREDICATE_REGS,
198     A_REGS,
199     B_REGS,
200     GENERAL_REGS,
201     ALL_REGS,
202     LIM_REG_CLASSES
203   };
204 
205 #define N_REG_CLASSES (int) LIM_REG_CLASSES
206 
207 #define REG_CLASS_NAMES {	  \
208     "NO_REGS",			  \
209     "PREDICATE_A_REGS",		  \
210     "PREDICATE_B_REGS",		  \
211     "PREDICATE_REGS",		  \
212     "PICREG",			  \
213     "SPREG",			  \
214     "CALL_USED_B_REGS",		  \
215     "NONPREDICATE_A_REGS",	  \
216     "NONPREDICATE_B_REGS",	  \
217     "NONPREDICATE_REGS",	  \
218     "A_REGS",			  \
219     "B_REGS",			  \
220     "GENERAL_REGS",		  \
221     "ALL_REGS" }
222 
223 #define REG_CLASS_CONTENTS			\
224 {						\
225   /* NO_REGS.  */				\
226   { 0x00000000, 0x00000000, 0 },		\
227   /* PREDICATE_A_REGS.  */			\
228   { 0x00000006, 0x00000000, 0 },		\
229   /* PREDICATE_B_REGS.  */			\
230   { 0x00000000, 0x00000007, 0 },		\
231   /* PREDICATE_REGS.  */			\
232   { 0x00000006, 0x00000007, 0 },		\
233   /* PICREG.  */				\
234   { 0x00000000, 0x00004000, 0 },		\
235   /* SPREG.  */					\
236   { 0x00000000, 0x00008000, 0 },		\
237   /* CALL_USED_B_REGS.  */			\
238   { 0x00000000, 0xFFFF03FF, 0 },		\
239   /* NONPREDICATE_A_REGS.  */			\
240   { 0xFFFFFFF9, 0x00000000, 0 },		\
241   /* NONPREDICATE_B_REGS.  */			\
242   { 0x00000000, 0xFFFFFFF8, 0 },		\
243   /* NONPREDICATE_REGS.  */			\
244   { 0xFFFFFFF9, 0xFFFFFFF8, 0 },		\
245   /* A_REGS.  */				\
246   { 0xFFFFFFFF, 0x00000000, 3 },		\
247   /* B_REGS.  */				\
248   { 0x00000000, 0xFFFFFFFF, 3 },		\
249   /* GENERAL_REGS.  */				\
250   { 0xFFFFFFFF, 0xFFFFFFFF, 3 },		\
251   /* ALL_REGS.  */				\
252   { 0xFFFFFFFF, 0xFFFFFFFF, 7 },		\
253 }
254 
255 #define A_REGNO_P(N) ((N) <= REG_A31)
256 #define B_REGNO_P(N) ((N) >= REG_B0 && (N) <= REG_B31)
257 
258 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
259 #define CROSS_OPERANDS(X0,X1) \
260   (A_REG_P (X0) == A_REG_P (X1) ? CROSS_N : CROSS_Y)
261 
262 #define REGNO_REG_CLASS(reg) \
263     ((reg) >= REG_A1 && (reg) <= REG_A2 ? PREDICATE_A_REGS	\
264      : (reg) == REG_A0 && TARGET_INSNS_64 ? PREDICATE_A_REGS	\
265      : (reg) >= REG_B0 && (reg) <= REG_B2 ? PREDICATE_B_REGS	\
266      : A_REGNO_P (reg) ? NONPREDICATE_A_REGS			\
267      : call_used_regs[reg] ? CALL_USED_B_REGS : B_REGS)
268 
269 #define BASE_REG_CLASS ALL_REGS
270 #define INDEX_REG_CLASS ALL_REGS
271 
272 #define REGNO_OK_FOR_BASE_STRICT_P(X)				\
273   ((X) < FIRST_PSEUDO_REGISTER					\
274    || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
275 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X) 1
276 
277 #define REGNO_OK_FOR_INDEX_STRICT_P(X)				\
278   ((X) < FIRST_PSEUDO_REGISTER					\
279    || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
280 #define REGNO_OK_FOR_INDEX_NONSTRICT_P(X) 1
281 
282 #ifdef REG_OK_STRICT
283 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
284 #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_STRICT_P (X)
285 #else
286 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
287 #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (X)
288 #endif
289 
290 #define CLASS_MAX_NREGS(class, mode) \
291   ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
292 
293 #define REGNO_OK_FOR_INDIRECT_JUMP_P(REGNO, MODE) B_REGNO_P (REGNO)
294 
295 /* Stack and Calling.  */
296 
297 /* SP points to 4 bytes below the first word of the frame.  */
298 #define STACK_POINTER_OFFSET 4
299 /* Likewise for AP (which is the incoming stack pointer).  */
300 #define FIRST_PARM_OFFSET(fundecl) 4
301 #define FRAME_GROWS_DOWNWARD 1
302 #define STACK_GROWS_DOWNWARD 1
303 
304 #define STACK_POINTER_REGNUM REG_B15
305 #define HARD_FRAME_POINTER_REGNUM REG_A15
306 /* These two always get eliminated in favour of the stack pointer
307    or the hard frame pointer.  */
308 #define FRAME_POINTER_REGNUM REG_FRAME
309 #define ARG_POINTER_REGNUM REG_ARGP
310 
311 #define PIC_OFFSET_TABLE_REGNUM REG_B14
312 
313 /* We keep the stack pointer constant rather than using push/pop
314    instructions.  */
315 #define ACCUMULATE_OUTGOING_ARGS 1
316 
317 /* Before the prologue, the return address is in the B3 register.  */
318 #define RETURN_ADDR_REGNO REG_B3
319 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNO)
320 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (RETURN_ADDR_REGNO)
321 
322 #define RETURN_ADDR_RTX(COUNT, FRAME) c6x_return_addr_rtx (COUNT)
323 
324 #define INCOMING_FRAME_SP_OFFSET 0
325 #define ARG_POINTER_CFA_OFFSET(fundecl) 0
326 
327 #define STATIC_CHAIN_REGNUM REG_A2
328 
329 struct c6x_args {
330   /* Number of arguments to pass in registers.  */
331   int nregs;
332   /* Number of arguments passed in registers so far.  */
333   int count;
334 };
335 
336 #define CUMULATIVE_ARGS struct c6x_args
337 
338 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
339   c6x_init_cumulative_args (&cum, fntype, libname, n_named_args)
340 
341 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
342   (c6x_block_reg_pad_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
343 
344 #define FUNCTION_ARG_REGNO_P(r) \
345     (((r) >= REG_A4 && (r) <= REG_A13) || ((r) >= REG_B4 && (r) <= REG_B13))
346 
347 #define DEFAULT_PCC_STRUCT_RETURN 0
348 
349 #define FUNCTION_PROFILER(file, labelno) \
350   fatal_error (input_location, \
351 	       "profiling is not yet implemented for this architecture")
352 
353 
354 /* Trampolines.  */
355 #define TRAMPOLINE_SIZE 32
356 #define TRAMPOLINE_ALIGNMENT 256
357 
358 #define ELIMINABLE_REGS					\
359 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
360  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
361  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
362  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
363 
364 /* Define the offset between two registers, one to be eliminated, and the other
365    its replacement, at the start of a routine.  */
366 
367 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
368   ((OFFSET) = c6x_initial_elimination_offset ((FROM), (TO)))
369 
370 /* Addressing Modes.  */
371 
372 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P(x) && GET_CODE(x) != CONST_DOUBLE)
373 #define MAX_REGS_PER_ADDRESS 2
374 
375 #define HAVE_PRE_DECREMENT 1
376 #define HAVE_POST_DECREMENT 1
377 #define HAVE_PRE_INCREMENT 1
378 #define HAVE_POST_INCREMENT 1
379 
380 /* Register forms are available, but due to scaling we currently don't
381    support them.  */
382 #define HAVE_PRE_MODIFY_DISP 1
383 #define HAVE_POST_MODIFY_DISP 1
384 
385 #define LEGITIMATE_PIC_OPERAND_P(X) \
386   (!symbolic_operand (X, SImode))
387 
388 struct GTY(()) machine_function
389 {
390   /* True if we expanded a sibling call.  */
391   int contains_sibcall;
392 };
393 
394 /* Costs.  */
395 #define NO_FUNCTION_CSE 1
396 
397 #define SLOW_BYTE_ACCESS 0
398 
399 #define BRANCH_COST(speed_p, predictable_p) 6
400 
401 
402 /* Model costs for the vectorizer.  */
403 
404 /* Cost of conditional branch.  */
405 #ifndef TARG_COND_BRANCH_COST
406 #define TARG_COND_BRANCH_COST        6
407 #endif
408 
409 /* Cost of any scalar operation, excluding load and store.  */
410 #ifndef TARG_SCALAR_STMT_COST
411 #define TARG_SCALAR_STMT_COST        1
412 #endif
413 
414 /* Cost of scalar load. */
415 #undef TARG_SCALAR_LOAD_COST
416 #define TARG_SCALAR_LOAD_COST        2 /* load + rotate */
417 
418 /* Cost of scalar store.  */
419 #undef TARG_SCALAR_STORE_COST
420 #define TARG_SCALAR_STORE_COST       10
421 
422 /* Cost of any vector operation, excluding load, store,
423    or vector to scalar operation.  */
424 #undef TARG_VEC_STMT_COST
425 #define TARG_VEC_STMT_COST           1
426 
427 /* Cost of vector to scalar operation.  */
428 #undef TARG_VEC_TO_SCALAR_COST
429 #define TARG_VEC_TO_SCALAR_COST      1
430 
431 /* Cost of scalar to vector operation.  */
432 #undef TARG_SCALAR_TO_VEC_COST
433 #define TARG_SCALAR_TO_VEC_COST      1
434 
435 /* Cost of aligned vector load.  */
436 #undef TARG_VEC_LOAD_COST
437 #define TARG_VEC_LOAD_COST           1
438 
439 /* Cost of misaligned vector load.  */
440 #undef TARG_VEC_UNALIGNED_LOAD_COST
441 #define TARG_VEC_UNALIGNED_LOAD_COST 2
442 
443 /* Cost of vector store.  */
444 #undef TARG_VEC_STORE_COST
445 #define TARG_VEC_STORE_COST          1
446 
447 /* Cost of vector permutation.  */
448 #ifndef TARG_VEC_PERMUTE_COST
449 #define TARG_VEC_PERMUTE_COST        1
450 #endif
451 
452 /* ttype entries (the only interesting data references used) are
453    sb-relative got-indirect (aka .ehtype).  */
454 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
455   (((code) == 0 && (data) == 1) ? (DW_EH_PE_datarel | DW_EH_PE_indirect) \
456 				: DW_EH_PE_absptr)
457 
458 /* This should be the same as the definition in elfos.h, plus the call
459    to output special unwinding directives.  */
460 #undef ASM_DECLARE_FUNCTION_NAME
461 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)		\
462   do								\
463     {								\
464       c6x_output_file_unwind (FILE);				\
465       ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function");	\
466       ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL));		\
467       ASM_OUTPUT_LABEL (FILE, NAME);				\
468     }								\
469   while (0)
470 
471 /* This should be the same as the definition in elfos.h, plus the call
472    to output special unwinding directives.  */
473 #undef ASM_DECLARE_FUNCTION_SIZE
474 #define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
475   c6x_function_end (STREAM, NAME)
476 
477 /* Arbitrarily choose A4/A5.  */
478 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) + 4 : INVALID_REGNUM)
479 
480 /* The register that holds the return address in exception handlers.  */
481 #define C6X_EH_STACKADJ_REGNUM  3
482 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (SImode, C6X_EH_STACKADJ_REGNUM)
483 
484 
485 /* Assembler Format.  */
486 
487 #define DWARF2_ASM_LINE_DEBUG_INFO 1
488 
489 #undef ASM_APP_ON
490 #define ASM_APP_ON "\t; #APP \n"
491 #undef ASM_APP_OFF
492 #define ASM_APP_OFF "\t; #NO_APP \n"
493 
494 #define ASM_OUTPUT_COMMON(stream, name, size, rounded)
495 #define ASM_OUTPUT_LOCAL(stream, name, size, rounded)
496 
497 #define GLOBAL_ASM_OP "\t.global\t"
498 
499 #define REGISTER_NAMES						\
500   {								\
501     "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",		\
502     "A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15",	\
503     "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",	\
504     "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",     \
505     "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",             \
506     "B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15",       \
507     "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",     \
508     "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",	\
509     "FP", "ARGP", "ILC" }
510 
511 #define DBX_REGISTER_NUMBER(N) (dbx_register_map[(N)])
512 
513 extern unsigned const dbx_register_map[FIRST_PSEUDO_REGISTER];
514 
515 #define FINAL_PRESCAN_INSN c6x_final_prescan_insn
516 
517 #define TEXT_SECTION_ASM_OP ".text;"
518 #define DATA_SECTION_ASM_OP ".data;"
519 
520 #define ASM_OUTPUT_ALIGN(stream, power)			    \
521   do							    \
522     {							    \
523       if (power)					    \
524         fprintf ((stream), "\t.align\t%d\n", power);	    \
525     }                                                       \
526   while (0)
527 
528 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)    	\
529 do { char __buf[256];					\
530      fprintf (FILE, "\t.long\t");				\
531      ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);	\
532      assemble_name (FILE, __buf);			\
533      fputc ('\n', FILE);				\
534    } while (0)
535 
536 /* Determine whether to place EXP (an expression or a decl) should be
537    placed into one of the small data sections.  */
538 #define PLACE_IN_SDATA_P(EXP) \
539   (c6x_sdata_mode == C6X_SDATA_NONE ? false	\
540    : c6x_sdata_mode == C6X_SDATA_ALL ? true	\
541    : !AGGREGATE_TYPE_P (TREE_TYPE (EXP)))
542 
543 #define SCOMMON_ASM_OP "\t.scomm\t"
544 
545 #undef  ASM_OUTPUT_ALIGNED_DECL_COMMON
546 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN)	\
547   do									\
548     {									\
549       if (DECL != NULL && PLACE_IN_SDATA_P (DECL))			\
550 	fprintf ((FILE), "%s", SCOMMON_ASM_OP);				\
551       else								\
552 	fprintf ((FILE), "%s", COMMON_ASM_OP);				\
553       assemble_name ((FILE), (NAME));					\
554       fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
555     }									\
556   while (0)
557 
558 /* This says how to output assembler code to declare an
559    uninitialized internal linkage data object.  */
560 
561 #undef  ASM_OUTPUT_ALIGNED_DECL_LOCAL
562 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN)	\
563 do {									\
564   if (PLACE_IN_SDATA_P (DECL))						\
565     switch_to_section (sbss_section);					\
566   else									\
567     switch_to_section (bss_section);					\
568   ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object");			\
569   if (!flag_inhibit_size_directive)					\
570     ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);			\
571   ASM_OUTPUT_ALIGN ((FILE), exact_log2((ALIGN) / BITS_PER_UNIT));	\
572   ASM_OUTPUT_LABEL(FILE, NAME);						\
573   ASM_OUTPUT_SKIP((FILE), (SIZE) ? (SIZE) : 1);				\
574 } while (0)
575 
576 #define CASE_VECTOR_PC_RELATIVE flag_pic
577 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
578 
579 #define ADDR_VEC_ALIGN(VEC) (JUMP_TABLES_IN_TEXT_SECTION ? 5 : 2)
580 
581 /* This is how to output an element of a case-vector that is relative.  */
582 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
583   do { char buf[100];					\
584        fputs ("\t.long ", FILE);			\
585        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
586        assemble_name (FILE, buf);			\
587        putc ('-', FILE);				\
588        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
589        assemble_name (FILE, buf);			\
590        putc ('\n', FILE);				\
591      } while (0)
592 
593 /* Misc.  */
594 
595 #define CASE_VECTOR_MODE SImode
596 #define MOVE_MAX 4
597 #define MOVE_RATIO(SPEED) 4
598 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
599 #define Pmode SImode
600 #define FUNCTION_MODE QImode
601 
602 #define CPU_UNITS_QUERY 1
603 
604 extern int c6x_initial_flag_pic;
605 
606 #endif /* GCC_C6X_H */
607